Search This Blog

Wednesday, September 8, 2021

Search engine

From Wikipedia, the free encyclopedia
The results of a search for the term "lunar eclipse" in a web-based image search engine

A search engine is a software system that is designed to carry out web searches. They search the World Wide Web in a systematic way for particular information specified in a textual web search query. The search results are generally presented in a line of results, often referred to as search engine results pages (SERPs) The information may be a mix of links to web pages, images, videos, infographics, articles, research papers, and other types of files. Some search engines also mine data available in databases or open directories. Unlike web directories, which are maintained only by human editors, search engines also maintain real-time information by running an algorithm on a web crawler. Internet content that is not capable of being searched by a web search engine is generally described as the deep web.

History

Timeline 
Year Engine Current status
1993 W3Catalog Active
Aliweb Active
JumpStation Inactive
WWW Worm Inactive
1994 WebCrawler Active
Go.com Inactive, redirects to Disney
Lycos Active
Infoseek Inactive, redirects to Disney
1995 Yahoo! Search Active, initially a search function for Yahoo! Directory
Daum Active
Magellan Inactive
Excite Active
SAPO Active
MetaCrawler Active
AltaVista Inactive, acquired by Yahoo! in 2003, since 2013 redirects to Yahoo!
1996 RankDex Inactive, incorporated into Baidu in 2000
Dogpile Active, Aggregator
Inktomi Inactive, acquired by Yahoo!
HotBot Active
Ask Jeeves Active (rebranded ask.com)
1997 AOL NetFind Active (rebranded AOL Search since 1999)
Northern Light Inactive
Yandex Active
1998 Google Active
Ixquick Active as Startpage.com
MSN Search Active as Bing
empas Inactive (merged with NATE)
1999 AlltheWeb Inactive (URL redirected to Yahoo!)
GenieKnows Active, rebranded Yellowee (redirection to justlocalbusiness.com)
Naver Active
Teoma Active (© APN, LLC)
2000 Baidu Active
Exalead Inactive
Gigablast Active
2001 Kartoo Inactive
2003 Info.com Active
2004 A9.com Inactive
Clusty Active (as Yippy)
Mojeek Active
Sogou Active
2005 SearchMe Inactive
KidzSearch Active, Google Search
2006 Soso Inactive, merged with Sogou
Quaero Inactive
Search.com Active
ChaCha Inactive
Ask.com Active
Live Search Active as Bing, rebranded MSN Search
2007 wikiseek Inactive
Sproose Inactive
Wikia Search Inactive
Blackle.com Active, Google Search
2008 Powerset Inactive (redirects to Bing)
Picollator Inactive
Viewzi Inactive
Boogami Inactive
LeapFish Inactive
Forestle Inactive (redirects to Ecosia)
DuckDuckGo Active
2009 Bing Active, rebranded Live Search
Yebol Inactive
Mugurdy Inactive due to a lack of funding
Scout (Goby) Active
NATE Active
Ecosia Active
Startpage.com Active, sister engine of Ixquick
2010 Blekko Inactive, sold to IBM
Cuil Inactive
Yandex (English) Active
Parsijoo Active
2011 YaCy Active, P2P
2012 Volunia Inactive
2013 Qwant Active
2014 Egerin Active, Kurdish / Sorani
Swisscows Active
Searx Active
2015 Yooz Active
Cliqz Inactive
2016 Kiddle Active, Google Search

Pre-1990s

A system for locating published information intended to overcome the ever increasing difficulty of locating information in ever-growing centralized indices of scientific work was described in 1945 by Vannevar Bush, who wrote an article in The Atlantic Monthly titled "As We May Think" in which he envisioned libraries of research with connected annotations not unlike modern hyperlinks. Link analysis would eventually become a crucial component of search engines through algorithms such as Hyper Search and PageRank.

1990s: Birth of search engines

The first internet search engines predate the debut of the Web in December 1990: WHOIS user search dates back to 1982, and the Knowbot Information Service multi-network user search was first implemented in 1989. The first well documented search engine that searched content files, namely FTP files, was Archie, which debuted on 10 September 1990.

Prior to September 1993, the World Wide Web was entirely indexed by hand. There was a list of webservers edited by Tim Berners-Lee and hosted on the CERN webserver. One snapshot of the list in 1992 remains, but as more and more web servers went online the central list could no longer keep up. On the NCSA site, new servers were announced under the title "What's New!"

The first tool used for searching content (as opposed to users) on the Internet was Archie. The name stands for "archive" without the "v". It was created by Alan Emtage computer science student at McGill University in Montreal, Quebec, Canada. The program downloaded the directory listings of all the files located on public anonymous FTP (File Transfer Protocol) sites, creating a searchable database of file names; however, Archie Search Engine did not index the contents of these sites since the amount of data was so limited it could be readily searched manually.

The rise of Gopher (created in 1991 by Mark McCahill at the University of Minnesota) led to two new search programs, Veronica and Jughead. Like Archie, they searched the file names and titles stored in Gopher index systems. Veronica (Very Easy Rodent-Oriented Net-wide Index to Computerized Archives) provided a keyword search of most Gopher menu titles in the entire Gopher listings. Jughead (Jonzy's Universal Gopher Hierarchy Excavation And Display) was a tool for obtaining menu information from specific Gopher servers. While the name of the search engine "Archie Search Engine" was not a reference to the Archie comic book series, "Veronica" and "Jughead" are characters in the series, thus referencing their predecessor.

In the summer of 1993, no search engine existed for the web, though numerous specialized catalogues were maintained by hand. Oscar Nierstrasz at the University of Geneva wrote a series of Perl scripts that periodically mirrored these pages and rewrote them into a standard format. This formed the basis for W3Catalog, the web's first primitive search engine, released on September 2, 1993.

In June 1993, Matthew Gray, then at MIT, produced what was probably the first web robot, the Perl-based World Wide Web Wanderer, and used it to generate an index called "Wandex". The purpose of the Wanderer was to measure the size of the World Wide Web, which it did until late 1995. The web's second search engine Aliweb appeared in November 1993. Aliweb did not use a web robot, but instead depended on being notified by website administrators of the existence at each site of an index file in a particular format.

JumpStation (created in December 1993 by Jonathon Fletcher) used a web robot to find web pages and to build its index, and used a web form as the interface to its query program. It was thus the first WWW resource-discovery tool to combine the three essential features of a web search engine (crawling, indexing, and searching) as described below. Because of the limited resources available on the platform it ran on, its indexing and hence searching were limited to the titles and headings found in the web pages the crawler encountered.

One of the first "all text" crawler-based search engines was WebCrawler, which came out in 1994. Unlike its predecessors, it allowed users to search for any word in any webpage, which has become the standard for all major search engines since. It was also the search engine that was widely known by the public. Also in 1994, Lycos (which started at Carnegie Mellon University) was launched and became a major commercial endeavor.

The first popular search engine on the Web was Yahoo! Search. The first product from Yahoo!, founded by Jerry Yang and David Filo in January 1994, was a Web directory called Yahoo! Directory. In 1995, a search function was added, allowing users to search Yahoo! Directory! It became one of the most popular ways for people to find web pages of interest, but its search function operated on its web directory, rather than its full-text copies of web pages.

Soon after, a number of search engines appeared and vied for popularity. These included Magellan, Excite, Infoseek, Inktomi, Northern Light, and AltaVista. Information seekers could also browse the directory instead of doing a keyword-based search.

In 1996, Robin Li developed the RankDex site-scoring algorithm for search engines results page ranking and received a US patent for the technology. It was the first search engine that used hyperlinks to measure the quality of websites it was indexing, predating the very similar algorithm patent filed by Google two years later in 1998. Larry Page referenced Li's work in some of his U.S. patents for PageRank. Li later used his Rankdex technology for the Baidu search engine, which was founded by Robin Li in China and launched in 2000.

In 1996, Netscape was looking to give a single search engine an exclusive deal as the featured search engine on Netscape's web browser. There was so much interest that instead Netscape struck deals with five of the major search engines: for $5 million a year, each search engine would be in rotation on the Netscape search engine page. The five engines were Yahoo!, Magellan, Lycos, Infoseek, and Excite.

Google adopted the idea of selling search terms in 1998, from a small search engine company named goto.com. This move had a significant effect on the SE business, which went from struggling to one of the most profitable businesses in the Internet.

Search engines were also known as some of the brightest stars in the Internet investing frenzy that occurred in the late 1990s. Several companies entered the market spectacularly, receiving record gains during their initial public offerings. Some have taken down their public search engine, and are marketing enterprise-only editions, such as Northern Light. Many search engine companies were caught up in the dot-com bubble, a speculation-driven market boom that peaked in 1990 and ended in 2000.

2000s–present: Post dot-com bubble

Around 2000, Google's search engine rose to prominence. The company achieved better results for many searches with an algorithm called PageRank, as was explained in the paper Anatomy of a Search Engine written by Sergey Brin and Larry Page, the later founders of Google. This iterative algorithm ranks web pages based on the number and PageRank of other web sites and pages that link there, on the premise that good or desirable pages are linked to more than others. Larry Page's patent for PageRank cites Robin Li's earlier RankDex patent as an influence. Google also maintained a minimalist interface to its search engine. In contrast, many of its competitors embedded a search engine in a web portal. In fact, the Google search engine became so popular that spoof engines emerged such as Mystery Seeker.

By 2000, Yahoo! was providing search services based on Inktomi's search engine. Yahoo! acquired Inktomi in 2002, and Overture (which owned AlltheWeb and AltaVista) in 2003. Yahoo! switched to Google's search engine until 2004, when it launched its own search engine based on the combined technologies of its acquisitions.

Microsoft first launched MSN Search in the fall of 1998 using search results from Inktomi. In early 1999 the site began to display listings from Looksmart, blended with results from Inktomi. For a short time in 1999, MSN Search used results from AltaVista instead. In 2004, Microsoft began a transition to its own search technology, powered by its own web crawler (called msnbot).

Microsoft's rebranded search engine, Bing, was launched on June 1, 2009. On July 29, 2009, Yahoo! and Microsoft finalized a deal in which Yahoo! Search would be powered by Microsoft Bing technology.

As of 2019, active search engine crawlers include those of Google, Petal, Sogou, Baidu, Bing, Gigablast, Mojeek, DuckDuckGo and Yandex.

Approach

A search engine maintains the following processes in near real time:

  1. Web crawling
  2. Indexing
  3. Searching

Web search engines get their information by web crawling from site to site. The "spider" checks for the standard filename robots.txt, addressed to it. The robots.txt file contains directives for search spiders, telling it which pages to crawl and which pages not to crawl. After checking for robots.txt and either finding it or not, the spider sends certain information back to be indexed depending on many factors, such as the titles, page content, JavaScript, Cascading Style Sheets (CSS), headings, or its metadata in HTML meta tags. After a certain number of pages crawled, amount of data indexed, or time spent on the website, the spider stops crawling and moves on. "[N]o web crawler may actually crawl the entire reachable web. Due to infinite websites, spider traps, spam, and other exigencies of the real web, crawlers instead apply a crawl policy to determine when the crawling of a site should be deemed sufficient. Some websites are crawled exhaustively, while others are crawled only partially".

Indexing means associating words and other definable tokens found on web pages to their domain names and HTML-based fields. The associations are made in a public database, made available for web search queries. A query from a user can be a single word, multiple words or a sentence. The index helps find information relating to the query as quickly as possible. Some of the techniques for indexing, and caching are trade secrets, whereas web crawling is a straightforward process of visiting all sites on a systematic basis.

Between visits by the spider, the cached version of page (some or all the content needed to render it) stored in the search engine working memory is quickly sent to an inquirer. If a visit is overdue, the search engine can just act as a web proxy instead. In this case the page may differ from the search terms indexed. The cached page holds the appearance of the version whose words were previously indexed, so a cached version of a page can be useful to the web site when the actual page has been lost, but this problem is also considered a mild form of linkrot.

High-level architecture of a standard Web crawler

Typically when a user enters a query into a search engine it is a few keywords. The index already has the names of the sites containing the keywords, and these are instantly obtained from the index. The real processing load is in generating the web pages that are the search results list: Every page in the entire list must be weighted according to information in the indexes. Then the top search result item requires the lookup, reconstruction, and markup of the snippets showing the context of the keywords matched. These are only part of the processing each search results web page requires, and further pages (next to the top) require more of this post processing.

Beyond simple keyword lookups, search engines offer their own GUI- or command-driven operators and search parameters to refine the search results. These provide the necessary controls for the user engaged in the feedback loop users create by filtering and weighting while refining the search results, given the initial pages of the first search results. For example, from 2007 the Google.com search engine has allowed one to filter by date by clicking "Show search tools" in the leftmost column of the initial search results page, and then selecting the desired date range. It's also possible to weight by date because each page has a modification time. Most search engines support the use of the boolean operators AND, OR and NOT to help end users refine the search query. Boolean operators are for literal searches that allow the user to refine and extend the terms of the search. The engine looks for the words or phrases exactly as entered. Some search engines provide an advanced feature called proximity search, which allows users to define the distance between keywords. There is also concept-based searching where the research involves using statistical analysis on pages containing the words or phrases you search for.

The usefulness of a search engine depends on the relevance of the result set it gives back. While there may be millions of web pages that include a particular word or phrase, some pages may be more relevant, popular, or authoritative than others. Most search engines employ methods to rank the results to provide the "best" results first. How a search engine decides which pages are the best matches, and what order the results should be shown in, varies widely from one engine to another. The methods also change over time as Internet usage changes and new techniques evolve. There are two main types of search engine that have evolved: one is a system of predefined and hierarchically ordered keywords that humans have programmed extensively. The other is a system that generates an "inverted index" by analyzing texts it locates. This first form relies much more heavily on the computer itself to do the bulk of the work.

Most Web search engines are commercial ventures supported by advertising revenue and thus some of them allow advertisers to have their listings ranked higher in search results for a fee. Search engines that do not accept money for their search results make money by running search related ads alongside the regular search engine results. The search engines make money every time someone clicks on one of these ads.

Local search

Local search is the process that optimizes efforts of local businesses. They focus on change to make sure all searches are consistent. It's important because many people determine where they plan to go and what to buy based on their searches.

Market share

As of August 2021, Google is by far the world's most used search engine, with a market share of 92.03%, and the world's other most used search engines were:

Russia and East Asia

In Russia, Yandex has a market share of 61.9%, compared to Google's 28.3%. In China, Baidu is the most popular search engine. South Korea's homegrown search portal, Naver, is used for 70% of online searches in the country. Yahoo! Japan and Yahoo! Taiwan are the most popular avenues for Internet searches in Japan and Taiwan, respectively. China is one of few countries where Google is not in the top three web search engines for market share. Google was previously a top search engine in China, but withdrew after a disagreement with the government over censorship, and a cyberattack.

Europe

Most countries' markets in the European Union are dominated by Google, except for the Czech Republic, where Seznam is a strong competitor.

The search engine Qwant is based in Paris, France, where it attracts most of its 50 million monthly registered users from.

Search engine bias

Although search engines are programmed to rank websites based on some combination of their popularity and relevancy, empirical studies indicate various political, economic, and social biases in the information they provide and the underlying assumptions about the technology. These biases can be a direct result of economic and commercial processes (e.g., companies that advertise with a search engine can become also more popular in its organic search results), and political processes (e.g., the removal of search results to comply with local laws). For example, Google will not surface certain neo-Nazi websites in France and Germany, where Holocaust denial is illegal.

Biases can also be a result of social processes, as search engine algorithms are frequently designed to exclude non-normative viewpoints in favor of more "popular" results. Indexing algorithms of major search engines skew towards coverage of U.S.-based sites, rather than websites from non-U.S. countries.

Google Bombing is one example of an attempt to manipulate search results for political, social or commercial reasons.

Several scholars have studied the cultural changes triggered by search engines, and the representation of certain controversial topics in their results, such as terrorism in Ireland, climate change denial, and conspiracy theories.

Customized results and filter bubbles

Many search engines such as Google and Bing provide customized results based on the user's activity history. This leads to an effect that has been called a filter bubble. The term describes a phenomenon in which websites use algorithms to selectively guess what information a user would like to see, based on information about the user (such as location, past click behaviour and search history). As a result, websites tend to show only information that agrees with the user's past viewpoint. This puts the user in a state of intellectual isolation without contrary information. Prime examples are Google's personalized search results and Facebook's personalized news stream. According to Eli Pariser, who coined the term, users get less exposure to conflicting viewpoints and are isolated intellectually in their own informational bubble. Pariser related an example in which one user searched Google for "BP" and got investment news about British Petroleum while another searcher got information about the Deepwater Horizon oil spill and that the two search results pages were "strikingly different". The bubble effect may have negative implications for civic discourse, according to Pariser. Since this problem has been identified, competing search engines have emerged that seek to avoid this problem by not tracking or "bubbling" users, such as DuckDuckGo. Other scholars do not share Pariser's view, finding the evidence in support of his thesis unconvincing.

Religious search engines

The global growth of the Internet and electronic media in the Arab and Muslim World during the last decade has encouraged Islamic adherents in the Middle East and Asian sub-continent, to attempt their own search engines, their own filtered search portals that would enable users to perform safe searches. More than usual safe search filters, these Islamic web portals categorizing websites into being either "halal" or "haram", based on interpretation of the "Law of Islam". ImHalal came online in September 2011. Halalgoogling came online in July 2013. These use haram filters on the collections from Google and Bing (and others).

While lack of investment and slow pace in technologies in the Muslim World has hindered progress and thwarted success of an Islamic search engine, targeting as the main consumers Islamic adherents, projects like Muxlim, a Muslim lifestyle site, did receive millions of dollars from investors like Rite Internet Ventures, and it also faltered. Other religion-oriented search engines are Jewogle, the Jewish version of Google, and SeekFind.org, which is Christian. SeekFind filters sites that attack or degrade their faith.

Search engine submission

Web search engine submission is a process in which a webmaster submits a website directly to a search engine. While search engine submission is sometimes presented as a way to promote a website, it generally is not necessary because the major search engines use web crawlers that will eventually find most web sites on the Internet without assistance. They can either submit one web page at a time, or they can submit the entire site using a sitemap, but it is normally only necessary to submit the home page of a web site as search engines are able to crawl a well designed website. There are two remaining reasons to submit a web site or web page to a search engine: to add an entirely new web site without waiting for a search engine to discover it, and to have a web site's record updated after a substantial redesign.

Some search engine submission software not only submits websites to multiple search engines, but also adds links to websites from their own pages. This could appear helpful in increasing a website's ranking, because external links are one of the most important factors determining a website's ranking. However, John Mueller of Google has stated that this "can lead to a tremendous number of unnatural links for your site" with a negative impact on site ranking.

See also

Tuesday, September 7, 2021

Fast-neutron reactor

From Wikipedia, the free encyclopedia
 
Shevchenko BN350 nuclear fast reactor and desalination plant situated on the shore of the Caspian Sea. The plant generated 135 MWe and provided steam for an associated desalination plant. View of the interior of the reactor hall.

A fast-neutron reactor (FNR) or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 0.5 MeV or greater, on average), as opposed to thermal neutrons used in thermal-neutron reactors. Such a reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor.

Introduction

Natural uranium consists mostly of three isotopes: 238
U
, 235
U
, and trace quantities of 234
U
(a decay product of 238
U
). 238
U
accounts for roughly 99.3% of natural uranium and undergoes fission only by fast neutrons. About 0.7% of natural uranium is 235
U
, which undergoes fission by neutrons of any energy, but particularly by lower-energy neutrons. When either of these isotopes undergoes fission, it releases neutrons with an energy distribution peaking around 1 to 2 MeV. The flux of higher-energy fission neutrons (> 2 MeV) is too low to create sufficient fission in 238
U
, and the flux of lower-energy fission neutrons (< 2 MeV) is too low to do so easily in 235
U
.

The common solution to this problem is to slow the neutrons using a neutron moderator, which interacts with the neutrons to slow them. The most common moderator is water, which acts by elastic scattering until the neutrons reach thermal equilibrium with the water. The key to reactor design is to carefully lay out the fuel and water so the neutrons have time to slow enough to become highly reactive with the 235
U
, but not so far as to allow them to escape the reactor core.

Although 238
U
does not undergo fission by the neutrons released in fission, thermal neutrons can be captured by the nucleus to transmute the uranium into 239
Pu
. 239
Pu
has a neutron cross section similar to that of 235
U
, and most of the atoms created this way will undergo fission from the thermal neutrons. In most reactors this accounts for as much as ⅓ of generated energy. Some 239
Pu
remains, and the leftover, along with unreacted uranium, can be recycled during nuclear reprocessing.

Water has disadvantages as a moderator. It can absorb a neutron and remove it from the reaction. It does this just enough that the concentration of 235
U
in natural uranium is too low to sustain the chain reaction; the neutrons lost through absorption in the water and 238
U
, along with those lost to the environment, results in too few left in the fuel. The most common solution to this problem is to slightly concentrate the amount of 235
U
in the fuel to produce enriched uranium, with the leftover 238
U
known as depleted uranium. Other designs use different moderators, like heavy water, that are much less likely to absorb neutrons, allowing them to run on unenriched fuel. In either case, the reactor's neutron economy is based on thermal neutrons.

Fast fission, breeders

Although 235
U
and 239
Pu
are less sensitive to higher-energy neutrons, they still remain somewhat reactive well into the MeV range. If the fuel is enriched, eventually a threshold will be reached where there are enough fissile atoms in the fuel to maintain a chain reaction even with fast neutrons.

The primary advantage is that by removing the moderator, the size of the reactor can be greatly reduced, and to some extent the complexity. This was commonly used for many early submarine reactor systems, where size and weight are major concerns. The downside to the fast reaction is that fuel enrichment is an expensive process, so this is generally not suitable for electrical generation or other roles where cost is more important than size.

Another advantage to the fast reaction has led to considerable development for civilian use. Fast reactors lack a moderator, and thus lack one of the systems that remove neutrons from the system. Those running on 239
Pu
further increase the number of neutrons, because its most common fission cycle gives off three neutrons rather than the mix of two and three neutrons released from 235
U
. By surrounding the reactor core with a moderator and then a layer (blanket) of 238
U
, those neutrons can be captured and used to breed more 239
Pu
. This is the same reaction that occurs internally in conventional designs, but in this case the blanket does not have to sustain a reaction and thus can be made of natural uranium or depleted uranium.

Due to the surplus of neutrons from 239
Pu
fission, the reactor produces more 239
Pu
than it consumes. The blanket material can then be processed to extract the 239
Pu
to replace losses in the reactor, and the surplus is then mixed with uranium to produce MOX fuel that can be fed into conventional slow-neutron reactors. A single fast reactor can thereby feed several slow ones, greatly increasing the amount of energy extracted from the natural uranium, from less than 1% in a normal once-through cycle, to as much as 60% in the best existing fast reactor cycles, or more than 99% in the Integral Fast Reactor.

Given the limited reserves of uranium ore known in the 1960s, and the rate that nuclear power was expected to take over baseload generation, through the 1960s and 1970s fast breeder reactors were considered to be the solution to the world's energy needs. Using twice-through processing, a fast breeder increases the energy capacity of known ore deposits by as much as 100 times, meaning that existing ore sources would last hundreds of years. The disadvantage to this approach is that the breeder reactor has to be fed expensive, highly-enriched fuel. It was widely expected that this would still be below the price of enriched uranium as demand increased and known resources dwindled.

Through the 1970s, experimental breeder designs were examined, especially in the US, France and the USSR. However, this coincided with a crash in uranium prices. The expected increased demand led mining companies to expand supply channels, which came online just as the rate of reactor construction stalled in the mid-1970s. The resulting oversupply caused fuel prices to decline from about US$40 per pound in 1980 to less than $20 by 1984. Breeders produced fuel that was much more expensive, on the order of $100 to $160, and the few units that reached commercial operation proved to be economically disastrous. Interest in breeder reactors were further muted by Jimmy Carter's April 1977 decision to defer construction of breeders in the US due to proliferation concerns, and the terrible operating record of France's Superphénix reactor.

Advantages

Actinides and fission products by half-life
Actinides by decay chain Half-life
range (a)
Fission products of 235U by yield
4n 4n+1 4n+2 4n+3

4.5–7% 0.04–1.25% <0.001%
228Ra


4–6 a
155Euþ
244Cmƒ 241Puƒ 250Cf 227Ac 10–29 a 90Sr 85Kr 113mCdþ
232Uƒ
238Puƒ 243Cmƒ 29–97 a 137Cs 151Smþ 121mSn
248Bk 249Cfƒ 242mAmƒ
141–351 a

No fission products
have a half-life
in the range of
100 a–210 ka ...


241Amƒ
251Cfƒ430–900 a


226Ra 247Bk 1.3–1.6 ka
240Pu 229Th 246Cmƒ 243Amƒ 4.7–7.4 ka

245Cmƒ 250Cm
8.3–8.5 ka



239Puƒ 24.1 ka


230Th 231Pa 32–76 ka
236Npƒ 233Uƒ 234U
150–250 ka 99Tc 126Sn
248Cm
242Pu
327–375 ka
79Se




1.53 Ma 93Zr

237Npƒ

2.1–6.5 Ma 135Cs 107Pd
236U

247Cmƒ 15–24 Ma
129I
244Pu


80 Ma

... nor beyond 15.7 Ma

232Th
238U 235Uƒ№ 0.7–14.1 Ga

Legend for superscript symbols
₡  has thermal neutron capture cross section in the range of 8–50 barns
ƒ  fissile
metastable isomer
№  primarily a naturally occurring radioactive material (NORM)
þ  neutron poison (thermal neutron capture cross section greater than 3k barns)
†  range 4–97 a: Medium-lived fission product
‡  over 200 ka: Long-lived fission product

Fast-neutron reactors can reduce the total radiotoxicity of nuclear waste  using all or almost all of the waste as fuel. With fast neutrons, the ratio between splitting and the capture of neutrons by plutonium and the minor actinides is often larger than when the neutrons are slower, at thermal or near-thermal "epithermal" speeds. The transmuted even-numbered actinides (e.g. 240
Pu
, 242
Pu
) split nearly as easily as odd-numbered actinides in fast reactors. After they split, the actinides become a pair of "fission products". These elements have less total radiotoxicity. Since disposal of the fission products is dominated by the most radiotoxic fission products, strontium-90, which has a half life of 28.8 years, and caesium-137, which has a half life of 30.1 years, the result is to reduce nuclear waste lifetimes from tens of millennia (from transuranic isotopes) to a few centuries. The processes are not perfect, but the remaining transuranics are reduced from a significant problem to a tiny percentage of the total waste, because most transuranics can be used as fuel.

Fast reactors technically solve the "fuel shortage" argument against uranium-fueled reactors without assuming undiscovered reserves, or extraction from dilute sources such as granite or seawater. They permit nuclear fuels to be bred from almost all the actinides, including known, abundant sources of depleted uranium and thorium, and light-water reactor wastes. On average, more neutrons per fission are produced by fast neutrons than from thermal neutrons. This results in a larger surplus of neutrons beyond those required to sustain the chain reaction. These neutrons can be used to produce extra fuel, or to transmute long half-life waste to less troublesome isotopes, as was done at the Phénix reactor in Marcoule, France, or some can be used for each purpose. Though conventional thermal reactors also produce excess neutrons, fast reactors can produce enough of them to breed more fuel than they consume. Such designs are known as fast breeder reactors.

Disadvantages

The main disadvantage of fast-neutron reactors is that to date they have proven costly to build and operate, and none have been proven cost-competitive with thermal-neutron reactors unless the price of uranium increased dramatically.

Some other disadvantages are specific to some designs.

Sodium is often used as a coolant in fast reactors, because it does not moderate neutron speeds much and has a high heat capacity. However, it burns and foams in air. It has caused difficulties in reactors (e.g. USS Seawolf (SSN-575), Monju), although some sodium-cooled fast reactors have operated safely for long periods (notably the Phénix and EBR-II for 30 years, or the BN-600 still in operation since 1980 despite several minor leaks and fires).

Another problem is related to neutron activation. Since liquid metals other than lithium and beryllium have low moderating ability, the primary interaction of neutrons with fast reactor coolant is the (n,gamma) reaction, which induces radioactivity in the coolant. Neutron irradiation activates a significant fraction of coolant in high-power fast reactors, up to around a terabecquerel of beta decays per kilogram of coolant in steady operation. This is the reason that sodium-cooled reactors have a primary cooling loop embedded within a separate sodium pool. The sodium-24 that results from neutron capture undergoes beta decay to magnesium-24 with a half life of fifteen hours; the magnesium is removed in a cold trap.

A defective fast reactor design could have positive void coefficient: boiling of the coolant in an accident would reduce coolant density and thus the absorption rate; no such designs are proposed for commercial service. This is dangerous and undesirable from a safety and accident standpoint. This can be avoided with a gas-cooled reactor, since voids do not form in such a reactor during an accident; however, activation in the coolant remains a problem. A helium-cooled reactor would avoid both problems, since the elastic scattering and total cross sections are approximately equal, i.e. few (n,gamma) reactions are present in the coolant and the low density of helium at typical operating conditions means that neutrons have few interactions with coolant.

Due to the low cross sections of most materials at high neutron energies, critical mass in a fast reactor is much higher than in a thermal reactor. In practice, this means significantly higher enrichment: >20% enrichment in a fast reactor compared to <5% enrichment in typical thermal reactors.

Reactor design

Coolant

Water, the most common coolant in thermal reactors, is generally not feasible for a fast reactor, because it acts as a neutron moderator. However the Generation IV reactor known as the supercritical water reactor with decreased coolant density may reach a hard enough neutron spectrum to be considered a fast reactor. Breeding, which is the primary advantage of fast over thermal reactors, may be accomplished with a thermal, light-water cooled and moderated system using uranium enriched to ~90%.

All operating fast reactors are liquid metal cooled reactors. The early Clementine reactor used mercury coolant and plutonium metal fuel. In addition to its toxicity to humans, mercury has a high cross section for the (n,gamma) reaction, causing activation in the coolant and losing neutrons that could otherwise be absorbed in the fuel, which is why it is no longer considered as a coolant. Molten lead and lead-bismuth eutectic alloys have been used in naval propulsion units, particularly the Soviet Alfa-class submarine, as well as some prototype reactors. Sodium-potassium alloy (NaK) is popular in test reactors due to its low melting point. All large-scale fast reactors have used molten sodium coolant.

Another proposed fast reactor is a molten salt reactor, in which the salt's moderating properties are insignificant. This is typically achieved by replacing the light metal fluorides (e.g. lithium fluoride - LiF, beryllium fluoride - BeF2) in the salt carrier with heavier metal chlorides (e.g., potassium chloride - KCI, rubidium chloride - RbCl, zirconium chloride - ZrCl4). Moltex Energy proposes to build a fast-neutron reactor called the Stable Salt Reactor. In this reactor design the nuclear fuel is dissolved in a molten salt. The salt is contained in stainless steel tubes similar to those used in solid fuel reactors. The reactor is cooled using the natural convection of another molten salt coolant. Moltex claims that their design is less expensive to build than a coal-fired power plant and can consume nuclear waste from conventional solid fuel reactors.

Gas-cooled fast reactors have been the subject of research commonly using helium, which has small absorption and scattering cross sections, thus preserving the fast neutron spectrum without significant neutron absorption in the coolant.

Fuel

In practice, sustaining a fission chain reaction with fast neutrons means using relatively enriched uranium or plutonium. The reason for this is that fissile reactions are favored at thermal energies, since the ratio between the 239
Pu
fission cross section and 238
U
absorption cross section is ~100 in a thermal spectrum and 8 in a fast spectrum. Fission and absorption cross sections are low for both 239
Pu
and 238
U
at high (fast) energies, which means that fast neutrons are likelier to pass through fuel without interacting than thermal neutrons; thus, more fissile material is needed. Therefore a fast reactor cannot run on natural uranium fuel. However, it is possible to build a fast reactor that breeds fuel by producing more than it consumes. After the initial fuel charge such a reactor can be refueled by reprocessing. Fission products can be replaced by adding natural or even depleted uranium without further enrichment. This is the concept of the fast breeder reactor or FBR.

So far, most fast-neutron reactors have used either MOX (mixed oxide) or metal alloy fuel. Soviet fast-neutron reactors use (high 235
U
enriched) uranium fuel. The Indian prototype reactor uses uranium-carbide fuel.

While criticality at fast energies may be achieved with uranium enriched to 5.5 (weight) percent uranium-235, fast reactor designs have been proposed with enrichments in the range of 20 percent for reasons including core lifetime: if a fast reactor were loaded with the minimal critical mass, then the reactor would become subcritical after the first fission. Rather, an excess of fuel is inserted with reactivity control mechanisms, such that the reactivity control is inserted fully at the beginning of life to bring the reactor from supercritical to critical; as the fuel is depleted, the reactivity control is withdrawn to support continuing fission. In a fast breeder reactor, the above applies, though the reactivity from fuel depletion is also compensated by breeding either 233
U
or 239
Pu
and 241
Pu
from thorium-232 or 238
U
, respectively.

Control

Like thermal reactors, fast-neutron reactors are controlled by keeping the criticality of the reactor reliant on delayed neutrons, with gross control from neutron-absorbing control rods or blades.

They cannot, however, rely on changes to their moderators because there is no moderator. So Doppler broadening in the moderator, which affects thermal neutrons, does not work, nor does a negative void coefficient of the moderator. Both techniques are common in ordinary light-water reactors.

Doppler broadening from the molecular motion of the fuel, from its heat, can provide rapid negative feedback. The molecular movement of the fissionables themselves can tune the fuel's relative speed away from the optimal neutron speed. Thermal expansion of the fuel can provide negative feedback. Small reactors as in submarines may use Doppler broadening or thermal expansion of neutron reflectors.

Shevchenko BN350 desalination unit, the only nuclear-heated desalination unit in the world

History

A 2008 IAEA proposal for a Fast Reactor Knowledge Preservation System noted that:

during the past 15 years there has been stagnation in the development of fast reactors in the industrialized countries that were involved, earlier, in intensive development of this area. All studies on fast reactors have been stopped in countries such as Germany, Italy, the United Kingdom and the United States of America and the only work being carried out is related to the decommissioning of fast reactors. Many specialists who were involved in the studies and development work in this area in these countries have already retired or are close to retirement. In countries such as France, Japan and the Russian Federation that are still actively pursuing the evolution of fast reactor technology, the situation is aggravated by the lack of young scientists and engineers moving into this branch of nuclear power.

List of fast reactors

Decommissioned reactors

United States

Europe

  • Dounreay Loop type Fast Reactor (DFR), 1959–1977, was a 14 MWe and Prototype Fast Reactor (PFR), 1974–1994, 250 MWe, in Caithness, in the Highland area of Scotland.
  • Dounreay Pool type Fast Reactor (PFR), 1975–1994, was a 600 MWt, 234 MWe which used mixed oxide (MOX) fuel.
  • Rapsodie in Cadarache, France, (20 then 40 MW) operated between 1967 and 1982.
  • Superphénix, in France, 1200 MWe, closed in 1997 due to a political decision and high costs.
  • Phénix, 1973, France, 233 MWe, restarted 2003 at 140 MWe for experiments on transmutation of nuclear waste for six years, ceased power generation in March 2009, though it will continue in test operation and to continue research programs by CEA until the end of 2009. Stopped in 2010.
  • KNK-II, in Germany a 21 MWe experimental compact sodium-cooled fast reactor operated from Oct 1977-Aug 1991. The objective of the experiment was to eliminate nuclear waste while producing energy. There were minor sodium problems combined with public protests which resulted in the closure of the facility.

USSR/Russia

  • Small lead-cooled fast reactors were used for naval propulsion, particularly by the Soviet Navy.
  • BR-5 - was a research-focused fast-neutron reactor at the Institute of Physics and Energy in Obninsk from 1959-2002.
  • BN-350 was constructed by the Soviet Union in Shevchenko (today's Aqtau) on the Caspian Sea, It produced 130 MWe plus 80,000 tons of fresh water per day.
  • IBR-2 - was a research focused fast-neutron reactor at the Joint Institute of Nuclear Research in Dubna (near Moscow).
  • RORSATs - 33 space fast reactors were launched by the Soviet Union from 1989-1990 as part of a program known as the Radar Ocean Reconnaissance Satellite (RORSAT) in the US. Typically, the reactors produced approximately 3 kWe.
  • BES-5 - was a sodium cooled space reactor launched as part of the RORSAT program which produced 5 kWe.
  • BR-5 - was a 5 MWt sodium fast reactor operated by the USSR in 1961 primarily for materials testing.
  • Russian Alpha 8 PbBi - was a series of lead bismuth cooled fast reactors used aboard submarines. The submarines functioned as killer submarines, staying in harbor then attacking due to the high speeds achievable by the sub.

Asia

  • Monju reactor, 300 MWe, in Japan, was closed in 1995 following a serious sodium leak and fire. It was restarted on May 6, 2010 but in August 2010 another accident, involving dropped machinery, shut down the reactor again. As of June 2011, the reactor had generated electricity for only one hour since its first test two decades prior.
  • Aktau Reactor, 150 MWe, in Kazakhstan, was used for plutonium production, desalination, and electricity. It closed 4 years after the plant's operating license expired.

Never operated

Active

  • BN-600 - a pool type sodium-cooled fast breeder reactor at the Beloyarsk Nuclear Power Station. It provides 560 MWe to the Middle Urals power grid. In operation since 1980.
  • BN-800 - a sodium-cooled fast breeder reactor at the Beloyarsk Nuclear Power Station. It generates 880 MW of electrical power and started producing electricity in October, 2014. It reached full power in August, 2016.
  • BOR-60 - a sodium-cooled reactor at the Research Institute of Atomic Reactors in Dimitrovgrad, Russia. In operation since 1968. It produces 60MW for experimental purposes.
  • FBTR - a 10.5 MW experimental reactor in India which focused on reaching significant burnup levels.
  • China Experimental Fast Reactor, a 60 MWth, 20 MWe, experimental reactor which went critical in 2011 and is currently operational. It is used for materials and component research for future Chinese fast reactors.
  • KiloPower/KRUSTY is a 1-10 kWe research sodium fast reactor built at Los Alamos National Laboratory. It first reach criticality in 2015 and demonstrates an application of a Stirling power cycle.

Under repair

  • Jōyō (常陽), 1977–1997 and 2004–2007, Japan, 140 MWt is an experimental reactor, operated as an irradiation test facility. After an incident in 2007, the reactor was suspended for repairing, recoworks were planned to be completed in 2014.

Under construction

  • PFBR, Kalpakkam, India, 500 MWe reactor with criticality planned for 2021. It is a sodium fast breeder reactor.
  • CFR-600, China, 600 MWe.
  • MBIR Multipurpose fast neutron research reactor. The Research Institute of Atomic Reactors (NIIAR) site at Dimitrovgrad in the Ulyanovsk region of western Russia, 150 MWt. Construction started in 2016 with completion scheduled for 2024.
  • BREST-300, Seversk, Russia. Construction started at 8 June 2021.

In design

  • BN-1200, Russia, built starting after 2014, with operation planned for 2018–2020, now delayed until at least 2035.
  • Toshiba 4S was planned to be shipped to Galena, Alaska (USA) but progress stalled (see Galena Nuclear Power Plant)
  • KALIME is a 600 MWe project in South Korea, projected for 2030. KALIMER is a continuation of the sodium-cooled, metal-fueled, fast-neutron reactor in a pool represented by the Advanced Burner Reactor (2006), S-PRISM (1998-present), Integral Fast Reactor (1984-1994), and EBR-II (1965-1995).
  • Generation IV reactor (helium·sodium·lead cooled) US-proposed international effort, after 2030.
  • JSFR, Japan, a project for a 1500 MWe reactor began in 1998, but without success.
  • ASTRID, France, canceled project for a 600 MWe sodium-cooled reactor.
  • Mars Atmospherically Cooled Reactor (MACR) is a 1 MWe project, planned to complete in 2033. MACR is a gas-cooled (carbon dioxide coolant) fast-neutron reactor intended to provide power to proposed Mars colonies.
  • TerraPower is designing a molten salt reactor in partnership with Southern Company, Oak Ridge National Laboratory, Idaho National Laboratory, Vanderbilt University and the Electric Power Research Institute. They expect to begin testing a loop facility in 2019 and is scaling up their salt manufacturing process. Data will be used to assess thermal hydraulics and safety analysis codes.
  • Elysium Industries is designing a fast spectrum molten salt reactor.
  • ALFRED (Advanced Lead Fast Reactor European Demonstrator) is a lead cooled fast reactor demonstrator designed by Ansaldo Energia from Italy, it represents the last stage of the ELSY and LEADER projects.

Planned

  • Future FBR, India, 600 MWe, after 2025

Chart

Fast reactors

U.S. Russia Europe Asia
Past Clementine, EBR-I/II, SEFOR, FFTF BN-350 Dounreay, Rapsodie, Superphénix, Phénix (stopped in 2010)
Cancelled Clinch River, IFR
SNR-300
Under decommissioning


Monju
Operating
BOR-60, BN-600,
BN-800[citation needed]

FBTR, CEFR
Under repair


Jōyō
Under construction
MBIR, BREST-300
PFBR, CFR-600
Planned Gen IV (Gas·sodium·lead·salt), TerraPower, Elysium MCSFR, DoE VTR BN-1200 ASTRID, Moltex 4S, JSFR, KALIMER

See also

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...