Search This Blog

Thursday, September 16, 2021

DNA damage theory of aging

From Wikipedia, the free encyclopedia

The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although both mitochondrial and nuclear DNA damage can contribute to aging, nuclear DNA is the main subject of this analysis. Nuclear DNA damage can contribute to aging either indirectly (by increasing apoptosis or cellular senescence) or directly (by increasing cell dysfunction).

Several review articles have shown that deficient DNA repair, allowing greater accumulation of DNA damage, causes premature aging; and that increased DNA repair facilitates greater longevity. Mouse models of nucleotide-excision–repair syndromes reveal a striking correlation between the degree to which specific DNA repair pathways are compromised and the severity of accelerated aging, strongly suggesting a causal relationship. Human population studies show that single-nucleotide polymorphisms in DNA repair genes, causing up-regulation of their expression, correlate with increases in longevity. Lombard et al. compiled a lengthy list of mouse mutational models with pathologic features of premature aging, all caused by different DNA repair defects. Freitas and de Magalhães presented a comprehensive review and appraisal of the DNA damage theory of aging, including a detailed analysis of many forms of evidence linking DNA damage to aging. As an example, they described a study showing that centenarians of 100 to 107 years of age had higher levels of two DNA repair enzymes, PARP1 and Ku70, than general-population old individuals of 69 to 75 years of age. Their analysis supported the hypothesis that improved DNA repair leads to longer life span. Overall, they concluded that while the complexity of responses to DNA damage remains only partly understood, the idea that DNA damage accumulation with age is the primary cause of aging remains an intuitive and powerful one.

In humans and other mammals, DNA damage occurs frequently and DNA repair processes have evolved to compensate. In estimates made for mice, DNA lesions occur on average 25 to 115 times per minute in each cell, or about 36,000 to 160,000 per cell per day. Some DNA damage may remain in any cell despite the action of repair processes. The accumulation of unrepaired DNA damage is more prevalent in certain types of cells, particularly in non-replicating or slowly replicating cells, such as cells in the brain, skeletal and cardiac muscle.

DNA damage and mutation

8-Hydroxydeoxyguanosine

To understand the DNA damage theory of aging it is important to distinguish between DNA damage and mutation, the two major types of errors that occur in DNA. Damage and mutation are fundamentally different. DNA damage is any physical abnormality in the DNA, such as single and double strand breaks, 8-hydroxydeoxyguanosine residues and polycyclic aromatic hydrocarbon adducts. DNA damage can be recognized by enzymes, and thus can be correctly repaired using the complementary undamaged sequence in a homologous chromosome if it is available for copying. If a cell retains DNA damage, transcription of a gene can be prevented and thus translation into a protein will also be blocked. Replication may also be blocked and/or the cell may die. Descriptions of reduced function, characteristic of aging and associated with accumulation of DNA damage, are given later in this article.

In contrast to DNA damage, a mutation is a change in the base sequence of the DNA. A mutation cannot be recognized by enzymes once the base change is present in both DNA strands, and thus a mutation cannot be repaired. At the cellular level, mutations can cause alterations in protein function and regulation. Mutations are replicated when the cell replicates. In a population of cells, mutant cells will increase or decrease in frequency according to the effects of the mutation on the ability of the cell to survive and reproduce. Although distinctly different from each other, DNA damages and mutations are related because DNA damages often cause errors of DNA synthesis during replication or repair and these errors are a major source of mutation.

Given these properties of DNA damage and mutation, it can be seen that DNA damages are a special problem in non-dividing or slowly dividing cells, where unrepaired damages will tend to accumulate over time. On the other hand, in rapidly dividing cells, unrepaired DNA damages that do not kill the cell by blocking replication will tend to cause replication errors and thus mutation. The great majority of mutations that are not neutral in their effect are deleterious to a cell's survival. Thus, in a population of cells comprising a tissue with replicating cells, mutant cells will tend to be lost. However, infrequent mutations that provide a survival advantage will tend to clonally expand at the expense of neighboring cells in the tissue. This advantage to the cell is disadvantageous to the whole organism, because such mutant cells can give rise to cancer. Thus DNA damages in frequently dividing cells, because they give rise to mutations, are a prominent cause of cancer. In contrast, DNA damages in infrequently dividing cells are likely a prominent cause of aging.

The first person to suggest that DNA damage, as distinct from mutation, is the primary cause of aging was Alexander in 1967. By the early 1980s there was significant experimental support for this idea in the literature. By the early 1990s experimental support for this idea was substantial, and furthermore it had become increasingly evident that oxidative DNA damage, in particular, is a major cause of aging.

In a series of articles from 1970 to 1977, PV Narasimh Acharya, Phd. (1924–1993) theorized and presented evidence that cells undergo "irreparable DNA damage", whereby DNA crosslinks occur when both normal cellular repair processes fail and cellular apoptosis does not occur. Specifically, Acharya noted that double-strand breaks and a "cross-linkage joining both strands at the same point is irreparable because neither strand can then serve as a template for repair. The cell will die in the next mitosis or in some rare instances, mutate."

Age-associated accumulation of DNA damage and decline in gene expression

In tissues composed of non- or infrequently replicating cells, DNA damage can accumulate with age and lead either to loss of cells, or, in surviving cells, loss of gene expression. Accumulated DNA damage is usually measured directly. Numerous studies of this type have indicated that oxidative damage to DNA is particularly important. The loss of expression of specific genes can be detected at both the mRNA level and protein level.

Brain

The adult brain is composed in large part of terminally differentiated non-dividing neurons. Many of the conspicuous features of aging reflect a decline in neuronal function. Accumulation of DNA damage with age in the mammalian brain has been reported during the period 1971 to 2008 in at least 29 studies. This DNA damage includes the oxidized nucleoside 8-oxo-2'-deoxyguanosine (8-oxo-dG), single- and double-strand breaks, DNA-protein crosslinks and malondialdehyde adducts (reviewed in Bernstein et al.). Increasing DNA damage with age has been reported in the brains of the mouse, rat, gerbil, rabbit, dog, and human.

Rutten et al. showed that single-strand breaks accumulate in the mouse brain with age. Young 4-day-old rats have about 3,000 single-strand breaks and 156 double-strand breaks per neuron, whereas in rats older than 2 years the level of damage increases to about 7,400 single-strand breaks and 600 double-strand breaks per neuron. Sen et al. showed that DNA damages which block the polymerase chain reaction in rat brain accumulate with age. Swain and Rao observed marked increases in several types of DNA damages in aging rat brain, including single-strand breaks, double-strand breaks and modified bases (8-OHdG and uracil). Wolf et al. also showed that the oxidative DNA damage 8-OHdG accumulates in rat brain with age. Similarly, it was shown that as humans age from 48 to 97 years, 8-OHdG accumulates in the brain.

Lu et al. studied the transcriptional profiles of the human frontal cortex of individuals ranging from 26 to 106 years of age. This led to the identification of a set of genes whose expression was altered after age 40. These genes play central roles in synaptic plasticity, vesicular transport and mitochondrial function. In the brain, promoters of genes with reduced expression have markedly increased DNA damage. In cultured human neurons, these gene promoters are selectively damaged by oxidative stress. Thus Lu et al. concluded that DNA damage may reduce the expression of selectively vulnerable genes involved in learning, memory and neuronal survival, initiating a program of brain aging that starts early in adult life.

Muscle

Muscle strength, and stamina for sustained physical effort, decline in function with age in humans and other species. Skeletal muscle is a tissue composed largely of multinucleated myofibers, elements that arise from the fusion of mononucleated myoblasts. Accumulation of DNA damage with age in mammalian muscle has been reported in at least 18 studies since 1971. Hamilton et al. reported that the oxidative DNA damage 8-OHdG accumulates in heart and skeletal muscle (as well as in brain, kidney and liver) of both mouse and rat with age. In humans, increases in 8-OHdG with age were reported for skeletal muscle. Catalase is an enzyme that removes hydrogen peroxide, a reactive oxygen species, and thus limits oxidative DNA damage. In mice, when catalase expression is increased specifically in mitochondria, oxidative DNA damage (8-OHdG) in skeletal muscle is decreased and lifespan is increased by about 20%. These findings suggest that mitochondria are a significant source of the oxidative damages contributing to aging.

Protein synthesis and protein degradation decline with age in skeletal and heart muscle, as would be expected, since DNA damage blocks gene transcription. In 2005, Piec et al. found numerous changes in protein expression in rat skeletal muscle with age, including lower levels of several proteins related to myosin and actin. Force is generated in striated muscle by the interactions between myosin thick filaments and actin thin filaments.

Liver

Liver hepatocytes do not ordinarily divide and appear to be terminally differentiated, but they retain the ability to proliferate when injured. With age, the mass of the liver decreases, blood flow is reduced, metabolism is impaired, and alterations in microcirculation occur. At least 21 studies have reported an increase in DNA damage with age in liver. For instance, Helbock et al. estimated that the steady state level of oxidative DNA base alterations increased from 24,000 per cell in the liver of young rats to 66,000 per cell in the liver of old rats.

Kidney

In kidney, changes with age include reduction in both renal blood flow and glomerular filtration rate, and impairment in the ability to concentrate urine and to conserve sodium and water. DNA damages, particularly oxidative DNA damages, increase with age (at least 8 studies). For instance Hashimoto et al. showed that 8-OHdG accumulates in rat kidney DNA with age.

Long-lived stem cells

Tissue-specific stem cells produce differentiated cells through a series of increasingly more committed progenitor intermediates. In hematopoiesis (blood cell formation), the process begins with long-term hematopoietic stem cells that self-renew and also produce progeny cells that upon further replication go through a series of stages leading to differentiated cells without self-renewal capacity. In mice, deficiencies in DNA repair appear to limit the capacity of hematopoietic stem cells to proliferate and self-renew with age. Sharpless and Depinho reviewed evidence that hematopoietic stem cells, as well as stem cells in other tissues, undergo intrinsic aging. They speculated that stem cells grow old, in part, as a result of DNA damage. DNA damage may trigger signalling pathways, such as apoptosis, that contribute to depletion of stem cell stocks. This has been observed in several cases of accelerated aging and may occur in normal aging too.

A key aspect of hair loss with age is the aging of the hair follicle. Ordinarily, hair follicle renewal is maintained by the stem cells associated with each follicle. Aging of the hair follicle appears to be due to the DNA damage that accumulates in renewing stem cells during aging.

Mutation theories of aging

A popular idea, that has failed to gain significant experimental support, is the idea that mutation, as distinct from DNA damage, is the primary cause of aging. As discussed above, mutations tend to arise in frequently replicating cells as a result of errors of DNA synthesis when template DNA is damaged, and can give rise to cancer. However, in mice there is no increase in mutation in the brain with aging. Mice defective in a gene (Pms2) that ordinarily corrects base mispairs in DNA have about a 100-fold elevated mutation frequency in all tissues, but do not appear to age more rapidly. On the other hand, mice defective in one particular DNA repair pathway show clear premature aging, but do not have elevated mutation.

One variation of the idea that mutation is the basis of aging, that has received much attention, is that mutations specifically in mitochondrial DNA are the cause of aging. Several studies have shown that mutations accumulate in mitochondrial DNA in infrequently replicating cells with age. DNA polymerase gamma is the enzyme that replicates mitochondrial DNA. A mouse mutant with a defect in this DNA polymerase is only able to replicate its mitochondrial DNA inaccurately, so that it sustains a 500-fold higher mutation burden than normal mice. These mice showed no clear features of rapidly accelerated aging. Overall, the observations discussed in this section indicate that mutations are not the primary cause of aging.

Dietary restriction

In rodents, caloric restriction slows aging and extends lifespan. At least 4 studies have shown that caloric restriction reduces 8-OHdG damages in various organs of rodents. One of these studies showed that caloric restriction reduced accumulation of 8-OHdG with age in rat brain, heart and skeletal muscle, and in mouse brain, heart, kidney and liver. More recently, Wolf et al. showed that dietary restriction reduced accumulation of 8-OHdG with age in rat brain, heart, skeletal muscle, and liver. Thus reduction of oxidative DNA damage is associated with a slower rate of aging and increased lifespan.

Inherited defects that cause premature aging

If DNA damage is the underlying cause of aging, it would be expected that humans with inherited defects in the ability to repair DNA damages should age at a faster pace than persons without such a defect. Numerous examples of rare inherited conditions with DNA repair defects are known. Several of these show multiple striking features of premature aging, and others have fewer such features. Perhaps the most striking premature aging conditions are Werner syndrome (mean lifespan 47 years), Huchinson–Gilford progeria (mean lifespan 13 years), and Cockayne syndrome (mean lifespan 13 years).

Werner syndrome is due to an inherited defect in an enzyme (a helicase and exonuclease) that acts in base excision repair of DNA (e.g. see Harrigan et al.).

Huchinson–Gilford progeria is due to a defect in Lamin A protein which forms a scaffolding within the cell nucleus to organize chromatin and is needed for repair of double-strand breaks in DNA. A-type lamins promote genetic stability by maintaining levels of proteins that have key roles in the DNA repair processes of non-homologous end joining and homologous recombination. Mouse cells deficient for maturation of prelamin A show increased DNA damage and chromosome aberrations and are more sensitive to DNA damaging agents.

Cockayne Syndrome is due to a defect in a protein necessary for the repair process, transcription coupled nucleotide excision repair, which can remove damages, particularly oxidative DNA damages, that block transcription.

In addition to these three conditions, several other human syndromes, that also have defective DNA repair, show several features of premature aging. These include ataxia–telangiectasia, Nijmegen breakage syndrome, some subgroups of xeroderma pigmentosum, trichothiodystrophy, Fanconi anemia, Bloom syndrome and Rothmund–Thomson syndrome.

Ku bound to DNA

In addition to human inherited syndromes, experimental mouse models with genetic defects in DNA repair show features of premature aging and reduced lifespan.(e.g. refs.) In particular, mutant mice defective in Ku70, or Ku80, or double mutant mice deficient in both Ku70 and Ku80 exhibit early aging. The mean lifespans of the three mutant mouse strains were similar to each other, at about 37 weeks, compared to 108 weeks for the wild-type control. Six specific signs of aging were examined, and the three mutant mice were found to display the same aging signs as the control mice, but at a much earlier age. Cancer incidence was not increased in the mutant mice. Ku70 and Ku80 form the heterodimer Ku protein essential for the non-homologous end joining (NHEJ) pathway of DNA repair, active in repairing DNA double-strand breaks. This suggests an important role of NHEJ in longevity assurance.

Defects in DNA repair cause features of premature aging

Many authors have noted an association between defects in the DNA damage response and premature aging (see e.g.). If a DNA repair protein is deficient, unrepaired DNA damages tend to accumulate. Such accumulated DNA damages appear to cause features of premature aging (segmental progeria). Table 1 lists 18 DNA repair proteins which, when deficient, cause numerous features of premature aging.

Table 1. DNA repair proteins that, when deficient, cause features of accelerated aging (segmental progeria).
Protein Pathway Description
ATR Nucleotide excision repair deletion of ATR in adult mice leads to a number of disorders including hair loss and graying, kyphosis, osteoporosis, premature involution of the thymus, fibrosis of the heart and kidney and decreased spermatogenesis
DNA-PKcs Non-homologous end joining shorter lifespan, earlier onset of aging related pathologies; higher level of DNA damage persistence
ERCC1 Nucleotide excision repair, Interstrand cross link repair deficient transcription coupled NER with time-dependent accumulation of transcription-blocking damages; mouse life span reduced from 2.5 years to 5 months; Ercc1−/− mice are leukopenic and thrombocytopenic, and there is extensive adipose transformation of the bone marrow, hallmark features of normal aging in mice
ERCC2 (XPD) Nucleotide excision repair (also transcription as part of TFIIH) some mutations in ERCC2 cause Cockayne syndrome in which patients have segmental progeria with reduced stature, mental retardation, cachexia (loss of subcutaneous fat tissue), sensorineural deafness, retinal degeneration, and calcification of the central nervous system; other mutations in ERCC2 cause trichothiodystrophy in which patients have segmental progeria with brittle hair, short stature, progressive cognitive impairment and abnormal face shape; still other mutations in ERCC2 cause xeroderma pigmentosum (without a progeroid syndrome) and with extreme sun-mediated skin cancer predisposition
ERCC4 (XPF) Nucleotide excision repair, Interstrand cross link repair, Single-strand annealing, Microhomology-mediated end joining mutations in ERCC4 cause symptoms of accelerated aging that affect the neurologic, hepatobiliary, musculoskeletal, and hematopoietic systems, and cause an old, wizened appearance, loss of subcutaneous fat, liver dysfunction, vision and hearing loss, renal insufficiency, muscle wasting, osteopenia, kyphosis and cerebral atrophy
ERCC5 (XPG) Nucleotide excision repair, Homologous recombinational repair, Base excision repair mice with deficient ERCC5 show loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months
ERCC6 (Cockayne syndrome B or CS-B) Nucleotide excision repair [especially transcription coupled repair (TC-NER) and interstrand crosslink repair] premature aging features with shorter life span and photosensitivity, deficient transcription coupled NER with accumulation of unrepaired DNA damages, also defective repair of oxidatively generated DNA damages including 8-oxoguanine, 5-hydroxycytosine and cyclopurines
ERCC8 (Cockayne syndrome A or CS-A) Nucleotide excision repair [especially transcription coupled repair (TC-NER) and interstrand crosslink repair] premature aging features with shorter life span and photosensitivity, deficient transcription coupled NER with accumulation of unrepaired DNA damages, also defective repair of oxidatively generated DNA damages including 8-oxoguanine, 5-hydroxycytosine and cyclopurines
GTF2H5 (TTDA) Nucleotide excision repair deficiency causes trichothiodystrophy (TTD) a premature-ageing and neuroectodermal disease; humans with GTF2H5 mutations have a partially inactivated protein with retarded repair of 6-4-photoproducts
Ku70 Non-homologous end joining shorter lifespan, earlier onset of aging related pathologies; persistent foci of DNA double-strand break repair proteins
Ku80 Non-homologous end joining shorter lifespan, earlier onset of aging related pathologies; defective repair of spontaneous DNA damage
Lamin A Non-homologous end joining, Homologous recombination increased DNA damage and chromosome aberrations; progeria; aspects of premature aging; altered expression of numerous DNA repair factors
NRMT1 Nucleotide excision repair mutation in NRMT1 causes decreased body size, female-specific infertility, kyphosis, decreased mitochondrial function, and early-onset liver degeneration
RECQL4 Base excision repair, Nucleotide excision repair, Homologous recombination, Non-homologous end joining mutations in RECQL4 cause Rothmund–Thomson syndrome, with alopecia, sparse eyebrows and lashes, cataracts and osteoporosis
SIRT6 Base excision repair, Nucleotide excision repair, Homologous recombination, Non-homologous end joining SIRT6-deficient mice develop profound lymphopenia, loss of subcutaneous fat and lordokyphosis, and these defects overlap with aging-associated degenerative processes
SIRT7 Non-homologous end joining mice defective in SIRT7 show phenotypic and molecular signs of accelerated aging such as premature pronounced curvature of the spine, reduced life span, and reduced non-homologous end joining
Werner syndrome helicase Homologous recombination, Non-homologous end joining,Base excision repair, Replication arrest recovery shorter lifespan, earlier onset of aging related pathologies, genome instability
ZMPSTE24 Homologous recombination lack of Zmpste24 prevents lamin A formation and causes progeroid phenotypes in mice and humans, increased DNA damage and chromosome aberrations, sensitivity to DNA-damaging agents and deficiency in homologous recombination

Increased DNA repair and extended longevity

Table 2 lists DNA repair proteins whose increased expression is connected to extended longevity.

Table 2. DNA repair proteins that, when highly- or over-expressed, cause (or are associated with) extended longevity.
Protein Pathway Description
NDRG1 Direct reversal long-lived Snell dwarf, GHRKO, and PAPPA-KO mice have increased expression of NDRG1; higher expression of NDRG1 can promote MGMT protein stability and enhanced DNA repair
NUDT1 (MTH1) Oxidized nucleotide removal degrades 8-oxodGTP; prevents the age-dependent accumulation of DNA 8-oxoguanine A transgenic mouse in which the human hMTH1 8-oxodGTPase is expressed, giving over-expression of hMTH1, increases the median lifespan of mice to 914 days vs. 790 days for wild-type mice. Mice with over-expressed hMTH1 have behavioral changes of reduced anxiety and enhanced investigation of environmental and social cues
PARP1 Base excision repair, Nucleotide excision repair, Microhomology-mediated end joining, Single-strand break repair PARP1 activity in blood cells of thirteen mammalian species (rat, guinea pig, rabbit, marmoset, sheep, pig, cattle, pigmy chimpanzee, horse, donkey, gorilla, elephant and man) correlates with maximum lifespan of the species.
SIRT1 Nucleotide excision repair, Homologous recombination, Non-homologous end joining Increased expression of SIRT1 in male mice extends the lifespan of mice fed a standard diet, accompanied by improvements in health, including enhanced motor coordination, performance, bone mineral density, and insulin sensitivity
SIRT6 Base excision repair, Nucleotide excision repair, Homologous recombination, Non-homologous end joining male, but not female, transgenic mice overexpressing Sirt6 have a significantly longer lifespan than wild-type mice

Lifespan in different mammalian species

Studies comparing DNA repair capacity in different mammalian species have shown that repair capacity correlates with lifespan. The initial study of this type, by Hart and Setlow, showed that the ability of skin fibroblasts of seven mammalian species to perform DNA repair after exposure to a DNA damaging agent correlated with lifespan of the species. The species studied were shrew, mouse, rat, hamster, cow, elephant and human. This initial study stimulated many additional studies involving a wide variety of mammalian species, and the correlation between repair capacity and lifespan generally held up. In one of the more recent studies, Burkle et al. studied the level of a particular enzyme, Poly ADP ribose polymerase, which is involved in repair of single-strand breaks in DNA. They found that the lifespan of 13 mammalian species correlated with the activity of this enzyme.

The DNA repair transcriptomes of the liver of humans, naked mole-rats and mice were compared. The maximum lifespans of humans, naked mole-rat, and mouse are respectively ~120, 30 and 3 years. The longer-lived species, humans and naked mole rats expressed DNA repair genes, including core genes in several DNA repair pathways, at a higher level than did mice. In addition, several DNA repair pathways in humans and naked mole-rats were up-regulated compared with mouse. These findings suggest that increased DNA repair facilitates greater longevity.

Over the past decade, a series of papers have shown that the mitochondrial DNA (mtDNA) base composition correlates with animal species maximum life span. The mitochondrial DNA base composition is thought to reflect its nucleotide-specific (guanine, cytosine, thymidine and adenine) different mutation rates (i.e., accumulation of guanine in the mitochondrial DNA of an animal species is due to low guanine mutation rate in the mitochondria of that species).

Centenarians

Lymphoblastoid cell lines established from blood samples of humans who lived past 100 years (centenarians) have significantly higher activity of the DNA repair protein Poly (ADP-ribose) polymerase (PARP) than cell lines from younger individuals (20 to 70 years old). The lymphocytic cells of centenarians have characteristics typical of cells from young people, both in their capability of priming the mechanism of repair after H2O2 sublethal oxidative DNA damage and in their PARP capacity.

Menopause

As women age, they experience a decline in reproductive performance leading to menopause. This decline is tied to a decline in the number of ovarian follicles. Although 6 to 7 million oocytes are present at mid-gestation in the human ovary, only about 500 (about 0.05%) of these ovulate, and the rest are lost. The decline in ovarian reserve appears to occur at an increasing rate with age, and leads to nearly complete exhaustion of the reserve by about age 51. As ovarian reserve and fertility decline with age, there is also a parallel increase in pregnancy failure and meiotic errors resulting in chromosomally abnormal conceptions.

BRCA1 and BRCA2  are homologous recombination repair genes. The role of declining ATM-Mediated DNA double strand DNA break (DSB) repair in oocyte aging was first proposed by Kutluk Oktay, MD, PhD based on his observations that women with BRCA mutations produced fewer oocytes in response to ovarian stimulation repair. His laboratory has further studied this hypothesis and provided an explanation for the decline in ovarian reserve with age. They showed that as women age, double-strand breaks accumulate in the DNA of their primordial follicles. Primordial follicles are immature primary oocytes surrounded by a single layer of granulosa cells. An enzyme system is present in oocytes that normally accurately repairs DNA double-strand breaks. This repair system is referred to as homologous recombinational repair, and it is especially active during meiosis. Titus et al. from Oktay Laboratory also showed that expression of four key DNA repair genes that are necessary for homologous recombinational repair (BRCA1, MRE11, Rad51 and ATM) decline in oocytes with age. This age-related decline in ability to repair double-strand damages can account for the accumulation of these damages, which then likely contributes to the decline in ovarian reserve as further explained by Turan and Oktay.

Women with an inherited mutation in the DNA repair gene BRCA1 undergo menopause prematurely, suggesting that naturally occurring DNA damages in oocytes are repaired less efficiently in these women, and this inefficiency leads to early reproductive failure. Genomic data from about 70,000 women were analyzed to identify protein-coding variation associated with age at natural menopause. Pathway analyses identified a major association with DNA damage response genes, particularly those expressed during meiosis and including a common coding variant in the BRCA1 gene.

Atherosclerosis

The most important risk factor for cardiovascular problems is chronological aging. Several research groups have reviewed evidence for a key role of DNA damage in vascular aging.

Atherosclerotic plaque contains vascular smooth muscle cells, macrophages and endothelial cells and these have been found to accumulate 8-oxoG, a common type of oxidative DNA damage. DNA strand breaks also increased in atherosclerotic plaques, thus linking DNA damage to plaque formation.

Werner syndrome (WS), a premature aging condition in humans, is caused by a genetic defect in a RecQ helicase that is employed in several DNA repair processes. WS patients develop a substantial burden of atherosclerotic plaques in their coronary arteries and aorta. These findings link excessive unrepaired DNA damage to premature aging and early atherosclerotic plaque development.

DNA damage and the epigenetic clock

Endogenous, naturally occurring DNA damages are frequent, and in humans include an average of about 10,000 oxidative damages per day and 50 double-strand DNA breaks per cell cycle.

Several reviews summarize evidence that the methylation enzyme DNMT1 is recruited to sites of oxidative DNA damage. Recruitment of DNMT1 leads to DNA methylation at the promoters of genes to inhibit transcription during repair. In addition, the 2018 review describes recruitment of DNMT1 during repair of DNA double-strand breaks. DNMT1 localization results in increased DNA methylation near the site of recombinational repair, associated with altered expression of the repaired gene. In general, repair-associated hyper-methylated promoters are restored to their former methylation level after DNA repair is complete. However, these reviews also indicate that transient recruitment of epigenetic modifiers can occasionally result in subsequent stable epigenetic alterations and gene silencing after DNA repair has been completed.

In human and mouse DNA, cytosine followed by guanine (CpG) is the least frequent dinucleotide, making up less than 1% of all dinucleotides (see CG suppression). At most CpG sites cytosine is methylated to form 5-methylcytosine. As indicated in the article CpG site, in mammals, 70% to 80% of CpG cytosines are methylated. However, in vertebrates there are CpG islands, about 300 to 3,000 base pairs long, with interspersed DNA sequences that deviate significantly from the average genomic pattern by being CpG-rich. These CpG islands are predominantly nonmethylated. In humans, about 70% of promoters located near the transcription start site of a gene (proximal promoters) contain a CpG island (see CpG islands in promoters). If the initially nonmethylated CpG sites in a CpG island become largely methylated, this causes stable silencing of the associated gene.

For humans, after adulthood is reached and during subsequent aging, the majority of CpG sequences slowly lose methylation (called epigenetic drift). However, the CpG islands that control promoters tend to gain methylation with age. The gain of methylation at CpG islands in promoter regions is correlated with age, and has been used to create an epigenetic clock.

There may be some relationship between the epigenetic clock and epigenetic alterations accumulating after DNA repair. Both unrepaired DNA damage accumulated with age and accumulated methylation of CpG islands would silence genes in which they occur, interfere with protein expression, and contribute to the aging phenotype.

See also

 

Gangrene

From Wikipedia, the free encyclopedia

Gangrene
Other namesGangrenous necrosis
GangreneFoot.JPG
Dry gangrene affecting the toes as a result of peripheral artery disease
SpecialtyInfectious disease, surgery
SymptomsChange in skin color to red or black, numbness, pain, skin breakdown, coolness
ComplicationsSepsis, amputation
TypesDry, wet, gas, internal, necrotizing fasciitis
Risk factorsDiabetes, peripheral arterial disease, smoking, major trauma, alcoholism, plague, HIV/AIDS, frostbite, Raynaud's syndrome
Diagnostic methodBased on symptom, With medical imaging used to identify the underlying cause.
TreatmentDepends on underlying cause
PrognosisVariable
FrequencyUnknown

Gangrene is a type of tissue death caused by a lack of blood supply. Symptoms may include a change in skin color to red or black, numbness, swelling, pain, skin breakdown, and coolness. The feet and hands are most commonly affected. If the gangrene is caused by an infectious agent it may present with a fever or sepsis.

Risk factors include diabetes, peripheral arterial disease, smoking, major trauma, alcoholism, HIV/AIDS, frostbite, influenza, dengue fever, malaria, chickenpox, plague, hypernatremia, radiation injuries, meningococcal disease, Group B streptococcal infection and Raynaud's syndrome. It can be classified as dry gangrene, wet gangrene, gas gangrene, internal gangrene, and necrotizing fasciitis. The diagnosis of gangrene is based on symptoms and supported by tests such as medical imaging.

Treatment may involve surgery to remove the dead tissue, antibiotics to treat any infection, and efforts to address the underlying cause. Surgical efforts may include debridement, amputation, or the use of maggot therapy. Efforts to treat the underlying cause may include bypass surgery or angioplasty. In certain cases, hyperbaric oxygen therapy may be useful. How commonly the condition occurs is unknown.

Signs and symptoms

Four drawn illustrations on a page, including (top left) a foot with black toes, (top right) a limb with holes in the skin showing yellowed matter beneath, (centre right) the end of a foot with blackened stubs where the toes once were, and (bottom) a foot that is wrinkled and dark, with prominent veins and purple toes.
An illustration showing four different stages of gangrene, including one (Fig. 4 top right) caused by an obstacle to the return of the venous blood due to heart disease.

Symptoms may include a change in skin color to red or black, numbness, pain, skin breakdown, and coolness. The feet and hands are most commonly involved.

Causes

Gangrene is caused by a critically insufficient blood supply (e.g., peripheral vascular disease) or infection. It is associated with diabetes and long-term tobacco smoking.

Dry gangrene

Dry gangrene is a form of coagulative necrosis that develops in ischemic tissue, where the blood supply is inadequate to keep tissue viable. It is not a disease itself, but a symptom of other diseases. The term dry is used only when referring to a limb or to the gut (in other locations, this same type of necrosis is called an infarction, such as myocardial infarction). Dry gangrene is often due to peripheral artery disease, but can be due to acute limb ischemia. As a result, people with arteriosclerosis, high cholesterol, diabetes and smokers commonly have dry gangrene. The limited oxygen in the ischemic limb limits putrefaction and bacteria fail to survive. The affected part is dry, shrunken, and dark reddish-black. The line of separation usually brings about complete separation, with eventual falling off of the gangrenous tissue if it is not removed surgically, a process called autoamputation.

Dry gangrene is the result of chronic ischemia without infection. If ischemia is detected early, when ischemic wounds rather than gangrene are present, the process can be treated by revascularization (via vascular bypass or angioplasty). However, once gangrene has developed, the affected tissues are not salvageable. Because dry gangrene is not accompanied by infection, it is not as emergent as gas gangrene or wet gangrene, both of which have a risk of sepsis. Over time, dry gangrene may develop into wet gangrene if an infection develops in the dead tissues.

Diabetes mellitus is a risk factor for peripheral vascular disease, thus for dry gangrene, but also a risk factor for wet gangrene, particularly in patients with poorly controlled blood sugar levels, as elevated serum glucose creates a favorable environment for bacterial infection.

Wet gangrene

Wet gangrene of the foot.

Wet, or infected, gangrene is characterized by thriving bacteria and has a poor prognosis (compared to dry gangrene) due to sepsis resulting from the free communication between infected fluid and circulatory fluid. In wet gangrene, the tissue is infected by saprogenic microorganisms (Clostridium perfringens or Bacillus fusiformis, for example), which cause tissue to swell and emit a foul odor. Wet gangrene usually develops rapidly due to blockage of venous (mainly) or arterial blood flow. The affected part is saturated with stagnant blood, which promotes the rapid growth of bacteria. The toxic products formed by bacteria are absorbed, causing systemic manifestation of sepsis and finally death. The affected part is edematous, soft, putrid, rotten, and dark.

Because of the high mortality associated with infected gangrene (about 80% without treatment and 20% with treatment), an emergency salvage amputation, such as a guillotine amputation, is often needed to limit systemic effects of the infection. Such an amputation can be converted to a formal amputation, such as a below- or above-knee amputation.

Gas gangrene

Gas gangrene is a bacterial infection that produces gas within tissues. It can be caused by Clostridium, most commonly alpha toxin-producing C. perfringens, or various nonclostridial species. Infection spreads rapidly as the gases produced by the bacteria expand and infiltrate healthy tissue in the vicinity. Because of its ability to quickly spread to surrounding tissues, gas gangrene should be treated as a medical emergency, this is the most fatal form of gangrene, it is highly fatal, even with treatment (50%), which can be 100% if left untreated.

Gas gangrene is caused by bacterial exotoxin-producing clostridial species, which are mostly found in soil, and other anaerobes such as Bacteroides and anaerobic streptococci. These environmental bacteria may enter the muscle through a wound and subsequently proliferate in necrotic tissue and secrete powerful toxins, which destroy nearby tissue, generating gas at the same time. A gas composition of 5.9% hydrogen, 3.4% carbon dioxide, 74.5% nitrogen, and 16.1% oxygen was reported in one clinical case.

Gas gangrene can cause necrosis, gas production, and sepsis. Progression to toxemia and shock is often very rapid.

Other types

Treatment

Treatment varies based on the severity and type of gangrene.

Lifestyle

Exercises such as walking and massage therapy may be tried.

Medication

Medications may include pain management, medications that promote circulation in the circulatory system and antibiotics. Since gangrene is associated with periodic pain caused by too little blood flow, pain management is important so patients can continue doing exercises that promote circulation. Pain management medications can include opioids and opioid-like analgesics. Since gangrene is a result of ischemia, circulatory system management is important. These medications can include antiplatelet drug, anticoagulant, and fibrinolytics. As infection is often associated with gangrene, antibiotics are often a critical component of its treatment. The life-threatening nature of gangrene requires treatment with intravenous antibiotics in an inpatient setting. Antibiotics alone are not effective because they may not penetrate infected tissues sufficiently.

Surgery

Surgical removal of all dead tissue, however, is the mainstay of treatment for gangrene. Often, gangrene is associated with underlying infection, thus the gangrenous tissue must be debrided to hinder the spread of the associated infection. The extent of surgical debridement needed depends on the extent of the gangrene and may be limited to the removal of a finger, toe, or ear, but in severe cases may involve a limb amputation.

Dead tissue alone does not require debridement, and in some cases, such as dry gangrene, the affected part falls off (autoamputates), making surgical removal unnecessary. Waiting for autoamputation, however, may cause health complications as well as decreased quality of life.

After the gangrene is treated with debridement and antibiotics, the underlying cause can be treated. In the case of gangrene due to critical limb ischemia, revascularization can be performed to treat the underlying peripheral underlateral artery disease.

Ischemic disease of the legs is the most common reason for amputations. In about a quarter of these cases, the other side requires amputation in the next three years.

Angioplasty should be considered if severe blockage in lower leg vessels (tibial and peroneal artery) leads to gangrene.

Other

Hyperbaric oxygen therapy treatment is used to treat gas gangrene. It increases pressure and oxygen content to allow blood to carry more oxygen to inhibit anaerobic organism growth and reproduction.

History

Confederate Army Private Milton E. Wallen lies in bed with a gangrenous amputated arm

As early as 1028, flies and maggots were commonly used to treat chronic wounds or ulcers to prevent or arrest necrotic spread, as some species of maggots consume only dead flesh, leaving nearby living tissue unaffected. This practice largely died out after the introduction of antibiotics, acetonitrile, and enzyme to the range of treatments for wounds. In recent times, however, maggot therapy has regained some credibility and is sometimes employed with great efficacy in cases of chronic tissue necrosis.

The French Baroque composer Jean-Baptiste Lully contracted gangrene in January 1687 when, while conducting a performance of his Te Deum, he stabbed his own toe with his pointed staff (which was used as a baton). The disease spread to his leg, but the composer refused to have his toe amputated, which eventually led to his death in March of that year.

French King Louis XIV died of gangrene in his leg on 1 September 1715, four days prior to his 77th birthday.

Sebald Justinus Brugmans, Professor at Leyden University, from 1795 on Director of the Medical Bureau of the Batavian Republic, and inspector-general of the French Imperial Military Health-Service in 1811, became a leading expert in the fight against hospital-gangrene and its prevention. He wrote a treatise on gangrene in 1814 in which he meticulously analyzed and explained the causes of this dreadful disease, of which he was convinced it was contagious. He completed his entry with a thorough evaluation of all possible and well experienced sanitary regulations. His work was very well received and was instrumental in convincing most later authors that gangrene was a contagious disease.

John M. Trombold wrote: "Middleton Goldsmith, a surgeon in the Union Army during the American Civil War, meticulously studied hospital gangrene and developed a revolutionary treatment regimen. The cumulative Civil War hospital gangrene mortality was 45%. Goldsmith's method, which he applied to over 330 cases, yielded a mortality under 3%." Goldsmith advocated the use of debridement and topical and injected bromide solutions on infected wounds to reduce the incidence and virulence of "poisoned miasma". Copies of his book were issued to Union surgeons to encourage the use of his methods. Father Camille Bulcke also died of gangrene on 17 August 1982.

Etymology

The etymology of gangrene derives from the Latin word gangraena and from the Greek gangraina (γάγγραινα), which means "putrefaction of tissues". It has no etymological connection with the word green, despite the affected areas turning black, green, or yellowish brown.

Ischemia

From Wikipedia, the free encyclopedia
 
Ischemia
Other namesischaemia, ischæmia
Ischemia.JPG
Vascular ischemia of the toes with characteristic cyanosis
Pronunciation
SpecialtyVascular surgery

Ischemia or ischaemia is a restriction in blood supply to tissues, causing a shortage of oxygen that is needed for cellular metabolism (to keep tissue alive). Ischemia is generally caused by problems with blood vessels, with resultant damage to or dysfunction of tissue i.e. hypoxia and microvascular dysfunction. It also means local hypoxia in a given part of a body sometimes resulting from constriction (such as vasoconstriction, thrombosis or embolism). Ischemia comprises not only insufficiency of oxygen, but also reduced availability of nutrients and inadequate removal of metabolic wastes. Ischemia can be partial (poor perfusion) or total.

Signs and symptoms

Since oxygen is carried to tissues in the blood, insufficient blood supply causes tissue to become starved of oxygen. In the highly metabolically active tissues of the heart and brain, irreversible damage to tissues can occur in as little as 3–4 minutes at body temperature. The kidneys are also quickly damaged by loss of blood flow (renal ischemia). Tissues with slower metabolic rates may undergo irreversible damage after 20 minutes.

Clinical manifestations of acute limb ischemia (which can be summarized as the "six P's") include pain, pallor, pulseless, paresthesia, paralysis, and poikilothermia.

Without immediate intervention, ischemia may progress quickly to tissue necrosis and gangrene within a few hours. Paralysis is a very late sign of acute arterial ischemia and signals the death of nerves supplying the extremity. Foot drop may occur as a result of nerve damage. Because nerves are extremely sensitive to hypoxia, limb paralysis or ischemic neuropathy may persist after revascularization and may be permanent.

Cardiac ischemia

Cardiac ischemia may be asymptomatic or may cause chest pain, known as angina pectoris. It occurs when the heart muscle, or myocardium, receives insufficient blood flow. This most frequently results from atherosclerosis, which is the long-term accumulation of cholesterol-rich plaques in the coronary arteries. Ischemic heart disease is the most common cause of death in most Western countries and a major cause of hospital admissions.

Bowel

Both large and small bowel can be affected by ischemia. Ischemia of the large intestine may result in an inflammatory process known as ischemic colitis. Ischemia of the small bowel is called mesenteric ischemia.

Brain

Brain ischemia is insufficient blood flow to the brain, and can be acute or chronic. Acute ischemic stroke is a neurologic emergency that may be reversible if treated rapidly. Chronic ischemia of the brain may result in a form of dementia called vascular dementia. A brief episode of ischemia affecting the brain is called a transient ischemic attack (TIA), often called a mini-stroke. 10% of TIAs will develop into a stroke within 90 days, half of which will occur in the first two days following the TIA.

Limb

Lack of blood flow to a limb results in acute limb ischemia.

Cutaneous

Reduced blood flow to the skin layers may result in mottling or uneven, patchy discoloration of the skin

Kidney Ischemia

Kidney Ischemia is a loss of blood flow to the kidney cells. Several physical symptoms include shrinkage of one or both kidneys, renovascular hypertension, acute renal failure, progressive azotemia, and acute pulmonary edema. It is a disease with high mortality rate and high morbidity. Failure to treat could cause chronic kidney disease and a need for renal surgery.

Causes

Ischemia is a vascular disease involving an interruption in the arterial blood supply to a tissue, organ, or extremity that, if untreated, can lead to tissue death. It can be caused by embolism, thrombosis of an atherosclerotic artery, or trauma. Venous problems like venous outflow obstruction and low-flow states can cause acute arterial ischemia. An aneurysm is one of the most frequent causes of acute arterial ischemia. Other causes are heart conditions including myocardial infarction, mitral valve disease, chronic atrial fibrillation, cardiomyopathies, and prosthesis, in all of which thrombi are prone to develop.

Occlusion

The thrombi may dislodge and may travel anywhere in the circulatory system, where they may lead to pulmonary embolus, an acute arterial occlusion causing the oxygen and blood supply distal to the embolus to decrease suddenly. The degree and extent of symptoms depend on the size and location of the obstruction, the occurrence of clot fragmentation with embolism to smaller vessels, and the degree of peripheral arterial disease (PAD).

Trauma

Traumatic injury to an extremity may produce partial or total occlusion of a vessel from compression, shearing, or laceration. Acute arterial occlusion may develop as a result of arterial dissection in the carotid artery or aorta or as a result of iatrogenic arterial injury (e.g., after angiography).

Other

An inadequate flow of blood to a part of the body may be caused by any of the following:

Pathophysiology

Native records of contractile activity of the left ventricle of isolated rat heart perfused under Langendorff technique. Curve A - contractile function of the heart is greatly depressed after ischemia-reperfusion. Curve B - a set of short ischemic episodes (ischemic preconditioning) before prolonged ischemia provides functional recovery of contractile activity of the heart at reperfusion.
 

Ischemia results in tissue damage in a process known as ischemic cascade. The damage is the result of the build-up of metabolic waste products, inability to maintain cell membranes, mitochondrial damage, and eventual leakage of autolyzing proteolytic enzymes into the cell and surrounding tissues.

Restoration of blood supply to ischemic tissues can cause additional damage known as reperfusion injury that can be more damaging than the initial ischemia. Reintroduction of blood flow brings oxygen back to the tissues, causing a greater production of free radicals and reactive oxygen species that damage cells. It also brings more calcium ions to the tissues causing further calcium overloading and can result in potentially fatal cardiac arrhythmias and also accelerates cellular self-destruction. The restored blood flow also exaggerates the inflammation response of damaged tissues, causing white blood cells to destroy damaged cells that may otherwise still be viable.

Treatment

Early treatment is essential to keep the affected organ viable. The treatment options include injection of an anticoagulant, thrombolysis, embolectomy, surgical revascularisation, or partial amputation. Anticoagulant therapy is initiated to prevent further enlargement of the thrombus. Continuous IV unfractionated heparin has been the traditional agent of choice.

If the condition of the ischemic limb is stabilized with anticoagulation, recently formed emboli may be treated with catheter-directed thrombolysis using intra-arterial infusion of a thrombolytic agent (e.g., recombinant tissue plasminogen activator (tPA), streptokinase, or urokinase). A percutaneous catheter inserted into the femoral artery and threaded to the site of the clot is used to infuse the drug. Unlike anticoagulants, thrombolytic agents work directly to resolve the clot over a period of 24 to 48 hours.

Direct arteriotomy may be necessary to remove the clot. Surgical revascularization may be used in the setting of trauma (e.g., laceration of the artery). Amputation is reserved for cases where limb salvage is not possible. If the patient continues to have a risk of further embolization from some persistent source, such as chronic atrial fibrillation, treatment includes long-term oral anticoagulation to prevent further acute arterial ischemic episodes.

Decrease in body temperature reduces the aerobic metabolic rate of the affected cells, reducing the immediate effects of hypoxia. Reduction of body temperature also reduces the inflammation response and reperfusion injury. For frostbite injuries, limiting thawing and warming of tissues until warmer temperatures can be sustained may reduce reperfusion injury.

Ischemic stroke is at times treated with various levels of statin therapy at hospital discharge, followed by home time, in an attempt to lower the risk of adverse events.

Society and culture

The Infarct Combat Project (ICP) is an international nonprofit organization founded in 1998 to fight ischemic heart diseases through education and research.

Etymology and pronunciation

The word ischemia (/ɪˈskmiə/) is from Greek ἴσχαιμος iskhaimos, "staunching blood" from ἴσχω iskhο, "keep back, restrain" and αἷμα haima, "blood".

Psychodynamics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Psychodynamics   Front row: Sig...