Search This Blog

Wednesday, September 29, 2021

Formation and evolution of the Solar System

Artist's conception of a protoplanetary disk

The formation and evolution of the Solar System began about 4.5 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

This model, known as the nebular hypothesis, was first developed in the 18th century by Emanuel Swedenborg, Immanuel Kant, and Pierre-Simon Laplace. Its subsequent development has interwoven a variety of scientific disciplines including astronomy, chemistry, geology, physics, and planetary science. Since the dawn of the space age in the 1950s and the discovery of extrasolar planets in the 1990s, the model has been both challenged and refined to account for new observations.

The Solar System has evolved considerably since its initial formation. Many moons have formed from circling discs of gas and dust around their parent planets, while other moons are thought to have formed independently and later to have been captured by their planets. Still others, such as Earth's Moon, may be the result of giant collisions. Collisions between bodies have occurred continually up to the present day and have been central to the evolution of the Solar System. The positions of the planets might have shifted due to gravitational interactions. This planetary migration is now thought to have been responsible for much of the Solar System's early evolution.

In roughly 5 billion years, the Sun will cool and expand outward to many times its current diameter (becoming a red giant), before casting off its outer layers as a planetary nebula and leaving behind a stellar remnant known as a white dwarf. In the far distant future, the gravity of passing stars will gradually reduce the Sun's retinue of planets. Some planets will be destroyed, others ejected into interstellar space. Ultimately, over the course of tens of billions of years, it is likely that the Sun will be left with none of the original bodies in orbit around it.

History

Pierre-Simon Laplace, one of the originators of the nebular hypothesis

Ideas concerning the origin and fate of the world date from the earliest known writings; however, for almost all of that time, there was no attempt to link such theories to the existence of a "Solar System", simply because it was not generally thought that the Solar System, in the sense we now understand it, existed. The first step toward a theory of Solar System formation and evolution was the general acceptance of heliocentrism, which placed the Sun at the centre of the system and the Earth in orbit around it. This concept had developed for millennia (Aristarchus of Samos had suggested it as early as 250 BC), but was not widely accepted until the end of the 17th century. The first recorded use of the term "Solar System" dates from 1704.

The current standard theory for Solar System formation, the nebular hypothesis, has fallen into and out of favour since its formulation by Emanuel Swedenborg, Immanuel Kant, and Pierre-Simon Laplace in the 18th century. The most significant criticism of the hypothesis was its apparent inability to explain the Sun's relative lack of angular momentum when compared to the planets. However, since the early 1980s studies of young stars have shown them to be surrounded by cool discs of dust and gas, exactly as the nebular hypothesis predicts, which has led to its re-acceptance.

Understanding of how the Sun is expected to continue to evolve required an understanding of the source of its power. Arthur Stanley Eddington's confirmation of Albert Einstein's theory of relativity led to his realisation that the Sun's energy comes from nuclear fusion reactions in its core, fusing hydrogen into helium. In 1935, Eddington went further and suggested that other elements also might form within stars. Fred Hoyle elaborated on this premise by arguing that evolved stars called red giants created many elements heavier than hydrogen and helium in their cores. When a red giant finally casts off its outer layers, these elements would then be recycled to form other star systems.

Formation

Presolar nebula

The nebular hypothesis says that the Solar System formed from the gravitational collapse of a fragment of a giant molecular cloud. The cloud was about 20 parsec (65 light years) across, while the fragments were roughly 1 parsec (three and a quarter light-years) across. The further collapse of the fragments led to the formation of dense cores 0.01–0.1 parsec (2,000–20,000 AU) in size. One of these collapsing fragments (known as the presolar nebula) formed what became the Solar System. The composition of this region with a mass just over that of the Sun (M) was about the same as that of the Sun today, with hydrogen, along with helium and trace amounts of lithium produced by Big Bang nucleosynthesis, forming about 98% of its mass. The remaining 2% of the mass consisted of heavier elements that were created by nucleosynthesis in earlier generations of stars. Late in the life of these stars, they ejected heavier elements into the interstellar medium.

Hubble image of protoplanetary discs in the Orion Nebula, a light-years-wide "stellar nursery" probably very similar to the primordial nebula from which the Sun formed

The oldest inclusions found in meteorites, thought to trace the first solid material to form in the presolar nebula, are 4568.2 million years old, which is one definition of the age of the Solar System. Studies of ancient meteorites reveal traces of stable daughter nuclei of short-lived isotopes, such as iron-60, that only form in exploding, short-lived stars. This indicates that one or more supernovae occurred nearby. A shock wave from a supernova may have triggered the formation of the Sun by creating relatively dense regions within the cloud, causing these regions to collapse. Because only massive, short-lived stars produce supernovae, the Sun must have formed in a large star-forming region that produced massive stars, possibly similar to the Orion Nebula. Studies of the structure of the Kuiper belt and of anomalous materials within it suggest that the Sun formed within a cluster of between 1,000 and 10,000 stars with a diameter of between 6.5 and 19.5 light years and a collective mass of 3,000 M. This cluster began to break apart between 135 million and 535 million years after formation. Several simulations of our young Sun interacting with close-passing stars over the first 100 million years of its life produce anomalous orbits observed in the outer Solar System, such as detached objects.

Because of the conservation of angular momentum, the nebula spun faster as it collapsed. As the material within the nebula condensed, the atoms within it began to collide with increasing frequency, converting their kinetic energy into heat. The center, where most of the mass collected, became increasingly hotter than the surrounding disc. Over about 100,000 years, the competing forces of gravity, gas pressure, magnetic fields, and rotation caused the contracting nebula to flatten into a spinning protoplanetary disc with a diameter of about 200 AU and form a hot, dense protostar (a star in which hydrogen fusion has not yet begun) at the centre.

At this point in its evolution, the Sun is thought to have been a T Tauri star. Studies of T Tauri stars show that they are often accompanied by discs of pre-planetary matter with masses of 0.001–0.1 M. These discs extend to several hundred AU—the Hubble Space Telescope has observed protoplanetary discs of up to 1000 AU in diameter in star-forming regions such as the Orion Nebula—and are rather cool, reaching a surface temperature of only about 1,000 K (730 °C; 1,340 °F) at their hottest. Within 50 million years, the temperature and pressure at the core of the Sun became so great that its hydrogen began to fuse, creating an internal source of energy that countered gravitational contraction until hydrostatic equilibrium was achieved. This marked the Sun's entry into the prime phase of its life, known as the main sequence. Main-sequence stars derive energy from the fusion of hydrogen into helium in their cores. The Sun remains a main-sequence star today. As the early Solar System continued to evolve, it eventually drifted away from its siblings in the stellar nursery, and continued orbiting the Milky Way's center on its own.

Formation of the planets

The various planets are thought to have formed from the solar nebula, the disc-shaped cloud of gas and dust left over from the Sun's formation. The currently accepted method by which the planets formed is accretion, in which the planets began as dust grains in orbit around the central protostar. Through direct contact and self-organization, these grains formed into clumps up to 200 m (660 ft) in diameter, which in turn collided to form larger bodies (planetesimals) of ~10 km (6.2 mi) in size. These gradually increased through further collisions, growing at the rate of centimetres per year over the course of the next few million years.

The inner Solar System, the region of the Solar System inside 4 AU, was too warm for volatile molecules like water and methane to condense, so the planetesimals that formed there could only form from compounds with high melting points, such as metals (like iron, nickel, and aluminium) and rocky silicates. These rocky bodies would become the terrestrial planets (Mercury, Venus, Earth, and Mars). These compounds are quite rare in the Universe, comprising only 0.6% of the mass of the nebula, so the terrestrial planets could not grow very large. The terrestrial embryos grew to about 0.05 Earth masses (M) and ceased accumulating matter about 100,000 years after the formation of the Sun; subsequent collisions and mergers between these planet-sized bodies allowed terrestrial planets to grow to their present sizes (see Terrestrial planets below).

When the terrestrial planets were forming, they remained immersed in a disk of gas and dust. The gas was partially supported by pressure and so did not orbit the Sun as rapidly as the planets. The resulting drag and, more importantly, gravitational interactions with the surrounding material caused a transfer of angular momentum, and as a result the planets gradually migrated to new orbits. Models show that density and temperature variations in the disk governed this rate of migration, but the net trend was for the inner planets to migrate inward as the disk dissipated, leaving the planets in their current orbits.

The giant planets (Jupiter, Saturn, Uranus, and Neptune) formed further out, beyond the frost line, which is the point between the orbits of Mars and Jupiter where the material is cool enough for volatile icy compounds to remain solid. The ices that formed the Jovian planets were more abundant than the metals and silicates that formed the terrestrial planets, allowing the giant planets to grow massive enough to capture hydrogen and helium, the lightest and most abundant elements. Planetesimals beyond the frost line accumulated up to 4 M within about 3 million years. Today, the four giant planets comprise just under 99% of all the mass orbiting the Sun. Theorists believe it is no accident that Jupiter lies just beyond the frost line. Because the frost line accumulated large amounts of water via evaporation from infalling icy material, it created a region of lower pressure that increased the speed of orbiting dust particles and halted their motion toward the Sun. In effect, the frost line acted as a barrier that caused material to accumulate rapidly at ~5 AU from the Sun. This excess material coalesced into a large embryo (or core) on the order of 10 M, which began to accumulate an envelope via accretion of gas from the surrounding disc at an ever-increasing rate. Once the envelope mass became about equal to the solid core mass, growth proceeded very rapidly, reaching about 150 Earth masses ~105 years thereafter and finally topping out at 318 M. Saturn may owe its substantially lower mass simply to having formed a few million years after Jupiter, when there was less gas available to consume.

T Tauri stars like the young Sun have far stronger stellar winds than more stable, older stars. Uranus and Neptune are thought to have formed after Jupiter and Saturn did, when the strong solar wind had blown away much of the disc material. As a result, those planets accumulated little hydrogen and helium—not more than 1 M each. Uranus and Neptune are sometimes referred to as failed cores. The main problem with formation theories for these planets is the timescale of their formation. At the current locations it would have taken millions of years for their cores to accrete. This means that Uranus and Neptune may have formed closer to the Sun—near or even between Jupiter and Saturn—and later migrated or were ejected outward (see Planetary migration below). Motion in the planetesimal era was not all inward toward the Sun; the Stardust sample return from Comet Wild 2 has suggested that materials from the early formation of the Solar System migrated from the warmer inner Solar System to the region of the Kuiper belt.

After between three and ten million years, the young Sun's solar wind would have cleared away all the gas and dust in the protoplanetary disc, blowing it into interstellar space, thus ending the growth of the planets.

Subsequent evolution

The planets were originally thought to have formed in or near their current orbits. This has been questioned during the last 20 years. Currently, many planetary scientists think that the Solar System might have looked very different after its initial formation: several objects at least as massive as Mercury were present in the inner Solar System, the outer Solar System was much more compact than it is now, and the Kuiper belt was much closer to the Sun.

Terrestrial planets

At the end of the planetary formation epoch the inner Solar System was populated by 50–100 Moon- to Mars-sized planetary embryos. Further growth was possible only because these bodies collided and merged, which took less than 100 million years. These objects would have gravitationally interacted with one another, tugging at each other's orbits until they collided, growing larger until the four terrestrial planets we know today took shape. One such giant collision is thought to have formed the Moon (see Moons below), while another removed the outer envelope of the young Mercury.

One unresolved issue with this model is that it cannot explain how the initial orbits of the proto-terrestrial planets, which would have needed to be highly eccentric to collide, produced the remarkably stable and nearly circular orbits they have today. One hypothesis for this "eccentricity dumping" is that the terrestrials formed in a disc of gas still not expelled by the Sun. The "gravitational drag" of this residual gas would have eventually lowered the planets' energy, smoothing out their orbits. However, such gas, if it existed, would have prevented the terrestrial planets' orbits from becoming so eccentric in the first place. Another hypothesis is that gravitational drag occurred not between the planets and residual gas but between the planets and the remaining small bodies. As the large bodies moved through the crowd of smaller objects, the smaller objects, attracted by the larger planets' gravity, formed a region of higher density, a "gravitational wake", in the larger objects' path. As they did so, the increased gravity of the wake slowed the larger objects down into more regular orbits.

Asteroid belt

The outer edge of the terrestrial region, between 2 and 4 AU from the Sun, is called the asteroid belt. The asteroid belt initially contained more than enough matter to form 2–3 Earth-like planets, and, indeed, a large number of planetesimals formed there. As with the terrestrials, planetesimals in this region later coalesced and formed 20–30 Moon- to Mars-sized planetary embryos; however, the proximity of Jupiter meant that after this planet formed, 3 million years after the Sun, the region's history changed dramatically. Orbital resonances with Jupiter and Saturn are particularly strong in the asteroid belt, and gravitational interactions with more massive embryos scattered many planetesimals into those resonances. Jupiter's gravity increased the velocity of objects within these resonances, causing them to shatter upon collision with other bodies, rather than accrete.

As Jupiter migrated inward following its formation (see Planetary migration below), resonances would have swept across the asteroid belt, dynamically exciting the region's population and increasing their velocities relative to each other. The cumulative action of the resonances and the embryos either scattered the planetesimals away from the asteroid belt or excited their orbital inclinations and eccentricities. Some of those massive embryos too were ejected by Jupiter, while others may have migrated to the inner Solar System and played a role in the final accretion of the terrestrial planets. During this primary depletion period, the effects of the giant planets and planetary embryos left the asteroid belt with a total mass equivalent to less than 1% that of the Earth, composed mainly of small planetesimals. This is still 10–20 times more than the current mass in the main belt, which is now about 0.0005 M. A secondary depletion period that brought the asteroid belt down close to its present mass is thought to have followed when Jupiter and Saturn entered a temporary 2:1 orbital resonance (see below).

The inner Solar System's period of giant impacts probably played a role in the Earth acquiring its current water content (~6×1021 kg) from the early asteroid belt. Water is too volatile to have been present at Earth's formation and must have been subsequently delivered from outer, colder parts of the Solar System. The water was probably delivered by planetary embryos and small planetesimals thrown out of the asteroid belt by Jupiter. A population of main-belt comets discovered in 2006 has been also suggested as a possible source for Earth's water. In contrast, comets from the Kuiper belt or farther regions delivered not more than about 6% of Earth's water. The panspermia hypothesis holds that life itself may have been deposited on Earth in this way, although this idea is not widely accepted.

Planetary migration

According to the nebular hypothesis, the outer two planets may be in the "wrong place". Uranus and Neptune (known as the "ice giants") exist in a region where the reduced density of the solar nebula and longer orbital times render their formation there highly implausible. The two are instead thought to have formed in orbits near Jupiter and Saturn (known as the "gas giants"), where more material was available, and to have migrated outward to their current positions over hundreds of millions of years.

Simulation showing outer planets and Kuiper belt:

a) Before Jupiter/Saturn 2:1 resonance
b) Scattering of Kuiper belt objects into the Solar System after the orbital shift of Neptune
c) After ejection of Kuiper belt bodies by Jupiter
  Orbit of Jupiter
  Orbit of Saturn
  Orbit of Uranus
  Orbit of Neptune

The migration of the outer planets is also necessary to account for the existence and properties of the Solar System's outermost regions. Beyond Neptune, the Solar System continues into the Kuiper belt, the scattered disc, and the Oort cloud, three sparse populations of small icy bodies thought to be the points of origin for most observed comets. At their distance from the Sun, accretion was too slow to allow planets to form before the solar nebula dispersed, and thus the initial disc lacked enough mass density to consolidate into a planet. The Kuiper belt lies between 30 and 55 AU from the Sun, while the farther scattered disc extends to over 100 AU, and the distant Oort cloud begins at about 50,000 AU. Originally, however, the Kuiper belt was much denser and closer to the Sun, with an outer edge at approximately 30 AU. Its inner edge would have been just beyond the orbits of Uranus and Neptune, which were in turn far closer to the Sun when they formed (most likely in the range of 15–20 AU), and in 50% of simulations ended up in opposite locations, with Uranus farther from the Sun than Neptune.

According to the Nice model, after the formation of the Solar System, the orbits of all the giant planets continued to change slowly, influenced by their interaction with the large number of remaining planetesimals. After 500–600 million years (about 4 billion years ago) Jupiter and Saturn fell into a 2:1 resonance: Saturn orbited the Sun once for every two Jupiter orbits. This resonance created a gravitational push against the outer planets, possibly causing Neptune to surge past Uranus and plough into the ancient Kuiper belt. The planets scattered the majority of the small icy bodies inwards, while themselves moving outwards. These planetesimals then scattered off the next planet they encountered in a similar manner, moving the planets' orbits outwards while they moved inwards. This process continued until the planetesimals interacted with Jupiter, whose immense gravity sent them into highly elliptical orbits or even ejected them outright from the Solar System. This caused Jupiter to move slightly inward. Those objects scattered by Jupiter into highly elliptical orbits formed the Oort cloud; those objects scattered to a lesser degree by the migrating Neptune formed the current Kuiper belt and scattered disc. This scenario explains the Kuiper belt's and scattered disc's present low mass. Some of the scattered objects, including Pluto, became gravitationally tied to Neptune's orbit, forcing them into mean-motion resonances. Eventually, friction within the planetesimal disc made the orbits of Uranus and Neptune circular again.

In contrast to the outer planets, the inner planets are not thought to have migrated significantly over the age of the Solar System, because their orbits have remained stable following the period of giant impacts.

Another question is why Mars came out so small compared with Earth. A study by Southwest Research Institute, San Antonio, Texas, published June 6, 2011 (called the Grand tack hypothesis), proposes that Jupiter had migrated inward to 1.5 AU. After Saturn formed, migrated inward, and established the 2:3 mean motion resonance with Jupiter, the study assumes that both planets migrated back to their present positions. Jupiter thus would have consumed much of the material that would have created a bigger Mars. The same simulations also reproduce the characteristics of the modern asteroid belt, with dry asteroids and water-rich objects similar to comets. However, it is unclear whether conditions in the solar nebula would have allowed Jupiter and Saturn to move back to their current positions, and according to current estimates this possibility appears unlikely. Moreover, alternative explanations for the small mass of Mars exist.

Late Heavy Bombardment and after

Meteor Crater in Arizona. Created 50,000 years ago by an impactor about 50 metres (160 ft) across, it shows that the accretion of the Solar System is not over.

Gravitational disruption from the outer planets' migration would have sent large numbers of asteroids into the inner Solar System, severely depleting the original belt until it reached today's extremely low mass. This event may have triggered the Late Heavy Bombardment that occurred approximately 4 billion years ago, 500–600 million years after the formation of the Solar System. This period of heavy bombardment lasted several hundred million years and is evident in the cratering still visible on geologically dead bodies of the inner Solar System such as the Moon and Mercury. The oldest known evidence for life on Earth dates to 3.8 billion years ago—almost immediately after the end of the Late Heavy Bombardment.

Impacts are thought to be a regular (if currently infrequent) part of the evolution of the Solar System. That they continue to happen is evidenced by the collision of Comet Shoemaker–Levy 9 with Jupiter in 1994, the 2009 Jupiter impact event, the Tunguska event, the Chelyabinsk meteor and the impact that created Meteor Crater in Arizona. The process of accretion, therefore, is not complete, and may still pose a threat to life on Earth.

Over the course of the Solar System's evolution, comets were ejected out of the inner Solar System by the gravity of the giant planets, and sent thousands of AU outward to form the Oort cloud, a spherical outer swarm of cometary nuclei at the farthest extent of the Sun's gravitational pull. Eventually, after about 800 million years, the gravitational disruption caused by galactic tides, passing stars and giant molecular clouds began to deplete the cloud, sending comets into the inner Solar System. The evolution of the outer Solar System also appears to have been influenced by space weathering from the solar wind, micrometeorites, and the neutral components of the interstellar medium.

The evolution of the asteroid belt after Late Heavy Bombardment was mainly governed by collisions. Objects with large mass have enough gravity to retain any material ejected by a violent collision. In the asteroid belt this usually is not the case. As a result, many larger objects have been broken apart, and sometimes newer objects have been forged from the remnants in less violent collisions. Moons around some asteroids currently can only be explained as consolidations of material flung away from the parent object without enough energy to entirely escape its gravity.

Moons

Moons have come to exist around most planets and many other Solar System bodies. These natural satellites originated by one of three possible mechanisms:

  • Co-formation from a circumplanetary disc (only in the cases of the giant planets);
  • Formation from impact debris (given a large enough impact at a shallow angle); and
  • Capture of a passing object.
Artist's conception of the giant impact thought to have formed the Moon

Jupiter and Saturn have several large moons, such as Io, Europa, Ganymede and Titan, which may have originated from discs around each giant planet in much the same way that the planets formed from the disc around the Sun. This origin is indicated by the large sizes of the moons and their proximity to the planet. These attributes are impossible to achieve via capture, while the gaseous nature of the primaries also make formation from collision debris unlikely. The outer moons of the giant planets tend to be small and have eccentric orbits with arbitrary inclinations. These are the characteristics expected of captured bodies. Most such moons orbit in the direction opposite the rotation of their primary. The largest irregular moon is Neptune's moon Triton, which is thought to be a captured Kuiper belt object.

Moons of solid Solar System bodies have been created by both collisions and capture. Mars's two small moons, Deimos and Phobos, are thought to be captured asteroids. The Earth's Moon is thought to have formed as a result of a single, large head-on collision. The impacting object probably had a mass comparable to that of Mars, and the impact probably occurred near the end of the period of giant impacts. The collision kicked into orbit some of the impactor's mantle, which then coalesced into the Moon. The impact was probably the last in the series of mergers that formed the Earth. It has been further hypothesized that the Mars-sized object may have formed at one of the stable Earth–Sun Lagrangian points (either L4 or L5) and drifted from its position. The moons of trans-Neptunian objects Pluto (Charon) and Orcus (Vanth) may also have formed by means of a large collision: the Pluto–Charon, Orcus–Vanth and Earth–Moon systems are unusual in the Solar System in that the satellite's mass is at least 1% that of the larger body.

Future

Astronomers estimate that the current state of the Solar System will not change drastically until the Sun has fused almost all the hydrogen fuel in its core into helium, beginning its evolution from the main sequence of the Hertzsprung–Russell diagram and into its red-giant phase. The Solar System will continue to evolve until then.

Long-term stability

The Solar System is chaotic over million- and billion-year timescales, with the orbits of the planets open to long-term variations. One notable example of this chaos is the Neptune–Pluto system, which lies in a 3:2 orbital resonance. Although the resonance itself will remain stable, it becomes impossible to predict the position of Pluto with any degree of accuracy more than 10–20 million years (the Lyapunov time) into the future. Another example is Earth's axial tilt, which, due to friction raised within Earth's mantle by tidal interactions with the Moon, is incomputable from some point between 1.5 and 4.5 billion years from now.

The outer planets' orbits are chaotic over longer timescales, with a Lyapunov time in the range of 2–230 million years. In all cases this means that the position of a planet along its orbit ultimately becomes impossible to predict with any certainty (so, for example, the timing of winter and summer become uncertain), but in some cases the orbits themselves may change dramatically. Such chaos manifests most strongly as changes in eccentricity, with some planets' orbits becoming significantly more—or less—elliptical.

Ultimately, the Solar System is stable in that none of the planets are likely to collide with each other or be ejected from the system in the next few billion years. Beyond this, within five billion years or so Mars's eccentricity may grow to around 0.2, such that it lies on an Earth-crossing orbit, leading to a potential collision. In the same timescale, Mercury's eccentricity may grow even further, and a close encounter with Venus could theoretically eject it from the Solar System altogether or send it on a collision course with Venus or Earth. This could happen within a billion years, according to numerical simulations in which Mercury's orbit is perturbed.

Moon–ring systems

The evolution of moon systems is driven by tidal forces. A moon will raise a tidal bulge in the object it orbits (the primary) due to the differential gravitational force across diameter of the primary. If a moon is revolving in the same direction as the planet's rotation and the planet is rotating faster than the orbital period of the moon, the bulge will constantly be pulled ahead of the moon. In this situation, angular momentum is transferred from the rotation of the primary to the revolution of the satellite. The moon gains energy and gradually spirals outward, while the primary rotates more slowly over time.

The Earth and its Moon are one example of this configuration. Today, the Moon is tidally locked to the Earth; one of its revolutions around the Earth (currently about 29 days) is equal to one of its rotations about its axis, so it always shows one face to the Earth. The Moon will continue to recede from Earth, and Earth's spin will continue to slow gradually. Other examples are the Galilean moons of Jupiter (as well as many of Jupiter's smaller moons) and most of the larger moons of Saturn.

Neptune and its moon Triton, taken by Voyager 2. Triton's orbit will eventually take it within Neptune's Roche limit, tearing it apart and possibly forming a new ring system.

A different scenario occurs when the moon is either revolving around the primary faster than the primary rotates, or is revolving in the direction opposite the planet's rotation. In these cases, the tidal bulge lags behind the moon in its orbit. In the former case, the direction of angular momentum transfer is reversed, so the rotation of the primary speeds up while the satellite's orbit shrinks. In the latter case, the angular momentum of the rotation and revolution have opposite signs, so transfer leads to decreases in the magnitude of each (that cancel each other out). In both cases, tidal deceleration causes the moon to spiral in towards the primary until it either is torn apart by tidal stresses, potentially creating a planetary ring system, or crashes into the planet's surface or atmosphere. Such a fate awaits the moons Phobos of Mars (within 30 to 50 million years), Triton of Neptune (in 3.6 billion years), and at least 16 small satellites of Uranus and Neptune. Uranus's Desdemona may even collide with one of its neighboring moons.

A third possibility is where the primary and moon are tidally locked to each other. In that case, the tidal bulge stays directly under the moon, there is no transfer of angular momentum, and the orbital period will not change. Pluto and Charon are an example of this type of configuration.

There is no consensus as to the mechanism of formation of the rings of Saturn. Although theoretical models indicated that the rings were likely to have formed early in the Solar System's history, data from the Cassini–Huygens spacecraft suggests they formed relatively late.

The Sun and planetary environments

Formation of the solar system after gas and dust accretion to a protoplanetary disk. The vast majority of this material was created from the primal supernova
Formation of the solar system after gas and dust accretion to a protoplanetary disk. The vast majority of this material was created from the primal supernova

In the long term, the greatest changes in the Solar System will come from changes in the Sun itself as it ages. As the Sun burns through its supply of hydrogen fuel, it gets hotter and burns the remaining fuel even faster. As a result, the Sun is growing brighter at a rate of ten percent every 1.1 billion years. In about 600 million years, the Sun's brightness will have disrupted the Earth's carbon cycle to the point where trees and forests (C3 photosynthetic plant life) will no longer be able to survive; and in around 800 million years, the Sun will have killed all complex life on the Earth's surface and in the oceans. In 1.1 billion years' time, the Sun's increased radiation output will cause its circumstellar habitable zone to move outwards, making the Earth's surface too hot for liquid water to exist there naturally. At this point, all life will be reduced to single-celled organisms. Evaporation of water, a potent greenhouse gas, from the oceans' surface could accelerate temperature increase, potentially ending all life on Earth even sooner. During this time, it is possible that as Mars's surface temperature gradually rises, carbon dioxide and water currently frozen under the surface regolith will release into the atmosphere, creating a greenhouse effect that will heat the planet until it achieves conditions parallel to Earth today, providing a potential future abode for life. By 3.5 billion years from now, Earth's surface conditions will be similar to those of Venus today.

Relative size of the Sun as it is now (inset) compared to its estimated future size as a red giant

Around 5.4 billion years from now, the core of the Sun will become hot enough to trigger hydrogen fusion in its surrounding shell. This will cause the outer layers of the star to expand greatly, and the star will enter a phase of its life in which it is called a red giant. Within 7.5 billion years, the Sun will have expanded to a radius of 1.2 AU—256 times its current size. At the tip of the red-giant branch, as a result of the vastly increased surface area, the Sun's surface will be much cooler (about 2600 K) than now and its luminosity much higher—up to 2,700 current solar luminosities. For part of its red-giant life, the Sun will have a strong stellar wind that will carry away around 33% of its mass. During these times, it is possible that Saturn's moon Titan could achieve surface temperatures necessary to support life.

As the Sun expands, it will swallow the planets Mercury and Venus. Earth's fate is less clear; although the Sun will envelop Earth's current orbit, the star's loss of mass (and thus weaker gravity) will cause the planets' orbits to move farther out. If it were only for this, Venus and Earth would probably escape incineration, but a 2008 study suggests that Earth will likely be swallowed up as a result of tidal interactions with the Sun's weakly bound outer envelope.

After the expansion phase, the habitable zone will shift deeper into the outer solar system and the Kuiper-belt. This means that surface temperatures on Pluto and Charon will be high enough for water ice to sublimate into steam. Surface temperatures on Pluto and Charon would be 0°C. (Water ice sublimates at lower atmospheric pressures). By that time Pluto would've already lost its methane shell as a result of sublimation. But Pluto will be too small and lacks a magnetic field to prevent high energy ions from striking its atmosphere so as to be able to maintain a thick atmosphere given that the solar activity would increase drastically when the sun dies. Pluto and Charon will loose their diffuse water atmosphere into space, leaving an exposed rocky core. Both of them will loose 30%-40% of their mass as a result.

Gradually, the hydrogen burning in the shell around the solar core will increase the mass of the core until it reaches about 45% of the present solar mass. At this point the density and temperature will become so high that the fusion of helium into carbon will begin, leading to a helium flash; the Sun will shrink from around 250 to 11 times its present (main-sequence) radius. Consequently, its luminosity will decrease from around 3,000 to 54 times its current level, and its surface temperature will increase to about 4770 K. The Sun will become a horizontal giant, burning helium in its core in a stable fashion much like it burns hydrogen today. The helium-fusing stage will last only 100 million years. Eventually, it will have to again resort to the reserves of hydrogen and helium in its outer layers and will expand a second time, turning into what is known as an asymptotic giant. Here the luminosity of the Sun will increase again, reaching about 2,090 present luminosities, and it will cool to about 3500 K. This phase lasts about 30 million years, after which, over the course of a further 100,000 years, the Sun's remaining outer layers will fall away, ejecting a vast stream of matter into space and forming a halo known (misleadingly) as a planetary nebula. The ejected material will contain the helium and carbon produced by the Sun's nuclear reactions, continuing the enrichment of the interstellar medium with heavy elements for future generations of stars.

The Ring nebula, a planetary nebula similar to what the Sun will become

This is a relatively peaceful event, nothing akin to a supernova, which the Sun is too small to undergo as part of its evolution. Any observer present to witness this occurrence would see a massive increase in the speed of the solar wind, but not enough to destroy a planet completely. However, the star's loss of mass could send the orbits of the surviving planets into chaos, causing some to collide, others to be ejected from the Solar System, and still others to be torn apart by tidal interactions. Afterwards, all that will remain of the Sun is a white dwarf, an extraordinarily dense object, 54% its original mass but only the size of the Earth. Initially, this white dwarf may be 100 times as luminous as the Sun is now. It will consist entirely of degenerate carbon and oxygen, but will never reach temperatures hot enough to fuse these elements. Thus the white dwarf Sun will gradually cool, growing dimmer and dimmer.

As the Sun dies, its gravitational pull on the orbiting bodies such as planets, comets and asteroids will weaken due to its mass loss. All remaining planets' orbits will expand; if Venus, Earth, and Mars still exist, their orbits will lie roughly at 1.4 AU (210,000,000 km), 1.9 AU (280,000,000 km), and 2.8 AU (420,000,000 km). They and the other remaining planets will become dark, frigid hulks, completely devoid of any form of life. They will continue to orbit their star, their speed slowed due to their increased distance from the Sun and the Sun's reduced gravity. Two billion years later, when the Sun has cooled to the 6000–8000K range, the carbon and oxygen in the Sun's core will freeze, with over 90% of its remaining mass assuming a crystalline structure. Eventually, after roughly 1 quadrillion years, the Sun will finally cease to shine altogether, becoming a black dwarf.

Galactic interaction

Location of the Solar System within the Milky Way

The Solar System travels alone through the Milky Way in a circular orbit approximately 30,000 light years from the Galactic Centre. Its speed is about 220 km/s. The period required for the Solar System to complete one revolution around the Galactic Centre, the galactic year, is in the range of 220–250 million years. Since its formation, the Solar System has completed at least 20 such revolutions.

Various scientists have speculated that the Solar System's path through the galaxy is a factor in the periodicity of mass extinctions observed in the Earth's fossil record. One hypothesis supposes that vertical oscillations made by the Sun as it orbits the Galactic Centre cause it to regularly pass through the galactic plane. When the Sun's orbit takes it outside the galactic disc, the influence of the galactic tide is weaker; as it re-enters the galactic disc, as it does every 20–25 million years, it comes under the influence of the far stronger "disc tides", which, according to mathematical models, increase the flux of Oort cloud comets into the Solar System by a factor of 4, leading to a massive increase in the likelihood of a devastating impact.

However, others argue that the Sun is currently close to the galactic plane, and yet the last great extinction event was 15 million years ago. Therefore, the Sun's vertical position cannot alone explain such periodic extinctions, and that extinctions instead occur when the Sun passes through the galaxy's spiral arms. Spiral arms are home not only to larger numbers of molecular clouds, whose gravity may distort the Oort cloud, but also to higher concentrations of bright blue giants, which live for relatively short periods and then explode violently as supernovae.

Galactic collision and planetary disruption

Although the vast majority of galaxies in the Universe are moving away from the Milky Way, the Andromeda Galaxy, the largest member of the Local Group of galaxies, is heading toward it at about 120 km/s. In 4 billion years, Andromeda and the Milky Way will collide, causing both to deform as tidal forces distort their outer arms into vast tidal tails. If this initial disruption occurs, astronomers calculate a 12% chance that the Solar System will be pulled outward into the Milky Way's tidal tail and a 3% chance that it will become gravitationally bound to Andromeda and thus a part of that galaxy. After a further series of glancing blows, during which the likelihood of the Solar System's ejection rises to 30%, the galaxies' supermassive black holes will merge. Eventually, in roughly 6 billion years, the Milky Way and Andromeda will complete their merger into a giant elliptical galaxy. During the merger, if there is enough gas, the increased gravity will force the gas to the centre of the forming elliptical galaxy. This may lead to a short period of intensive star formation called a starburst. In addition, the infalling gas will feed the newly formed black hole, transforming it into an active galactic nucleus. The force of these interactions will likely push the Solar System into the new galaxy's outer halo, leaving it relatively unscathed by the radiation from these collisions.

It is a common misconception that this collision will disrupt the orbits of the planets in the Solar System. Although it is true that the gravity of passing stars can detach planets into interstellar space, distances between stars are so great that the likelihood of the Milky Way–Andromeda collision causing such disruption to any individual star system is negligible. Although the Solar System as a whole could be affected by these events, the Sun and planets are not expected to be disturbed.

However, over time, the cumulative probability of a chance encounter with a star increases, and disruption of the planets becomes all but inevitable. Assuming that the Big Crunch or Big Rip scenarios for the end of the Universe do not occur, calculations suggest that the gravity of passing stars will have completely stripped the dead Sun of its remaining planets within 1 quadrillion (1015) years. This point marks the end of the Solar System. Although the Sun and planets may survive, the Solar System, in any meaningful sense, will cease to exist.

Chronology

Projected timeline of the Sun's life. From Formation To 14Gy

The time frame of the Solar System's formation has been determined using radiometric dating. Scientists estimate that the Solar System is 4.6 billion years old. The oldest known mineral grains on Earth are approximately 4.4 billion years old. Rocks this old are rare, as Earth's surface is constantly being reshaped by erosion, volcanism, and plate tectonics. To estimate the age of the Solar System, scientists use meteorites, which were formed during the early condensation of the solar nebula. Almost all meteorites (see the Canyon Diablo meteorite) are found to have an age of 4.6 billion years, suggesting that the Solar System must be at least this old.

Studies of discs around other stars have also done much to establish a time frame for Solar System formation. Stars between one and three million years old have discs rich in gas, whereas discs around stars more than 10 million years old have little to no gas, suggesting that giant planets within them have ceased forming.

 

Biotechnology

From Wikipedia, the free encyclopedia

Insulin crystals

Biotechnology is a broad area of biology, involving the use of living systems and organisms to develop or make products. Depending on the tools and applications, it often overlaps with related scientific fields. In the late 20th and early 21st centuries, biotechnology has expanded to include new and diverse sciences, such as genomics, recombinant gene techniques, applied immunology, and development of pharmaceutical therapies and diagnostic tests. The term biotechnology was first used by Karl Ereky in 1919, meaning the production of products from raw materials with the aid of living organisms.

Definition

The concept of biotechnology encompasses a wide range of procedures for modifying living organisms according to human purposes, going back to domestication of animals, cultivation of the plants, and "improvements" to these through breeding programs that employ artificial selection and hybridization. Modern usage also includes genetic engineering as well as cell and tissue culture technologies. The American Chemical Society defines biotechnology as the application of biological organisms, systems, or processes by various industries to learning about the science of life and the improvement of the value of materials and organisms such as pharmaceuticals, crops, and livestock. Per the European Federation of Biotechnology, biotechnology is the integration of natural science and organisms, cells, parts thereof, and molecular analogues for products and services. Biotechnology is based on the basic biological sciences (e.g., molecular biology, biochemistry, cell biology, embryology, genetics, microbiology) and conversely provides methods to support and perform basic research in biology.

Biotechnology is the research and development in the laboratory using bioinformatics for exploration, extraction, exploitation, and production from any living organisms and any source of biomass by means of biochemical engineering where high value-added products could be planned (reproduced by biosynthesis, for example), forecasted, formulated, developed, manufactured, and marketed for the purpose of sustainable operations (for the return from bottomless initial investment on R & D) and gaining durable patents rights (for exclusives rights for sales, and prior to this to receive national and international approval from the results on animal experiment and human experiment, especially on the pharmaceutical branch of biotechnology to prevent any undetected side-effects or safety concerns by using the products). The utilization of biological processes, organisms or systems to produce products that are anticipated to improve human lives is termed biotechnology.

By contrast, bioengineering is generally thought of as a related field that more heavily emphasizes higher systems approaches (not necessarily the altering or using of biological materials directly) for interfacing with and utilizing living things. Bioengineering is the application of the principles of engineering and natural sciences to tissues, cells, and molecules. This can be considered as the use of knowledge from working with and manipulating biology to achieve a result that can improve functions in plants and animals. Relatedly, biomedical engineering is an overlapping field that often draws upon and applies biotechnology (by various definitions), especially in certain sub-fields of biomedical or chemical engineering such as tissue engineering, biopharmaceutical engineering, and genetic engineering.

History

Brewing was an early application of biotechnology.
 

Although not normally what first comes to mind, many forms of human-derived agriculture clearly fit the broad definition of "'utilizing a biotechnological system to make products". Indeed, the cultivation of plants may be viewed as the earliest biotechnological enterprise.

Agriculture has been theorized to have become the dominant way of producing food since the Neolithic Revolution. Through early biotechnology, the earliest farmers selected and bred the best-suited crops, having the highest yields, to produce enough food to support a growing population. As crops and fields became increasingly large and difficult to maintain, it was discovered that specific organisms and their by-products could effectively fertilize, restore nitrogen, and control pests. Throughout the history of agriculture, farmers have inadvertently altered the genetics of their crops through introducing them to new environments and breeding them with other plants — one of the first forms of biotechnology.

These processes also were included in early fermentation of beer. These processes were introduced in early Mesopotamia, Egypt, China and India, and still use the same basic biological methods. In brewing, malted grains (containing enzymes) convert starch from grains into sugar and then adding specific yeasts to produce beer. In this process, carbohydrates in the grains broke down into alcohols, such as ethanol. Later, other cultures produced the process of lactic acid fermentation, which produced other preserved foods, such as soy sauce. Fermentation was also used in this time period to produce leavened bread. Although the process of fermentation was not fully understood until Louis Pasteur's work in 1857, it is still the first use of biotechnology to convert a food source into another form.

Before the time of Charles Darwin's work and life, animal and plant scientists had already used selective breeding. Darwin added to that body of work with his scientific observations about the ability of science to change species. These accounts contributed to Darwin's theory of natural selection.

For thousands of years, humans have used selective breeding to improve the production of crops and livestock to use them for food. In selective breeding, organisms with desirable characteristics are mated to produce offspring with the same characteristics. For example, this technique was used with corn to produce the largest and sweetest crops.

In the early twentieth century scientists gained a greater understanding of microbiology and explored ways of manufacturing specific products. In 1917, Chaim Weizmann first used a pure microbiological culture in an industrial process, that of manufacturing corn starch using Clostridium acetobutylicum, to produce acetone, which the United Kingdom desperately needed to manufacture explosives during World War I.

Biotechnology has also led to the development of antibiotics. In 1928, Alexander Fleming discovered the mold Penicillium. His work led to the purification of the antibiotic compound formed by the mold by Howard Florey, Ernst Boris Chain and Norman Heatley – to form what we today know as penicillin. In 1940, penicillin became available for medicinal use to treat bacterial infections in humans.

The field of modern biotechnology is generally thought of as having been born in 1971 when Paul Berg's (Stanford) experiments in gene splicing had early success. Herbert W. Boyer (Univ. Calif. at San Francisco) and Stanley N. Cohen (Stanford) significantly advanced the new technology in 1972 by transferring genetic material into a bacterium, such that the imported material would be reproduced. The commercial viability of a biotechnology industry was significantly expanded on June 16, 1980, when the United States Supreme Court ruled that a genetically modified microorganism could be patented in the case of Diamond v. Chakrabarty. Indian-born Ananda Chakrabarty, working for General Electric, had modified a bacterium (of the genus Pseudomonas) capable of breaking down crude oil, which he proposed to use in treating oil spills. (Chakrabarty's work did not involve gene manipulation but rather the transfer of entire organelles between strains of the Pseudomonas bacterium.

The MOSFET (metal-oxide-semiconductor field-effect transistor) was invented by Mohamed M. Atalla and Dawon Kahng in 1959. Two years later, Leland C. Clark and Champ Lyons invented the first biosensor in 1962. Biosensor MOSFETs were later developed, and they have since been widely used to measure physical, chemical, biological and environmental parameters. The first BioFET was the ion-sensitive field-effect transistor (ISFET), invented by Piet Bergveld in 1970. It is a special type of MOSFET, where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution and reference electrode. The ISFET is widely used in biomedical applications, such as the detection of DNA hybridization, biomarker detection from blood, antibody detection, glucose measurement, pH sensing, and genetic technology.

By the mid-1980s, other BioFETs had been developed, including the gas sensor FET (GASFET), pressure sensor FET (PRESSFET), chemical field-effect transistor (ChemFET), reference ISFET (REFET), enzyme-modified FET (ENFET) and immunologically modified FET (IMFET). By the early 2000s, BioFETs such as the DNA field-effect transistor (DNAFET), gene-modified FET (GenFET) and cell-potential BioFET (CPFET) had been developed.

A factor influencing the biotechnology sector's success is improved intellectual property rights legislation—and enforcement—worldwide, as well as strengthened demand for medical and pharmaceutical products to cope with an ageing, and ailing, U.S. population.

Rising demand for biofuels is expected to be good news for the biotechnology sector, with the Department of Energy estimating ethanol usage could reduce U.S. petroleum-derived fuel consumption by up to 30% by 2030. The biotechnology sector has allowed the U.S. farming industry to rapidly increase its supply of corn and soybeans—the main inputs into biofuels—by developing genetically modified seeds that resist pests and drought. By increasing farm productivity, biotechnology boosts biofuel production.

Examples

A rose plant that began as cells grown in a tissue culture

Biotechnology has applications in four major industrial areas, including health care (medical), crop production and agriculture, non-food (industrial) uses of crops and other products (e.g. biodegradable plastics, vegetable oil, biofuels), and environmental uses.

For example, one application of biotechnology is the directed use of microorganisms for the manufacture of organic products (examples include beer and milk products). Another example is using naturally present bacteria by the mining industry in bioleaching. Biotechnology is also used to recycle, treat waste, clean up sites contaminated by industrial activities (bioremediation), and also to produce biological weapons.

A series of derived terms have been coined to identify several branches of biotechnology, for example:

  • Bioinformatics (also called "gold biotechnology") is an interdisciplinary field that addresses biological problems using computational techniques, and makes the rapid organization as well as analysis of biological data possible. The field may also be referred to as computational biology, and can be defined as, "conceptualizing biology in terms of molecules and then applying informatics techniques to understand and organize the information associated with these molecules, on a large scale." Bioinformatics plays a key role in various areas, such as functional genomics, structural genomics, and proteomics, and forms a key component in the biotechnology and pharmaceutical sector.
  • Blue biotechnology is based on the exploitation of sea resources to create products and industrial applications. This branch of biotechnology is the most used for the industries of refining and combustion principally on the production of bio-oils with photosynthetic micro-algae.
  • Green biotechnology is biotechnology applied to agricultural processes. An example would be the selection and domestication of plants via micropropagation. Another example is the designing of transgenic plants to grow under specific environments in the presence (or absence) of chemicals. One hope is that green biotechnology might produce more environmentally friendly solutions than traditional industrial agriculture. An example of this is the engineering of a plant to express a pesticide, thereby ending the need of external application of pesticides. An example of this would be Bt corn. Whether or not green biotechnology products such as this are ultimately more environmentally friendly is a topic of considerable debate. It is commonly considered as the next phase of green revolution, which can be seen as a platform to eradicate world hunger by using technologies which enable the production of more fertile and resistant, towards biotic and abiotic stress, plants and ensures application of environmentally friendly fertilizers and the use of biopesticides, it is mainly focused on the development of agriculture. On the other hand, some of the uses of green biotechnology involve microorganisms to clean and reduce waste.
  • Red biotechnology is the use of biotechnology in the medical and pharmaceutical industries, and health preservation. This branch involves the production of vaccines and antibiotics, regenerative therapies, creation of artificial organs and new diagnostics of diseases. As well as the development of hormones, stem cells, antibodies, siRNA and diagnostic tests.
  • White biotechnology, also known as industrial biotechnology, is biotechnology applied to industrial processes. An example is the designing of an organism to produce a useful chemical. Another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy hazardous/polluting chemicals. White biotechnology tends to consume less in resources than traditional processes used to produce industrial goods.
  • "Yellow biotechnology" refers to the use of biotechnology in food production (food industry), for example in making wine (winemaking), cheese (cheesemaking), and beer (brewing) by fermentation. It has also been used to refer to biotechnology applied to insects. This includes biotechnology-based approaches for the control of harmful insects, the characterisation and utilisation of active ingredients or genes of insects for research, or application in agriculture and medicine and various other approaches.
  • Gray biotechnology is dedicated to environmental applications, and focused on the maintenance of biodiversity and the remotion of pollutants.
  • Brown biotechnology is related to the management of arid lands and deserts. One application is the creation of enhanced seeds that resist extreme environmental conditions of arid regions, which is related to the innovation, creation of agriculture techniques and management of resources.
  • Violet biotechnology is related to law, ethical and philosophical issues around biotechnology.
  • Dark biotechnology is the color associated with bioterrorism or biological weapons and biowarfare which uses microorganisms, and toxins to cause diseases and death in humans, livestock and crops.

Medicine

In medicine, modern biotechnology has many applications in areas such as pharmaceutical drug discoveries and production, pharmacogenomics, and genetic testing (or genetic screening).

DNA microarray chip – some can do as many as a million blood tests at once

Pharmacogenomics (a combination of pharmacology and genomics) is the technology that analyses how genetic makeup affects an individual's response to drugs. Researchers in the field investigate the influence of genetic variation on drug responses in patients by correlating gene expression or single-nucleotide polymorphisms with a drug's efficacy or toxicity. The purpose of pharmacogenomics is to develop rational means to optimize drug therapy, with respect to the patients' genotype, to ensure maximum efficacy with minimal adverse effects. Such approaches promise the advent of "personalized medicine"; in which drugs and drug combinations are optimized for each individual's unique genetic makeup.

Computer-generated image of insulin hexamers highlighting the threefold symmetry, the zinc ions holding it together, and the histidine residues involved in zinc binding

Biotechnology has contributed to the discovery and manufacturing of traditional small molecule pharmaceutical drugs as well as drugs that are the product of biotechnology – biopharmaceutics. Modern biotechnology can be used to manufacture existing medicines relatively easily and cheaply. The first genetically engineered products were medicines designed to treat human diseases. To cite one example, in 1978 Genentech developed synthetic humanized insulin by joining its gene with a plasmid vector inserted into the bacterium Escherichia coli. Insulin, widely used for the treatment of diabetes, was previously extracted from the pancreas of abattoir animals (cattle or pigs). The genetically engineered bacteria are able to produce large quantities of synthetic human insulin at relatively low cost. Biotechnology has also enabled emerging therapeutics like gene therapy. The application of biotechnology to basic science (for example through the Human Genome Project) has also dramatically improved our understanding of biology and as our scientific knowledge of normal and disease biology has increased, our ability to develop new medicines to treat previously untreatable diseases has increased as well.

Genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child's parentage (genetic mother and father) or in general a person's ancestry. In addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. Genetic testing identifies changes in chromosomes, genes, or proteins. Most of the time, testing is used to find changes that are associated with inherited disorders. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. As of 2011 several hundred genetic tests were in use. Since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling.

Agriculture

Genetically modified crops ("GM crops", or "biotech crops") are plants used in agriculture, the DNA of which has been modified with genetic engineering techniques. In most cases, the main aim is to introduce a new trait that does not occur naturally in the species. Biotechnology firms can contribute to future food security by improving the nutrition and viability of urban agriculture. Furthermore, the protection of intellectual property rights encourages private sector investment in agrobiotechnology.

Examples in food crops include resistance to certain pests, diseases, stressful environmental conditions, resistance to chemical treatments (e.g. resistance to a herbicide), reduction of spoilage, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

Farmers have widely adopted GM technology. Between 1996 and 2011, the total surface area of land cultivated with GM crops had increased by a factor of 94, from 17,000 square kilometers (4,200,000 acres) to 1,600,000 km2 (395 million acres). 10% of the world's crop lands were planted with GM crops in 2010. As of 2011, 11 different transgenic crops were grown commercially on 395 million acres (160 million hectares) in 29 countries such as the US, Brazil, Argentina, India, Canada, China, Paraguay, Pakistan, South Africa, Uruguay, Bolivia, Australia, Philippines, Myanmar, Burkina Faso, Mexico and Spain.

Genetically modified foods are foods produced from organisms that have had specific changes introduced into their DNA with the methods of genetic engineering. These techniques have allowed for the introduction of new crop traits as well as a far greater control over a food's genetic structure than previously afforded by methods such as selective breeding and mutation breeding. Commercial sale of genetically modified foods began in 1994, when Calgene first marketed its Flavr Savr delayed ripening tomato. To date most genetic modification of foods have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton seed oil. These have been engineered for resistance to pathogens and herbicides and better nutrient profiles. GM livestock have also been experimentally developed; in November 2013 none were available on the market, but in 2015 the FDA approved the first GM salmon for commercial production and consumption.

There is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, but that each GM food needs to be tested on a case-by-case basis before introduction. Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.

GM crops also provide a number of ecological benefits, if not used in excess. However, opponents have objected to GM crops per se on several grounds, including environmental concerns, whether food produced from GM crops is safe, whether GM crops are needed to address the world's food needs, and economic concerns raised by the fact these organisms are subject to intellectual property law.

Industrial

Industrial biotechnology (known mainly in Europe as white biotechnology) is the application of biotechnology for industrial purposes, including industrial fermentation. It includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles and biofuels. In the current decades, significant progress has been done in creating genetically modified organisms (GMOs) that enhance the diversity of applications and economical viability of industrial biotechnology. By using renewable raw materials to produce a variety of chemicals and fuels, industrial biotechnology is actively advancing towards lowering greenhouse gas emissions and moving away from a petrochemical-based economy.

Environmental

Environmental biotechnology includes various disciplines that play an essential role in reducing environmental waste and providing environmentally safe processes, such as biofiltration and biodegradation. The environment can be affected by biotechnologies, both positively and adversely. Vallero and others have argued that the difference between beneficial biotechnology (e.g., bioremediation is to clean up an oil spill or hazard chemical leak) versus the adverse effects stemming from biotechnological enterprises (e.g., flow of genetic material from transgenic organisms into wild strains) can be seen as applications and implications, respectively. Cleaning up environmental wastes is an example of an application of environmental biotechnology; whereas loss of biodiversity or loss of containment of a harmful microbe are examples of environmental implications of biotechnology.

Regulation

The regulation of genetic engineering concerns approaches taken by governments to assess and manage the risks associated with the use of genetic engineering technology, and the development and release of genetically modified organisms (GMO), including genetically modified crops and genetically modified fish. There are differences in the regulation of GMOs between countries, with some of the most marked differences occurring between the US and Europe. Regulation varies in a given country depending on the intended use of the products of the genetic engineering. For example, a crop not intended for food use is generally not reviewed by authorities responsible for food safety. The European Union differentiates between approval for cultivation within the EU and approval for import and processing. While only a few GMOs have been approved for cultivation in the EU a number of GMOs have been approved for import and processing. The cultivation of GMOs has triggered a debate about the coexistence of GM and non-GM crops. Depending on the coexistence regulations, incentives for the cultivation of GM crops differ.

Learning

In 1988, after prompting from the United States Congress, the National Institute of General Medical Sciences (National Institutes of Health) (NIGMS) instituted a funding mechanism for biotechnology training. Universities nationwide compete for these funds to establish Biotechnology Training Programs (BTPs). Each successful application is generally funded for five years then must be competitively renewed. Graduate students in turn compete for acceptance into a BTP; if accepted, then stipend, tuition and health insurance support are provided for two or three years during the course of their Ph.D. thesis work. Nineteen institutions offer NIGMS supported BTPs. Biotechnology training is also offered at the undergraduate level and in community colleges.

Molecular assembler

From Wikipedia, the free encyclopedia

A molecular assembler, as defined by K. Eric Drexler, is a "proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision". A molecular assembler is a kind of molecular machine. Some biological molecules such as ribosomes fit this definition. This is because they receive instructions from messenger RNA and then assemble specific sequences of amino acids to construct protein molecules. However, the term "molecular assembler" usually refers to theoretical human-made devices.

Beginning in 2007, the British Engineering and Physical Sciences Research Council has funded development of ribosome-like molecular assemblers. Clearly, molecular assemblers are possible in this limited sense. A technology roadmap project, led by the Battelle Memorial Institute and hosted by several U.S. National Laboratories has explored a range of atomically precise fabrication technologies, including both early-generation and longer-term prospects for programmable molecular assembly; the report was released in December, 2007. In 2008, the Engineering and Physical Sciences Research Council provided funding of £1.5 million over six years (£1,942,235.57, $2,693,808.00 in 2021) for research working towards mechanized mechanosynthesis, in partnership with the Institute for Molecular Manufacturing, amongst others.

Likewise, the term "molecular assembler" has been used in science fiction and popular culture to refer to a wide range of fantastic atom-manipulating nanomachines, many of which may be physically impossible in reality. Much of the controversy regarding "molecular assemblers" results from the confusion in the use of the name for both technical concepts and popular fantasies. In 1992, Drexler introduced the related but better-understood term "molecular manufacturing", which he defined as the programmed "chemical synthesis of complex structures by mechanically positioning reactive molecules, not by manipulating individual atoms".

This article mostly discusses "molecular assemblers" in the popular sense. These include hypothetical machines that manipulate individual atoms and machines with organism-like self-replicating abilities, mobility, ability to consume food, and so forth. These are quite different from devices that merely (as defined above) "guide chemical reactions by positioning reactive molecules with atomic precision".

Because synthetic molecular assemblers have never been constructed and because of the confusion regarding the meaning of the term, there has been much controversy as to whether "molecular assemblers" are possible or simply science fiction. Confusion and controversy also stem from their classification as nanotechnology, which is an active area of laboratory research which has already been applied to the production of real products; however, there had been, until recently, no research efforts into the actual construction of "molecular assemblers".

Nonetheless, a 2013 paper by David Leigh's group, published in the journal Science, details a new method of synthesizing a peptide in a sequence-specific manner by using an artificial molecular machine that is guided by a molecular strand. This functions in the same way as a ribosome building proteins by assembling amino acids according to a messenger RNA blueprint. The structure of the machine is based on a rotaxane, which is a molecular ring sliding along a molecular axle. The ring carries a thiolate group, which removes amino acids in sequence from the axle, transferring them to a peptide assembly site. In 2018, the same group published a more advanced version of this concept in which the molecular ring shuttles along a polymeric track to assemble an oligopeptide that can fold into an α-helix that can perform the enantioselective epoxidation of a chalcone derivative (in a way reminiscent to the ribosome assembling an enzyme). In another paper published in Science in March 2015, chemists at the University of Illinois report a platform that automates the synthesis of 14 classes of small molecules, with thousands of compatible building blocks.

In 2017, David Leigh's group reported a molecular robot that could be programmed to construct any one of four different stereoisomers of a molecular product by using a nanomechanical robotic arm to move a molecular substrate between different reactive sites of an artificial molecular machine. An accompanying News and Views article, titled ‘A molecular assembler’, outlined the operation of the molecular robot as effectively a prototypical molecular assembler.

Nanofactories

A nanofactory is a proposed system in which nanomachines (resembling molecular assemblers, or industrial robot arms) would combine reactive molecules via mechanosynthesis to build larger atomically precise parts. These, in turn, would be assembled by positioning mechanisms of assorted sizes to build macroscopic (visible) but still atomically-precise products.

A typical nanofactory would fit in a desktop box, in the vision of K. Eric Drexler published in Nanosystems: Molecular Machinery, Manufacturing and Computation (1992), a notable work of "exploratory engineering". During the 1990s, others have extended the nanofactory concept, including an analysis of nanofactory convergent assembly by Ralph Merkle, a systems design of a replicating nanofactory architecture by J. Storrs Hall, Forrest Bishop's "Universal Assembler", the patented exponential assembly process by Zyvex, and a top-level systems design for a 'primitive nanofactory' by Chris Phoenix (Director of Research at the Center for Responsible Nanotechnology). All of these nanofactory designs (and more) are summarized in Chapter 4 of Kinematic Self-Replicating Machines (2004) by Robert Freitas and Ralph Merkle. The Nanofactory Collaboration, founded by Freitas and Merkle in 2000, is a focused, ongoing effort involving 23 researchers from 10 organizations and 4 countries that is developing a practical research agenda specifically aimed at positionally-controlled diamond mechanosynthesis and diamondoid nanofactory development.

In 2005, a computer-animated short film of the nanofactory concept was produced by John Burch, in collaboration with Drexler. Such visions have been the subject of much debate, on several intellectual levels. No one has discovered an insurmountable problem with the underlying theories and no one has proved that the theories can be translated into practice. However, the debate continues, with some of it being summarized in the molecular nanotechnology article.

If nanofactories could be built, severe disruption to the world economy would be one of many possible negative impacts, though it could be argued that this disruption would have little negative effect, if everyone had such nanofactories. Great benefits also would be anticipated. Various works of science fiction have explored these and similar concepts. The potential for such devices was part of the mandate of a major UK study led by mechanical engineering professor Dame Ann Dowling.

Self-replication

"Molecular assemblers" have been confused with self-replicating machines. To produce a practical quantity of a desired product, the nanoscale size of a typical science fiction universal molecular assembler requires an extremely large number of such devices. However, a single such theoretical molecular assembler might be programmed to self-replicate, constructing many copies of itself. This would allow an exponential rate of production. Then, after sufficient quantities of the molecular assemblers were available, they would then be re-programmed for production of the desired product. However, if self-replication of molecular assemblers were not restrained then it might lead to competition with naturally occurring organisms. This has been called ecophagy or the grey goo problem.

One method of building molecular assemblers is to mimic evolutionary processes employed by biological systems. Biological evolution proceeds by random variation combined with culling of the less-successful variants and reproduction of the more-successful variants. Production of complex molecular assemblers might be evolved from simpler systems since "A complex system that works is invariably found to have evolved from a simple system that worked. . . . A complex system designed from scratch never works and can not be patched up to make it work. You have to start over, beginning with a system that works." However, most published safety guidelines include "recommendations against developing ... replicator designs which permit surviving mutation or undergoing evolution".

Most assembler designs keep the "source code" external to the physical assembler. At each step of a manufacturing process, that step is read from an ordinary computer file and "broadcast" to all the assemblers. If any assembler gets out of range of that computer, or when the link between that computer and the assemblers is broken, or when that computer is unplugged, the assemblers stop replicating. Such a "broadcast architecture" is one of the safety features recommended by the "Foresight Guidelines on Molecular Nanotechnology", and a map of the 137-dimensional replicator design space recently published by Freitas and Merkle provides numerous practical methods by which replicators can be safely controlled by good design.

Drexler and Smalley debate

One of the most outspoken critics of some concepts of "molecular assemblers" was Professor Richard Smalley (1943–2005) who won the Nobel prize for his contributions to the field of nanotechnology. Smalley believed that such assemblers were not physically possible and introduced scientific objections to them. His two principal technical objections were termed the "fat fingers problem" and the "sticky fingers problem". He believed these would exclude the possibility of "molecular assemblers" that worked by precision picking and placing of individual atoms. Drexler and coworkers responded to these two issues in a 2001 publication.

Smalley also believed that Drexler's speculations about apocalyptic dangers of self-replicating machines that have been equated with "molecular assemblers" would threaten the public support for development of nanotechnology. To address the debate between Drexler and Smalley regarding molecular assemblers Chemical & Engineering News published a point-counterpoint consisting of an exchange of letters that addressed the issues.

Regulation

Speculation on the power of systems that have been called "molecular assemblers" has sparked a wider political discussion on the implication of nanotechnology. This is in part due to the fact that nanotechnology is a very broad term and could include "molecular assemblers". Discussion of the possible implications of fantastic molecular assemblers has prompted calls for regulation of current and future nanotechnology. There are very real concerns with the potential health and ecological impact of nanotechnology that is being integrated in manufactured products. Greenpeace for instance commissioned a report concerning nanotechnology in which they express concern into the toxicity of nanomaterials that have been introduced in the environment. However, it makes only passing references to "assembler" technology. The UK Royal Society and Royal Academy of Engineering also commissioned a report entitled "Nanoscience and nanotechnologies: opportunities and uncertainties" regarding the larger social and ecological implications of nanotechnology. This report does not discuss the threat posed by potential so-called "molecular assemblers".

Formal scientific review

In 2006, the U.S. National Academy of Sciences released the report of a study of molecular manufacturing as part of a longer report, A Matter of Size: Triennial Review of the National Nanotechnology Initiative The study committee reviewed the technical content of Nanosystems, and in its conclusion states that no current theoretical analysis can be considered definitive regarding several questions of potential system performance, and that optimal paths for implementing high-performance systems cannot be predicted with confidence. It recommends experimental research to advance knowledge in this area:

"Although theoretical calculations can be made today, the eventually attainable range of chemical reaction cycles, error rates, speed of operation, and thermodynamic efficiencies of such bottom-up manufacturing systems cannot be reliably predicted at this time. Thus, the eventually attainable perfection and complexity of manufactured products, while they can be calculated in theory, cannot be predicted with confidence. Finally, the optimum research paths that might lead to systems which greatly exceed the thermodynamic efficiencies and other capabilities of biological systems cannot be reliably predicted at this time. Research funding that is based on the ability of investigators to produce experimental demonstrations that link to abstract models and guide long-term vision is most appropriate to achieve this goal."

Grey goo

One potential scenario that has been envisioned is out-of-control self-replicating molecular assemblers in the form of grey goo which consumes carbon to continue its replication. If unchecked, such mechanical replication could potentially consume whole ecoregions or the whole Earth (ecophagy), or it could simply outcompete natural lifeforms for necessary resources such as carbon, ATP, or UV light (which some nanomotor examples run on). However, the ecophagy and 'grey goo' scenarios, like synthetic molecular assemblers, are based upon still-hypothetical technologies that have not yet been demonstrated experimentally.

 

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...