Search This Blog

Friday, December 24, 2021

Extraterrestrial atmosphere

From Wikipedia, the free encyclopedia

Major features of the Solar System (not to scale)
 
Graphs of escape velocity against surface temperature of some Solar System objects showing which gases are retained. The objects are drawn to scale, and their data points are at the black dots in the middle.

The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the gas giants, as well as Mars, Venus, Titan and Pluto. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.

Planets

Inner planets

Mercury

Due to its small size (and thus its small gravity), Mercury has no substantial atmosphere. Its extremely thin atmosphere mostly consists of a small amount of helium and traces of sodium, potassium, and oxygen. These gases derive from the solar wind, radioactive decay, meteor impacts, and breakdown of Mercury's crust. Mercury's atmosphere is not stable and is constantly being refreshed because of its atoms escaping into space as a result of the planet's heat.

Venus

Atmosphere of Venus in UV, by Pioneer Venus Orbiter in 1979

Venus' atmosphere is mostly composed of carbon dioxide. It contains minor amounts of nitrogen and other trace elements, including compounds based on hydrogen, nitrogen, sulphur, carbon, and oxygen. The atmosphere of Venus is much hotter and denser than that of Earth, though shallower. As greenhouse gases warm a lower atmosphere, they cool the upper atmosphere, leading to compact thermospheres. By some definitions, Venus has no stratosphere.

The troposphere begins at the surface and extends up to an altitude of 65 kilometres (an altitude at which the mesosphere has already been reached on Earth). At the top of the troposphere, temperature and pressure reach Earth-like levels. Winds at the surface are a few metres per second, reaching 70 m/s or more in the upper troposphere. The stratosphere and mesosphere extend from 65 km to 95 km in height. The thermosphere and exosphere begin at around 95 kilometres, eventually reaching the limit of the atmosphere at about 220 to 250 km.

The air pressure at Venus' surface is about 92 times that of the Earth. The enormous amount of CO2 in the atmosphere creates a strong greenhouse effect, raising the surface temperature to around 470 °C, hotter than that of any other planet in the Solar System.

Mars

The Martian atmosphere is very thin and composed mainly of carbon dioxide, with some nitrogen and argon. The average surface pressure on Mars is 0.6-0.9 kPa, compared to about 101 kPa for Earth. This results in a much lower atmospheric thermal inertia, and as a consequence Mars is subject to strong thermal tides that can change total atmospheric pressure by up to 10%. The thin atmosphere also increases the variability of the planet's temperature. Martian surface temperatures vary from lows of approximately −140 °C (−220 °F) during the polar winters to highs of up to 20 °C (70 °F) in summers.

The tenuous atmosphere of Mars visible on the horizon.
 
Pits in south polar ice cap, MGS 1999, NASA

Between the Viking and Mars Global Surveyor missions, Mars saw "Much colder (10-20 K) global atmospheric temperatures were observed during the 1997 versus 1977 perihelion periods" and "that the global aphelion atmosphere of Mars is colder, less dusty, and cloudier than indicated by the established Viking climatology," with "generally colder atmospheric temperatures and lower dust loading in recent decades on Mars than during the Viking Mission." The Mars Reconnaissance Orbiter, though spanning a much shorter dataset, shows no warming of planetary average temperature, and a possible cooling. "MCS MY 28 temperatures are an average of 0.9 (daytime) and 1.7 K (night- time) cooler than TES MY 24 measurements." Locally and regionally, however, changes in pits in the layer of frozen carbon dioxide at the Martian south pole observed between 1999 and 2001 suggest the south polar ice cap is shrinking. More recent observations indicate that Mars' south pole is continuing to melt. "It's evaporating right now at a prodigious rate," says Michael Malin, principal investigator for the Mars Orbiter Camera. The pits in the ice are growing by about 3 meters (9.8 ft) per year. Malin states that conditions on Mars are not currently conductive to the formation of new ice. A web site has suggested that this indicates a "climate change in progress" on Mars. Multiple studies suggests this may be a local phenomenon rather than a global one.

Colin Wilson has proposed that the observed variations are caused by irregularities in the orbit of Mars. William Feldman speculates the warming could be because Mars might be coming out of an ice age. Other scientists state the warming may be a result of albedo changes from dust storms. The study predicts the planet could continue to warm, as a result of positive feedback.

On June 7, 2018, NASA announced that the Curiosity rover detected a cyclical seasonal variation in atmospheric methane, as well as the presence of kerogen and other complex organic compounds.

Gas giants

The four outer planets of the Solar System are gas giants. They share some atmospheric commonalities. All have atmospheres that are mostly hydrogen and helium and that blend into the liquid interior at pressures greater than the critical pressure, so that there is no clear boundary between atmosphere and body.

Jupiter

Oval BA on the left and the Great Red Spot on the right

Jupiter's upper atmosphere is composed of about 75% hydrogen and 24% helium by mass, with the remaining 1% consisting of other elements. The interior contains denser materials such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. The atmosphere contains trace amounts of methane, water vapor, ammonia, and silicon-based compounds. There are also traces of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia, possibly underlaid by a thin layer of water.

Jupiter is covered with a cloud layer about 50 km deep. The clouds are composed of ammonia crystals and possibly ammonium hydrosulfide. The clouds are located in the tropopause and are arranged into bands of different latitudes, known as tropical regions. These are sub-divided into lighter-hued zones and darker belts. The interactions of these conflicting circulation patterns cause storms and turbulence. The best-known feature of the cloud layer is the Great Red Spot, a persistent anticyclonic storm located 22° south of the equator that is larger than Earth. In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller in size. The feature was named Oval BA, and has been nicknamed Red Spot Junior.

Observations of the Red Spot Jr. storm suggest Jupiter could be in a period of global climate change. This is hypothesized to be part of an approximately 70 year global climate cycle, characterized by the relatively rapid forming and subsequent slow erosion and merging of cyclonic and anticyclonic vortices in Jupiter's atmosphere. These vortices facilitate the heat exchange between poles and equator. If they have sufficiently eroded, heat exchange is strongly reduced and regional temperatures may shift by as much as 10 K, with the poles cooling down and the equator region heating up. The resulting large temperature differential destabilizes the atmosphere and thereby leads to the creation of new vortices.

Saturn

The outer atmosphere of Saturn consists of about 93.2% hydrogen and 6.7% helium. Trace amounts of ammonia, acetylene, ethane, phosphine, and methane have also been detected. As with Jupiter, the upper clouds on Saturn are composed of ammonia crystals, while the lower level clouds appear to be composed of either ammonium hydrosulfide (NH4SH) or water.

The Saturnian atmosphere is in several ways similar to that of Jupiter. It exhibits a banded pattern similar to Jupiter's, and occasionally exhibits long-lived ovals caused by storms. A storm formation analogous to Jupiter's Great Red Spot, the Great White Spot, is a short-lived phenomenon that forms with a roughly 30-year periodicity. It was last observed in 1990. However, the storms and the band pattern are less visible and active than those of Jupiter, due to the overlying ammonia hazes in Saturn's troposphere.

Saturn's atmosphere has several unusual features. Its winds are among the Solar System's fastest, with Voyager data indicating peak easterly winds of 500 m/s. It is also the only planet with a warm polar vortex, and is the only planet other than Earth where eyewall clouds have been observed in hurricane-like structures.

Uranus

The atmosphere of Uranus is composed primarily of gas and various ices. It is about 83% hydrogen, 15% helium, 2% methane and traces of acetylene. Like Jupiter and Saturn, Uranus has a banded cloud layer, although this is not readily visible without enhancement of visual images of the planet. Unlike the larger gas giants, the low temperatures in the upper Uranian cloud layer, down to 50 K, causes cloud formation from methane rather than ammonia.

Less storm activity has been observed in the Uranian atmosphere than in those of Jupiter or Saturn, due to the overlying methane and acetylene hazes in its atmosphere making the planet look like a bland, light blue globe. Images taken in 1997 with the Hubble Space Telescope showed storm activity in that part of the atmosphere emerging from the 25-year-long Uranian winter. The general lack of storm activity may be related to the lack of an internal energy generation mechanism for Uranus, a feature unique among the gas giants.

Neptune

Great Dark Spot (top), Scooter (middle white cloud), and Wizard's eye/Dark Spot 2 (bottom).

The atmosphere of Neptune is similar to that of Uranus. It is about 80% hydrogen, 19% helium, and 1.5% methane. However the weather activity on Neptune is much more active, and its atmosphere is much bluer than that of Uranus. The upper levels of the atmosphere reach temperatures of about 55 K, giving rise to methane clouds in its troposphere, which gives the planet its ultramarine color. Temperatures rise steadily deeper inside the atmosphere.

Neptune has extremely dynamic weather systems, including the highest wind speeds in the Solar System, thought to be powered by the flow of internal heat. Typical winds in the banded equatorial region can possess speeds of around 350 m/s (comparable to the speed of sound at room temperature on Earth viz. 343.6 m/s) while storm systems can have winds reaching up to around 900 m/s, in Neptune's atmosphere. Several large storm systems have been identified, including the Great Dark Spot, a cyclonic storm system the size of Eurasia, the Scooter, a white cloud group further south than the Great Dark Spot, and the Wizard's eye/Dark Spot 2, a southern cyclonic storm.

Neptune, the farthest planet from Earth, has increased in brightness since 1980. Neptune's brightness is statistically correlated with its stratospheric temperature. Hammel and Lockwood hypothesize that the change in brightness includes a solar variation component as well as a seasonal component, though they did not find a statistically significant correlation with solar variation. They propose that the resolution of this issue will be clarified by brightness observations in the next few years: forcing by a change in sub-solar latitude should be reflected in a flattening and decline of brightness, while solar forcing should be reflected in a flattening and then resumed rise of brightness.

Other bodies in the Solar System

Natural satellites

Ten of the many natural satellites in the Solar System are known to have atmospheres: Europa, Io, Callisto, Enceladus, Ganymede, Titan, Rhea, Dione, Triton and Earth's Moon. Ganymede and Europa both have very tenuous oxygen atmospheres, thought to be produced by radiation splitting the water ice present on the surface of these moons into hydrogen and oxygen. Io has an extremely thin atmosphere consisting mainly of sulfur dioxide (SO
2
), arising from volcanism and sunlight-driven sublimation of surface sulfur dioxide deposits. The atmosphere of Enceladus is also extremely thin and variable, consisting mainly of water vapor, nitrogen, methane, and carbon dioxide vented from the moon's interior through cryovolcanism. The extremely thin carbon dioxide atmosphere of Callisto is thought to be replenished by sublimation from surface deposits.

Moon

Titan

True-color image of layers of haze in Titan's atmosphere.

Titan has by far the densest atmosphere of any moon. The Titanian atmosphere is in fact denser than Earth's, with a surface pressure of 147 kPa, one and a half times that of the Earth. The atmosphere is 94.2% nitrogen, 5.65% methane, and 0.099% hydrogen,[32] with the remaining 1.6% composed of other gases such as hydrocarbons (including ethane, diacetylene, methylacetylene, cyanoacetylene, acetylene, propane), argon, carbon dioxide, carbon monoxide, cyanogen, hydrogen cyanide and helium. The hydrocarbons are thought to form in Titan's upper atmosphere in reactions resulting from the breakup of methane by the Sun's ultraviolet light, producing a thick orange smog. Titan has no magnetic field and sometimes orbits outside Saturn's magnetosphere, directly exposing it to the solar wind. This may ionize and carry away some molecules from the top of the atmosphere.

Titan's atmosphere supports an opaque cloud layer that obscures Titan's surface features at visible wavelengths. The haze that can be seen in the adjacent picture contributes to the moon's anti-greenhouse effect and lowers the temperature by reflecting sunlight away from the satellite. The thick atmosphere blocks most visible wavelength light from the Sun and other sources from reaching Titan's surface.

Triton

Triton, Neptune's largest moon, has a tenuous nitrogen atmosphere with small amounts of methane. Tritonian atmospheric pressure is about 1Pa. The surface temperature is at least 35.6 K, with the nitrogen atmosphere in equilibrium with nitrogen ice on Triton's surface.

Triton has increased in absolute temperature by 5% since 1989 to 1998. A similar rise of temperature on Earth would be equal to about 11 °C (20 °F) increase in temperature in nine years. "At least since 1989, Triton has been undergoing a period of global warming. Percentage-wise, it's a very large increase," said James L. Elliot, who published the report.

Triton is approaching an unusually warm summer season that only happens once every few hundred years. Elliot and his colleagues believe that Triton's warming trend could be driven by seasonal changes in the absorption of solar energy by its polar ice caps. One suggestion for this warming is that it is a result of frost patterns changing on its surface. Another is that ice albedo has changed, allowing for more heat from the Sun to be absorbed.[35] Bonnie J. Buratti et al. argue the changes in temperature are a result of deposition of dark, red material from geological processes on the moon, such as massive venting. Because Triton's Bond albedo is among the highest within the Solar System, it is sensitive to small variations in spectral albedo.

Pluto

Pluto - Norgay Montes (left-foreground); Hillary Montes (left-skyline); Sputnik Planitia (right)
Near-sunset view includes several layers of atmospheric haze.

Pluto has an extremely thin atmosphere that consists of nitrogen, methane, and carbon monoxide, derived from the ices on its surface. Two models show that the atmosphere does not completely freeze and collapse when Pluto moves further from the Sun on its extremely elliptical orbit. However, some other models do show this. Pluto needs 248 years for one complete orbit, and has been observed for less than one third of that time. It has an average distance of 39 AU from the Sun, hence in-depth data from Pluto is sparse and difficult to gather. Temperature is inferred indirectly for Pluto; when it passes in front of a star, observers note how fast the light drops off. From this, they deduce the density of the atmosphere, and that is used as an indicator of temperature.

Pluto's atmosphere backlit by the Sun

One such occultation event happened in 1988. Observations of a second occulation on August 20, 2002 suggest that Pluto's atmospheric pressure has tripled, indicating a warming of about 2  °C (3.6  °F), as predicted by Hansen and Paige. The warming is "likely not connected with that of the Earth," says Jay Pasachoff. One astronomer has speculated the warming may be a result of eruptive activity, but it is more likely Pluto's temperature is heavily influenced by its elliptical orbit. It was closest to the Sun in 1989 (perihelion) and has slowly receded since. If it has any thermal inertia, it is expected to warm for a while after it passes perihelion. "This warming trend on Pluto could easily last for another 13 years," says David J. Tholen. It has also been suggested that a darkening of surface ice may also be the cause, but additional data and modeling is needed. Frost distribution on the surface of Pluto is significantly affected by the dwarf planet's high obliquity.

Exoplanets

Telescopic image of Comet 17P/Holmes in 2007

Several planets outside the Solar System (exoplanets) have been observed to have atmospheres. At the present time, most atmosphere detections are of hot Jupiters or hot Neptunes that orbit very close to their star and thus have heated and extended atmospheres. Observations of exoplanet atmospheres are of two types. First, transmission photometry or spectra detect the light that passes through a planet's atmosphere as it transits in front of its star. Second, the direct emission from a planet atmosphere may be detected by differencing the star plus planet light obtained during most of the planet's orbit with the light of just the star during secondary eclipse (when the exoplanet is behind its star).

The first observed extrasolar planetary atmosphere was made in 2001. Sodium in the atmosphere of the planet HD 209458 b was detected during a set of four transits of the planet across its star. Later observations with the Hubble Space Telescope showed an enormous ellipsoidal envelope of hydrogen, carbon and oxygen around the planet. This envelope reaches temperatures of 10,000 K. The planet is estimated to be losing (1-5)×108 kg of hydrogen per second. This type of atmosphere loss may be common to all planets orbiting Sun-like stars closer than around 0.1 AU. In addition to hydrogen, carbon, and oxygen, HD 209458 b is thought to have water vapor in its atmosphere. Sodium and water vapour has also been observed in the atmosphere of HD 189733 b, another hot gas giant planet.

In October 2013, the detection of clouds in the atmosphere of Kepler-7b was announced, and, in December 2013, also in the atmospheres of Gliese 436 b and Gliese 1214 b.

In May 2017, glints of light from Earth, seen as twinkling from an orbiting satellite a million miles away, were found to be reflected light from ice crystals in the atmosphere. The technology used to determine this may be useful in studying the atmospheres of distant worlds, including those of exoplanets.

Atmospheric composition

Planets of Red Dwarf Stars May Face Oxygen Loss

In 2001, sodium was detected in the atmosphere of HD 209458 b.

In 2008, water, carbon monoxide, carbon dioxide and methane were detected in the atmosphere of HD 189733 b.

In 2013, water was detected in the atmospheres of HD 209458 b, XO-1b, WASP-12b, WASP-17b, and WASP-19b.

In July 2014, NASA announced finding very dry atmospheres on three exoplanets (HD 189733b, HD 209458b, WASP-12b) orbiting Sun-like stars.

In September 2014, NASA reported that HAT-P-11b is the first Neptune-sized exoplanet known to have a relatively cloud-free atmosphere and, as well, the first time molecules of any kind have been found, specifically water vapor, on such a relatively small exoplanet.

The presence of molecular oxygen (O
2
) may be detectable by ground-based telescopes, and it can be produced by geophysical processes, as well as a byproduct of photosynthesis by life forms, so although encouraging, O
2
is not a reliable biosignature. In fact, planets with high concentration of O
2
in their atmosphere may be uninhabitable. Abiogenesis in the presence of massive amounts of atmospheric oxygen could be difficult because early organisms relied on the free energy available in redox reactions involving a variety of hydrogen compounds; on an O
2
-rich planet, organisms would have to compete with the oxygen for this free energy.

In June 2015, NASA reported that WASP-33b has a stratosphere. Ozone and hydrocarbons absorb large amounts of ultraviolet radiation, heating the upper parts of atmosphere's that contain them, creating a temperature inversion and a stratosphere. However, these molecules are destroyed at the temperatures of hot exoplanets, creating doubt if the hot exoplanets could have a stratosphere. A temperature inversion, and stratosphere was identified on WASP-33b caused by titanium oxide, which is a strong absorber of visible and ultraviolet radiation, and can only exist as a gas in a hot atmosphere. WASP-33b is the hottest exoplanet known, with a temperature of 3,200 °C (5,790 °F) and is approximately four and a half times the mass of Jupiter.

In February 2016, it was announced that NASA's Hubble Space Telescope had detected hydrogen and helium (and suggestions of hydrogen cyanide), but no water vapor, in the atmosphere of 55 Cancri e, the first time the atmosphere of a super-earth exoplanet was analyzed successfully.

In September 2019, two independent research studies concluded, from Hubble Space Telescope data, that there were significant amounts of water in the atmosphere of exoplanet K2-18b, the first such discovery for a planet within a star's habitable zone.

Atmospheric circulation

The atmospheric circulation of planets that rotate more slowly or have a thicker atmosphere allows more heat to flow to the poles which reduces the temperature differences between the poles and the equator.

Winds

Winds of over 2km per second have been discovered flowing around the planet HD 189733b which is seven times the speed of sound or 20 times faster than the fastest ever winds known on Earth.

Clouds

In October 2013, the detection of clouds in the atmosphere of Kepler-7b was announced, and, in December 2013, also in the atmospheres of GJ 436 b and GJ 1214 b.

Precipitation

Precipitation in the form of liquid (rain) or solid (snow) varies in composition depending on atmospheric temperature, pressure, composition, and altitude. Hot atmospheres could have iron rain, molten-glass rain, and rain made from rocky minerals such as enstatite, corundum, spinel, and wollastonite. Deep in the atmospheres of gas giants, it could rain diamonds and helium containing dissolved neon.

Abiotic oxygen

There are geological and atmospheric processes that produce free oxygen, so the detection of oxygen is not necessarily an indication of life.

The processes of life result in a mixture of chemicals that are not in chemical equilibrium but there are also abiotic disequilibrium processes that need to be considered. The most robust atmospheric biosignature is often considered to be molecular oxygen (O
2
) and its photochemical byproduct ozone (O
3
). The photolysis of water (H
2
O
) by UV rays followed by hydrodynamic escape of hydrogen can lead to a build-up of oxygen in planets close to their star undergoing runaway greenhouse effect. For planets in the habitable zone, it was thought that water photolysis would be strongly limited by cold-trapping of water vapour in the lower atmosphere. However, the extent of H2O cold-trapping depends strongly on the amount of non-condensible gases in the atmosphere such as nitrogen N2 and argon. In the absence of such gases, the likelihood of build-up of oxygen also depends in complex ways on the planet's accretion history, internal chemistry, atmospheric dynamics, and orbital state. Therefore, oxygen, on its own, cannot be considered a robust biosignature. The ratio of nitrogen and argon to oxygen could be detected by studying thermal phase curves or by transit transmission spectroscopy measurement of the spectral Rayleigh scattering slope in a clear-sky (i.e. aerosol-free) atmosphere.

Life

Methane

Detection of methane in astronomical bodies is of interest to science and technology, as it may be evidence of extraterrestrial life (biosignature), it may help provide organic ingredients for life to form, and also, methane could be used as a fuel or rocket propellant for future robotic and crewed missions in the Solar System.[96][97]

  • Mercury – the tenuous atmosphere contains trace amounts of methane.
  • Venus – the atmosphere contains a large amount of methane from 60 km (37 mi) to the surface according to data collected by the Pioneer Venus Large Probe Neutral Mass Spectrometer
  • Moon – traces are outgassed from the surface
Methane (CH4) on Mars – potential sources and sinks.
  • Mars – the Martian atmosphere contains 10 nmol/mol methane. The source of methane on Mars has not been determined. Research suggests that methane may come from volcanoes, fault lines, or methanogens, that it may be a byproduct of electrical discharges from dust devils and dust storms, or that it may be the result of UV radiation. In January 2009, NASA scientists announced that they had discovered that the planet often vents methane into the atmosphere in specific areas, leading some to speculate this may be a sign of biological activity below the surface. The Curiosity rover, which landed on Mars in August 2012, can distinguish between different isotopologues of methane; but even if the mission determines that microscopic Martian life is the source of the methane, it probably resides far below the surface, beyond the rover's reach. The first measurements with the Tunable Laser Spectrometer (TLS) indicated that there is less than 5 ppb of methane at the landing site. On 16 December 2014, NASA reported the Curiosity rover detected a "tenfold spike", likely localized, in the amount of methane in the Martian atmosphere. Sample measurements taken "a dozen times over 20 months" showed increases in late 2013 and early 2014, averaging "7 parts of methane per billion in the atmosphere." Before and after that, readings averaged around one-tenth that level. The spikes in concentration suggest that Mars is episodically producing or releasing methane from an unknown source. The ExoMars Trace Gas Orbiter will perform measurements of methane starting in April 2018, as well as its decomposition products such as formaldehyde and methanol.
  • Jupiter – the atmosphere contains 3000 ± 1000 ppm methane
  • Saturn – the atmosphere contains 4500 ± 2000 ppm methane
    • Enceladus – the atmosphere contains 1.7% methane
    • Iapetus
    • Titan – the atmosphere contains 1.6% methane and thousands of methane lakes have been detected on the surface. In the upper atmosphere, methane is converted into more complex molecules including acetylene, a process that also produces molecular hydrogen. There is evidence that acetylene and hydrogen are recycled into methane near the surface. This suggests the presence of either an exotic catalyst or an unknown form of methanogenic life. Methane showers, probably prompted by changing seasons, have also been observed. On October 24, 2014, methane was found in polar clouds on Titan.
Polar clouds, made of methane, on Titan (left) compared with polar clouds on Earth (right).
  • Uranus – the atmosphere contains 2.3% methane
    • Ariel – methane is believed to be a constituent of Ariel's surface ice
    • Miranda
    • Oberon – about 20% of Oberon's surface ice is composed of methane-related carbon/nitrogen compounds
    • Titania – about 20% of Titania's surface ice is composed of methane-related organic compounds
    • Umbriel – methane is a constituent of Umbriel's surface ice
  • Neptune – the atmosphere contains 1.5 ± 0.5% methane
    • Triton – Triton has a tenuous nitrogen atmosphere with small amounts of methane near the surface.
  • Plutospectroscopic analysis of Pluto's surface reveals it to contain traces of methane
    • Charon – methane is believed present on Charon, but it is not completely confirmed
  • Eris – infrared light from the object revealed the presence of methane ice
  • Halley's Comet
  • Comet Hyakutake – terrestrial observations found ethane and methane in the comet
  • Extrasolar planets – methane was detected on extrasolar planet HD 189733b; this is the first detection of an organic compound on a planet outside the solar system. Its origin is unknown, since the planet's high temperature (700 °C) would normally favor the formation of carbon monoxide instead. Research indicates that meteoroids slamming against exoplanet atmospheres could add hydrocarbon gases such as methane, making the exoplanets look as though they are inhabited by life, even if they are not.
  • Interstellar clouds
  • The atmospheres of M-type stars.

 

Phytochemical

From Wikipedia, the free encyclopedia
 
Red, blue, and purple colors of berries derive mainly from polyphenol phytochemicals called anthocyanins
 
Cucurbita fruits, including squash and pumpkin, typically have high content of the phytochemical pigments called carotenoids

Phytochemicals are chemical compounds produced by plants, generally to help them resist fungi, bacteria and plant virus infections, and also consumption by insects and other animals. The name comes from Greek φυτόν (phyton) 'plant'. Some phytochemicals have been used as poisons and others as traditional medicine.

As a term, phytochemicals is generally used to describe plant compounds that are under research with unestablished effects on health and are not scientifically defined as essential nutrients. Regulatory agencies governing food labeling in Europe and the United States have provided guidance for industry limiting or preventing health claims about phytochemicals on food product or nutrition labels.

Definition

Phytochemicals are chemicals of plant origin. Phytochemicals (from Greek phyto, meaning "plant") are chemicals produced by plants through primary or secondary metabolism. They generally have biological activity in the plant host and play a role in plant growth or defense against competitors, pathogens, or predators.

Phytochemicals generally are regarded as research compounds rather than essential nutrients because proof of their possible health effects has not been established yet. Phytochemicals under research can be classified into major categories, such as carotenoids and polyphenols, which include phenolic acids, flavonoids, and stilbenes/lignans. Flavonoids can be further divided into groups based on their similar chemical structure, such as anthocyanins, flavones, flavanones, and isoflavones, and flavanols

Flavanols further are classified as catechins, epicatechins, and proanthocyanidins. In total, there has been over 25,000 phytochemicals discovered and in most cases, these phytochemicals are concentrated in colourful parts of the plants like fruits, vegetables, nuts, legumes, and whole grains, etc.

Phytochemists study phytochemicals by first extracting and isolating compounds from the origin plant, followed by defining their structure or testing in laboratory model systems, such as cell cultures, in vitro experiments, or in vivo studies using laboratory animals. Challenges in that field include isolating specific compounds and determining their structures, which are often complex, and identifying what specific phytochemical is primarily responsible for any given biological activity.

History of uses

Berries of Atropa belladonna, also called deadly nightshade

Without specific knowledge of their cellular actions or mechanisms, phytochemicals have been used as poison and in traditional medicine. For example, salicin, having anti-inflammatory and pain-relieving properties, was originally extracted from the bark of the white willow tree and later synthetically produced to become the common, over-the-counter drug, aspirin. The tropane alkaloids of Atropa belladonna were used as poisons, and early humans made poisonous arrows from the plant. In Ancient Rome, it was used as a poison by Agrippina the Younger, wife of Emperor Claudius on advice of Locusta, a lady specialized in poisons, and Livia, who is rumored to have used it to kill her husband Emperor Augustus.

The English yew tree was long known to be extremely and immediately toxic to animals that grazed on its leaves or children who ate its berries; however, in 1971, paclitaxel was isolated from it, subsequently becoming an important cancer drug.

As of 2017, the biological activities for most phytochemicals are unknown or poorly understood, in isolation or as part of foods. Phytochemicals with established roles in the body are classified as essential nutrients.

Functions

The phytochemical category includes compounds recognized as essential nutrients, which are naturally contained in plants and are required for normal physiological functions, so must be obtained from the diet in humans.

Some phytochemicals are known phytotoxins that are toxic to humans; for example aristolochic acid is carcinogenic at low doses. Some phytochemicals are antinutrients that interfere with the absorption of nutrients. Others, such as some polyphenols and flavonoids, may be pro-oxidants in high ingested amounts.

Non-digestible dietary fibers from plant foods, often considered as a phytochemical, are now generally regarded as a nutrient group having approved health claims for reducing the risk of some types of cancer and coronary heart disease.

Eating a diet high in fruits, vegetables, grains, legumes and plant-based beverages has long-term health benefits, but there is no evidence that taking dietary supplements of non-nutrient phytochemicals extracted from plants similarly benefits health. Phytochemical supplements are neither recommended by health authorities for improving health nor approved by regulatory agencies for health claims on product labels.

Consumer and industry guidance

While health authorities encourage consumers to eat diets rich in fruit, vegetables, whole grains, legumes, and nuts to improve and maintain health, evidence that such effects result from specific, non-nutrient phytochemicals is limited or absent. For example, systematic reviews and/or meta-analyses indicate weak or no evidence for phytochemicals from plant food consumption having an effect on breast, lung, or bladder cancers. Further, in the United States, regulations exist to limit the language on product labels for how plant food consumption may affect cancers, excluding mention of any phytochemical except for those with established health benefits against cancer, such as dietary fiber, vitamin A, and vitamin C.

Phytochemicals, such as polyphenols, have been specifically discouraged from food labeling in Europe and the United States because there is no evidence for a cause-and-effect relationship between dietary polyphenols and inhibition or prevention of any disease.

Among carotenoids such as the tomato phytochemical, lycopene, the US Food and Drug Administration found insufficient evidence for its effects on any of several cancer types, resulting in limited language for how products containing lycopene can be described on labels.

Effects of food processing

Phytochemicals in freshly harvested plant foods may be degraded by processing techniques, including cooking. The main cause of phytochemical loss from cooking is thermal decomposition.

A converse exists in the case of carotenoids, such as lycopene present in tomatoes, which may remain stable or increase in content from cooking due to liberation from cellular membranes in the cooked food. Food processing techniques like mechanical processing can also free carotenoids and other phytochemicals from the food matrix, increasing dietary intake.

In some cases, processing of food is necessary to remove phytotoxins or antinutrients; for example societies that use cassava as a staple have traditional practices that involve some processing (soaking, cooking, fermentation, etc.), which are necessary to avoid getting sick from cyanogenic glycosides present in unprocessed cassava.

Biogenic substance

From Wikipedia, the free encyclopedia
 
Crude oil, a transformed biogenic substance
 
Natural gum, a secretion from Hevea brasiliensis

A biogenic substance is a product made by or of life forms. While the term originally was specific to metabolite compounds that had toxic effects on other organisms, it has developed to encompass any constituents, secretions, and metabolites of plants or animals. In context of molecular biology, biogenic substances are referred to as biomolecules. They are generally isolated and measured through the use of chromatography and mass spectrometry techniques. Additionally, the transformation and exchange of biogenic substances can by modelled in the environment, particularly their transport in waterways.

The observation and measurement of biogenic substances is notably important in the fields of geology and biochemistry. A large proportion of isoprenoids and fatty acids in geological sediments are derived from plants and chlorophyll, and can be found in samples extending back to the Precambrian. These biogenic substances are capable of withstanding the diagenesis process in sediment, but may also be transformed into other materials. This makes them useful as biomarkers for geologists to verify the age, origin and degradation processes of different rocks.

Biogenic substances have been studied as part of marine biochemistry since the 1960s, which has involved investigating their production, transport, and transformation in the water, and how they may be used in industrial applications. A large fraction of biogenic compounds in the marine environment are produced by micro and macro algae, including cyanobacteria. Due to their antimicrobial properties they are currently the subject of research in both industrial projects, such as for anti-fouling paints, or in medicine.

History of discovery and classification

Biogenic sediment: limestone containing fossils

During a meeting of the New York Academy of Sciences' Section of Geology and Mineralogy in 1903, geologist Amadeus William Grabau proposed a new rock classification system in his paper 'Discussion of and Suggestions Regarding a New Classification of Rocks'. Within the primary subdivision of "Endogenetic rocks" - rocks formed through chemical processes - was a category termed "Biogenic rocks", which was used synonymously with "Organic rocks". Other secondary categories were "Igneous" and "Hydrogenic" rocks.

In the 1930s German chemist Alfred E. Treibs first detected biogenic substances in petroleum as part of his studies of porphyrins. Based on this research, there was a later increase in the 1970s in the investigation of biogenic substances in sedimentary rocks as part of the study of geology. This was facilitated by the development of more advanced analytical methods, and led to greater collaboration between geologists and organic chemists in order to research the biogenic compounds in sediments.

Researchers additionally began to investigate the production of compounds by microorganisms in the marine environment during the early 1960s. By 1975, different research areas had developed in the study of marine biochemistry. These were "marine toxins, marine bioproducts and marine chemical ecology". Following this in 1994, Teuscher and Lindequist defined biogenic substances as "chemical compounds which are synthesised by living organisms and which, if they exceed certain concentrations, cause temporary or permanent damage or even death of other organisms by chemical or physicochemical effects" in their book, Biogene Gifte. This emphasis in research and classification on the toxicity of biogenic substances was partly due to the cytotoxicity-directed screening assays that were used to detect the biologically active compounds. The diversity of biogenic products has since been expanded from cytotoxic substances through the use of alternative pharmaceutical and industrial assays.

In the environment

Hydroecology

Model of movement of marine compounds

Through studying the transport of biogenic substances in the Tatar Strait in the Sea of Japan, a Russian team noted that biogenic substances can enter the marine environment due to input from either external sources, transport inside the water masses, or development by metabolic processes within the water. They can likewise be expended due to biotransformation processes, or biomass formation by microorganisms. In this study the biogenic substance concentrations, transformation frequency, and turnover were all highest in the upper layer of the water. Additionally, in different regions of the strait the biogenic substances with the highest annual transfer were constant. These were O2, DOC, and DISi, which are normally found in large concentrations in natural water. The biogenic substances that tend to have lower input through the external boundaries of the strait and therefore least transfer were mineral and detrital components of N and P. These same substances take active part in biotransformation processes in the marine environment and have lower annual output as well.

Geological sites

Oncolitic limestone: the spheroidal oncolites are formed via deposition of calcium carbonate by cyanobacteria

Organic geochemists also have an interest in studying the diagenesis of biogenic substances in petroleum and how they are transformed in sediment and fossils. While 90% of this organic material is insoluble in common organic solvents – called kerogen – 10% is in a form that is soluble and can be extracted, from where biogenic compounds can then be isolated. Saturated linear fatty acids and pigments have the most stable chemical structures and are therefore suited to withstanding degradation from the diagenesis process and being detected in their original forms. However, macromolecules have also been found in protected geological regions. Typical sedimentation conditions involve enzymatic, microbial and physicochemical processes as well as increased temperature and pressure, which lead to transformations of biogenic substances. For example, pigments that arise from dehydrogenation of chlorophyll or hemin can be found in many sediments as nickel or vanadyl complexes. A large proportion of the isoprenoids in sediments are also derived from chlorophyll. Similarly, linear saturated fatty acids discovered in the Messel oil shale of the Messel Pit in Germany arise from organic material of vascular plants.

Additionally, alkanes and isoprenoids are found in soluble extracts of Precambrian rock, indicating the probable existence of biological material more than three billion years ago. However, there is the potential that these organic compounds are abiogenic in nature, especially in Precambrian sediments. While Studier et al.’s (1968) simulations of the synthesis of isoprenoids in abiogenic conditions did not produce the long-chain isoprenoids used as biomarkers in fossils and sediments, traces of C9-C14 isoprenoids were detected. It is also possible for polyisoprenoid chains to be stereoselectively synthesised using catalysts such as Al(C2H5)3 – VCl3. However, the probability of these compounds being available in the natural environment is unlikely.

Measurement

Chromatographic separation of chlorophyll

The different biomolecules that make up a plant's biogenic substances – particularly those in seed exudates - can be identified by using different varieties of chromatography in a lab environment. For metabolite profiling, gas chromatography-mass spectrometry is used to find flavonoids such as quercetin. Compounds can then be further differentiated using reversed-phase high-performance liquid chromatography-mass spectrometry.

When it comes to measuring biogenic substances in a natural environment such as a body of water, a hydroecological CNPSi model can be used to calculate the spatial transport of biogenic substances, in both the horizontal and vertical dimensions. This model takes into account the water exchange and flow rate, and yields the values of biogenic substance rates for any area or layer of the water for any month. There are two main evaluation methods involved: measuring per unit water volume (mg/m3 year) and measuring substances per entire water volume of layer (t of element/year). The former is mostly used to observe biogenic substance dynamics and individual pathways for flux and transformations, and is useful when comparing individual regions of the strait or waterway. The second method is used for monthly substance fluxes and must take into account that there are monthly variations in the water volume in the layers.

In the study of geochemistry, biogenic substances can be isolated from fossils and sediments through a process of scraping and crushing the target rock sample, then washing with 40% hydrofluoric acid, water, and benzene/methanol in the ratio 3:1. Following this, the rock pieces are ground and centrifuged to produce a residue. Chemical compounds are then derived through various chromatography and mass spectrometry separations. However, extraction should be accompanied by rigorous precautions to ensure there is no amino acid contaminants from fingerprints, or silicone contaminants from other analytical treatment methods.

Applications

Cyanobacteria extracts inhibiting the growth of Micrococcus luteus

Anti-fouling paints

Metabolites produced by marine algae have been found to have many antimicrobial properties. This is because they are produced by the marine organisms as chemical deterrents and as such contain bioactive compounds. The principal classes of marine algae that produce these types of secondary metabolites are Cyanophyceae, Chlorophyceae and Rhodophyceae. Observed biogenic products include polyketides, amides, alkaloids, fatty acids, indoles and lipopeptides. For example, over 10% of compounds isolated from Lyngbya majuscula, which is one of the most abundant cyanobacteria, have antifungal and antimicrobrial properties. Additionally, a study by Ren et al. (2002) tested halogenated furanones produced by Delisea pulchra from the Rhodophyceae class against the growth of Bacillus subtilis. When applied at a 40 µg/mL concentration, the furanone inhibited the formation of a biofilm by the bacteria and reduced the biofilm's thickness by 25% and the number of live cells by 63%.

These characteristics then have the potential to be utilised in man-made materials, such as making anti-fouling paints without the environment-damaging chemicals. Environmentally safe alternatives are needed to TBT (tin-based antifouling agent) which releases toxic compounds into water and the environment and has been banned in several countries. A class of biogenic compounds that has had a sizeable effect against the bacteria and microalgae that cause fouling are acetylene sesquiterpenoid esters produced by Caulerpa prolifera (from the Chlorophyceae class), which Smyrniotopoulos et al. (2003) observed inhibiting bacterial growth with up to 83% of the efficacy of TBT oxide.

Photobioreactor used to produce microalgae metabolites

Current research also aims to produce these biogenic substances on a commercial level using metabolic engineering techniques. By pairing these techniques with biochemical engineering design, algae and their biogenic substances can be produced on a large scale using photobioreactors. Different system types can be used to yield different biogenic products.

Examples of photobioreactor use for biogenic compound production
Photobioreactor type Algae species cultured Product Reference
Seaweed type polyurethane Scytonema sp.TISTR 8208 Cyclic dodecapeptide antibiotic effective against Gram-positive bacteria, filamentous fungi and pathogenic yeasts Chetsumon et al. (1998)
Stirred tank Agardhiella subulata Biomass Huang and Rorrer (2003)
Airlift Gyrodinium impundicum Sulphated exopolysaccharides for antiviral action against encephalomyocarditis virus Yim et al. (2003)
Large scale outdoor Haematococcus pluvialis Astaxanthin compound Miguel (2000)

Paleochemotaxonomy

In the field of paleochemotaxonomy the presence of biogenic substances in geological sediments is useful for comparing old and modern biological samples and species. These biological markers can be used to verify the biological origin of fossils and serve as paleo-ecological markers. For example, the presence of pristane indicates that the petroleum or sediment is of marine origin, while biogenic material of non-marine origin tends to be in the form of polycyclic compounds or phytane. The biological markers also provide valuable information about the degradation reactions of biological material in geological environments. Comparing the organic material between geologically old and recent rocks shows the conservation of different biochemical processes.

Metallic nanoparticle production

Scanning electron microscope image of silver nanoparticles

Another application of biogenic substances is in the synthesis of metallic nanoparticles. The current chemical and physical production methods for nanoparticles used are costly and produce toxic waste and pollutants in the environment. Additionally, the nanoparticles that are produced can be unstable and unfit for use in the body. Using plant-derived biogenic substances aims to create an environmentally-friendly and cost-effective production method. The biogenic phytochemicals used for these reduction reactions can be derived from plants in numerous ways, including a boiled leaf broth, biomass powder, whole plant immersion in solution, or fruit and vegetable juice extracts. C. annuum juices have been shown to produce Ag nanoparticles at room temperature when treated with silver ions and additionally deliver essential vitamins and amino acids when consumed, making them a potential nanomaterials agent. Another procedure is through the use of a different biogenic substance: the exudate of germinating seeds. When seeds are soaked, they passively release phytochemicals into the surrounding water, which after reaching equilibrium can be mixed with metal ions to synthesise metallic nanoparticles. M. sativa exudate in particular has had success in effectively producing Ag metallic particles, while L. culinaris is an effective reactant for manufacturing Au nanoparticles. This process can also be further adjusted by manipulating factors such as pH, temperature, exudate dilution and plant origin to produce different shapes of nanoparticles, including triangles, spheres, rods, and spirals. These biogenic metallic nanoparticles then have applications as catalysts, glass window coatings to insulate heat, in biomedicine, and in biosensor devices.

Examples

Chemical structure of lupeol, a triterpenoid derived from plants

Table of isolated biogenic compounds


Chemical class Compound Source Reference
Lipopeptide
  • Lyngbyaloside
  • Radiosumin
  • Klein, Braekman, Daloze, Hoffmann & Demoulin (1997)
  • Mooberry, Stratman & Moore (1995)
Fatty acid
  • Gustafson et al. (1989)
  • Ohta et al. (1994)
Terpene
  • Prochlorothrix hollandica, Messel oil shale
  • Simonin, Jürgens & Rohmer (1996), Albrecht & Ourisson (1971)
Alkaloid
  • Saker & Eaglesham (1999)
  • Zhang & Smith (1996)
Ketone
  • Arborinone
  • Messel oil shale
  • Albrecht & Ourisson (1971)

Abiogenic (opposite)

An abiogenic substance or process does not result from the present or past activity of living organisms. Abiogenic products may, e.g., be minerals, other inorganic compounds, as well as simple organic compounds (e.g. extraterrestrial methane, see also abiogenesis).

Poison dart frog

From Wikipedia, the free encyclopedia

Poison dart frogs (Dendrobatidae)
Blue-poison.dart.frog.and.Yellow-banded.dart.frog.arp.jpg
Dendrobates tinctorius "azureus" (top) and Dendrobates leucomelas (bottom).

 
Scientific classification 
Kingdom: Animalia
Phylum: Chordata
Class: Amphibia
Order: Anura
Superfamily: Dendrobatoidea
Family: Dendrobatidae
Cope, 1865
Subfamilies and genera
Dendrobatidae range.PNG
Distribution of Dendrobatidae (in black)

Poison dart frog (also known as dart-poison frog, poison frog or formerly known as poison arrow frog) is the common name of a group of frogs in the family Dendrobatidae which are native to tropical Central and South America. These species are diurnal and often have brightly colored bodies. This bright coloration is correlated with the toxicity of the species, making them aposematic. Some species of the family Dendrobatidae exhibit extremely bright coloration along with high toxicity, while others have cryptic coloration with minimal to no amount of observed toxicity. The species that have great toxicity derive this from their diet of ants, mites and termites. Other species however, that exhibit cryptic coloration and low to no amounts of toxicity, eat a much larger variety of prey. Many species of this family are threatened due to human infrastructure encroaching on their habitats.

These amphibians are often called "dart frogs" due to the Native Americans' use of their toxic secretions to poison the tips of blowdarts. However, of over 170 species, only four have been documented as being used for this purpose (curare plants are more commonly used), all of which come from the genus Phyllobates, which is characterized by the relatively large size and high levels of toxicity of its members.

Characteristics

Dyeing dart frog (Dendrobates tinctorius)

Most species of poison dart frogs are small, sometimes less than 1.5 cm (0.59 in) in adult length, although a few grow up to 6 cm (2.4 in) in length. They weigh 1 oz. on average. Most poison dart frogs are brightly colored, displaying aposematic patterns to warn potential predators. Their bright coloration is associated with their toxicity and levels of alkaloids. For example, frogs of the genus Dendrobates have high levels of alkaloids, whereas Colostethus species are cryptically colored and are not toxic.

Poison dart frogs are an example of an aposematic organism. Their bright coloration advertises unpalatability to potential predators. Aposematism is currently thought to have originated at least four times within the poison dart family according to phylogenetic trees, and dendrobatid frogs have since undergone dramatic divergences – both interspecific and intraspecific – in their aposematic coloration. This is surprising given the frequency-dependent nature of this type of defense mechanism.

Adult frogs lay their eggs in moist places, including on leaves, in plants, among exposed roots, and elsewhere. Once the eggs hatch, the adult piggybacks the tadpoles, one at a time, to suitable water, either a pool, or the water gathered in the throat of bromeliads or other plants. The tadpoles remain there until they metamorphose, in some species fed by unfertilized eggs laid at regular intervals by the mother.

Habitat

Poison dart frogs are endemic to humid, tropical environments of Central and South America. These frogs are generally found in tropical rainforests, including in Bolivia, Costa Rica, Brazil, Colombia, Ecuador, Venezuela, Suriname, French Guiana, Peru, Panama, Guyana, Nicaragua, and Hawaii (introduced).

Natural habitats include subtropical and tropical, moist, lowland forests, subtropical or tropical high-altitude shrubland, subtropical or tropical, moist, montanes and rivers, freshwater marshes, intermittent freshwater marshes, lakes and swamps. Other species can be found in seasonally wet or flooded lowland grassland, arable land, pastureland, rural gardens, plantations, moist savanna and heavily degraded former forest. Premontane forests and rocky areas have also been known to hold frogs. Dendrobatids tend to live on or close to the ground, but also in trees as much as 10 m (33 ft) from the ground.

Reproduction

Ranitomeya imitator's developmental life stages

Many species of poison dart frogs are dedicated parents. Many poison dart frogs in the genera Oophaga and Ranitomeya carry their newly hatched tadpoles into the canopy; the tadpoles stick to the mucus on the backs of their parents. Once in the upper reaches of the rainforest trees, the parents deposit their young in the pools of water that accumulate in epiphytic plants, such as bromeliads. The tadpoles feed on invertebrates in their nursery, and their mother will even supplement their diet by depositing eggs into the water. Other poison frogs lay their eggs on the forest floor, hidden beneath the leaf litter. Poison frogs fertilize their eggs externally; the female lays a cluster of eggs and a male fertilizes them afterward, in the same manner as most fish. Poison frogs can often be observed clutching each other, similar to the manner most frogs copulate. However, these demonstrations are actually territorial wrestling matches. Both males and females frequently engage in disputes over territory. A male will fight for the most prominent roosts from which to broadcast his mating call; females fight over desirable nests, and even invade the nests of other females to devour competitor's eggs.

The operational sex ratio in the poison dart frog family is mostly female biased. This leads to a few characteristic behaviors and traits found in organisms with an uneven sex ratio. In general, females have a choice of mate. In turn, males show brighter coloration, are territorial, and are aggressive toward other males. Females select mates based on coloration (mainly dorsal), calling perch location, and territory.

Taxonomy

Dart frogs are the focus of major phylogenetic studies, and undergo taxonomic changes frequently. The family Dendrobatidae currently contains 16 genera, with about 200 species.

Genus name and authority Common name Species
Adelphobates (Grant, et al., 2006)
3
Andinobates (Twomey, Brown, Amézquita & Mejía-Vargas, 2011)
15
Ameerega (Bauer, 1986)
30
Colostethus (Cope, 1866) Rocket frogs
15
Dendrobates (Wagler, 1830) Poison dart frogs
5
Ectopoglossus (Grant, Rada, Anganoy-Criollo, Batista, Dias, Jeckel, Machado, and Rueda-Almonacid, 2017)
7
Epipedobates (Myers, 1987) Phantasmal poison frogs
8
Excidobates (Twomey and Brown, 2008)
3
Leucostethus Grant, Rada, Anganoy-Criollo, Batista, Dias, Jeckel, Machado, and Rueda-Almonacid, 2017
6
Hyloxalus (Jiménez de la Espada, 1870)
60
Minyobates (Myers, 1987)
1
Oophaga (Bauer, 1994)
12
Paruwrobates (Bauer, 1994)
3
Phyllobates (Duméril and Bibron, 1841) Golden poison frogs
5
Ranitomeya (Bauer, 1986) Thumbnail dart frogs
16
Silverstoneia (Grant, et al., 2006)
8

Color morphs

Some poison dart frogs species include a number of conspecific color morphs that emerged as recently as 6,000 years ago. Therefore, species such as Dendrobates tinctorius, Oophaga pumilio, and Oophaga granulifera can include color pattern morphs that can be interbred (colors are under polygenic control, while the actual patterns are probably controlled by a single locus). Differing coloration has historically misidentified single species as separate, and there is still controversy among taxonomists over classification.

Variation in predation regimens may have influenced the evolution of polymorphism in Oophaga granulifera, while sexual selection appears to have contributed to differentiation among the Bocas del Toro populations of Oophaga pumilio.

Toxicity and medicine

The skin of the phantasmal poison frog contains epibatidine

Many poison dart frogs secrete lipophilic alkaloid toxins such as allopumiliotoxin 267A, batrachotoxin, epibatidine, histrionicotoxin, and pumiliotoxin 251D through their skin. Alkaloids in the skin glands of poison frogs serve as a chemical defense against predation, and they are therefore able to be active alongside potential predators during the day. About 28 structural classes of alkaloids are known in poison frogs. The most toxic of poison dart frog species is Phyllobates terribilis. It is argued that dart frogs do not synthesize their poisons, but sequester the chemicals from arthropod prey items, such as ants, centipedes and mites – the diet-toxicity hypothesis. Because of this, captive-bred animals do not possess significant levels of toxins as they are reared on diets that do not contain the alkaloids sequestered by wild populations. In fact, new studies suggest that the maternal frogs of some species lay unfertilized eggs, which are laced with trace amounts of alkaloids, to feed the tadpoles. This behavior shows that the poisons are introduced from a very young age. Nonetheless, the captive-bred frogs retain the ability to accumulate alkaloids when they are once again provided an alkaloidal diet. Despite the toxins used by some poison dart frogs, some predators have developed the ability to withstand them. One is the snake Erythrolamprus epinephalus, which has developed immunity to the poison.

Chemicals extracted from the skin of Epipedobates tricolor may be shown to have medicinal value. Scientists use this poison to make a painkiller. One such chemical is a painkiller 200 times as potent as morphine, called epibatidine; however, the therapeutic dose is very close to the fatal dose. A derivative ABT-594 developed by Abbott Laboratories, called Tebanicline got as far as Phase II trials in humans, but was dropped from further development due to unacceptable incidence of gastrointestinal side effects. Secretions from dendrobatids are also showing promise as muscle relaxants, heart stimulants and appetite suppressants. The most poisonous of these frogs, the golden poison frog (Phyllobates terribilis), has enough toxin on average to kill ten to twenty men or about ten thousand mice. Most other dendrobatids, while colorful and toxic enough to discourage predation, pose far less risk to humans or other large animals.

Evolution of skin coloration and toxicity

Skin toxicity evolved alongside bright coloration, perhaps preceding it. Toxicity may have relied on a shift in diet to alkaloid-rich arthropods, which likely occurred at least four times among the dendrobatids. Conspicuous coloration in these frogs is further associated with diet specialization, body mass, aerobic capacity, and chemical defense. Either aposematism and aerobic capacity preceded greater resource gathering, making it easier for frogs to go out and gather the ants and mites required for diet specialization, contrary to classical aposematic theory, which assumes that toxicity from diet arises before signaling. Alternatively, diet specialization preceded higher aerobic capacity, and aposematism evolved to allow dendrobatids to gather resources without predation.

Conspicuousness and toxicity may be inversely related, as polymorphic poison dart frogs that are less conspicuous are more toxic than the brightest and most conspicuous species. Energetic costs of producing toxins and bright color pigments lead to potential trade-offs between toxicity and bright coloration, and prey with strong secondary defenses have less to gain from costly signaling. Therefore, prey populations that are more toxic are predicted to manifest less bright signals, opposing the classical view that increased conspicuousness always evolves with increased toxicity.

Prey mobility could also explain the initial development of aposematic signaling. If prey have characteristics that make them more exposed to predators, such as when some dendrobatids shifted from nocturnal to diurnal behavior, then they have more reason to develop aposematism. After the switch, the frogs had greater ecological opportunities, causing dietary specialization to arise. Thus, aposematism is not merely a signaling system, but a way for organisms to gain greater access to resources and increase their reproductive success.

Dietary conservatism (long-term neophobia) in predators could facilitate the evolution of warning coloration, if predators avoid novel morphs for a long enough period of time. Another possibility is genetic drift, the so-called gradual-change hypothesis, which could strengthen weak pre-existing aposematism.

Sexual selection may have played a role in the diversification of skin color and pattern in poison frogs. With female preferences in play, male coloration could evolve rapidly. Sexual selection is influenced by many things. The parental investment may shed some light on the evolution of coloration in relation to female choice. In Oophaga pumilio, the female provides care for the offspring for several weeks whereas the males provides care for a few days, implying a strong female preference. Sexual selection increases phenotypic variation drastically. In populations of O. pumilio that participated in sexual selection, the phenotypic polymorphism was evident. The lack of sexual dimorphism in some dendrobatid populations however suggests that sexual selection is not a valid explanation.

Functional trade-offs are seen in poison frog defense mechanisms relating to toxin resistance. Poison dart frogs containing epibatidine have undergone a 3 amino acid mutation on receptors of the body, allowing the frog to be resistant to its own poison. Epibatidine-producing frogs have evolved poison resistance of body receptors independently three times. This target-site insensitivity to the potent toxin epibatidine on nicotinic acetylcholine receptors provides a toxin resistance while reducing the affinity of acetylcholine binding.

Captive care

Captive female D. auratus.

All species of poison dart frogs are Neotropical in origin. Wild-caught specimens can maintain toxicity for some time (this can be obtained through a form of bioaccumulation), so appropriate care should be taken when handling them. While scientific study on the lifespan of poison dart frogs is scant, retagging frequencies indicate it can range from one to three years in the wild. However, these frogs typically live for much longer than that in captivity, having been reported to live as long as 25 years. These claims also seem to be questionable, since many of the larger species take a year or more to mature, and Phyllobates species can take more than two years. In captivity, most species thrive where the humidity is kept constant at 80 to 100% and where the temperature is around 72 °F (22 °C) to 80 °F (27 °C) during the day and no lower than 60 °F (16 °C) to 65 °F (18 °C) at night. Some species tolerate lower temperatures better than others.

Conservation status

Many species of poison dart frogs have recently experienced habitat loss, chytrid diseases, and collection for the pet trade. Some are listed as threatened or endangered as a result. Zoos have tried to counteract this disease by treating captive frogs with an antifungal agent that is used to cure athlete's foot in humans.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...