Search This Blog

Sunday, June 26, 2022

Elementary particle

From Wikipedia, the free encyclopedia
 Standard Model of Elementary Particles.svg
About this image

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include the fundamental fermions (quarks, leptons, antiquarks, and antileptons), which generally are "matter particles" and "antimatter particles", as well as the fundamental bosons (gauge bosons and the Higgs boson), which generally are "force particles" that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle.

Ordinary matter is composed of atoms, once presumed to be elementary particles – atomos meaning "unable to be cut" in Greek – although the atom's existence remained controversial until about 1905, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of energy. Subatomic constituents of the atom were first identified in the early 1930s; the electron and the proton, along with the photon, the particle of electromagnetic radiation. At that time, the recent advent of quantum mechanics was radically altering the conception of particles, as a single particle could seemingly span a field as would a wave, a paradox still eluding satisfactory explanation.

Via quantum theory, protons and neutrons were found to contain quarksup quarks and down quarks – now considered elementary particles. And within a molecule, the electron's three degrees of freedom (charge, spin, orbital) can separate via the wavefunction into three quasiparticles (holon, spinon, and orbiton). Yet a free electron – one which is not orbiting an atomic nucleus and hence lacks orbital motion – appears unsplittable and remains regarded as an elementary particle. Around 1980, an elementary particle's status as indeed elementary – an ultimate constituent of substance – was mostly discarded for a more practical outlook, embodied in particle physics' Standard Model, what's known as science's most experimentally successful theory. Many elaborations upon and theories beyond the Standard Model, including the popular supersymmetry, double the number of elementary particles by hypothesizing that each known particle associates with a "shadow" partner far more massive, although all such superpartners remain undiscovered. Meanwhile, an elementary boson mediating gravitation – the graviton – remains hypothetical. Also, according to some hypotheses, spacetime is quantized, so within these hypotheses there probably exist "atoms" of space and time themselves.

Overview

All elementary particles are either bosons or fermions. These classes are distinguished by their quantum statistics: fermions obey Fermi–Dirac statistics and bosons obey Bose–Einstein statistics. Their spin is differentiated via the spin–statistics theorem: it is half-integer for fermions, and integer for bosons.







Elementary particles




























Elementary fermionsHalf-integer spinObey the Fermi–Dirac statistics




Elementary bosonsInteger spinObey the Bose–Einstein statistics

































Quarks and antiquarksSpin = 1/2Have color chargeParticipate in strong interactions
Leptons and antileptonsSpin = 1/2No color chargeElectroweak interactions
Gauge bosonsSpin = 1, 2 [‡] Force carriers
Scalar bosonsSpin = 0




















Three generations
  1. Electron (
    e
    ), [†]
    Electron neutrino (
    ν
    e
    )
  2. Muon (
    μ
    ),
    Muon neutrino (
    ν
    μ
    )
  3. Tau (
    τ
    ),
    Tau neutrino (
    ν
    τ
    )


Unique

Higgs boson (
H0
)

Notes:
[†] An anti-electron (
e+
) is conventionally called a “positron”.
[‡] The known force carrier bosons all have spin = 1 and are therefore vector bosons. The hypothetical graviton has spin = 2 and is a tensor boson; it is unknown whether it is a gauge boson as well.

In the Standard Model, elementary particles are represented for predictive utility as point particles. Though extremely successful, the Standard Model is limited by its omission of gravitation and has some parameters arbitrarily added but unexplained.

Cosmic abundance of elementary particles

According to the current models of big bang nucleosynthesis, the primordial composition of visible matter of the universe should be about 75% hydrogen and 25% helium-4 (in mass). Neutrons are made up of one up and two down quarks, while protons are made of two up and one down quark. Since the other common elementary particles (such as electrons, neutrinos, or weak bosons) are so light or so rare when compared to atomic nuclei, we can neglect their mass contribution to the observable universe's total mass. Therefore, one can conclude that most of the visible mass of the universe consists of protons and neutrons, which, like all baryons, in turn consist of up quarks and down quarks.

Some estimates imply that there are roughly 1080 baryons (almost entirely protons and neutrons) in the observable universe.

The number of protons in the observable universe is called the Eddington number.

In terms of number of particles, some estimates imply that nearly all the matter, excluding dark matter, occurs in neutrinos, which constitute the majority of the roughly 1086 elementary particles of matter that exist in the visible universe. Other estimates imply that roughly 1097 elementary particles exist in the visible universe (not including dark matter), mostly photons and other massless force carriers.

Standard Model

The Standard Model of particle physics contains 12 flavors of elementary fermions, plus their corresponding antiparticles, as well as elementary bosons that mediate the forces and the Higgs boson, which was reported on July 4, 2012, as having been likely detected by the two main experiments at the Large Hadron Collider (ATLAS and CMS). However, the Standard Model is widely considered to be a provisional theory rather than a truly fundamental one, since it is not known if it is compatible with Einstein's general relativity. There may be hypothetical elementary particles not described by the Standard Model, such as the graviton, the particle that would carry the gravitational force, and sparticles, supersymmetric partners of the ordinary particles.

Fundamental fermions

The 12 fundamental fermions are divided into 3 generations of 4 particles each. Half of the fermions are leptons, three of which have an electric charge of −1, called the electron (
e
), the muon (
μ
), and the tau (
τ
); the other three leptons are neutrinos (
ν
e
,
ν
μ
,
ν
τ
), which are the only elementary fermions with neither electric nor color charge. The remaining six particles are quarks (discussed below).

Generations

Particle Generations
Leptons
First generation Second generation Third generation
Name Symbol Name Symbol Name Symbol
electron
e
muon
μ
tau
τ
electron neutrino
ν
e
muon neutrino
ν
μ
tau neutrino
ν
τ
Quarks
First generation Second generation Third generation
up quark
u
charm quark c top quark
t
down quark
d
strange quark
s
bottom quark
b

Mass

The following table lists current measured masses and mass estimates for all the fermions, using the same scale of measure: millions of electron-volts relative to square of light speed (MeV/c2). For example, the most accurately known quark mass is of the top quark (
t
) at 172.7 GeV/c2 or 172700 MeV/c2, estimated using the On-shell scheme.

Current values for elementary fermion masses
Particle Symbol Particle name Mass Value Quark mass estimation scheme (point)

ν
e
,
ν
μ
,
ν
τ
Neutrino
(any type)
< eV/c2

e
Electron 0.511 MeV/c2

u
Up quark 1.9 MeV/c2 MSbar scheme (μMS = 2 GeV)

d
Down quark 4.4 MeV/c2 MSbar scheme (μMS = 2 GeV)

s
Strange quark 87 MeV/c2 MSbar scheme (μMS = 2 GeV)

μ
Muon
(Mu lepton)
105.7 MeV/c2

c
Charm quark 1320 MeV/c2 MSbar scheme (μMS = mc)

τ
Tauon (tau lepton) 1780 MeV/c2

b
Bottom quark 4240 MeV/c2 MSbar scheme (μMS = mb)

t
Top quark 172700 MeV/c2 On-shell scheme

Estimates of the values of quark masses depend on the version of quantum chromodynamics used to describe quark interactions. Quarks are always confined in an envelope of gluons which confer vastly greater mass to the mesons and baryons where quarks occur, so values for quark masses cannot be measured directly. Since their masses are so small compared to the effective mass of the surrounding gluons, slight differences in the calculation make large differences in the masses.

Antiparticles

There are also 12 fundamental fermionic antiparticles that correspond to these 12 particles. For example, the antielectron (positron)
e+
is the electron's antiparticle and has an electric charge of +1.

Particle Generations
Antileptons
First generation Second generation Third generation
Name Symbol Name Symbol Name Symbol
positron
e+
antimuon
μ+
antitau
τ+
electron antineutrino
ν
e
muon antineutrino
ν
μ
tau antineutrino
ν
τ
Antiquarks
First generation Second generation Third generation
up antiquark
u
charm antiquark
c
top antiquark
t
down antiquark
d
strange antiquark
s
bottom antiquark
b

Quarks

Isolated quarks and antiquarks have never been detected, a fact explained by confinement. Every quark carries one of three color charges of the strong interaction; antiquarks similarly carry anticolor. Color-charged particles interact via gluon exchange in the same way that charged particles interact via photon exchange. However, gluons are themselves color-charged, resulting in an amplification of the strong force as color-charged particles are separated. Unlike the electromagnetic force, which diminishes as charged particles separate, color-charged particles feel increasing force.

However, color-charged particles may combine to form color neutral composite particles called hadrons. A quark may pair up with an antiquark: the quark has a color and the antiquark has the corresponding anticolor. The color and anticolor cancel out, forming a color neutral meson. Alternatively, three quarks can exist together, one quark being "red", another "blue", another "green". These three colored quarks together form a color-neutral baryon. Symmetrically, three antiquarks with the colors "antired", "antiblue" and "antigreen" can form a color-neutral antibaryon.

Quarks also carry fractional electric charges, but, since they are confined within hadrons whose charges are all integral, fractional charges have never been isolated. Note that quarks have electric charges of either +23 or −13, whereas antiquarks have corresponding electric charges of either −23 or +13.

Evidence for the existence of quarks comes from deep inelastic scattering: firing electrons at nuclei to determine the distribution of charge within nucleons (which are baryons). If the charge is uniform, the electric field around the proton should be uniform and the electron should scatter elastically. Low-energy electrons do scatter in this way, but, above a particular energy, the protons deflect some electrons through large angles. The recoiling electron has much less energy and a jet of particles is emitted. This inelastic scattering suggests that the charge in the proton is not uniform but split among smaller charged particles: quarks.

Fundamental bosons

In the Standard Model, vector (spin-1) bosons (gluons, photons, and the W and Z bosons) mediate forces, whereas the Higgs boson (spin-0) is responsible for the intrinsic mass of particles. Bosons differ from fermions in the fact that multiple bosons can occupy the same quantum state (Pauli exclusion principle). Also, bosons can be either elementary, like photons, or a combination, like mesons. The spin of bosons are integers instead of half integers.

Gluons

Gluons mediate the strong interaction, which join quarks and thereby form hadrons, which are either baryons (three quarks) or mesons (one quark and one antiquark). Protons and neutrons are baryons, joined by gluons to form the atomic nucleus. Like quarks, gluons exhibit color and anticolor – unrelated to the concept of visual color and rather the particles' strong interactions – sometimes in combinations, altogether eight variations of gluons.

Electroweak bosons

There are three weak gauge bosons: W+, W, and Z0; these mediate the weak interaction. The W bosons are known for their mediation in nuclear decay: The W converts a neutron into a proton then decays into an electron and electron-antineutrino pair. The Z0 does not convert particle flavor or charges, but rather changes momentum; it is the only mechanism for elastically scattering neutrinos. The weak gauge bosons were discovered due to momentum change in electrons from neutrino-Z exchange. The massless photon mediates the electromagnetic interaction. These four gauge bosons form the electroweak interaction among elementary particles.

Higgs boson

Although the weak and electromagnetic forces appear quite different to us at everyday energies, the two forces are theorized to unify as a single electroweak force at high energies. This prediction was clearly confirmed by measurements of cross-sections for high-energy electron-proton scattering at the HERA collider at DESY. The differences at low energies is a consequence of the high masses of the W and Z bosons, which in turn are a consequence of the Higgs mechanism. Through the process of spontaneous symmetry breaking, the Higgs selects a special direction in electroweak space that causes three electroweak particles to become very heavy (the weak bosons) and one to remain with an undefined rest mass as it is always in motion (the photon). On 4 July 2012, after many years of experimentally searching for evidence of its existence, the Higgs boson was announced to have been observed at CERN's Large Hadron Collider. Peter Higgs who first posited the existence of the Higgs boson was present at the announcement. The Higgs boson is believed to have a mass of approximately 125 GeV. The statistical significance of this discovery was reported as 5 sigma, which implies a certainty of roughly 99.99994%. In particle physics, this is the level of significance required to officially label experimental observations as a discovery. Research into the properties of the newly discovered particle continues.

Graviton

The graviton is a hypothetical elementary spin-2 particle proposed to mediate gravitation. While it remains undiscovered due to the difficulty inherent in its detection, it is sometimes included in tables of elementary particles. The conventional graviton is massless, although some models containing massive Kaluza–Klein gravitons exist.

Beyond the Standard Model

Although experimental evidence overwhelmingly confirms the predictions derived from the Standard Model, some of its parameters were added arbitrarily, not determined by a particular explanation, which remain mysterious, for instance the hierarchy problem. Theories beyond the Standard Model attempt to resolve these shortcomings.

Grand unification

One extension of the Standard Model attempts to combine the electroweak interaction with the strong interaction into a single 'grand unified theory' (GUT). Such a force would be spontaneously broken into the three forces by a Higgs-like mechanism. This breakdown is theorized to occur at high energies, making it difficult to observe unification in a laboratory. The most dramatic prediction of grand unification is the existence of X and Y bosons, which cause proton decay. However, the non-observation of proton decay at the Super-Kamiokande neutrino observatory rules out the simplest GUTs, including SU(5) and SO(10).

Supersymmetry

Supersymmetry extends the Standard Model by adding another class of symmetries to the Lagrangian. These symmetries exchange fermionic particles with bosonic ones. Such a symmetry predicts the existence of supersymmetric particles, abbreviated as sparticles, which include the sleptons, squarks, neutralinos, and charginos. Each particle in the Standard Model would have a superpartner whose spin differs by 12 from the ordinary particle. Due to the breaking of supersymmetry, the sparticles are much heavier than their ordinary counterparts; they are so heavy that existing particle colliders would not be powerful enough to produce them. However, some physicists believe that sparticles will be detected by the Large Hadron Collider at CERN.

String theory

String theory is a model of physics whereby all "particles" that make up matter are composed of strings (measuring at the Planck length) that exist in an 11-dimensional (according to M-theory, the leading version) or 12-dimensional (according to F-theory) universe. These strings vibrate at different frequencies that determine mass, electric charge, color charge, and spin. A "string" can be open (a line) or closed in a loop (a one-dimensional sphere, that is, a circle). As a string moves through space it sweeps out something called a world sheet. String theory predicts 1- to 10-branes (a 1-brane being a string and a 10-brane being a 10-dimensional object) that prevent tears in the "fabric" of space using the uncertainty principle (e.g., the electron orbiting a hydrogen atom has the probability, albeit small, that it could be anywhere else in the universe at any given moment).

String theory proposes that our universe is merely a 4-brane, inside which exist the 3 space dimensions and the 1 time dimension that we observe. The remaining 7 theoretical dimensions either are very tiny and curled up (and too small to be macroscopically accessible) or simply do not/cannot exist in our universe (because they exist in a grander scheme called the "multiverse" outside our known universe).

Some predictions of the string theory include existence of extremely massive counterparts of ordinary particles due to vibrational excitations of the fundamental string and existence of a massless spin-2 particle behaving like the graviton.

Technicolor

Technicolor theories try to modify the Standard Model in a minimal way by introducing a new QCD-like interaction. This means one adds a new theory of so-called Techniquarks, interacting via so called Technigluons. The main idea is that the Higgs-Boson is not an elementary particle but a bound state of these objects.

Preon theory

According to preon theory there are one or more orders of particles more fundamental than those (or most of those) found in the Standard Model. The most fundamental of these are normally called preons, which is derived from "pre-quarks". In essence, preon theory tries to do for the Standard Model what the Standard Model did for the particle zoo that came before it. Most models assume that almost everything in the Standard Model can be explained in terms of three to six more fundamental particles and the rules that govern their interactions. Interest in preons has waned since the simplest models were experimentally ruled out in the 1980s.

Acceleron theory

Accelerons are the hypothetical subatomic particles that integrally link the newfound mass of the neutrino to the dark energy conjectured to be accelerating the expansion of the universe.

In this theory, neutrinos are influenced by a new force resulting from their interactions with accelerons, leading to dark energy. Dark energy results as the universe tries to pull neutrinos apart. Accelerons are thought to interact with matter more infrequently than they do with neutrinos.

Thin film

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Thin_film

A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as magnetic recording media, electronic semiconductor devices, Integrated passive devices, LEDs, optical coatings (such as antireflective coatings), hard coatings on cutting tools, and for both energy generation (e.g. thin-film solar cells) and storage (thin-film batteries). It is also being applied to pharmaceuticals, via thin-film drug delivery. A stack of thin films is called a multilayer.

In addition to their applied interest, thin films play an important role in the development and study of materials with new and unique properties. Examples include multiferroic materials, and superlattices that allow the study of quantum phenomena.

Nucleation

Nucleation is an important step in growth that helps determine the final structure of a thin film. Many growth methods rely on nucleation control such as atomic-layer epitaxy (atomic layer deposition). Nucleation can be modeled by characterizing surface process of adsorption, desorption, and surface diffusion.

Adsorption and desorption

Adsorption is the interaction of a vapor atom or molecule with a substrate surface. The interaction is characterized the sticking coefficient, the fraction of incoming species thermally equilibrated with the surface. Desorption reverses adsorption where a previously adsorbed molecule overcomes the bounding energy and leaves the substrate surface.

The two types of adsorptions, physisorption and chemisorption, are distinguished by the strength of atomic interactions. Physisorption describes the Van der Waals bonding between a stretched or bent molecule and the surface characterized by adsorption energy .  Evaporated molecules rapidly lose kinetic energy and reduces its free energy by bonding with surface atoms. Chemisorption describes the strong electron transfer (ionic or covalent bond) of molecule with substrate atoms characterized by adsorption energy . The process of physi- and chemisorption can be visualized by the potential energy as a function of distance. The equilibrium distance for physisorption is further from the surface than chemisorption. The transition from physisorbed to chemisorbed states are governed by the effective energy barrier .

Crystal surfaces have specific bonding sites with larger values that would preferentially be populated by vapor molecules to reduce the overall free energy. These stable sites are often found on step edges, vacancies and screw dislocations. After the most stable sites become filled, the adatom-adatom (vapor molecule) interaction becomes important.

Nucleation models

Nucleation kinetics can be modeled considering only adsorption and desorption. First consider case where there are no mutual adatom interactions, no clustering or interaction with step edges.

The rate of change of adatom surface density , where is the net flux, is the mean surface lifetime prior to desorption and is the sticking coefficient:

Adsorption can also be modeled by different isotherms such as Langmuir model and BET model. The Langmuir model derives an equilibrium constant based on the adsorption reaction of vapor adatom with vacancy on the substrate surface. The BET model expands further and allows adatoms deposition on previously adsorbed adatoms without interaction between adjacent piles of atoms. The resulting derived surface coverage is in terms of the equilibrium vapor pressure and applied pressure.

Langmuir model where is the vapor pressure of adsorbed adatoms:

BET model where is the equilibrium vapor pressure of adsorbed adatoms and is the applied vapor pressure of adsorbed adatoms:

As an important note, surface crystallography and differ from the bulk to minimize the overall free electronic and bond energies due to the broken bonds at the surface. This can result in a new equilibrium position known as “selvedge”, where the parallel bulk lattice symmetry is preserved. This phenomenon can cause deviations from theoretical calculations of nucleation.

Surface diffusion

Surface diffusion describes the lateral motion of adsorbed atoms moving between energy minima on the substrate surface. Diffusion most readily occurs between positions with lowest intervening potential barriers. Surface diffusion can be measured using glancing-angle ion scattering. The average time between events can be describes by:

In addition to adatom migration, clusters of adatom can coalesce or deplete. Cluster coalescence through processes, such as Ostwald ripening and sintering, occur in response to reduce the total surface energy of the system. Ostwald repining describes the process in which islands of adatoms with various sizes grow into larger ones at the expense of smaller ones. Sintering is the coalescence mechanism when the islands contact and join.

Deposition

The act of applying a thin film to a surface is thin-film deposition – any technique for depositing a thin film of material onto a substrate or onto previously deposited layers. "Thin" is a relative term, but most deposition techniques control layer thickness within a few tens of nanometres. Molecular beam epitaxy, the Langmuir–Blodgett method, atomic layer deposition and molecular layer deposition allow a single layer of atoms or molecules to be deposited at a time.

It is useful in the manufacture of optics (for reflective, anti-reflective coatings or self-cleaning glass, for instance), electronics (layers of insulators, semiconductors, and conductors form integrated circuits), packaging (i.e., aluminium-coated PET film), and in contemporary art (see the work of Larry Bell). Similar processes are sometimes used where thickness is not important: for instance, the purification of copper by electroplating, and the deposition of silicon and enriched uranium by a CVD-like process after gas-phase processing.

Deposition techniques fall into two broad categories, depending on whether the process is primarily chemical or physical.

Chemical deposition

Here, a fluid precursor undergoes a chemical change at a solid surface, leaving a solid layer. An everyday example is the formation of soot on a cool object when it is placed inside a flame. Since the fluid surrounds the solid object, deposition happens on every surface, with little regard to direction; thin films from chemical deposition techniques tend to be conformal, rather than directional.

Chemical deposition is further categorized by the phase of the precursor:

Plating relies on liquid precursors, often a solution of water with a salt of the metal to be deposited. Some plating processes are driven entirely by reagents in the solution (usually for noble metals), but by far the most commercially important process is electroplating. In semiconductor manufacturing, an advanced form of electroplating known as electrochemical deposition is now used to create the copper conductive wires in advanced chips, replacing the chemical and physical deposition processes used to previous chip generations for aluminum wires

Chemical solution deposition (CSD) or chemical bath deposition (CBD) uses a liquid precursor, usually a solution of organometallic powders dissolved in an organic solvent. This is a relatively inexpensive, simple thin-film process that produces stoichiometrically accurate crystalline phases. This technique is also known as the sol-gel method because the 'sol' (or solution) gradually evolves towards the formation of a gel-like diphasic system.

The Langmuir–Blodgett method uses molecules floating on top of an aqueous subphase. The packing density of molecules is controlled, and the packed monolayer is transferred on a solid substrate by controlled withdrawal of the solid substrate from the subphase. This allows creating thin films of various molecules such as nanoparticles, polymers and lipids with controlled particle packing density and layer thickness.

Spin coating or spin casting, uses a liquid precursor, or sol-gel precursor deposited onto a smooth, flat substrate which is subsequently spun at a high velocity to centrifugally spread the solution over the substrate. The speed at which the solution is spun and the viscosity of the sol determine the ultimate thickness of the deposited film. Repeated depositions can be carried out to increase the thickness of films as desired. Thermal treatment is often carried out in order to crystallize the amorphous spin coated film. Such crystalline films can exhibit certain preferred orientations after crystallization on single crystal substrates.

Dip coating is similar to spin coating in that a liquid precursor or sol-gel precursor is deposited on a substrate, but in this case the substrate is completely submerged in the solution and then withdrawn under controlled conditions. By controlling the withdrawal speed, the evaporation conditions (principally the humidity, temperature) and the volatility/viscosity of the solvent, the film thickness, homogeneity and nanoscopic morphology are controlled. There are two evaporation regimes: the capillary zone at very low withdrawal speeds, and the draining zone at faster evaporation speeds.

Chemical vapor deposition (CVD) generally uses a gas-phase precursor, often a halide or hydride of the element to be deposited. In the case of MOCVD, an organometallic gas is used. Commercial techniques often use very low pressures of precursor gas.

Plasma enhanced CVD (PECVD) uses an ionized vapor, or plasma, as a precursor. Unlike the soot example above, commercial PECVD relies on electromagnetic means (electric current, microwave excitation), rather than a chemical-reaction, to produce a plasma.

Atomic layer deposition (ALD), and its sister technique molecular layer deposition (MLD), uses gaseous precursor to deposit conformal thin films one layer at a time. The process is split up into two half reactions, run in sequence and repeated for each layer, in order to ensure total layer saturation before beginning the next layer. Therefore, one reactant is deposited first, and then the second reactant is deposited, during which a chemical reaction occurs on the substrate, forming the desired composition. As a result of the stepwise, the process is slower than CVD, however it can be run at low temperatures, unlike CVD.

Physical deposition

Physical deposition uses mechanical, electromechanical or thermodynamic means to produce a thin film of solid. An everyday example is the formation of frost. Since most engineering materials are held together by relatively high energies, and chemical reactions are not used to store these energies, commercial physical deposition systems tend to require a low-pressure vapor environment to function properly; most can be classified as physical vapor deposition (PVD).

The material to be deposited is placed in an energetic, entropic environment, so that particles of material escape its surface. Facing this source is a cooler surface which draws energy from these particles as they arrive, allowing them to form a solid layer. The whole system is kept in a vacuum deposition chamber, to allow the particles to travel as freely as possible. Since particles tend to follow a straight path, films deposited by physical means are commonly directional, rather than conformal.

Examples of physical deposition include:

One-atom-thick islands of silver deposited on the surface of palladium by thermal evaporation. Calibration of the surface coverage was achieved by tracking the time needed to complete a full monolayer using tunneling microscopy (STM) and from the emergence of quantum-well states characteristic of the silver film thickness in photoemission spectroscopy (ARPES). Image size is 250 nm by 250 nm.

A thermal evaporator that uses an electric resistance heater to melt the material and raise its vapor pressure to a useful range. This is done in a high vacuum, both to allow the vapor to reach the substrate without reacting with or scattering against other gas-phase atoms in the chamber, and reduce the incorporation of impurities from the residual gas in the vacuum chamber. Obviously, only materials with a much higher vapor pressure than the heating element can be deposited without contamination of the film. Molecular beam epitaxy is a particularly sophisticated form of thermal evaporation.

An electron beam evaporator fires a high-energy beam from an electron gun to boil a small spot of material; since the heating is not uniform, lower vapor pressure materials can be deposited. The beam is usually bent through an angle of 270° in order to ensure that the gun filament is not directly exposed to the evaporant flux. Typical deposition rates for electron beam evaporation range from 1 to 10 nanometres per second.

In molecular beam epitaxy (MBE), slow streams of an element can be directed at the substrate, so that material deposits one atomic layer at a time. Compounds such as gallium arsenide are usually deposited by repeatedly applying a layer of one element (i.e., gallium), then a layer of the other (i.e., arsenic), so that the process is chemical, as well as physical; this is known also as atomic layer deposition. If the precursors in use are organic, then the technique is called molecular layer deposition. The beam of material can be generated by either physical means (that is, by a furnace) or by a chemical reaction (chemical beam epitaxy).

Sputtering relies on a plasma (usually a noble gas, such as argon) to knock material from a "target" a few atoms at a time. The target can be kept at a relatively low temperature, since the process is not one of evaporation, making this one of the most flexible deposition techniques. It is especially useful for compounds or mixtures, where different components would otherwise tend to evaporate at different rates. Note, sputtering's step coverage is more or less conformal. It is also widely used in optical media. The manufacturing of all formats of CD, DVD, and BD are done with the help of this technique. It is a fast technique and also it provides a good thickness control. Presently, nitrogen and oxygen gases are also being used in sputtering.

Pulsed laser deposition systems work by an ablation process. Pulses of focused laser light vaporize the surface of the target material and convert it to plasma; this plasma usually reverts to a gas before it reaches the substrate.

Cathodic arc deposition (arc-PVD) which is a kind of ion beam deposition where an electrical arc is created that literally blasts ions from the cathode. The arc has an extremely high power density resulting in a high level of ionization (30–100%), multiply charged ions, neutral particles, clusters and macro-particles (droplets). If a reactive gas is introduced during the evaporation process, dissociation, ionization and excitation can occur during interaction with the ion flux and a compound film will be deposited.

Electrohydrodynamic deposition (electrospray deposition) is a relatively new process of thin-film deposition. The liquid to be deposited, either in the form of nanoparticle solution or simply a solution, is fed to a small capillary nozzle (usually metallic) which is connected to a high voltage. The substrate on which the film has to be deposited is connected to ground. Through the influence of electric field, the liquid coming out of the nozzle takes a conical shape (Taylor cone) and at the apex of the cone a thin jet emanates which disintegrates into very fine and small positively charged droplets under the influence of Rayleigh charge limit. The droplets keep getting smaller and smaller and ultimately get deposited on the substrate as a uniform thin layer.

Growth modes

Frank–van-der-Merwe mode
 
Stranski–Krastanov mode
 
Volmer–Weber mode

Frank–van der Merwe growth ("layer-by-layer"). In this growth mode the adsorbate-surface and adsorbate-adsorbate interactions are balanced. This type of growth requires lattice matching, and hence considered an "ideal" growth mechanism.

Stranski–Krastanov growth ("joint islands" or "layer-plus-island"). In this growth mode the adsorbate-surface interactions are stronger than adsorbate-adsorbate interactions.

Volmer–Weber ("isolated islands"). In this growth mode the adsorbate-adsorbate interactions are stronger than adsorbate-surface interactions, hence "islands" are formed right away.

Epitaxy

A subset of thin-film deposition processes and applications is focused on the so-called epitaxial growth of materials, the deposition of crystalline thin films that grow following the crystalline structure of the substrate. The term epitaxy comes from the Greek roots epi (ἐπί), meaning "above", and taxis (τάξις), meaning "an ordered manner". It can be translated as "arranging upon".

The term homoepitaxy refers to the specific case in which a film of the same material is grown on a crystalline substrate. This technology is used, for instance, to grow a film which is more pure than the substrate, has a lower density of defects, and to fabricate layers having different doping levels. Heteroepitaxy refers to the case in which the film being deposited is different from the substrate.

Techniques used for epitaxial growth of thin films include molecular beam epitaxy, chemical vapor deposition, and pulsed laser deposition.

Stress and strain

Thin films may be biaxially loaded via stresses originated from their interface with a substrate. Epitaxial thin films may experience stresses from misfit strains between the coherent lattices of the film and substrate. Thermal stress is common in thin films grown at elevated temperatures due to differences in thermal expansion coefficients with the substrate. Differences in interfacial energy and the growth and coalescence of grains contribute to intrinsic stress in thin films. These intrinsic stresses can be a function of film thickness.

These stresses may be tensile or compressive and can cause cracking or buckling among other forms of stress relaxation. In epitaxial films, initially deposited atomic layers may have coherent lattice planes with the substrate. However, past a critical thickness misfit dislocations will form leading to relaxation of stresses in the film.

Measuring stress and strain

The stresses in Films deposited on flat substrates such as wafers can be measured by measuring the curvature of the wafer because of strain by the film. Lasers are reflected off the wafer in a grid pattern and distortions in the grid are used to calculate the curvature. Strain in thin films can also be measured by x-ray diffraction or by milling a section of the film via focused ion beam and the relaxation observed via scanning electron microscopy.

Strain engineering

Stress and relaxation of stresses in films can influence the materials properties of the film, such as mass transport in microelectronics applications. Therefore precautions are taken to either mitigate or produce such stresses; for example a buffer layer may be deposited between the substrate and film. Strain engineering is also used to produce various phase and domain structures in thin films such as in the domain structure of the ferroelectric Lead Zirconate Titanate (PZT).

Applications

Decorative coatings

The usage of thin films for decorative coatings probably represents their oldest application. This encompasses ca. 100 nm thin gold leaves that were already used in ancient India more than 5000 years ago. It may also be understood as any form of painting, although this kind of work is generally considered as an arts craft rather than an engineering or scientific discipline. Today, thin-film materials of variable thickness and high refractive index like titanium dioxide are often applied for decorative coatings on glass for instance, causing a rainbow-color appearance like oil on water. In addition, intransparent gold-colored surfaces may either be prepared by sputtering of gold or titanium nitride.

Optical coatings

These layers serve in both reflective and refractive systems. Large-area (reflective) mirrors became available during the 19th century and were produced by sputtering of metallic silver or aluminum on glass. Refractive lenses for optical instruments like cameras and microscopes typically exhibit aberrations, i.e. non-ideal refractive behavior. While large sets of lenses had to be lined up along the optical path previously, nowadays, the coating of optical lenses with transparent multilayers of titanium dioxide, silicon nitride or silicon oxide etc. may correct these aberrations. A well-known example for the progress in optical systems by thin-film technology is represented by the only a few mm wide lens in smart phone cameras. Other examples are given by anti-reflection coatings on eyeglasses or solar panels.

Protective coatings

Thin films are often deposited to protect an underlying work piece from external influences. The protection may operate by minimizing the contact with the exterior medium in order to reduce the diffusion from the medium to the work piece or vice versa. For instance, plastic lemonade bottles are frequently coated by anti-diffusion layers to avoid the out-diffusion of CO2, into which carbonic acid decomposes that was introduced into the beverage under high pressure. Another example is represented by thin TiN films in microelectronic chips separating electrically conducting aluminum lines from the embedding insulator SiO2 in order to suppress the formation of Al2O3. Often, thin films serve as protection against abrasion between mechanically moving parts. Examples for the latter application are diamond-like carbon (DLC) layers used in car engines or thin films made of nanocomposites.

Electrically operating coatings

Laterally structured metal layer of an integrated circuit

Thin layers from elemental metals like copper, aluminum, gold or silver etc. and alloys have found numerous applications in electrical devices. Due to their high electrical conductivity they are able to transport electrical currents or supply voltages. Thin metal layers serve in conventional electrical system, for instance, as Cu layers on printed circuit boards, as the outer ground conductor in coaxial cables and various other forms like sensors etc. A major field of application became their use in integrated passive devices and integrated circuits, where the electrical network among active and passive devices like transistors and capacitors etc. is built up from thin Al or Cu layers. These layers dispose of thicknesses in the range of a few 100 nm up to a few µm, and they are often embedded into a few nm thin titanium nitride layers in order to block a chemical reaction with the surrounding dielectric like SiO2. The figure shows a micrograph of a laterally structured TiN/Al/TiN metal stack in a microelectronic chip.

Heterostructures of gallium nitride and similar semiconductors can lead to electrons being bound to a sub-nanometric layer, effectively behaving as a two-dimensional electron gas. Quantum effects in such thin films can significantly enhance electron mobility as compared to that of a bulk crystal, which is employed in high-electron-mobility transistors.

Biosensors and plasmonic devices

Noble metal thin films are used in plasmonic structures such as surface plasmon resonance (SPR) sensors. Surface plasmon polaritons are surface waves in the optical regime that propagate in between metal-dielectric interfaces; in Kretschmann-Raether configuration for the SPR sensors, a prism is coated with a metallic film through evaporation. Due to the poor adhesive characteristics of metallic films, germanium, titanium or chromium films are used as intermediate layers to promote stronger adhesion. Metallic thin films are also used in plasmonic waveguide designs.

Thin-film photovoltaic cells

Thin-film technologies are also being developed as a means of substantially reducing the cost of solar cells. The rationale for this is thin-film solar cells are cheaper to manufacture owing to their reduced material costs, energy costs, handling costs and capital costs. This is especially represented in the use of printed electronics (roll-to-roll) processes. Other thin-film technologies, that are still in an early stage of ongoing research or with limited commercial availability, are often classified as emerging or third generation photovoltaic cells and include, organic, dye-sensitized, and polymer solar cells, as well as quantum dot, copper zinc tin sulfide, nanocrystal and perovskite solar cells.

Thin-film batteries

Thin-film printing technology is being used to apply solid-state lithium polymers to a variety of substrates to create unique batteries for specialized applications. Thin-film batteries can be deposited directly onto chips or chip packages in any shape or size. Flexible batteries can be made by printing onto plastic, thin metal foil, or paper.

Thin-film bulk acoustic wave resonators (TFBARs/FBARs)

For miniaturising and more precise control of resonance frequency of piezoelectric crystals thin-film bulk acoustic resonators TFBARs/FBARs are developed for oscillators, telecommunication filters and duplexers, and sensor applications.

Social constructionism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Social_con...