Search This Blog

Saturday, July 2, 2022

Issues relating to biofuels

From Wikipedia, the free encyclopedia

There are various social, economic, environmental and technical issues with biofuel production and use, which have been discussed in the popular media and scientific journals. These include: the effect of moderating oil prices, the "food vs fuel" debate, poverty reduction potential, carbon emissions levels, sustainable biofuel production, deforestation and soil erosion, loss of biodiversity, effect on water resources, the possible modifications necessary to run the engine on biofuel, as well as energy balance and efficiency. The International Resource Panel, which provides independent scientific assessments and expert advice on a variety of resource-related themes, assessed the issues relating to biofuel use in its first report Towards sustainable production and use of resources: Assessing Biofuels. In it, it outlined the wider and interrelated factors that need to be considered when deciding on the relative merits of pursuing one biofuel over another. It concluded that not all biofuels perform equally in terms of their effect on climate, energy security and ecosystems, and suggested that environmental and social effects need to be assessed throughout the entire life-cycle.

Social and economic effects

Oil price moderation

The International Energy Agency's World Energy Outlook 2006 concludes that rising oil demand, if left unchecked, would accentuate the consuming countries' vulnerability to a severe supply disruption and resulting price shock. The report suggested that biofuels may one day offer a viable alternative, but also that "the implications of the use of biofuels for global security as well as for economic, environmental, and public health need to be further evaluated".

According to Francisco Blanch, a commodity strategist for Merrill Lynch, crude oil would be trading 15 per cent higher and gasoline would be as much as 25 per cent more expensive, if it were not for biofuels. Gordon Quaiattini, president of the Canadian Renewable Fuels Association, argued that a healthy supply of alternative energy sources will help to combat gasoline price spikes.

"Food vs. fuel" debate

Food vs fuel is the debate regarding the risk of diverting farmland or crops for biofuels production in detriment of the food supply on a global scale. Essentially the debate refers to the possibility that by farmers increasing their production of these crops, often through government subsidy incentives, their time and land is shifted away from other types of non-biofuel crops driving up the price of non-biofuel crops due to the decrease in production. Therefore, it is not only that there is an increase in demand for the food staples, like corn and cassava, that sustain the majority of the world's poor but this also has the potential to increase the price of the remaining crops that these individuals would otherwise need to utilize to supplement their diets. A recent study for the International Centre for Trade and Sustainable Development shows that market-driven expansion of ethanol in the US increased maize prices by 21 percent in 2009, in comparison with what prices would have been had ethanol production been frozen at 2004 levels. A November 2011 study states that biofuels, their production, and their subsidies are leading causes of agricultural price shocks. The counter-argument includes considerations of the type of corn that is utilized in biofuels, often field corn not suitable for human consumption; the portion of the corn that is used in ethanol, the starch portion; and the negative effect higher prices for corn and grains have on government welfare for these products. The "food vs. fuel" or "food or fuel" debate is internationally controversial, with disagreement about how significant this is, what is causing it, what the effect is, and what can or should be done about it. The world is facing three global crises, energy, food and environment. Changing the trend of recreation or population growth can impact each one of these. By increasing the world population, the ratio of energy and food demands will increase as well. So, it can put these two energy and food industries in completion of supplying. Developing the techniques and utilizing the food crops for biofuel production, especially in shortage areas, can adverse the competition between the food and biofuel industries.It can be cay that harvesting and producing biofuels crop on a large scale can put local food communities at risk, such as challenges to access lands and portions of the food.If the food economy cannot place safe and stable, protocols such as Kyoto can not meet their purposes and help control emissions.

Poverty reduction

Researchers at the Overseas Development Institute have argued that biofuels could help to reduce poverty in the developing world, through increased employment, wider economic growth multipliers and by stabilising oil prices (many developing countries are net importers of oil). However, this potential is described as 'fragile', and is reduced where feedstock production tends to be large scale, or causes pressure on limited agricultural resources: capital investment, land, water, and the net cost of food for the poor.

With regards to the potential for poverty reduction or exacerbation, biofuels rely on many of the same policy, regulatory or investment shortcomings that impede agriculture as a route to poverty reduction. Since many of these shortcomings require policy improvements at a country level rather than a global one, they argue for a country-by-country analysis of the potential poverty effects of biofuels. This would consider, among other things, land administration systems, market coordination and prioritizing investment in biodiesel, as this 'generates more labour, has lower transportation costs and uses simpler technology'. Also necessary are reductions in the tariffs on biofuel imports regardless of the country of origin, especially due to the increased efficiency of biofuel production in countries such as Brazil.

Sustainable biofuel production

Responsible policies and economic instruments would help to ensure that biofuel commercialization, including the development of new cellulosic technologies, is sustainable. Responsible commercialization of biofuels represents an opportunity to enhance sustainable economic prospects in Africa, Latin America and impoverished Asia.

Environmental effects

Soil erosion and deforestation

Large-scale deforestation of mature trees (which help remove CO2 through photosynthesis — much better than sugar cane or most other biofuel feedstock crops do) contributes to soil erosion, un-sustainable global warming atmospheric greenhouse gas levels, loss of habitat, and a reduction of valuable biodiversity (both on land as in oceans). Demand for biofuel has led to clearing land for palm oil plantations. In Indonesia alone, over 9,400,000 acres (38,000 km2) of forest have been converted to plantations since 1996. 

A portion of the biomass should be retained onsite to support the soil resource. Normally this will be in the form of raw biomass, but processed biomass is also an option. If the exported biomass is used to produce syngas, the process can be used to co-produce biochar, a low-temperature charcoal used as a soil amendment to increase soil organic matter to a degree not practical with less recalcitrant forms of organic carbon. For co-production of biochar to be widely adopted, the soil amendment and carbon sequestration value of co-produced charcoal must exceed its net value as a source of energy.

Some commentators claim that removal of additional cellulosic biomass for biofuel production will further deplete soils.

Effect on water resources

Increased use of biofuels puts increasing pressure on water resources in at least two ways: water use for the irrigation of crops used as feedstocks for biodiesel production; and water use in the production of biofuels in refineries, mostly for boiling and cooling.

In many parts of the world supplemental or full irrigation is needed to grow feedstocks. For example, if in the production of corn (maize) half the water needs of crops are met through irrigation and the other half through rainfall, about 860 liters of water are needed to produce one liter of ethanol. However, in the United States only 5-15% of the water required for corn comes from irrigation while the other 85-95% comes from natural rainfall.

In the United States, the number of ethanol factories has almost tripled from 50 in 2000 to about 140 in 2008. A further 60 or so are under construction, and many more are planned. Projects are being challenged by residents at courts in Missouri (where water is drawn from the Ozark Aquifer), Iowa, Nebraska, Kansas (all of which draw water from the non-renewable Ogallala Aquifer), central Illinois (where water is drawn from the Mahomet Aquifer) and Minnesota.

For example, the four ethanol crops: corn, sugarcane, sweet sorghum and pine yield net energy. However, increasing production in order to meet the U.S. Energy Independence and Security Act mandates for renewable fuels by 2022 would take a heavy toll in the states of Florida and Georgia. The sweet sorghum, which performed the best of the four, would increase the amount of freshwater withdrawals from the two states by almost 25%.

Pollution

Formaldehyde, acetaldehyde and other aldehydes are produced when alcohols are oxidized. When only a 10% mixture of ethanol is added to gasoline (as is common in American E10 gasohol and elsewhere), aldehyde emissions increase 40%. Some study results are conflicting on this fact however, and lowering the sulfur content of biofuel mixes lowers the acetaldehyde levels. Burning biodiesel also emits aldehydes and other potentially hazardous aromatic compounds which are not regulated in emissions laws.

Many aldehydes are toxic to living cells. Formaldehyde irreversibly cross-links protein amino acids, which produces the hard flesh of embalmed bodies. At high concentrations in an enclosed space, formaldehyde can be a significant respiratory irritant causing nose bleeds, respiratory distress, lung disease, and persistent headaches. Acetaldehyde, which is produced in the body by alcohol drinkers and found in the mouths of smokers and those with poor oral hygiene, is carcinogenic and mutagenic.

The European Union has banned products that contain Formaldehyde, due to its documented carcinogenic characteristics. The U.S. Environmental Protection Agency has labeled Formaldehyde as a probable cause of cancer in humans.

Brazil burns significant amounts of ethanol biofuel. Gas chromatograph studies were performed of ambient air in São Paulo, Brazil, and compared to Osaka, Japan, which does not burn ethanol fuel. Atmospheric Formaldehyde was 160% higher in Brazil, and Acetaldehyde was 260% higher.

Technical issues

Energy efficiency and energy balance

Despite its occasional proclamation as a "green" fuel, first-generation biofuels, primarily ethanol, are not without their own GHG emissions. While ethanol does produce fewer overall GHG emissions than gasoline, its production is still an energy intensive process with secondary effects. Gasoline generally produces 8.91 kg CO2 per gallon, compared to 8.02 kg CO2 per gallon for E10 ethanol and 1.34 kg CO2 per gallon for E85 ethanol. Based on a study by Dias de Oliveira et al. (2005), corn-based ethanol requires 65.02 gigajoules (GJ) of energy per hectare (ha) and produces approximately 1236.72 kg per ha of carbon dioxide (CO2), while sugar cane-based ethanol requires 42.43 GJ/ha and produces 2268.26 kg/ha of CO2 under the assumption of non-carbon neutral energy production. These emissions accrue from agricultural production, crop cultivation, and ethanol processing. Once the ethanol is blended with gasoline, it results in carbon-savings of approximately 0.89 kg of CO2 per gallon consumed (U.S. D.O.E., 2011a).

Economic viability

From a production standpoint, miscanthus can produce 742 gallons of ethanol per acre of land, which is nearly twice as much as corn (399 gal/acre, assuming average yield of 145 bushels per acre under normal corn-soybean rotation) and nearly three times as much as corn stover (165 gal/acre) and switchgrass (214 gal/acre). Production costs are a big impediment to large-scale implementation of 2nd Generation bio-fuels, and their market demand will depend primarily on their price competitiveness relative to corn ethanol and gasoline. At this time, costs of conversion of cellulosic fuels, at $1.46 per gallon, were roughly twice that of corn-based ethanol, at $0.78 per gallon. Cellulosic biofuels from corn stover and miscanthus were 24% and 29% more expensive than corn ethanol, respectively, and switchgrass biofuel is more than twice as expensive as corn ethanol.

Description (CASE) ('000 US$) Developed Nation (2G) CASE A Developing Nation (2G) CASE B Developed Nation (1G) CASE C Developing Nation (1G) CASE D
Operating Profit 209,313 -1,176,017 166,952 -91,300
Net Present Value 100,690 -1,011,217 40,982 39,224
Return on Investment 1.41 0.32 1.17 0.73

Carbon emissions

Biofuels and other forms of renewable energy aim to be carbon neutral or even carbon negative. Carbon neutral means that the carbon released during the use of the fuel, e.g. through burning to power transport or generate electricity, is reabsorbed and balanced by the carbon absorbed by new plant growth. These plants are then harvested to make the next batch of fuel. Carbon neutral fuels lead to no net increases in human contributions to atmospheric carbon dioxide levels, reducing the human contributions to global warming. A carbon negative aim is achieved when a portion of the biomass is used for carbon sequestration. Calculating exactly how much greenhouse gas (GHG) is produced in burning biofuels is a complex and inexact process, which depends very much on the method by which the fuel is produced and other assumptions made in the calculation.

The carbon emissions (carbon footprint) produced by biofuels are calculated using a technique called Life Cycle Analysis (LCA). This uses a "cradle to grave" or "well to wheels" approach to calculate the total amount of carbon dioxide and other greenhouse gases emitted during biofuel production, from putting seed in the ground to using the fuel in cars and trucks. Many different LCAs have been done for different biofuels, with widely differing results. Several well-to-wheel analysis for biofuels has shown that first generation biofuels can reduce carbon emissions, with savings depending on the feedstock used, and second generation biofuels can produce even higher savings when compared to using fossil fuels. However, those studies did not take into account emissions from nitrogen fixation, or additional carbon emissions due to indirect land use changes. In addition, many LCA studies fail to analyze the effect of substitutes that may come into the market to replace current biomass-based products. In the case of Crude Tall Oil, a raw material used in the production of pine chemicals and now being diverted for use in biofuel, an LCA study found that the global carbon footprint of pine chemicals produced from CTO is 50 percent lower than substitute products used in the same situation offsetting any gains from utilizing a biofuel to replace fossil fuels. Additionally the study showed that fossil fuels are not reduced when CTO is diverted to biofuel use and the substitute products consume disproportionately more energy. This diversion will negatively affect an industry that contributes significantly to the world economy, globally producing more than 3 billion pounds of pine chemicals annually in complex, high technology refineries and providing jobs directly and indirectly for tens of thousands of workers.

A paper published in February 2008 in Sciencexpress by a team led by Searchinger from Princeton University concluded that once considered indirect land use changes effects in the life cycle assessment of biofuels used to substitute gasoline, instead of savings both corn and cellulosic ethanol increased carbon emissions as compared to gasoline by 93 and 50 percent respectively. A second paper published in the same issue of Sciencexpress, by a team led by Fargione from The Nature Conservancy, found that a carbon debt is created when natural lands are cleared and being converted to biofuel production and to crop production when agricultural land is diverted to biofuel production, therefore this carbon debt applies to both direct and indirect land use changes.

The Searchinger and Fargione studies gained prominent attention in both the popular media and in scientific journals. The methodology, however, drew some criticism, with Wang and Haq from Argonne National Laboratory posted a public letter and send their criticism about the Searchinger paper to Letters to Science. Another criticism by Kline and Dale from Oak Ridge National Laboratory was published in Letters to Science. They argued that Searchinger et al. and Fargione et al. "...do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The U.S. biofuel industry also reacted, claiming in a public letter, that the "Searchinger study is clearly a "worst-case scenario" analysis..." and that this study "relies on a long series of highly subjective assumptions...".

Engine design

The modifications necessary to run internal combustion engines on biofuel depend on the type of biofuel used, as well as the type of engine used. For example, gasoline engines can run without any modification at all on biobutanol. Minor modifications are however needed to run on bioethanol or biomethanol. Diesel engines can run on the latter fuels, as well as on vegetable oils (which are cheaper). However, the latter is only possible when the engine has been foreseen with indirect injection. If no indirect injection is present, the engine hence needs to be fitted with this.

Campaigns

A number of environmental NGOs campaign against the production of biofuels as a large-scale alternative to fossil fuels. For example, Friends of the Earth state that "the current rush to develop agrofuels (or biofuels) on a large scale is ill-conceived and will contribute to an already unsustainable trade whilst not solving the problems of climate change or energy security". Some mainstream environmental groups support biofuels as a significant step toward slowing or stopping global climate change. However, supportive environmental groups generally hold the view that biofuel production can threaten the environment if it is not done sustainably. This finding has been backed by reports of the UN, the IPCC, and some other smaller environmental and social groups as the EEB and the Bank Sarasin, which generally remain negative about biofuels.

As a result, governmental and environmental organizations are turning against biofuels made in a non-sustainable way (hereby preferring certain oil sources as jatropha and lignocellulose over palm oil) and are asking for global support for this. Also, besides supporting these more sustainable biofuels, environmental organizations are redirecting to new technologies that do not use internal combustion engines such as hydrogen and compressed air.

Several standard-setting and certification initiatives have been set up on the topic of biofuels. The "Roundtable on Sustainable Biofuels" is an international initiative which brings together farmers, companies, governments, non-governmental organizations, and scientists who are interested in the sustainability of biofuels production and distribution. During 2008, the Roundtable is developing a series of principles and criteria for sustainable biofuels production through meetings, teleconferences, and online discussions. In a similar vein, the Bonsucro standard has been developed as a metric-based certificate for products and supply chains, as a result of an ongoing multi-stakeholder initiative focussing on the products of sugar cane, including ethanol fuel.

The increased manufacture of biofuels will require increasing land areas to be used for agriculture. Second and third generation biofuel processes can ease the pressure on land, because they can use waste biomass, and existing (untapped) sources of biomass such as crop residues and potentially even marine algae.

In some regions of the world, a combination of increasing demand for food, and increasing demand for biofuel, is causing deforestation and threats to biodiversity. The best reported example of this is the expansion of oil palm plantations in Malaysia and Indonesia, where rainforest is being destroyed to establish new oil palm plantations. It is an important fact that 90% of the palm oil produced in Malaysia is used by the food industry; therefore biofuels cannot be held solely responsible for this deforestation. There is a pressing need for sustainable palm oil production for the food and fuel industries; palm oil is used in a wide variety of food products. The Roundtable on Sustainable Biofuels is working to define criteria, standards and processes to promote sustainably produced biofuels. Palm oil is also used in the manufacture of detergents, and in electricity and heat generation both in Asia and around the world (the UK burns palm oil in coal-fired power stations to generate electricity).

Significant area is likely to be dedicated to sugar cane in future years as demand for ethanol increases worldwide. The expansion of sugar cane plantations will place pressure on environmentally sensitive native ecosystems including rainforest in South America. In forest ecosystems, these effects themselves will undermine the climate benefits of alternative fuels, in addition to representing a major threat to global biodiversity.

Although biofuels are generally considered to improve net carbon output, biodiesel and other fuels do produce local air pollution, including nitrogen oxides, the principal cause of smog.

Formaldehyde

From Wikipedia, the free encyclopedia

Formaldehyde
Structural formula of formaldehyde (with hydrogens)
Spacefill model of formaldehyde
Ball and stick model of formaldehyde
Names
Preferred IUPAC name
Formaldehyde
Systematic IUPAC name
Methanal
Other names
Methyl aldehyde
Methylene glycol (diol forms in aqueous solution)
Methylene oxide
Formalin (aqueous solution)
Formol
Carbonyl hydride
Identifiers
3D model (JSmol)
3DMet
1209228
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.002 Edit this at Wikidata
EC Number
  • 200-001-8
E number E240 (preservatives)
445
KEGG
MeSH Formaldehyde
RTECS number
  • LP8925000
UNII
UN number 2209
Properties
CH2O
Molar mass 30.026 g·mol−1
Appearance Colorless gas
Density 0.8153 g/cm3 (−20 °C) (liquid)
Melting point −92 °C (−134 °F; 181 K)
Boiling point −19 °C (−2 °F; 254 K)
400 g/L
log P 0.350
Vapor pressure > 1 atm
Acidity (pKa) 13.27 (hydrate)
−18.6·10−6 cm3/mol
2.330 D
Structure
C2v
Trigonal planar
Thermochemistry
35.387 J·mol−1·K−1
218.760 J·mol−1·K−1
−108.700 kJ·mol−1
−102.667 kJ·mol−1
571 kJ·mol−1
Pharmacology
QP53AX19 (WHO)
Hazards
GHS labelling:
GHS06: Toxic GHS05: Corrosive GHS08: Health hazard
Danger
H301, H311, H314, H317, H331, H335, H341, H350, H370
P201, P280, P303+P361+P353, P304+P340+P310, P305+P351+P338, P308+P310
NFPA 704 (fire diamond)
Flash point 64 °C (147 °F; 337 K)
430 °C (806 °F; 703 K)
Explosive limits 7–73%
Lethal dose or concentration (LD, LC):
100 mg/kg (oral, rat)
333 ppm (mouse, 2 h)
815 ppm (rat, 30 min)
333 ppm (cat, 2 h)
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.75 ppm ST 2 ppm (as formaldehyde and formalin)
REL (Recommended)
Ca TWA 0.016 ppm C 0.1 ppm [15-minute]
IDLH (Immediate danger)
Ca [20 ppm]
Safety data sheet (SDS) MSDS(Archived)
Related compounds
Related aldehydes
Acetaldehyde

Butyraldehyde
Decanal
Heptanal
Hexanal
Nonanal
Octadecanal
Octanal
Pentanal
Propionaldehyde

Related compounds
Methanol
Formic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Formaldehyde (systematic name methanal) is a carcinogenic and highly toxic naturally occurring organic compound with the formula CH2O (H−CHO). The pure compound is a pungent-smelling colourless gas that polymerises spontaneously into paraformaldehyde (refer to section Forms below), hence it is stored as an aqueous solution (formalin), which is also used to store animal specimens. It is the simplest of the aldehydes (R−CHO). The common name of this substance comes from its similarity and relation to formic acid.

Formaldehyde is an important precursor to many other materials and chemical compounds. In 1996, the installed capacity for the production of formaldehyde was estimated at 8.7 million tons per year. It is mainly used in the production of industrial resins, e.g., for particle board and coatings.

Forms

Formaldehyde is more complicated than many simple carbon compounds in that it adopts several diverse forms. These compounds can often be used interchangeably and can be interconverted.

  • Molecular formaldehyde. A colorless gas with a characteristic pungent, irritating odor. It is stable at about 150 °C, but polymerizes when condensed to a liquid.
  • 1,3,5-Trioxane, with the formula (CH2O)3. It is a white solid that dissolves without degradation in organic solvents. It is a trimer of molecular formaldehyde.
  • Paraformaldehyde, with the formula HO(CH2O)nH. It is a white solid that is insoluble in most solvents.
  • Methanediol, with the formula CH2(OH)2. This compound also exists in equilibrium with various oligomers (short polymers), depending on the concentration and temperature. A saturated water solution, of about 40% formaldehyde by volume or 37% by mass, is called "100% formalin".

A small amount of stabilizer, such as methanol, is usually added to suppress oxidation and polymerization. A typical commercial-grade formalin may contain 10–12% methanol in addition to various metallic impurities.

"Formaldehyde" was first used as a generic trademark in 1893 following a previous trade name, "formalin".

Occurrence

Processes in the upper atmosphere contribute up to 90% of the total formaldehyde in the environment. Formaldehyde is an intermediate in the oxidation (or combustion) of methane, as well as of other carbon compounds, e.g. in forest fires, automobile exhaust, and tobacco smoke. When produced in the atmosphere by the action of sunlight and oxygen on atmospheric methane and other hydrocarbons, it becomes part of smog. Formaldehyde has also been detected in outer space (see below).

Formaldehyde and its adducts are ubiquitous in living organisms. It is formed in the metabolism of the amino acids serine and threonine and is found in the bloodstream of humans and other primates at concentrations of approximately 0.1 millimolar. Experiments in which animals are exposed to an atmosphere containing isotopically labeled formaldehyde have demonstrated that even in deliberately exposed animals, the majority of formaldehyde-DNA adducts found in non-respiratory tissues are derived from endogenously produced formaldehyde.

Formaldehyde does not accumulate in the environment, because it is broken down within a few hours by sunlight or by bacteria present in soil or water. Humans metabolize formaldehyde quickly, converting it to formic acid, so it does not accumulate in the body.

Interstellar formaldehyde

Formaldehyde appears to be a useful probe in astrochemistry due to prominence of the 110←111 and 211←212 K-doublet transitions. It was the first polyatomic organic molecule detected in the interstellar medium.[19] Since its initial detection in 1969, it has been observed in many regions of the galaxy. Because of the widespread interest in interstellar formaldehyde, it has been extensively studied, yielding new extragalactic sources. A proposed mechanism for the formation is the hydrogenation of CO ice:

H + CO → HCO
HCO + H → CH2O

HCN, HNC, H2CO, and dust have also been observed inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON).

Synthesis and industrial production

Laboratory synthesis

Formaldehyde was first reported in 1859 by the Russian chemist Aleksandr Butlerov (1828–86) In his paper, Butlerov referred to formaldehyde as "dioxymethylen" (methylene dioxide) [page 247] because his empirical formula for it was incorrect (C4H4O4). It was conclusively identified by August Wilhelm von Hofmann, who first announced the production of formaldehyde by passing methanol vapor in air over hot platinum wire. With modifications, Hoffmann's method remains the basis of the present day industrial route.

Solution routes to formaldehyde also entail oxidation of methanol or methyl iodide.

Industry

Formaldehyde is produced industrially by the catalytic oxidation of methanol. The most common catalysts are silver metal, iron(III) oxide, iron molybdenum oxides [e.g. iron(III) molybdate] with a molybdenum-enriched surface, or vanadium oxides. In the commonly used formox process, methanol and oxygen react at ca. 250–400 °C in presence of iron oxide in combination with molybdenum and/or vanadium to produce formaldehyde according to the chemical equation:

2 CH3OH + O2 → 2 CH2O + 2 H2O

The silver-based catalyst usually operates at a higher temperature, about 650 °C. Two chemical reactions on it simultaneously produce formaldehyde: that shown above and the dehydrogenation reaction:

CH3OH → CH2O + H2

In principle, formaldehyde could be generated by oxidation of methane, but this route is not industrially viable because the methanol is more easily oxidized than methane.

In nature

The amino acid serine is a source of natural formaldehyde according to this reaction, which produces glycine:

HOCH2CH(NH2)CO2H → CH2O +H2C(NH2)CO2H

This reaction is catalyzed by serine hydroxymethyltransferase, a PLP-containing enzyme.

Organic chemistry

Formaldehyde is a building block in the synthesis of many other compounds of specialised and industrial significance. It exhibits most of the chemical properties of other aldehydes but is more reactive.

Self-condensation and hydration

Formaldehyde, unlike most aldehydes, oligomerizes spontaneously. The trimer is 1,3,5-trioxane, and the polymer is called paraformaldehyde. Many cyclic oligomers have been isolated. Similarly, formaldehyde hydrates to give the geminal diol methanediol, which condenses further to form oligomers HO(CH2O)nH. Monomeric CH2O is rarely encountered.

Oxidation

It is readily oxidized by atmospheric oxygen into formic acid. For this reason, commercial formaldehyde is typically contaminated with formic acid.

Hydroxymethylation and chloromethylation

Formaldehyde reacts with many compounds, resulting in hydroxymethylation:

X-H + CH2O → X-CH2OH

(X = R2N, RC(O)NR', SH). The resulting hydroxymethyl derivatives typically react further. Thus, amines give hexahydro-1,3,5-triazines:

3 RNH2 + 3 CH2O → (RNCH2)3 + 3 H2O

Similarly, when combined with hydrogen sulfide, it forms trithiane:

3 CH2O + 3 H2S → (CH2S)3 + 3 H2O

In the presence of acids, it participates in electrophilic aromatic substitution reactions with aromatic compounds resulting in hydroxymethylated derivatives:

ArH + CH2O → ArCH2OH

When conducted in the presence of hydrogen chloride, the product is the chloromethyl compound, as described in the Blanc chloromethylation. If the arene is electron-rich, as in phenols, elaborate condensations ensue. With 4-substituted phenols one obtains calixarenes.[31] Phenol results in polymers.

Base reactions

Cannizzaro reaction in the presence of basic catalysts to produce formic acid and methanol.

Uses

Industrial applications

Formaldehyde is a common precursor to more complex compounds and materials. In approximate order of decreasing consumption, products generated from formaldehyde include urea formaldehyde resin, melamine resin, phenol formaldehyde resin, polyoxymethylene plastics, 1,4-butanediol, and methylene diphenyl diisocyanate. The textile industry uses formaldehyde-based resins as finishers to make fabrics crease-resistant.

Two steps in formation of urea-formaldehyde resin, which is widely used in the production of particle board.

When treated with phenol, urea, or melamine, formaldehyde produces, respectively, hard thermoset phenol formaldehyde resin, urea formaldehyde resin, and melamine resin. These polymers are permanent adhesives used in plywood and carpeting. They are also foamed to make insulation, or cast into moulded products. Production of formaldehyde resins accounts for more than half of formaldehyde consumption.

Formaldehyde is also a precursor to polyfunctional alcohols such as pentaerythritol, which is used to make paints and explosives. Other formaldehyde derivatives include methylene diphenyl diisocyanate, an important component in polyurethane paints and foams, and hexamine, which is used in phenol-formaldehyde resins as well as the explosive RDX.

Pentaerythrit.svg

Condensation with acetaldehyde affords pentaerythritol, a chemical necessary in synthesizing PETN, a high explosive. Condensation with phenols gives phenol-formaldehyde resins.

Niche uses

Disinfectant and biocide

An aqueous solution of formaldehyde can be useful as a disinfectant as it kills most bacteria and fungi (including their spores). It is used as an additive in vaccine manufacturing to inactivate toxins and pathogens. Formaldehyde releasers are used as biocides in personal care products such as cosmetics. Although present at levels not normally considered harmful, they are known to cause allergic contact dermatitis in certain sensitised individuals.

Aquarists use formaldehyde as a treatment for the parasites Ichthyophthirius multifiliis and Cryptocaryon irritans.

Formaldehyde is also approved for use in the manufacture of animal feeds in the US. It is an antimicrobial agent used to maintain complete animal feeds or feed ingredients Salmonella negative for up to 21 days.

Tissue fixative and embalming agent

Injecting a giant squid specimen with formalin for preservation

Formaldehyde preserves or fixes tissue or cells. The process involves cross-linking of primary amino groups. The European Union has banned the use of formaldehyde as a biocide (including embalming) under the Biocidal Products Directive (98/8/EC) due to its carcinogenic properties. Countries with a strong tradition of embalming corpses, such as Ireland and other colder-weather countries, have raised concerns. Despite reports to the contrary, no decision on the inclusion of formaldehyde on Annex I of the Biocidal Products Directive for product-type 22 (embalming and taxidermist fluids) had been made as of September 2009.

Formaldehyde-based crosslinking is exploited in ChIP-on-chip or ChIP-sequencing genomics experiments, where DNA-binding proteins are cross-linked to their cognate binding sites on the chromosome and analyzed to determine what genes are regulated by the proteins. Formaldehyde is also used as a denaturing agent in RNA gel electrophoresis, preventing RNA from forming secondary structures. A solution of 4% formaldehyde fixes pathology tissue specimens at about one mm per hour at room temperature.

Drug testing

Formaldehyde and an 18 M (concentrated) sulfuric acid makes Marquis reagent—which can identify alkaloids and other compounds.

Photography

In photography, formaldehyde is used in low concentrations for the process C-41 (color negative film) stabilizer in the final wash step, as well as in the process E-6 pre-bleach step, to make it unnecessary in the final wash.

Safety

In view of its widespread use, toxicity, and volatility, formaldehyde poses a significant danger to human health. In 2011, the US National Toxicology Program described formaldehyde as "known to be a human carcinogen".

However, concerns are associated with chronic (long term) exposure by inhalation as may happen from thermal or chemical decomposition of formaldehyde-based resins and the production of formaldehyde resulting from the combustion of a variety of organic compounds (for example, exhaust gases). As formaldehyde resins are used in many construction materials, it is one of the more common indoor air pollutants. At concentrations above 0.1 ppm in air, formaldehyde can irritate the eyes and mucous membranes. Formaldehyde inhaled at this concentration may cause headaches, a burning sensation in the throat, and difficulty breathing, and can trigger or aggravate asthma symptoms.

The CDC considers formaldehyde as a systemic poison. Formaldehyde poisoning can cause permanent changes in the nervous system's functions.

A 1988 Canadian study of houses with urea-formaldehyde foam insulation found that formaldehyde levels as low as 0.046 ppm were positively correlated with eye and nasal irritation. A 2009 review of studies has shown a strong association between exposure to formaldehyde and the development of childhood asthma.

A theory was proposed for the carcinogenesis of formaldehyde in 1978. In 1987 the United States Environmental Protection Agency (EPA) classified it as a probable human carcinogen, and after more studies the WHO International Agency for Research on Cancer (IARC) in 1995 also classified it as a probable human carcinogen. Further information and evaluation of all known data led the IARC to reclassify formaldehyde as a known human carcinogen associated with nasal sinus cancer and nasopharyngeal cancer. 2009 and 2010 studies have also shown a positive correlation between exposure to formaldehyde and the development of leukemia, particularly myeloid leukemia. Nasopharyngeal and sinonasal cancers are relatively rare, with a combined annual incidence in the United States of < 4,000 cases. About 30,000 cases of myeloid leukemia occur in the United States each year. Some evidence suggests that workplace exposure to formaldehyde contributes to sinonasal cancers. Professionals exposed to formaldehyde in their occupation, such as funeral industry workers and embalmers, showed an increased risk of leukemia and brain cancer compared with the general population. Other factors are important in determining individual risk for the development of leukemia or nasopharyngeal cancer. In yeast, formaldehyde is found to perturb pathways for DNA repair and cell cycle.

In the residential environment, formaldehyde exposure comes from a number of routes; formaldehyde can be emitted by treated wood products, such as plywood or particle board, but it is produced by paints, varnishes, floor finishes, and cigarette smoking as well. In July 2016, the U.S. EPA released a prepublication version of its final rule on Formaldehyde Emission Standards for Composite Wood Products. These new rules impact manufacturers, importers, distributors, and retailers of products containing composite wood, including fiberboard, particleboard, and various laminated products, who must comply with more stringent record-keeping and labeling requirements.

The U.S. EPA allows no more than 0.016 ppm formaldehyde in the air in new buildings constructed for that agency. A U.S. Environmental Protection Agency study found a new home measured 0.076 ppm when brand new and 0.045 ppm after 30 days. The Federal Emergency Management Agency (FEMA) has also announced limits on the formaldehyde levels in trailers purchased by that agency. The EPA recommends the use of "exterior-grade" pressed-wood products with phenol instead of urea resin to limit formaldehyde exposure, since pressed-wood products containing formaldehyde resins are often a significant source of formaldehyde in homes.

For most people, irritation from formaldehyde is temporary and reversible, although formaldehyde can cause allergies and is part of the standard patch test series. In 2005–06, it was the seventh-most-prevalent allergen in patch tests (9.0%). People with formaldehyde allergy are advised to avoid formaldehyde releasers as well (e.g., Quaternium-15, imidazolidinyl urea, and diazolidinyl urea). People who suffer allergic reactions to formaldehyde tend to display lesions on the skin in the areas that have had direct contact with the substance, such as the neck or thighs (often due to formaldehyde released from permanent press finished clothing) or dermatitis on the face (typically from cosmetics). Formaldehyde has been banned in cosmetics in both Sweden and Japan. The eyes are most sensitive to formaldehyde exposure: The lowest level at which many people can begin to smell formaldehyde ranges between 0.05-1 ppm. The maximum concentration value at the workplace is 0.3 ppm. In controlled chamber studies, individuals begin to sense eye irritation at about 0.5 ppm; 5 to 20 percent report eye irritation at 0.5 to 1 ppm; and greater certainty for sensory irritation occurred at 1 ppm and above. While some agencies have used a level as low as 0.1 ppm as a threshold for irritation, the expert panel found that a level of 0.3 ppm would protect against nearly all irritation. In fact, the expert panel found that a level of 1.0 ppm would avoid eye irritation—the most sensitive endpoint—in 75–95% of all people exposed.

Some air purifiers include filtering technology that is supposed to lower indoor formaldehyde concentration.

Formaldehyde levels in building environments are affected by a number of factors. These include the potency of formaldehyde-emitting products present, the ratio of the surface area of emitting materials to volume of space, environmental factors, product age, interactions with other materials, and ventilation condition. Formaldehyde emits from a variety of construction materials, furnishings, and consumer products. The three products that emit the highest concentrations are medium density fiberboard, hardwood plywood, and particle board. Environmental factors such as temperature and relative humidity can elevate levels because formaldehyde has a high vapor pressure. Formaldehyde levels from building materials are the highest when a building first opens because materials would have less time to off-gas. Formaldehyde levels decrease over time as the sources suppress.

Formaldehyde levels in air can be sampled and tested in several ways, including impinger, treated sorbent, and passive monitors. The National Institute for Occupational Safety and Health (NIOSH) has measurement methods numbered 2016, 2541, 3500, and 3800.

Studies on the interactions between formaldehyde and proteins at the molecular level have been reported on the effects of the body's carrier protein, serum albumin. The binding of formaldehyde loosens the skeletal structure of albumin and causes exposure of aromatic ring amino acids in the internal hydrophobic region. Symptoms may affect personal awareness, making one feel tired or fatigued.

Formaldehyde inhalation has also shown to cause oxidative stress and inflammation in animals. Mice studied over an exposure to a high dose of formaldehyde (3ppm), showed increased NO
3
levels in plasma. This result suggests that FA inhalation either decreased NO production or increased NO scavenging, which may be an anti-stress mechanism in the body. Formaldehyde inhalation changes the sensitivity of immune system, which influences oxidative stress.

In June 2011, the twelfth edition of the National Toxicology Program (NTP) Report on Carcinogens (RoC) changed the listing status of formaldehyde from "reasonably anticipated to be a human carcinogen" to "known to be a human carcinogen." Concurrently, a National Academy of Sciences (NAS) committee was convened and issued an independent review of the draft U.S. EPA IRIS assessment of formaldehyde, providing a comprehensive health effects assessment and quantitative estimates of human risks of adverse effects.

Formaldehyde occurs naturally, and is "an essential intermediate in cellular metabolism in mammals and humans." "Formaldehyde is found in every living system -- from plants to animals to humans. It metabolizes quickly in the body, breaks down rapidly, is not persistent and does not accumulate in the body."

International bans

Several web articles claim that formaldehyde has been banned from manufacture or import into the European Union (EU) under REACH (Registration, Evaluation, Authorization, and restriction of Chemical substances) legislation. That is a misconception, as formaldehyde is not listed in the Annex I of Regulation (EC) No 689/2008 (export and import of dangerous chemicals regulation), nor on a priority list for risk assessment. However, formaldehyde is banned from use in certain applications (preservatives for liquid-cooling and processing systems, slimicides, metalworking-fluid preservatives, and antifouling products) under the Biocidal Products Directive. In the EU, the maximum allowed concentration of formaldehyde in finished products is 0.2%, and any product that exceeds 0.05% has to include a warning that the product contains formaldehyde.

In the United States, Congress passed a bill July 7, 2010 regarding the use of formaldehyde in hardwood plywood, particle board, and medium density fiberboard. The bill limited the allowable amount of formaldehyde emissions from these wood products to 0.09 ppm, and required companies to meet this standard by January 2013. The final U.S. EPA rule specified maximum emissions of "0.05 ppm formaldehyde for hardwood plywood, 0.09 ppm formaldehyde for particleboard, 0.11 ppm formaldehyde for medium-density fiberboard, and 0.13 ppm formaldehyde for thin medium-density fiberboard."

Formaldehyde was declared a toxic substance by the 1999 Canadian Environmental Protection Act.

Contaminant in food

Scandals have broken in both the 2005 Indonesia food scare and 2007 Vietnam food scare regarding the addition of formaldehyde to foods to extend shelf life. In 2011, after a four-year absence, Indonesian authorities found foods with formaldehyde being sold in markets in a number of regions across the country. In August 2011, at least at two Carrefour supermarkets, the Central Jakarta Livestock and Fishery Sub-Department found cendol containing 10 parts per million of formaldehyde. In 2014, the owner of two noodle factories in Bogor, Indonesia, was arrested for using formaldehyde in noodles. 50 kg of formaldehyde was confiscated. Foods known to be contaminated included noodles, salted fish, and tofu. Chicken and beer were also rumored to be contaminated. In some places, such as China, manufacturers still use formaldehyde illegally as a preservative in foods, which exposes people to formaldehyde ingestion. In humans, the ingestion of formaldehyde has been shown to cause vomiting, abdominal pain, dizziness, and in extreme cases can cause death. Testing for formaldehyde is by blood and/or urine by gas chromatography-mass spectrometry. Other methods include infrared detection, gas detector tubes, etc., of which high-performance liquid chromatography is the most sensitive. In the early 1900s, it was frequently added by US milk plants to milk bottles as a method of pasteurization due to the lack of knowledge and concern regarding formaldehyde's toxicity.

In 2011 in Nakhon Ratchasima, Thailand, truckloads of rotten chicken were treated with formaldehyde for sale in which "a large network," including 11 slaughterhouses run by a criminal gang, were implicated. In 2012, 1 billion rupiah (almost US$100,000) of fish imported from Pakistan to Batam, Indonesia, were found laced with formaldehyde.

Formalin contamination of foods has been reported in Bangladesh, with stores and supermarkets selling fruits, fishes, and vegetables that have been treated with formalin to keep them fresh. However, in 2015, a Formalin Control Bill was passed in the Parliament of Bangladesh with a provision of life-term imprisonment as the maximum punishment as well as a maximum fine of 2,000,000 BDT but not less than 500,000 BDT for importing, producing, or hoarding formalin without a license.

Formaldehyde was one of the chemicals used in 19th century industrialised food production that was investigated by Dr. Harvey W. Wiley with his famous 'Poison Squad' as part of the US Department of Agriculture. This led to the 1906 Pure Food and Drug Act, a landmark event in the early history of food regulation in the United States.

Lie point symmetry

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_point_symmetry     ...