Search This Blog

Sunday, July 3, 2022

Environmental effects of aviation

From Wikipedia, the free encyclopedia
 
Between 1940 and 2018, aviation CO2 emissions grew from 0.7% to 2.65% of all CO2 emissions.
 

Like other emissions resulting from fossil fuel combustion, aircraft engines produce gases, noise, and particulates, raising environmental concerns over their global effects and their effects on local air quality. Jet airliners contribute to climate change by emitting carbon dioxide (CO2), the best understood greenhouse gas, and, with less scientific understanding, nitrogen oxides, contrails and particulates. Their radiative forcing is estimated at 1.3–1.4 that of CO2 alone, excluding induced cirrus cloud with a very low level of scientific understanding. In 2018, global commercial operations generated 2.4% of all CO2 emissions.

Jet airliners have become 70% more fuel efficient between 1967 and 2007, and CO2 emissions per Revenue Ton-kilometer (RTK) in 2018 were 47% of those in 1990. In 2018, CO2 emissions averaged 88 grams of CO2 per revenue passenger per km. While the aviation industry is more fuel efficient, overall emissions have risen as the volume of air travel has increased. By 2020, aviation emissions were 70% higher than in 2005 and they could grow by 300% by 2050. However, just 1 percent of the world’s population is responsible for half the emissions caused by aviation, while almost 90 percent of people hardly ever fly, according to research by the Western Norway Research Institute.

Aircraft noise pollution disrupts sleep, children's education and could increase cardiovascular risk. Airports can generate water pollution due to their extensive handling of jet fuel and deicing chemicals if not contained, contaminating nearby water bodies. Aviation activities emit ozone and ultrafine particles, both of which are health hazards. Piston engines used in general aviation burn Avgas, releasing toxic lead.

Aviation's environmental footprint can be reduced by better fuel economy in aircraft or Air Traffic Control and flight routes can be optimised to lower non-CO2 effects on climate from NO
x
, particulates or contrails. Aviation biofuel, emissions trading and carbon offsetting, part of the ICAO's CORSIA, can lower CO2 emissions. Aviation usage can be lowered by short-haul flight bans, train connections, personal choices and aviation taxation and subsidies. Fuel-powered aircraft may be replaced by hybrid electric aircraft and electric aircraft or by hydrogen-powered aircraft.

Climate change

Factors

Radiative forcings from aviation emissions estimated in 2020
 

Airplanes emit gases (carbon dioxide, water vapour, nitrogen oxides or carbon monoxide − bonding with oxygen to become CO2 upon release) and atmospheric particulates (incompletely burned hydrocarbons, sulfur oxides, black carbon), interacting among themselves and with the atmosphere. While the main greenhouse gas emission from powered aircraft is CO2, jet airliners contribute to climate change in four ways as they fly in the tropopause:

Carbon dioxide (CO2)
CO2 emissions are the most significant and best understood contribution to climate change. The effects of CO2 emissions are similar regardless of altitude. Airport ground vehicles, those used by passengers and staff to access airports, emissions generated by airport construction and aircraft manufacturing also contribute to the greenhouse gas emissions from the aviation industry.
Nitrogen oxides (NO
x
, nitric oxide and nitrogen dioxide)
In the tropopause, emissions of NO
x
favor ozone (O
3
) formation in the upper troposphere. At altitudes from 8 to 13 km (26,000 to 43,000 ft), NO
x
emissions result in greater concentrations of O
3
than surface NO
x
emissions and these in turn have a greater global warming effect. The effect of O
3
surface concentrations are regional and local, but it becomes well mixed globally at mid and upper tropospheric levels. NO
x
emissions also reduce ambient levels of methane, another greenhouse gas, resulting in a climate cooling effect, though not offsetting the O
3
forming effect. Aircraft sulfur and water emissions in the stratosphere tend to deplete O
3
, partially offsetting the NO
x
-induced O
3
increases, although these effects have not been quantified. Light aircraft and small commuter aircraft fly lower in the troposphere, not in the tropopause.
Contrails and cirrus clouds
Fuel burning produces water vapour, which condenses at high altitude, under cold and humid conditions, into visible line clouds: condensation trails (contrails). They are thought to have a global warming effect, though less significant than CO2 emissions. Contrails are uncommon from lower-altitude aircraft. Cirrus clouds can develop after the formation of persistent contrails and can have an additional global warming effect. Their global warming contribution is uncertain and estimating aviation's overall contribution often excludes cirrus cloud enhancement.
Particulates
Compared with other emissions, sulfate and soot particles have a smaller direct effect: sulfate particles have a cooling effect and reflect radiation, while soot has a warming effect and absorbs heat, while the clouds' properties and formation are influenced by particles. Contrails and cirrus clouds evolving from particles may have a greater radiative forcing effect than CO2 emissions. As soot particles are large enough to serve as condensation nuclei, they are thought to cause the most contrail formation. Soot production may be decreased by reducing the Aromatic compound of jet fuel.

In 1999, the IPCC estimated aviation's radiative forcing in 1992 to be 2.7 (2 to 4) times that of CO2 alone − excluding the potential effect of cirrus cloud enhancement. This was updated for 2000, with aviation's radiative forcing estimated at 47.8 mW/m2, 1.9 times the effect of CO2 emissions alone, 25.3 mW/m2.

In 2005, research by David S. Lee, et al, published in the scientific journal Atmospheric Environment estimated the cumulative radiative forcing effect of aviation at 55 mW/m2, which is twice the 28 mW/m2 radiative forcing effect of its CO2 emissions alone, excluding induced cirrus cloud, with a very low level of scientific understanding. In 2012, research from Chalmers university estimated this weighting factor at 1.3–1.4 if aviation induced cirrus is not included, 1.7-1.8 if they are included (within a range of 1.3–2.9).

Uncertainties remain on the NOx–O3–CH4 interactions, aviation-produced contrails formation, the effects of soot aerosols on cirrus clouds and measuring non-CO2 radiative forcing.

In 2018, CO2 represented 34.3 mW/m2 of aviation's effective radiative forcing (ERF, on the surface), with a high confidence level (± 6 mW/m2), NOx 17.5 mW/m2 with a low confidence level (± 14) and contrail cirrus 57.4 mW/m2, also with a low confidence level (± 40). All factors combined represented 43.5 mW/m2 (1.27 that of CO2 alone) excluding contrail cirrus and 101 mW/m2 (±45) including them, 3.5% of the anthropogenic ERF of 2290 mW/m2 (± 1100).

Volume

By 2018, airline traffic reached 4.3 billion passengers with 37.8 million departures, an average of 114 passengers per flight and 8.26 trillion RPKs, an average journey of 1,920 km (1,040 nmi), according to ICAO. The traffic was experiencing continuous growth, doubling every 15 years, despite external shocks − a 4.3% average yearly growth and Airbus forecasts expect the growth to continue. While the aviation industry is more fuel efficient, halving the amount of fuel burned per flight compared to 1990 through technological advancement and operations improvements, overall emissions have risen as the volume of air travel has increased. At 6% per year, current flight demand increases outweigh the airline industry's fuel efficiency improvements of 1% per year. Between 1960 and 2018, RPKs increased from 109 to 8,269 billion.

In 1992, aircraft emissions represented 2% of all man-made CO2 emissions, having accumulated a little more than 1% of the total man-made CO2 increase over 50 years. By 2015, aviation accounted for 2.5% of global CO2 emissions. In 2018, global commercial operations emitted 918 million tonnes (Mt) of CO2, 2.4% of all CO2 emissions: 747 Mt for passenger transport and 171 Mt for freight operations. Between 1960 and 2018, CO2 emissions increased 6.8 times from 152 to 1,034 million tonnes per year. Emissions from flights rose by 32% between 2013 and 2018.

Aviation GHG emissions within the European Economic Area for the EU ETS, showing the top 10 emitters (2013-2019).

Between 1990 and 2006, greenhouse gas emissions from aviation increased by 87% in the European Union. In 2010, about 60% of aviation emissions came from international flights, which are outside the emission reduction targets of the Kyoto Protocol. International flights are not covered by the Paris Agreement, either, to avoid a patchwork of individual country regulations. That agreement was adopted by the International Civil Aviation Organization, however, capping airlines carbon emissions to the year 2020 level, while allowing airlines to buy carbon credits from other industries and projects.

In 1992, aircraft radiative forcing was estimated by the IPCC at 3.5% of the total man-made radiative forcing.

Per passenger

Between 1950 and 2018, efficiency per passenger grew from 0.4 to 8.2 RPK per kg of CO2.
 

As it accounts for a large share of their costs - 28% by 2007, Airlines have a strong incentive to lower their fuel consumption, reducing their environmental footprint. Jet airliners have become 70% more fuel efficient between 1967 and 2007. Jetliner fuel efficiency improves continuously, 40% of the improvement come from engines and 30% from airframes. Efficiency gains were larger early in the jet age than later, with a 55-67% gain from 1960 to 1980 and a 20-26% gain from 1980 to 2000.

The average fuel burn of new aircraft fell 45% from 1968 to 2014, a compounded annual reduction of 1.3% with variable reduction rate. By 2018, CO2 emissions per Revenue Ton-kilometer (RTK) were more than halved compared to 1990, at 47%. The aviation energy intensity went from 21.2 to 12.3 MJ/RTK between 2000 and 2019, a 42% reduction.

In 2018, CO2 emissions totalled 747 million tonnes for passenger transport, for 8.5 trillion revenue passenger kilometres (RPK), giving an average of 88 gram CO2 per RPK. The UK's Department for BEIS calculate a long-haul flight release 102g of CO2 per passenger kilometre, and 254g of CO2 equivalent, including non-CO2 greenhouse gas emissions, water vapour etc; for a domestic flight in Britain.

The ICAO targets a 2% efficiency improvement per year between 2013 and 2050, while the IATA targets 1.5% for 2009-2020 and to cut net CO2 emissions in half by 2050 relative to 2005.

Evolution

By 2020, global international aviation emissions were around 70% higher than in 2005 and they could grow by over further 300% by 2050 in the absence of additional measures. The ICAO aims to lower carbon emissions through more fuel-efficient aircraft; sustainable aviation fuel; Improved air traffic management; and CORSIA

In 1999, the IPCC estimated aviation's radiative forcing may represent 190 mW/m2 or 5% of the total man-made radiative forcing in 2050, with the uncertainty ranging from 100 to 500 mW/m2. If other industries achieve significant reductions in greenhouse gas emissions over time, aviation's share, as a proportion of the remaining emissions, could rise.

Alice Bows-Larkin estimated that the annual global CO2 emissions budget would be entirely consumed by aviation emissions to keep the climate change temperature increase below 2 °C by mid-century. Given that growth projections indicate that aviation will generate 15% of global CO2 emissions, even with the most advanced technology forecast, she estimated that to hold the risks of dangerous climate change to under 50% by 2050 would exceed the entire carbon budget in conventional scenarios.

In 2013, the National Center for Atmospheric Science at the University of Reading forecast that increasing CO2 levels will result in a significant increase in in-flight turbulence experienced by transatlantic airline flights by the middle of the 21st century.

Aviation CO2 emissions grow despite efficiency innovations to aircraft, powerplants and flight operations. Air travel continue to grow.

In 2015, the Center for Biological Diversity estimated that aircraft could generate 43 Gt of carbon dioxide emissions through 2050, consuming almost 5% of the remaining global carbon budget. Without regulation, global aviation emissions may triple by mid-century and could emit more than 3 Gt of carbon annually under a high-growth, business-as-usual scenario. Many countries have pledged emissions reductions for the Paris Agreement, but the sum of these efforts and pledges remains insufficient and not addressing airplane pollution would be a failure despite technological and operational advancements.

The International Energy Agency projects aviation share of global CO2 emissions may grow from 2.5% in 2019 to 3.5% by 2030.

By 2020, global international aviation emissions were around 70% higher than in 2005 and the ICAO forecasts they could grow by over further 300% by 2050 in the absence of additional measures.

By 2050, aviation's negative effects on climate could be decreased by a 2% increase in fuel efficiency and a decrease in NOx emissions, due to advanced aircraft technologies, operational procedures and renewable alternative fuels decreasing radiative forcing due to sulfate aerosol and black carbon.

Noise

Air traffic causes aircraft noise, which disrupts sleep, adversely affects children's school performance and could increase cardiovascular risk for airport neighbours. Sleep disruption can be reduced by banning or restricting flying at night, but disturbance progressively decreases and legislation differs across countries.

The ICAO Chapter 14 noise standard applies for aeroplanes submitted for certification after 31 December 2017, and after 31 December 2020 for aircraft below 55 t (121,000 lb), 7 EPNdB (cumulative) quieter than Chapter4. The FAA Stage 5 noise standards are equivalent. Higher bypass ratio engines produce less noise. The PW1000G is presented as 75% quieter than previous engines. Serrated edges or 'chevrons' on the back of the nacelle reduce noise.

A Continuous Descent Approach (CDA) is quieter as less noise is produced while the engines are near idle power. CDA can reduce noise on the ground by ~1-5 dB per flight.

Water pollution

Excess aircraft deicing fluid may contaminate nearby water bodies

Airports can generate significant water pollution due to their extensive use and handling of jet fuel, lubricants and other chemicals. Chemical spills can be mitigated or prevented by spill containment structures and clean-up equipment such as vacuum trucks, portable berms and absorbents.

Deicing fluids used in cold weather can pollute water, as most of them fall to the ground and surface runoff can carry them to nearby streams, rivers or coastal waters. Deicing fluids are based on ethylene glycol or propylene glycol. Airports use pavement deicers on paved surfaces including runways and taxiways, which may contain potassium acetate, glycol compounds, sodium acetate, urea or other chemicals.

During degradation in surface waters, ethylene and propylene glycol exert high levels of biochemical oxygen demand, consuming oxygen needed by aquatic life. Microbial populations decomposing propylene glycol consume large quantities of dissolved oxygen (DO) in the water column. Fish, macroinvertebrates and other aquatic organisms need sufficient dissolved oxygen levels in surface waters. Low oxygen concentrations reduce usable aquatic habitat because organisms die if they cannot move to areas with sufficient oxygen levels. Bottom feeder populations can be reduced or eliminated by low DO levels, changing a community's species profile or altering critical food-web interactions.

Air pollution

Aviation is the main human source of ozone, a respiratory health hazard, causing an estimated 6,800 premature deaths per year.

Aircraft engines emit ultrafine particles (UFPs) in and near airports, as does ground support equipment. During takeoff, 3 to 50 × 1015 particles were measured per kg of fuel burned, while significant differences are observed depending on the engine. Other estimates include 4 to 200 × 1015 particles for 0.1–0.7 gram, or 14 to 710 × 1015 particles, or 0.1-10 × 1015 black carbon particles for 0.046–0.941  g.

In the United States, 167,000 piston aircraft engines, representing three-quarters of private airplanes, burn Avgas, releasing lead into the air. The Environmental Protection Agency estimated this released 34,000 tons of lead into the atmosphere between 1970 and 2007. The Federal Aviation Administration recognizes inhaled or ingested lead leads to adverse effects on the nervous system, red blood cells, and cardiovascular and immune systems. Lead exposure in infants and young children may contribute to behavioral and learning problems and lower IQ.

Mitigation

In February 2021, Europe's aviation sector unveiled its Destination 2050 sustainability initiative towards zero CO2 emissions by 2050:

while air traffic should grow by 1.4% per year between 2018 and 2050. The initiative is led by ACI Europe, ASD Europe, A4E, CANSO and ERA.

Reducing air travel

Aviation's environmental footprint would be mitigated by reducing air travel, route optimization, emission caps, short-distance restrictions, increased taxation, and decreased subsidies.

Improved Air Traffic Control would allow more direct routes
Route optimization

An improved Air Traffic Management system, with more direct routes than suboptimal air corridors and optimized cruising altitudes, would allow airlines to reduce their emissions by up to 18%. In the European Union, a Single European Sky has been proposed since 1999 to avoid overlapping airspace restrictions between EU countries and to reduce emissions. By 2007, 12 million tons of CO2 emissions per year were caused by the lack of a Single European Sky. As of September 2020, the Single European Sky has still not been completely achieved, costing 6 billion euros in delays and causing 11.6 million tonnes of excess CO2 emissions.

Emissions trading

ICAO has endorsed emissions trading to reduce aviation CO2 emission, guidelines were to be presented to the 2007 ICAO Assembly. Within the European Union, the European Commission has included aviation in the European Union Emissions Trading Scheme operated since 2012, capping airline emissions, providing incentives to lower emissions through more efficient technology or to buy carbon credits from other companies. The Centre for Aviation, Transport and Environment at Manchester Metropolitan University estimates the only way to lower emissions is to put a price on carbon and to use market-based measures like the EU ETS.

Short-haul flight ban

A short-haul flight ban is a prohibition imposed by governments on airlines to establish and maintain a flight connection over a certain distance, or by organisations or companies on their employees for business travel using existing flight connections over a certain distance, in order to mitigate the environmental impact of aviation. In the 21st century, several governments, organisations and companies have imposed restrictions and even prohibitions on short-haul flights, stimulating or pressuring travellers to opt for more environmentally friendly means of transportation, especially trains.

Train connections

Train connections reduce feeder flights. By March 2019, Lufthansa offered connections through Frankfurt with the Deutsche Bahn (AIRail Service) and Air France offered TGV connections through Paris. In October 2018, Austrian Airlines and the Austrian Federal Railways introduced train connections through Vienna Airport. In March 2019, the Dutch cabinet was working on an Amsterdam connection via NS International or Thalys. By July 2020, Lufthansa and Deutsche Bahn expanded their offer through Frankfurt Airport to 17 major cities.

International conferences

Most international professional or academic conference attendants travel by plane, conference travel is often regarded as an employee benefit as costs are supported by employers. By 2003, Access Grid technology had hosted several international conferences. The Tyndall Centre has reported means to change common institutional and professional practices.

Flight shame

In Sweden the concept of "flight shame" or "flygskam" has been cited as a cause of falling air travel. Swedish rail company SJ AB reports that twice as many Swedish people chose to travel by train instead of by air in summer 2019 compared with the previous year. Swedish airports operator Swedavia reported 4% fewer passengers across its 10 airports in 2019 compared to the previous year: a 9% drop for domestic passengers and 2% for international passengers. The ICCT estimates that 3% of the global population take regular flights.

In early 2022, the European Investment Bank published the results of its 2021-2022 Climate Survey, showing that 52% of Europeans under 30, 37% of people between 30 and 64 and 25% for people aged 65 and above plan to travel by air for their summer holidays in 2022; and 27% of those under 30, 17% for people aged 30–64 and 12% for people aged 65 and above plan to travel by air to a faraway destination.

ICAO regulation and CORSIA

In 2016, the International Civil Aviation Organization committed to improve aviation fuel efficiency by 2% per year and to stabilise carbon emissions from 2020. To achieve these goals, multiple measures have been planned: more fuel-efficient aircraft technology; development and deployment of sustainable aviation fuels; Improved air traffic management; market-based measures like emission trading, levies, and carbon offsetting, the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA).

It was developed by the International Civil Aviation Organization (ICAO) and adopted in October 2016. Its goal is to have a carbon neutral growth from 2020. CORSIA uses Market-based environmental policy instruments to offset CO2 emissions: aircraft operators have to purchase carbon credits from the carbon market. Starting in 2021, the scheme is voluntary for all countries until 2027.

Taxation and subsidies

Financial measures can discourage airline passengers and promote other transportation modes and motivates airlines to improve fuel efficiency. Aviation taxation include:

Consumer behaviour can be influenced by cutting subsidies for unsustainable aviation and subsidising the development of sustainable alternatives. By September–October 2019, a carbon tax on flights would be supported by 72% of the EU citizens, in a poll conducted for the European Investment Bank.

Aviation taxation could reflect all its external costs and could be included in an emissions trading scheme. International aviation emissions escaped international regulation until the ICAO triennial conference in 2016 agreed on the CORSIA offset scheme. Due to low or nonexistent taxes on aviation fuel, air travel has a competitive advantage over other transportation modes.

Alternative fuels

Refueling an Airbus A320 with biofuel

An aviation biofuel or bio-jet-fuel or bio-aviation fuel (BAF) is a biofuel used to power aircraft and is said to be a sustainable aviation fuel (SAF). The International Air Transport Association (IATA) considers it a key element to reducing the carbon footprint within the environmental impact of aviation. Aviation biofuel could help decarbonize medium- and long-haul air travel generating most emissions, and could extend the life of older aircraft types by lowering their carbon footprint.

Biofuels are biomass-derived fuels, from plants or waste; depending on which type of biomass is used, they could lower CO₂ emissions by 20–98% compared to conventional jet fuel. The first test flight using blended biofuel was in 2008, and in 2011 blended fuels with 50% biofuels were allowed in commercial flights. In 2019, the IATA was aiming for a 2% penetration by 2025.

Aviation biofuel can be produced from plant sources like Jatropha, algae, tallows, waste oils, palm oil, Babassu and Camelina (bio-SPK); from solid biomass using pyrolysis processed with a Fischer–Tropsch process (FT-SPK); with an alcohol-to-jet (ATJ) process from waste fermentation; or from synthetic biology through a solar reactor. Small piston engines can be modified to burn ethanol.

Sustainable biofuels do not compete with food crops, prime agricultural land, natural forest or fresh water. They are an alternative to electrofuels. Sustainable aviation fuel is certified as being sustainable by a third-party organisation.

Hydrogen and e-fuel

In 2020, Airbus unveiled liquid-hydrogen-powered aircraft concepts as zero-emissions airliners, poised for 2035. Aviation, like industrial processes that cannot be electrified, should use primarily Hydrogen-based fuel.

The Potsdam Institute for Climate Impact Research reported a €800–1,200 mitigation cost per ton of CO2 for hydrogen-based e-fuels. Those could be reduced to €20–270 per ton of CO2 in 2050, but maybe not early enough to replace fossil fuels. Climate policies could bear the risk of e-fuel uncertain availability, and Hydrogen and e-fuels may be prioritised when direct electrification is inaccessible.

Non-CO2 emissions

Economic cost and climate influence relation for transatlantic traffic

Besides carbon dioxide, aviation produces nitrogen oxides (NO
x
), particulates, unburned hydrocarbons (UHC) and contrails. Flight routes can be optimised: modelling CO2, H
2
O
and NO
x
effects of transatlantic flights in winter shows westbound flights climate forcing can be lowered by up to 60% and ~25% for jet stream-following eastbound flights, costing 10–15% more due to longer distances and lower altitudes consuming more fuel, but 0.5% costs increase can reduce climate forcing by up to 25%. A 2000 feet (~600 m) lower cruise altitude than the optimal altitude has a 21% lower radiative forcing, while a 2000 feet higher cruise altitude 9% higher radiative forcing.

Nitrogen oxides (NO
x
)
As designers work to reduce NO
x
emissions from jet engines, they fell by over 40% between 1997 and 2003. Cruising at a 2,000 ft (610 m) lower altitude could reduce NO
x
-caused radiative forcing from 5 mW/m2 to ~3 mW/m2.
Particulates
Modern engines are designed so that no smoke is produced at any point in the flight while particulates and smoke were a problem with early jet engines at high power settings.
Unburned hydrocarbons (UHC)
Produced by incomplete combustion, more unburned hydrocarbons are produced with low compressor pressures and/or relatively low combustor temperatures, they have been eliminated in modern jet engines through improved design and technology, like particulates.
Contrails
Contrail formation would be reduced by lowering the cruise altitude with slightly increased flight times, but this would be limited by airspace capacity, especially in Europe and North America, and increased fuel burn due to lower efficiency at lower altitudes, increasing CO2 emissions by 4%. Contrail radiative forcing could be minimized by schedules: night flights cause 60-80% of the forcing for only 25% of the air traffic, while winter flights contribute half of the forcing for only 22% of the air traffic. As 2% of flights are responsible for 80% of contrail radiative forcing, changing a flight altitude by 2,000 ft (610 m) to avoid high humidity for 1.7% of flights would reduce contrail formation by 59%.

National carbon budgets

In UK, transportation replaced power generation as the largest emissions source. This includes aviation's 4% contribution. This is expected to expand until 2050 and passenger demand may need to be reduced. For the UK Committee on Climate Change (CCC), the UK target of an 80% reduction from 1990 to 2050 was still achievable from 2019, but the committee suggests that the Paris Agreement should tighten its emission targets. Their position is that emissions in problematic sectors, like aviation, should be offset by greenhouse gas removal, carbon capture and storage and reforestation.

In December 2020 the UK Climate Change Committee said that: "Mitigation options considered include demand management, improvements in aircraft efficiency (including use of hybrid electric aircraft), and use of sustainable aviation fuels (biofuels, biowaste to jet and synthetic jet fuels) to displace fossil jet fuel." The UK will include international aviation and shipping in their carbon budgets and hopes other countries will too.

Carbon offsetting

Money generated by carbon offsets from airlines often go to fund green-energy projects such as wind farms.

A carbon offset is a means of compensating aviation emissions by saving enough carbon or absorbing carbon back into plants through photosynthesis (for example, by planting trees through reforestation or afforestation) to balance the carbon emitted by a particular action.

Consumer option
Some airlines offer carbon offsets to passengers to cover the emissions created by their flight, invested in green technology such as renewable energy and research into future technology. Airlines offering carbon offsets include British Airways, Continental Airlines, easyJet, and also Air Canada, Air New Zealand, Delta Air Lines, Emirates Airlines, Gulf Air, Jetstar, Lufthansa, Qantas, United Airlines and Virgin Australia. Consumers can also purchase offsets on the individual market. There are certification standards for these, including the Gold Standard and the Green-e.

Airline offsets

Some airlines have been carbon-neutral like Costa Rican Nature Air, or claim to be, like Canadian Harbour Air Seaplanes. Long-haul low-cost venture Fly POP aims to be carbon neutral.

In 2019, Air France announced it would offset CO2 emissions on its 450 daily domestic flights, that carry 57,000 passengers, from January 2020, through certified projects. The company will also offer its customers the option to voluntarily compensate for all their flights and aims to reduce its emissions by 50% per pax/km by 2030, compared to 2005.

Starting in November 2019, UK budget carrier EasyJet decided to offset carbon emissions for all its flights, through investments in atmospheric carbon reduction projects. It claims to be the first major operator to be carbon neutral, at a cost of £25 million for its 2019-20 financial year. Its CO2 emissions were 77g per passenger in its 2018-19 financial year, down from 78.4g the previous year.

From January 2020, British Airways began offsetting its 75 daily domestic flights emissions through carbon-reduction project investments. The airline seeks to become carbon neutral by 2050 with fuel-efficient aircraft, sustainable fuels and operational changes. Passengers flying overseas can offset their flights for £1 to Madrid in economy or £15 to New York in business-class.

US low-cost carrier JetBlue planned to use offsets for its emissions from domestic flights starting in July 2020, the first major US airline to do so. It also plans to use sustainable aviation fuel made from waste by Finnish refiner Neste starting in mid-2020. In August 2020, JetBlue became entirely carbon-neutral for its U.S. domestic flights, using efficiency improvements and carbon offsets. Delta Air Lines pledged to do the same within ten years.

To become carbon neutral by 2050, United Airlines invests to build in the US the largest carbon capture and storage facility through the company 1PointFive, jointly owned by Occidental Petroleum and Rusheen Capital Management, with Carbon Engineering technology, aiming for nearly 10% offsets.

Electric aircraft

The Velis Electro was the first type certificated electric aircraft on 10 June 2020.
 

Electric aircraft operations do not produce any emissions and electricity can be generated by renewable energy. Lithium-ion batteries including packaging and accessories gives a 160 Wh/kg energy density while aviation fuel gives 12,500 Wh/kg. As electric machines and converters are more efficient, their shaft power available is closer to 145 Wh/kg of battery while a gas turbine gives 6,545 Wh/kg of fuel: a 45:1 ratio. For Collins Aerospace, this 1:50 ratio forbids electric propulsion for long-range aircraft. By November 2019, the German Aerospace Center estimated large electric planes could be available by 2040. Large, long-haul aircraft are unlikely to become electric before 2070 or within the 21st century, whilst smaller aircraft can be electrified. As of May 2020, the largest electric airplane was a modified Cessna 208B Caravan.

For the UK's Committee on Climate Change (CCC), huge technology shifts are uncertain, but consultancy Roland Berger points to 80 new electric aircraft programmes in 2016–2018, all-electric for the smaller two-thirds and hybrid for larger aircraft, with forecast commercial service dates in the early 2030s on short-haul routes like London to Paris, with all-electric aircraft not expected before 2045. Berger predicts a 24% CO2 share for aviation by 2050 if fuel efficiency improves by 1% per year and if there are no electric or hybrid aircraft, dropping to 3–6% if 10-year-old aircraft are replaced by electric or hybrid aircraft due to regulatory constraints, starting in 2030, to reach 70% of the 2050 fleet. This would greatly reduce the value of the existing fleet of aircraft, however. Limits to the supply of battery cells could hamper their aviation adoption, as they compete with other industries like electric vehicles. Lithium-ion batteries have proven fragile and fire-prone and their capacity deteriorates with age. However, alternatives are being pursued, such as sodium-ion batteries.

Formic acid

From Wikipedia, the free encyclopedia

Formic acid
Skeletal structure of formic acid
3D model of formic acid
Formic acid 85 percent.jpg
Names
Preferred IUPAC name
Formic acid
Systematic IUPAC name
Methanoic acid
Other names
Carbonous acid; Formylic acid; Hydrogen carboxylic acid; Hydroxy(oxo)methane; Metacarbonoic acid; Oxocarbinic acid; Oxomethanol
Identifiers
3D model (JSmol)
1209246
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.527 Edit this at Wikidata
EC Number
  • 200-579-1
E number E236 (preservatives)
1008
KEGG
RTECS number
  • LQ4900000
UNII


Properties
CH2O2
Molar mass 46.025 g·mol−1
Appearance Colorless fuming liquid
Odor Pungent, penetrating
Density 1.220 g/mL
Melting point 8.4 °C (47.1 °F; 281.5 K)
Boiling point 100.8 °C (213.4 °F; 373.9 K)
Miscible
Solubility Miscible with ether, acetone, ethyl acetate, glycerol, methanol, ethanol
Partially soluble in benzene, toluene, xylenes
log P −0.54
Vapor pressure 35 mmHg (20 °C)
Acidity (pKa) 3.745
Conjugate base Formate
−19.90·10−6 cm3/mol
1.3714 (20 °C)
Viscosity 1.57 cP at 268 °C
Structure
Planar
1.41 D (gas)
Thermochemistry
131.8 J/mol K
−425.0 kJ/mol
−254.6 kJ/mol
Pharmacology
QP53AG01 (WHO)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Corrosive; irritant;
sensitizer
GHS labelling:
GHS05: Corrosive
Danger
H314
P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501
NFPA 704 (fire diamond)
3
2
0
Flash point 69 °C (156 °F; 342 K)
601 °C (1,114 °F; 874 K)
Explosive limits 14–34%
18–57% (90% solution)
Lethal dose or concentration (LD, LC):
700 mg/kg (mouse, oral), 1100 mg/kg (rat, oral), 4000 mg/kg (dog, oral)
7853 ppm (rat, 15 min)
3246 ppm (mouse, 15 min)
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 5 ppm (9 mg/m3)
REL (Recommended)
TWA 5 ppm (9 mg/m3)
IDLH (Immediate danger)
30 ppm
Safety data sheet (SDS) MSDS from JT Baker
Related compounds
Acetic acid
Propionic acid
Related compounds
Formaldehyde
Methanol
Supplementary data page
Formic acid (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Formic acid, systematically named methanoic acid, is the simplest carboxylic acid, and has the chemical formula HCOOH. It is an important intermediate in chemical synthesis and occurs naturally, most notably in some ants. The word "formic" comes from the Latin word for ant, formica, referring to its early isolation by the distillation of ant bodies. Esters, salts, and the anion derived from formic acid are called formates. Industrially, formic acid is produced from methanol.

Properties

Cyclic dimer of formic acid; dashed green lines represent hydrogen bonds

Formic acid is a colorless liquid having a pungent, penetrating odor at room temperature, comparable to the related acetic acid. It is miscible with water and most polar organic solvents, and is somewhat soluble in hydrocarbons. In hydrocarbons and in the vapor phase, it consists of hydrogen-bonded dimers rather than individual molecules. Owing to its tendency to hydrogen-bond, gaseous formic acid does not obey the ideal gas law. Solid formic acid, which can exist in either of two polymorphs, consists of an effectively endless network of hydrogen-bonded formic acid molecules. Formic acid forms a high-boiling azeotrope with water (22.4%). Liquid formic acid tends to supercool.

Natural occurrence

In nature, formic acid is found in most ants and in stingless bees of the genus Oxytrigona. The wood ants from the genus Formica can spray formic acid on their prey or to defend the nest. The puss moth caterpillar (Cerura vinula) will spray it as well when threatened by predators. It is also found in the trichomes of stinging nettle (Urtica dioica). Formic acid is a naturally occurring component of the atmosphere primarily due to forest emissions.

Production

In 2009, the worldwide capacity for producing formic acid was 720 thousand tonnes (1.6 billion pounds) per year, roughly equally divided between Europe (350 thousand tonnes or 770 million pounds, mainly in Germany) and Asia (370 thousand tonnes or 820 million pounds, mainly in China) while production was below 1 thousand tonnes or 2.2 million pounds per year in all other continents. It is commercially available in solutions of various concentrations between 85 and 99 w/w %. As of 2009, the largest producers are BASF, Eastman Chemical Company, LC Industrial, and Feicheng Acid Chemicals, with the largest production facilities in Ludwigshafen (200 thousand tonnes or 440 million pounds per year, BASF, Germany), Oulu (105 thousand tonnes or 230 million pounds, Eastman, Finland), Nakhon Pathom (n/a, LC Industrial), and Feicheng (100 thousand tonnes or 220 million pounds, Feicheng, China). 2010 prices ranged from around €650/tonne (equivalent to around $800/tonne) in Western Europe to $1250/tonne in the United States.

From methyl formate and formamide

When methanol and carbon monoxide are combined in the presence of a strong base, the result is methyl formate, according to the chemical equation:

CH3OH + CO → HCO2CH3

In industry, this reaction is performed in the liquid phase at elevated pressure. Typical reaction conditions are 80 °C and 40 atm. The most widely used base is sodium methoxide. Hydrolysis of the methyl formate produces formic acid:

HCO2CH3 + H2O → HCOOH + CH3OH

Efficient hydrolysis of methyl formate requires a large excess of water. Some routes proceed indirectly by first treating the methyl formate with ammonia to give formamide, which is then hydrolyzed with sulfuric acid:

HCO2CH3 + NH3 → HC(O)NH2 + CH3OH
2 HC(O)NH2 + 2H2O + H2SO4 → 2HCO2H + (NH4)2SO4

A disadvantage of this approach is the need to dispose of the ammonium sulfate byproduct. This problem has led some manufacturers to develop energy-efficient methods of separating formic acid from the excess water used in direct hydrolysis. In one of these processes, used by BASF, the formic acid is removed from the water by liquid-liquid extraction with an organic base.

Niche and obsolete chemical routes

By-product of acetic acid production

A significant amount of formic acid is produced as a byproduct in the manufacture of other chemicals. At one time, acetic acid was produced on a large scale by oxidation of alkanes, by a process that cogenerates significant formic acid. This oxidative route to acetic acid has declined in importance so that the aforementioned dedicated routes to formic acid have become more important.

Hydrogenation of carbon dioxide

The catalytic hydrogenation of CO2 to formic acid has long been studied. This reaction can be conducted homogeneously.

Oxidation of biomass

Formic acid can also be obtained by aqueous catalytic partial oxidation of wet biomass by the OxFA process. A Keggin-type polyoxometalate (H5PV2Mo10O40) is used as the homogeneous catalyst to convert sugars, wood, waste paper, or cyanobacteria to formic acid and CO2 as the sole byproduct. Yields of up to 53% formic acid can be achieved.

Laboratory methods

In the laboratory, formic acid can be obtained by heating oxalic acid in glycerol and extraction by steam distillation. Glycerol acts as a catalyst, as the reaction proceeds through a glyceryl oxalate intermediate. If the reaction mixture is heated to higher temperatures, allyl alcohol results. The net reaction is thus:

C2O4H2 → HCO2H + CO2

Another illustrative method involves the reaction between lead formate and hydrogen sulfide, driven by the formation of lead sulfide.

Pb(HCOO)2 + H2S → 2HCOOH + PbS

Electrochemical production

It has been reported that formate can be formed by the electrochemical reduction of CO2 (in the form of bicarbonate) at a lead cathode at pH 8.6:

HCO
3
+ H
2
O
+ 2eHCO
2
+ 2OH

or

CO
2
+ H
2
O
+ 2eHCO
2
+ OH

If the feed is CO
2
and oxygen is evolved at the anode, the total reaction is:

CO2 + OH
HCO
2
+ 1/2 O2

This has been proposed as a large-scale source of formate by various groups. The formate could be used as feed to modified E. coli bacteria for producing biomass. Natural microbes do exist that can feed on formic acid or formate (see Methylotroph).

Biosynthesis

Formic acid is named after ants which have high concentrations of the compound in their venom. In ants, formic acid is derived from serine through a 5,10-methenyltetrahydrofolate intermediate. The conjugate base of formic acid, formate, also occurs widely in nature. An assay for formic acid in body fluids, designed for determination of formate after methanol poisoning, is based on the reaction of formate with bacterial formate dehydrogenase.

Artificial photosynthesis

In August 2020 researchers at Cambridge University announced a stand-alone advanced 'photosheet' technology that converts sunlight, carbon dioxide and water into oxygen and formic acid with no other inputs.

Uses

A major use of formic acid is as a preservative and antibacterial agent in livestock feed. In Europe, it is applied on silage, including fresh hay, to promote the fermentation of lactic acid and to suppress the formation of butyric acid; it also allows fermentation to occur quickly, and at a lower temperature, reducing the loss of nutritional value. Formic acid arrests certain decay processes and causes the feed to retain its nutritive value longer, and so it is widely used to preserve winter feed for cattle. In the poultry industry, it is sometimes added to feed to kill E. coli bacteria. Use as a preservative for silage and (other) animal feed constituted 30% of the global consumption in 2009.

Formic acid is also significantly used in the production of leather, including tanning (23% of the global consumption in 2009), and in dyeing and finishing textiles (9% of the global consumption in 2009) because of its acidic nature. Use as a coagulant in the production of rubber consumed 6% of the global production in 2009.

Formic acid is also used in place of mineral acids for various cleaning products, such as limescale remover and toilet bowl cleaner. Some formate esters are artificial flavorings and perfumes.

Beekeepers use formic acid as a miticide against the tracheal mite (Acarapis woodi) and the Varroa destructor mite and Varroa jacobsoni mite.

Formic acid application has been reported to be an effective treatment for warts.

Formic acid can be used in a fuel cell (it can be used directly in formic acid fuel cells and indirectly in hydrogen fuel cells).

It is possible to use formic acid as an intermediary to produce isobutanol from CO2 using microbes.

Formic acid has a potential application in soldering, due to its capacity to reduce oxide layers, formic acid gas can be blasted at an oxide surface in order to increase solder wettability.

Formic acid is often used as a component of mobile phase in reversed-phase high-performance liquid chromatography (RP-HPLC) analysis and separation techniques for the separation of hydrophobic macromolecules, such as peptides, proteins and more complex structures including intact viruses. Especially when paired with mass spectrometry detection, formic acid offers several advantages over the more traditionally used phosphoric acid.

Chemical reactions

Formic acid is about ten times stronger than acetic acid. It is used as a volatile pH modifier in HPLC and capillary electrophoresis.

Formic acid is a source for a formyl group for example in the formylation of methylaniline to N-methylformanilide in toluene.

In synthetic organic chemistry, formic acid is often used as a source of hydride ion. The Eschweiler-Clarke reaction and the Leuckart-Wallach reaction are examples of this application. It, or more commonly its azeotrope with triethylamine, is also used as a source of hydrogen in transfer hydrogenation.

The Eschweiler–Clark reaction

As mentioned below, formic acid readily decomposes with concentrated sulfuric acid to form carbon monoxide.

HCO2H + H2SO4 → H2SO4 + H2O + CO

Reactions

Formic acid shares most of the chemical properties of other carboxylic acids. Because of its high acidity, solutions in alcohols form esters spontaneously. Formic acid shares some of the reducing properties of aldehydes, reducing solutions of metal oxides to their respective metal.

Decomposition

Heat and especially acids cause formic acid to decompose to carbon monoxide (CO) and water (dehydration). Treatment of formic acid with sulfuric acid is a convenient laboratory source of CO.

In the presence of platinum, it decomposes with a release of hydrogen and carbon dioxide.

HCO2H → H2 + CO2

Soluble ruthenium catalysts are also effective. Carbon monoxide free hydrogen has been generated in a very wide pressure range (1–600 bar). Formic acid has been considered as a means of hydrogen storage. The co-product of this decomposition, carbon dioxide, can be rehydrogenated back to formic acid in a second step. Formic acid contains 53 g/L hydrogen at room temperature and atmospheric pressure, which is three and a half times as much as compressed hydrogen gas can attain at 350 bar pressure (14.7 g/L). Pure formic acid is a liquid with a flash point of +69 °C, much higher than that of gasoline (−40 °C) or ethanol (+13 °C).

Addition to alkenes

Formic acid is unique among the carboxylic acids in its ability to participate in addition reactions with alkenes. Formic acids and alkenes readily react to form formate esters. In the presence of certain acids, including sulfuric and hydrofluoric acids, however, a variant of the Koch reaction occurs instead, and formic acid adds to the alkene to produce a larger carboxylic acid.

Formic acid anhydride

An unstable formic anhydride, H(C=O)−O−(C=O)H, can be obtained by dehydration of formic acid with N,N′-dicyclohexylcarbodiimide in ether at low temperature.

History

Some alchemists and naturalists were aware that ant hills give off an acidic vapor as early as the 15th century. The first person to describe the isolation of this substance (by the distillation of large numbers of ants) was the English naturalist John Ray, in 1671. Ants secrete the formic acid for attack and defense purposes. Formic acid was first synthesized from hydrocyanic acid by the French chemist Joseph Gay-Lussac. In 1855, another French chemist, Marcellin Berthelot, developed a synthesis from carbon monoxide similar to the process used today.

Formic acid was long considered a chemical compound of only minor interest in the chemical industry. In the late 1960s, however, significant quantities became available as a byproduct of acetic acid production. It now finds increasing use as a preservative and antibacterial in livestock feed.

Safety

Formic acid has low toxicity (hence its use as a food additive), with an LD50 of 1.8 g/kg (tested orally on mice). The concentrated acid is corrosive to the skin.

Formic acid is readily metabolized and eliminated by the body. Nonetheless, it has specific toxic effects; the formic acid and formaldehyde produced as metabolites of methanol are responsible for the optic nerve damage, causing blindness, seen in methanol poisoning. Some chronic effects of formic acid exposure have been documented. Some experiments on bacterial species have demonstrated it to be a mutagen. Chronic exposure in humans may cause kidney damage. Another possible effect of chronic exposure is development of a skin allergy that manifests upon re-exposure to the chemical.

Concentrated formic acid slowly decomposes to carbon monoxide and water, leading to pressure buildup in the containing vessel. For this reason, 98% formic acid is shipped in plastic bottles with self-venting caps.

The hazards of solutions of formic acid depend on the concentration. The following table lists the Globally Harmonized System of Classification and Labelling of Chemicals for formic acid solutions:

Concentration (weight percent) Pictogram H-Phrases
2–10% GHS07: Exclamation mark H315
10–90% GHS05: Corrosive H313
>90% GHS05: Corrosive H314

Formic acid in 85% concentration is flammable, and diluted formic acid is on the U.S. Food and Drug Administration list of food additives. The principal danger from formic acid is from skin or eye contact with the concentrated liquid or vapors. The U.S. OSHA Permissible Exposure Level (PEL) of formic acid vapor in the work environment is 5 parts per million parts of air (ppm).

Second law of thermodynamics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Second_law_of_thermodynamics   The second law of t...