Search This Blog

Friday, November 4, 2022

Age of Earth

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Age_of_Earth

The Blue Marble, Earth as seen in 1972 from Apollo 17

The age of Earth is estimated to be 4.54 ± 0.05 billion years (4.54 × 109 years ± 1%). This age may represent the age of Earth's accretion, or core formation, or of the material from which Earth formed. This dating is based on evidence from radiometric age-dating of meteorite material and is consistent with the radiometric ages of the oldest-known terrestrial and lunar samples.

Following the development of radiometric age-dating in the early 20th century, measurements of lead in uranium-rich minerals showed that some were in excess of a billion years old. The oldest such minerals analyzed to date—small crystals of zircon from the Jack Hills of Western Australia—are at least 4.404 billion years old. Calcium–aluminium-rich inclusions—the oldest known solid constituents within meteorites that are formed within the Solar System—are 4.567 billion years old, giving a lower limit for the age of the Solar System.

It is hypothesised that the accretion of Earth began soon after the formation of the calcium-aluminium-rich inclusions and the meteorites. Because the time this accretion process took is not yet known, and predictions from different accretion models range from a few million up to about 100 million years, the difference between the age of Earth and of the oldest rocks is difficult to determine. It is also difficult to determine the exact age of the oldest rocks on Earth, exposed at the surface, as they are aggregates of minerals of possibly different ages.

Development of modern geologic concepts

Studies of strata—the layering of rocks and earth—gave naturalists an appreciation that Earth may have been through many changes during its existence. These layers often contained fossilized remains of unknown creatures, leading some to interpret a progression of organisms from layer to layer.

Nicolas Steno in the 17th century was one of the first naturalists to appreciate the connection between fossil remains and strata. His observations led him to formulate important stratigraphic concepts (i.e., the "law of superposition" and the "principle of original horizontality"). In the 1790s, William Smith hypothesized that if two layers of rock at widely differing locations contained similar fossils, then it was very plausible that the layers were the same age. Smith's nephew and student, John Phillips, later calculated by such means that Earth was about 96 million years old.

In the mid-18th century, the naturalist Mikhail Lomonosov suggested that Earth had been created separately from, and several hundred thousand years before, the rest of the universe. Lomonosov's ideas were mostly speculative. In 1779 the Comte du Buffon tried to obtain a value for the age of Earth using an experiment: He created a small globe that resembled Earth in composition and then measured its rate of cooling. This led him to estimate that Earth was about 75,000 years old.

Other naturalists used these hypotheses to construct a history of Earth, though their timelines were inexact as they did not know how long it took to lay down stratigraphic layers. In 1830, geologist Charles Lyell, developing ideas found in James Hutton's works, popularized the concept that the features of Earth were in perpetual change, eroding and reforming continuously, and the rate of this change was roughly constant. This was a challenge to the traditional view, which saw the history of Earth as dominated by intermittent catastrophes. Many naturalists were influenced by Lyell to become "uniformitarians" who believed that changes were constant and uniform.

In 1862, the physicist William Thomson, 1st Baron Kelvin published calculations that fixed the age of Earth at between 20 million and 400 million years. He assumed that Earth had formed as a completely molten object, and determined the amount of time it would take for the near-surface temperature gradient to decrease to its present value. His calculations did not account for heat produced via radioactive decay (a then unknown process) or, more significantly, convection inside Earth, which allows the temperature in the upper mantle to remain high much longer, maintaining a high thermal gradient in the crust much longer. Even more constraining were Kelvin's estimates of the age of the Sun, which were based on estimates of its thermal output and a theory that the Sun obtains its energy from gravitational collapse; Kelvin estimated that the Sun is about 20 million years old.

William Thomson (Lord Kelvin)

Geologists such as Charles Lyell had trouble accepting such a short age for Earth. For biologists, even 100 million years seemed much too short to be plausible. In Charles Darwin's theory of evolution, the process of random heritable variation with cumulative selection requires great durations of time, and Darwin himself stated that Lord Kelvin's estimates did not appear to provide enough. According to modern biology, the total evolutionary history from the beginning of life to today has taken place since 3.5 to 3.8 billion years ago, the amount of time which passed since the last universal ancestor of all living organisms as shown by geological dating.

In a lecture in 1869, Darwin's great advocate, Thomas H. Huxley, attacked Thomson's calculations, suggesting they appeared precise in themselves but were based on faulty assumptions. The physicist Hermann von Helmholtz (in 1856) and astronomer Simon Newcomb (in 1892) contributed their own calculations of 22 and 18 million years, respectively, to the debate: they independently calculated the amount of time it would take for the Sun to condense down to its current diameter and brightness from the nebula of gas and dust from which it was born. Their values were consistent with Thomson's calculations. However, they assumed that the Sun was only glowing from the heat of its gravitational contraction. The process of solar nuclear fusion was not yet known to science.

In 1895 John Perry challenged Kelvin's figure on the basis of his assumptions on conductivity, and Oliver Heaviside entered the dialogue, considering it "a vehicle to display the ability of his operator method to solve problems of astonishing complexity."

Other scientists backed up Thomson's figures. Charles Darwin's son, the astronomer George H. Darwin, proposed that Earth and Moon had broken apart in their early days when they were both molten. He calculated the amount of time it would have taken for tidal friction to give Earth its current 24-hour day. His value of 56 million years added additional evidence that Thomson was on the right track.

The last estimate Thomson gave, in 1897, was: "that it was more than 20 and less than 40 million year old, and probably much nearer 20 than 40". In 1899 and 1900, John Joly calculated the rate at which the oceans should have accumulated salt from erosion processes, and determined that the oceans were about 80 to 100 million years old.

Radiometric dating

Overview

By their chemical nature, rock minerals contain certain elements and not others; but in rocks containing radioactive isotopes, the process of radioactive decay generates exotic elements over time. By measuring the concentration of the stable end product of the decay, coupled with knowledge of the half life and initial concentration of the decaying element, the age of the rock can be calculated. Typical radioactive end products are argon from decay of potassium-40, and lead from decay of uranium and thorium. If the rock becomes molten, as happens in Earth's mantle, such nonradioactive end products typically escape or are redistributed. Thus the age of the oldest terrestrial rock gives a minimum for the age of Earth, assuming that no rock has been intact for longer than Earth itself.

Convective mantle and radioactivity

In 1892, Thomson had been made Lord Kelvin in appreciation of his many scientific accomplishments. Kelvin calculated the age of Earth by using thermal gradients, and he arrived at an estimate of about 100 million years. He did not realize that Earth's mantle was convecting, and this invalidated his estimate. In 1895, John Perry produced an age-of-Earth estimate of 2 to 3 billion years using a model of a convective mantle and thin crust, however his work was largely ignored. Kelvin stuck by his estimate of 100 million years, and later reduced it to about 20 million years.

The discovery of radioactivity introduced another factor in the calculation. After Henri Becquerel's initial discovery in 1896, Marie and Pierre Curie discovered the radioactive elements polonium and radium in 1898; and in 1903, Pierre Curie and Albert Laborde announced that radium produces enough heat to melt its own weight in ice in less than an hour. Geologists quickly realized that this upset the assumptions underlying most calculations of the age of Earth. These had assumed that the original heat of Earth and the Sun had dissipated steadily into space, but radioactive decay meant that this heat had been continually replenished. George Darwin and John Joly were the first to point this out, in 1903.

Invention of radiometric dating

Radioactivity, which had overthrown the old calculations, yielded a bonus by providing a basis for new calculations, in the form of radiometric dating.

Ernest Rutherford and Frederick Soddy jointly had continued their work on radioactive materials and concluded that radioactivity was due to a spontaneous transmutation of atomic elements. In radioactive decay, an element breaks down into another, lighter element, releasing alpha, beta, or gamma radiation in the process. They also determined that a particular isotope of a radioactive element decays into another element at a distinctive rate. This rate is given in terms of a "half-life", or the amount of time it takes half of a mass of that radioactive material to break down into its "decay product".

Some radioactive materials have short half-lives; some have long half-lives. Uranium and thorium have long half-lives, and so persist in Earth's crust, but radioactive elements with short half-lives have generally disappeared. This suggested that it might be possible to measure the age of Earth by determining the relative proportions of radioactive materials in geological samples. In reality, radioactive elements do not always decay into nonradioactive ("stable") elements directly, instead, decaying into other radioactive elements that have their own half-lives and so on, until they reach a stable element. These "decay chains", such as the uranium-radium and thorium series, were known within a few years of the discovery of radioactivity and provided a basis for constructing techniques of radiometric dating.

The pioneers of radioactivity were chemist Bertram B. Boltwood and the energetic Rutherford. Boltwood had conducted studies of radioactive materials as a consultant, and when Rutherford lectured at Yale in 1904, Boltwood was inspired to describe the relationships between elements in various decay series. Late in 1904, Rutherford took the first step toward radiometric dating by suggesting that the alpha particles released by radioactive decay could be trapped in a rocky material as helium atoms. At the time, Rutherford was only guessing at the relationship between alpha particles and helium atoms, but he would prove the connection four years later.

Soddy and Sir William Ramsay had just determined the rate at which radium produces alpha particles, and Rutherford proposed that he could determine the age of a rock sample by measuring its concentration of helium. He dated a rock in his possession to an age of 40 million years by this technique. Rutherford wrote,

I came into the room, which was half dark, and presently spotted Lord Kelvin in the audience and realized that I was in trouble at the last part of my speech dealing with the age of the Earth, where my views conflicted with his. To my relief, Kelvin fell fast asleep, but as I came to the important point, I saw the old bird sit up, open an eye, and cock a baleful glance at me! Then a sudden inspiration came, and I said, "Lord Kelvin had limited the age of the Earth, provided no new source was discovered. That prophetic utterance refers to what we are now considering tonight, radium!" Behold! the old boy beamed upon me.

Rutherford assumed that the rate of decay of radium as determined by Ramsay and Soddy was accurate, and that helium did not escape from the sample over time. Rutherford's scheme was inaccurate, but it was a useful first step.

Boltwood focused on the end products of decay series. In 1905, he suggested that lead was the final stable product of the decay of radium. It was already known that radium was an intermediate product of the decay of uranium. Rutherford joined in, outlining a decay process in which radium emitted five alpha particles through various intermediate products to end up with lead, and speculated that the radium–lead decay chain could be used to date rock samples. Boltwood did the legwork, and by the end of 1905 had provided dates for 26 separate rock samples, ranging from 92 to 570 million years. He did not publish these results, which was fortunate because they were flawed by measurement errors and poor estimates of the half-life of radium. Boltwood refined his work and finally published the results in 1907.

Boltwood's paper pointed out that samples taken from comparable layers of strata had similar lead-to-uranium ratios, and that samples from older layers had a higher proportion of lead, except where there was evidence that lead had leached out of the sample. His studies were flawed by the fact that the decay series of thorium was not understood, which led to incorrect results for samples that contained both uranium and thorium. However, his calculations were far more accurate than any that had been performed to that time. Refinements in the technique would later give ages for Boltwood's 26 samples of 410 million to 2.2 billion years.

Arthur Holmes establishes radiometric dating

Although Boltwood published his paper in a prominent geological journal, the geological community had little interest in radioactivity. Boltwood gave up work on radiometric dating and went on to investigate other decay series. Rutherford remained mildly curious about the issue of the age of Earth but did little work on it.

Robert Strutt tinkered with Rutherford's helium method until 1910 and then ceased. However, Strutt's student Arthur Holmes became interested in radiometric dating and continued to work on it after everyone else had given up. Holmes focused on lead dating, because he regarded the helium method as unpromising. He performed measurements on rock samples and concluded in 1911 that the oldest (a sample from Ceylon) was about 1.6 billion years old. These calculations were not particularly trustworthy. For example, he assumed that the samples had contained only uranium and no lead when they were formed.

More important research was published in 1913. It showed that elements generally exist in multiple variants with different masses, or "isotopes". In the 1930s, isotopes would be shown to have nuclei with differing numbers of the neutral particles known as "neutrons". In that same year, other research was published establishing the rules for radioactive decay, allowing more precise identification of decay series.

Many geologists felt these new discoveries made radiometric dating so complicated as to be worthless. Holmes felt that they gave him tools to improve his techniques, and he plodded ahead with his research, publishing before and after the First World War. His work was generally ignored until the 1920s, though in 1917 Joseph Barrell, a professor of geology at Yale, redrew geological history as it was understood at the time to conform to Holmes's findings in radiometric dating. Barrell's research determined that the layers of strata had not all been laid down at the same rate, and so current rates of geological change could not be used to provide accurate timelines of the history of Earth.

Holmes' persistence finally began to pay off in 1921, when the speakers at the yearly meeting of the British Association for the Advancement of Science came to a rough consensus that Earth was a few billion years old, and that radiometric dating was credible. Holmes published The Age of the Earth, an Introduction to Geological Ideas in 1927 in which he presented a range of 1.6 to 3.0 billion years. No great push to embrace radiometric dating followed, however, and the die-hards in the geological community stubbornly resisted. They had never cared for attempts by physicists to intrude in their domain, and had successfully ignored them so far. The growing weight of evidence finally tilted the balance in 1931, when the National Research Council of the US National Academy of Sciences decided to resolve the question of the age of Earth by appointing a committee to investigate. Holmes, being one of the few people on Earth who was trained in radiometric dating techniques, was a committee member, and in fact wrote most of the final report.

Thus, Arthur Holmes' report concluded that radioactive dating was the only reliable means of pinning down geological time scales. Questions of bias were deflected by the great and exacting detail of the report. It described the methods used, the care with which measurements were made, and their error bars and limitations.

Modern radiometric dating

Radiometric dating continues to be the predominant way scientists date geologic timescales. Techniques for radioactive dating have been tested and fine-tuned on an ongoing basis since the 1960s. Forty or so different dating techniques have been utilized to date, working on a wide variety of materials. Dates for the same sample using these different techniques are in very close agreement on the age of the material.

Possible contamination problems do exist, but they have been studied and dealt with by careful investigation, leading to sample preparation procedures being minimized to limit the chance of contamination.

Why meteorites were used

An age of 4.55 ± 0.07 billion years, very close to today's accepted age, was determined by Clair Cameron Patterson using uranium–lead isotope dating (specifically lead–lead dating) on several meteorites including the Canyon Diablo meteorite and published in 1956.

Lead isotope isochron diagram showing data used by Patterson to determine the age of Earth in 1956.

The quoted age of Earth is derived, in part, from the Canyon Diablo meteorite for several important reasons and is built upon a modern understanding of cosmochemistry built up over decades of research.

Most geological samples from Earth are unable to give a direct date of the formation of Earth from the solar nebula because Earth has undergone differentiation into the core, mantle, and crust, and this has then undergone a long history of mixing and unmixing of these sample reservoirs by plate tectonics, weathering and hydrothermal circulation.

All of these processes may adversely affect isotopic dating mechanisms because the sample cannot always be assumed to have remained as a closed system, by which it is meant that either the parent or daughter nuclide (a species of atom characterised by the number of neutrons and protons an atom contains) or an intermediate daughter nuclide may have been partially removed from the sample, which will skew the resulting isotopic date. To mitigate this effect it is usual to date several minerals in the same sample, to provide an isochron. Alternatively, more than one dating system may be used on a sample to check the date.

Some meteorites are furthermore considered to represent the primitive material from which the accreting solar disk was formed. Some have behaved as closed systems (for some isotopic systems) soon after the solar disk and the planets formed. To date, these assumptions are supported by much scientific observation and repeated isotopic dates, and it is certainly a more robust hypothesis than that which assumes a terrestrial rock has retained its original composition.

Nevertheless, ancient Archaean lead ores of galena have been used to date the formation of Earth as these represent the earliest formed lead-only minerals on the planet and record the earliest homogeneous lead–lead isotope systems on the planet. These have returned age dates of 4.54 billion years with a precision of as little as 1% margin for error.

Statistics for several meteorites that have undergone isochron dating are as follows:

1. St. Severin (ordinary chondrite)

1. Pb-Pb isochron 4.543 ± 0.019 billion years

2. Sm-Nd isochron 4.55 ± 0.33 billion years

3. Rb-Sr isochron 4.51 ± 0.15 billion years

4. Re-Os isochron 4.68 ± 0.15 billion years
2. Juvinas (basaltic achondrite)

1. Pb-Pb isochron 4.556 ± 0.012 billion years

2. Pb-Pb isochron 4.540 ± 0.001 billion years

3. Sm-Nd isochron 4.56 ± 0.08 billion years

4. Rb-Sr isochron 4.50 ± 0.07 billion years
3. Allende (carbonaceous chondrite)

1. Pb-Pb isochron 4.553 ± 0.004 billion years

2. Ar-Ar age spectrum 4.52 ± 0.02 billion years

3. Ar-Ar age spectrum 4.55 ± 0.03 billion years

4. Ar-Ar age spectrum  4.56 ± 0.05 billion years

Canyon Diablo meteorite

Barringer Crater, Arizona, where the Canyon Diablo meteorite was found.

The Canyon Diablo meteorite was used because it is both large and representative of a particularly rare type of meteorite that contains sulfide minerals (particularly troilite, FeS), metallic nickel-iron alloys, plus silicate minerals. This is important because the presence of the three mineral phases allows investigation of isotopic dates using samples that provide a great separation in concentrations between parent and daughter nuclides. This is particularly true of uranium and lead. Lead is strongly chalcophilic and is found in the sulfide at a much greater concentration than in the silicate, versus uranium. Because of this segregation in the parent and daughter nuclides during the formation of the meteorite, this allowed a much more precise date of the formation of the solar disk and hence the planets than ever before.

Fragment of the Canyon Diablo iron meteorite.

The age determined from the Canyon Diablo meteorite has been confirmed by hundreds of other age determinations, from both terrestrial samples and other meteorites. The meteorite samples, however, show a spread from 4.53 to 4.58 billion years ago. This is interpreted as the duration of formation of the solar nebula and its collapse into the solar disk to form the Sun and the planets. This 50 million year time span allows for accretion of the planets from the original solar dust and meteorites.

The Moon, as another extraterrestrial body that has not undergone plate tectonics and that has no atmosphere, provides quite precise age dates from the samples returned from the Apollo missions. Rocks returned from the Moon have been dated at a maximum of 4.51 billion years old. Martian meteorites that have landed upon Earth have also been dated to around 4.5 billion years old by lead–lead dating. Lunar samples, since they have not been disturbed by weathering, plate tectonics or material moved by organisms, can also provide dating by direct electron microscope examination of cosmic ray tracks. The accumulation of dislocations generated by high energy cosmic ray particle impacts provides another confirmation of the isotopic dates. Cosmic ray dating is only useful on material that has not been melted, since melting erases the crystalline structure of the material, and wipes away the tracks left by the particles.

Altogether, the concordance of age dates of both the earliest terrestrial lead reservoirs and all other reservoirs within the Solar System found to date are used to support the fact that Earth and the rest of the Solar System formed at around 4.53 to 4.58 billion years ago.

Flowering plant

From Wikipedia, the free encyclopedia

Flowering plant
Temporal range: Cretaceous (Late Valanginian) – present, 134–0 Ma
Flower poster 2.jpg
Diversity of angiosperms
Scientific classification e
Kingdom: Plantae
Clade: Tracheophytes
Clade: Spermatophytes
Clade: Angiosperms
Groups (APG IV)

Basal angiosperms

Core angiosperms

Synonyms

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (/ˌæniəˈspɜːrm/), commonly called angiosperms. The term "angiosperm" is derived from the Greek words angeion ('container, vessel') and sperma ('seed'), and refers to those plants that produce their seeds enclosed within a fruit. They are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species. Angiosperms were formerly called Magnoliophyta (/mæɡˌnliˈɒfətə, -əˈftə/).

Like gymnosperms, angiosperms are seed-producing plants. They are distinguished from gymnosperms by characteristics including flowers, endosperm within their seeds, and the production of fruits that contain the seeds.

The ancestors of flowering plants diverged from the common ancestor of all living gymnosperms before the end of the Carboniferous, over 300 million years ago. The closest fossil relatives of flowering plants are uncertain and contentious.

The earliest angiosperm fossils are in the form of pollen around 134 million years ago during the Early Cretaceous. Over the course of the Cretaceous, angiosperms explosively diversified, becoming the dominant group of plants across the planet by the end of the period, corresponding with the decline and extinction of previously widespread gymnosperm groups. The origin and diversification of the angiosperms is often known as "Darwin's abominable mystery".

Description

Chamaenerion angustifolium, also known as fireweed or rosebay willowherb, is a flowering plant in the willowherb family Onagraceae.

Angiosperm derived characteristics

Angiosperms differ from other seed plants in several ways, described in the table below. These distinguishing characteristics taken together have made the angiosperms the most diverse and numerous land plants, and the most commercially important group to humans.

Distinctive features of angiosperms
Feature Description
Flowering organs Flowers, the reproductive organs of flowering plants, are the most remarkable feature distinguishing them from the other seed plants. Flowers provided angiosperms with the means to have a more species-specific breeding system, and hence a way to evolve more readily into different species without the risk of crossing back with related species. Faster speciation enabled the angiosperms to adapt to a wider range of ecological niches. This has allowed flowering plants to largely dominate terrestrial ecosystems, comprising about 90 percent of all plant species.
Stamens with two pairs of pollen sacs Stamens are much lighter than the corresponding organs of gymnosperms and have contributed to the diversification of angiosperms through time with adaptations to specialised pollination syndromes, such as particular pollinators. Stamens have also become modified through time to prevent self-fertilization, which has permitted further diversification, allowing angiosperms eventually to fill more niches.
Reduced male gametophyte, three cells The male gametophyte in angiosperms is significantly reduced in size compared to those of gymnosperm seed plants. The smaller size of the pollen reduces the amount of time between pollination (the pollen grain reaching the female plant) and fertilization. In gymnosperms, fertilization can occur up to a year after pollination, whereas in angiosperms, fertilization begins very soon after pollination. The shorter amount of time between pollination and fertilization allows angiosperms to produce seeds earlier after pollination than gymnosperms, providing angiosperms a distinct evolutionary advantage.
Closed carpel enclosing the ovules (carpel or carpels and accessory parts may become the fruit) The closed carpel of angiosperms also allows adaptations to specialised pollination syndromes and controls. This helps to prevent self-fertilization, thereby maintaining increased diversity. Once the ovary is fertilised, the carpel and some surrounding tissues develop into a fruit. This fruit often serves as an attractant to seed-dispersing animals. The resulting cooperative relationship presents another advantage to angiosperms in the process of dispersal.
Reduced female gametophyte, seven cells with eight nuclei The reduced female gametophyte, like the reduced male gametophyte, may be an adaptation allowing for more rapid seed set, eventually leading to such flowering plant adaptations as annual herbaceous life-cycles, allowing the flowering plants to fill even more niches.
Endosperm In general, endosperm formation begins after fertilization and before the first division of the zygote. Endosperm is a highly nutritive tissue that can provide food for the developing embryo, the cotyledons, and sometimes the seedling when it first appears.

Vascular anatomy

Cross-section of a stem of the angiosperm flax:
1. pith, 2. protoxylem, 3. xylem, 4. phloem, 5. sclerenchyma (bast fibre), 6. cortex, 7. epidermis

Angiosperm stems are made up of seven layers as shown on the right. The amount and complexity of tissue-formation in flowering plants exceeds that of gymnosperms.

In the dicotyledons, the vascular bundles of the stem are arranged such that the xylem and phloem form concentric rings. The bundles in the very young stem are arranged in an open ring, separating a central pith from an outer cortex. In each bundle, separating the xylem and phloem, is a layer of meristem or active formative tissue known as cambium. By the formation of a layer of cambium between the bundles (interfascicular cambium), a complete ring is formed, and a regular periodical increase in thickness results from the development of xylem on the inside and phloem on the outside. The soft phloem becomes crushed, but the hard wood persists and forms the bulk of the stem and branches of the woody perennial. Owing to differences in the character of the elements produced at the beginning and end of the season, the wood is marked out in transverse section into concentric rings, one for each season of growth, called annual rings.

Among the monocotyledons, the bundles are more numerous in the young stem and are scattered through the ground tissue. They contain no cambium and once formed the stem increases in diameter only in exceptional cases.

Reproductive anatomy

A collection of flowers forming an inflorescence.

The characteristic feature of angiosperms is the flower. Flowers show remarkable variation in form and elaboration, and provide the most trustworthy external characteristics for establishing relationships among angiosperm species. The function of the flower is to ensure fertilization of the ovule and development of fruit containing seeds. The floral apparatus may arise terminally on a shoot or from the axil of a leaf (where the petiole attaches to the stem). Occasionally, as in violets, a flower arises singly in the axil of an ordinary foliage-leaf. More typically, the flower-bearing portion of the plant is sharply distinguished from the foliage-bearing or vegetative portion, and forms a more or less elaborate branch-system called an inflorescence.

There are two kinds of reproductive cells produced by flowers. Microspores, which will divide to become pollen grains, are the "male" cells and are borne in the stamens (or microsporophylls). The "female" cells called megaspores, which will divide to become the egg cell (megagametogenesis), are contained in the ovule and enclosed in the carpel (or megasporophyll).

The flower may consist only of these parts, as in willow, where each flower comprises only a few stamens or two carpels. Usually, other structures are present and serve to protect the sporophylls and to form an envelope attractive to pollinators. The individual members of these surrounding structures are known as sepals and petals (or tepals in flowers such as Magnolia where sepals and petals are not distinguishable from each other). The outer series (calyx of sepals) is usually green and leaf-like, and functions to protect the rest of the flower, especially the bud. The inner series (corolla of petals) is, in general, white or brightly colored, and is more delicate in structure. It functions to attract insect or bird pollinators. Attraction is effected by color, scent, and nectar, which may be secreted in some part of the flower. The characteristics that attract pollinators account for the popularity of flowers and flowering plants among humans.

While the majority of flowers are perfect or hermaphrodite (having both pollen and ovule producing parts in the same flower structure), flowering plants have developed numerous morphological and physiological mechanisms to reduce or prevent self-fertilization. Heteromorphic flowers have short carpels and long stamens, or vice versa, so animal pollinators cannot easily transfer pollen to the pistil (receptive part of the carpel). Homomorphic flowers may employ a biochemical (physiological) mechanism called self-incompatibility to discriminate between self and non-self pollen grains. Alternatively, in dioecious species, the male and female parts are morphologically separated, developing on different individual flowers.

Taxonomy

History of classification

From 1736, an illustration of Linnaean classification

The botanical term "angiosperm", from Greek words angeíon (ἀγγεῖον 'bottle, vessel') and spérma (σπέρμα 'seed'), was coined in the form "Angiospermae" by Paul Hermann in 1690 but he used this term to refer to a group of plants which form only a subset of what today are known as angiosperms. Hermannn's Angiospermae including only flowering plants possessing seeds enclosed in capsules, distinguished from his Gymnospermae, which were flowering plants with achenial or schizo-carpic fruits, the whole fruit or each of its pieces being here regarded as a seed and naked. The terms Angiospermae and Gymnospermae were used by Carl Linnaeus with the same sense, but with restricted application, in the names of the orders of his class Didynamia.

The terms angiosperms and gymnosperm fundamentally changed in meaning in 1827 when Robert Brown established the existence of truly naked ovules in the Cycadeae and Coniferae. The term gymnosperm was from then on applied to seed plants with naked ovules, and the term angiosperm to seed plants with enclosed ovules. However, for many years after Brown's discovery, the primary division of the seed plants was seen as between monocots and dicots, with gymnosperms as a small subset of the dicots.

An auxanometer, a device for measuring increase or rate of growth in plants

In 1851, Hofmeister discovered the changes occurring in the embryo-sac of flowering plants, and determined the correct relationships of these to the Cryptogamia. This fixed the position of Gymnosperms as a class distinct from Dicotyledons, and the term Angiosperm then gradually came to be accepted as the suitable designation for the whole of the flowering plants other than Gymnosperms, including the classes of Dicotyledons and Monocotyledons. This is the sense in which the term is used today.

In most taxonomies, the flowering plants are treated as a coherent group. The most popular descriptive name has been Angiospermae, with Anthophyta (lit. 'flower-plants') a second choice (both unranked). The Wettstein system and Engler system treated them as a subdivision (Angiospermae). The Reveal system also treated them as a subdivision (Magnoliophytina), but later split it to Magnoliopsida, Liliopsida, and Rosopsida. The Takhtajan system and Cronquist system treat them as a division (Magnoliophyta). The Dahlgren system and Thorne system (1992) treat them as a class (Magnoliopsida). The APG system of 1998, and the later 2003 and 2009 revisions, treat the flowering plants as an unranked clade without a formal Latin name (angiosperms). A formal classification was published alongside the 2009 revision in which the flowering plants rank as a subclass (Magnoliidae).

The internal classification of this group has undergone considerable revision. The Cronquist system, proposed by Arthur Cronquist in 1968 and published in its full form in 1981, is still widely used but is no longer believed to accurately reflect phylogeny. A consensus about how the flowering plants should be arranged has recently begun to emerge through the work of the Angiosperm Phylogeny Group (APG), which published an influential reclassification of the angiosperms in 1998. Updates incorporating more recent research were published as the APG II system in 2003, the APG III system in 2009, and the APG IV system in 2016.

Traditionally, the flowering plants are divided into two groups,

to which the Cronquist system ascribes the classes Magnoliopsida (from "Magnoliaceae") and Liliopsida (from "Liliaceae"). Other descriptive names allowed by Article 16 of the ICBN include Dicotyledones or Dicotyledoneae, and Monocotyledones or Monocotyledoneae, which have a long history of use. In plain English, their members may be called "dicotyledons" ("dicots") and "monocotyledons" ("monocots"). The Latin behind these names refers the observation that the dicots most often have two cotyledons, or embryonic leaves, within each seed. The monocots usually have only one, but the rule is not absolute either way. From a broad diagnostic point of view, the number of cotyledons is neither a particularly handy, nor a reliable character.

Recent studies, as by the APG, show that the monocots form a monophyletic group (a clade) but that the dicots are paraphyletic. Nevertheless, the majority of dicot species fall into a clade, the eudicots or tricolpates, and most of the remaining fall into another major clade, the magnoliids, containing about 9,000 species. The rest include a paraphyletic grouping of early branching taxa known collectively as the basal angiosperms, plus the families Ceratophyllaceae and Chloranthaceae.

Modern classification

Monocot (left) and dicot seedlings

There are eight groups of living angiosperms:

The exact relationships among these eight groups is not yet clear, although there is agreement that the first three groups to diverge from the ancestral angiosperm were Amborellales, Nymphaeales, and Austrobaileyales (basal angiosperms) Of the remaining five groups (core angiosperms), the relationships among the three broadest groups remains unclear (magnoliids, monocots, and eudicots). Zeng and colleagues (Fig. 1) describe four competing schemes.The eudicots and monocots are the largest and most diversified, with ~ 75% and 20% of angiosperm species, respectively. Some analyses make the magnoliids the first to diverge, others the monocots. Ceratophyllum seems to group with the eudicots rather than with the monocots. The APG IV retained the overall higher order relationship described in APG III.

Evolutionary history

Paleozoic

Fossilised spores suggest that land plants (embryophytes) have existed for at least 475 million years. Early land plants reproduced sexually with flagellated, swimming sperm, like the green algae from which they evolved. An adaptation to terrestrialization was the development of upright sporangia for dispersal by spores to new habitats. This feature is lacking in the descendants of their nearest algal relatives, the Charophycean green algae. A later terrestrial adaptation took place with retention of the delicate, avascular sexual stage, the gametophyte, within the tissues of the vascular sporophyte. This occurred by spore germination within sporangia rather than spore release, as in non-seed plants. A current example of how this might have happened can be seen in the precocious spore germination in Selaginella, the spike-moss. The result for the ancestors of angiosperms and gymnosperms was enclosing the female gamete in a case, the seed. The first seed bearing plants were gymnosperms, like the ginkgo, and conifers (such as pines and firs). These did not produce flowers. The pollen grains (male gametophytes) of Ginkgo and cycads produce a pair of flagellated, mobile sperm cells that "swim" down the developing pollen tube to the female and her eggs.

Angiosperms appear suddenly and in great diversity in the fossil record in the Early Cretaceous. This poses such a problem for the theory of gradual evolution that Charles Darwin called it an "abominable mystery". Several groups of extinct gymnosperms, in particular seed ferns, have been proposed as the ancestors of flowering plants, but there is no continuous fossil evidence showing how flowers evolved, and botanists still regard it as a mystery.

Several claims of pre-Cretaceous angiosperm fossils have been made, such as the upper Triassic Sanmiguelia lewisi, but none of these are widely accepted by paleobotanists. Oleanane, a secondary metabolite produced by many flowering plants, has been found in Permian deposits of that age together with fossils of gigantopterids. Gigantopterids are a group of extinct seed plants that share many morphological traits with flowering plants, although they are not known to have been flowering plants themselves. Molecular evidence suggests that the ancestors of angiosperms diverged from the gymnosperms during the late Devonian, about 365 million years ago, despite only appearing in the fossil record during the Early Cretaceous, almost two hundred million years later.

Triassic and Jurassic

Fluffy flowers of Tetradenia riparia (misty plume bush)
 
Flowers of Malus sylvestris (crab apple)
 
Flowers and leaves of Senecio angulatus (creeping groundsel)
 
Two bees on the composite flower head of creeping thistle, Cirsium arvense

Based on fossil evidence, some have proposed that the ancestors of the angiosperms diverged from an unknown group of gymnosperms in the Triassic period (245–202 million years ago). Fossil angiosperm-like pollen from the Middle Triassic (247.2–242.0 Ma) suggests an older date for their origin, which is further supported by genetic evidence of the ancestors of angiosperms diverging during the Devonian. A close relationship between angiosperms and gnetophytes, proposed on the basis of morphological evidence, has more recently been disputed on the basis of molecular evidence that suggest gnetophytes are instead more closely related to conifers and other gymnosperms.

The fossil plant species Nanjinganthus dendrostyla from Early Jurassic China seems to share many exclusively angiosperm features, such as a thickened receptacle with ovules, and thus might represent a crown-group or a stem-group angiosperm. However, these have been disputed by other researchers, who contend that the structures are misinterpreted decomposed conifer cones.

The evolution of seed plants and later angiosperms appears to be the result of two distinct rounds of whole genome duplication events. These occurred at 319 million years ago and 192 million years ago. Another possible whole genome duplication event at 160 million years ago perhaps created the ancestral line that led to all modern flowering plants. That event was studied by sequencing the genome of an ancient flowering plant, Amborella trichopoda.

One study has suggested that the early-middle Jurassic plant Schmeissneria, traditionally considered a type of ginkgo, may be the earliest known angiosperm, or at least a close relative. This, along with all other pre-Cretaceous angiosperm fossil claims, is strongly disputed by many paleobotanists.

Many paleobotanists consider the Caytoniales, a group of "seed ferns" that first appeared during the Triassic and went extinct in the Cretaceous, to be amongst the best candidates for a close relative of angiosperms.

Cretaceous

Whereas the earth had previously been dominated by ferns and conifers, angiosperms quickly spread during the Cretaceous. They now comprise about 90% of all plant species including most food crops. It has been proposed that the swift rise of angiosperms to dominance was facilitated by a reduction in their genome size. During the early Cretaceous period, only angiosperms underwent rapid genome downsizing, while genome sizes of ferns and gymnosperms remained unchanged. Smaller genomes—and smaller nuclei—allow for faster rates of cell division and smaller cells. Thus, species with smaller genomes can pack more, smaller cells—in particular veins and stomata—into a given leaf volume. Genome downsizing therefore facilitated higher rates of leaf gas exchange (transpiration and photosynthesis) and faster rates of growth. This would have countered some of the negative physiological effects of genome duplications, facilitated increased uptake of carbon dioxide despite concurrent declines in atmospheric CO2 concentrations, and allowed the flowering plants to outcompete other land plants.

The oldest known fossils definitively attributable to angiosperms are reticulated monosulcate pollen from the late Valanginian (Early or Lower Cretaceous - 140 to 133 million years ago) of Italy and Israel, likely representative of the basal angiosperm grade.

The earliest known macrofossil confidently identified as an angiosperm, Archaefructus liaoningensis, is dated to about 125 million years BP (the Cretaceous period), whereas pollen considered to be of angiosperm origin takes the fossil record back to about 130 million years BP, with Montsechia representing the earliest flower at that time.

In 2013 flowers encased in amber were found and dated 100 million years before present. The amber had frozen the act of sexual reproduction in the process of taking place. Microscopic images showed tubes growing out of pollen and penetrating the flower's stigma. The pollen was sticky, suggesting it was carried by insects. In August 2017, scientists presented a detailed description and 3D model image of what the first flower possibly looked like, and presented the hypothesis that it may have lived about 140 million years ago. A Bayesian analysis of 52 angiosperm taxa suggested that the crown group of angiosperms evolved between 178 million years ago and 198 million years ago.

Recent DNA analysis based on molecular systematics showed that Amborella trichopoda, found on the Pacific island of New Caledonia, belongs to a sister group of the other flowering plants, and morphological studies suggest that it has features that may have been characteristic of the earliest flowering plants. The orders Amborellales, Nymphaeales, and Austrobaileyales diverged as separate lineages from the remaining angiosperm clade at a very early stage in flowering plant evolution.

The great angiosperm radiation, when a great diversity of angiosperms appears in the fossil record, occurred in the mid-Cretaceous (approximately 100 million years ago). However, a study in 2007 estimated that the division of the five most recent of the eight main groups occurred around 140 million years ago. (the genus Ceratophyllum, the family Chloranthaceae, the eudicots, the magnoliids, and the monocots) .

It is generally assumed that the function of flowers, from the start, was to involve mobile animals in their reproduction processes. That is, pollen can be scattered even if the flower is not brightly colored or oddly shaped in a way that attracts animals; however, by expending the energy required to create such traits, angiosperms can enlist the aid of animals and, thus, reproduce more efficiently.

Island genetics provides one proposed explanation for the sudden, fully developed appearance of flowering plants. Island genetics is believed to be a common source of speciation in general, especially when it comes to radical adaptations that seem to have required inferior transitional forms. Flowering plants may have evolved in an isolated setting like an island or island chain, where the plants bearing them were able to develop a highly specialised relationship with some specific animal (a wasp, for example). Such a relationship, with a hypothetical wasp carrying pollen from one plant to another much the way fig wasps do today, could result in the development of a high degree of specialisation in both the plant(s) and their partners. Note that the wasp example is not incidental; bees, which, it is postulated, evolved specifically due to mutualistic plant relationships, are descended from wasps.

Animals are also involved in the distribution of seeds. Fruit, which is formed by the enlargement of flower parts, is frequently a seed-dispersal tool that attracts animals to eat or otherwise disturb it, incidentally scattering the seeds it contains (see frugivory). Although many such mutualistic relationships remain too fragile to survive competition and to spread widely, flowering proved to be an unusually effective means of reproduction, spreading (whatever its origin) to become the dominant form of land plant life.

Flower ontogeny uses a combination of genes normally responsible for forming new shoots. The most primitive flowers probably had a variable number of flower parts, often separate from (but in contact with) each other. The flowers tended to grow in a spiral pattern, to be bisexual (in plants, this means both male and female parts on the same flower), and to be dominated by the ovary (female part). As flowers evolved, some variations developed parts fused together, with a much more specific number and design, and with either specific sexes per flower or plant or at least "ovary-inferior". Flower evolution continues to the present day; modern flowers have been so profoundly influenced by humans that some of them cannot be pollinated in nature. Many modern domesticated flower species were formerly simple weeds, which sprouted only when the ground was disturbed. Some of them tended to grow with human crops, perhaps already having symbiotic companion plant relationships with them, and the prettiest did not get plucked because of their beauty, developing a dependence upon and special adaptation to human affection.

A few paleontologists have also proposed that flowering plants, or angiosperms, might have evolved due to interactions with dinosaurs. One of the idea's strongest proponents is Robert T. Bakker. He proposes that herbivorous dinosaurs, with their eating habits, provided a selective pressure on plants, for which adaptations either succeeded in deterring or coping with predation by herbivores.

By the late Cretaceous, angiosperms appear to have dominated environments formerly occupied by ferns and cycadophytes, but large canopy-forming trees replaced conifers as the dominant trees only close to the end of the Cretaceous 66 million years ago or even later, at the beginning of the Paleogene. The radiation of herbaceous angiosperms occurred much later. Yet, many fossil plants recognisable as belonging to modern families (including beech, oak, maple, and magnolia) had already appeared by the late Cretaceous. Flowering plants appeared in Australia about 126 million years ago. This also pushed the age of ancient Australian vertebrates, in what was then a south polar continent, to 126-110 million years old.

Gallery of photos

Diversity

The number of species of flowering plants is estimated to be in the range of 250,000 to 400,000. This compares to around 12,000 species of moss and 11,000 species of pteridophytes, showing that flowering plants are much more diverse. The number of families in APG (1998) was 462. In APG II (2003) it is not settled; at maximum it is 457, but within this number there are 55 optional segregates, so that the minimum number of families in this system is 402. In APG III (2009) there are 415 families. Compared to the APG III system, the APG IV system recognizes five new orders (Boraginales, Dilleniales, Icacinales, Metteniusales and Vahliales), along with some new families, making a total of 64 angiosperm orders and 416 families. The diversity of flowering plants is not evenly distributed. Nearly all species belong to the eudicot (75%), monocot (23%), and magnoliid (2%) clades. The remaining five clades contain a little over 250 species in total; i.e. less than 0.1% of flowering plant diversity, divided among nine families. The 43 most diverse of 443 families of flowering plants by species, in their APG circumscriptions, are

  1. Asteraceae or Compositae (daisy family): 22,750 species;
  2. Orchidaceae (orchid family): 21,950;
  3. Fabaceae or Leguminosae (bean family): 19,400;
  4. Rubiaceae (madder family): 13,150;
  5. Poaceae or Gramineae (grass family): 10,035;
  6. Lamiaceae or Labiatae (mint family): 7,175;
  7. Euphorbiaceae (spurge family): 5,735;
  8. Melastomataceae or Melastomaceae (melastome family): 5,005;
  9. Myrtaceae (myrtle family): 4,625;
  10. Apocynaceae (dogbane family): 4,555;
  11. Cyperaceae (sedge family): 4,350;
  12. Malvaceae (mallow family): 4,225;
  13. Araceae (arum family): 4,025;
  14. Ericaceae (heath family): 3,995;
  15. Gesneriaceae (gesneriad family): 3,870;
  16. Apiaceae or Umbelliferae (parsley family): 3,780;
  17. Brassicaceae or Cruciferae (cabbage family): 3,710:
  18. Piperaceae (pepper family): 3,600;
  19. Bromeliaceae (bromeliad family): 3,540;
  20. Acanthaceae (acanthus family): 3,500;
  21. Rosaceae (rose family): 2,830;
  22. Boraginaceae (borage family): 2,740;
  23. Urticaceae (nettle family): 2,625;
  24. Ranunculaceae (buttercup family): 2,525;
  25. Lauraceae (laurel family): 2,500;
  26. Solanaceae (nightshade family): 2,460;
  27. Campanulaceae (bellflower family): 2,380;
  28. Arecaceae (palm family): 2,361;
  29. Annonaceae (custard apple family): 2,220;
  30. Caryophyllaceae (pink family): 2,200;
  31. Orobanchaceae (broomrape family): 2,060;
  32. Amaranthaceae (amaranth family): 2,050;
  33. Iridaceae (iris family): 2,025;
  34. Aizoaceae or Ficoidaceae (ice plant family): 2,020;
  35. Rutaceae (rue family): 1,815;
  36. Phyllanthaceae (phyllanthus family): 1,745;
  37. Scrophulariaceae (figwort family): 1,700;
  38. Gentianaceae (gentian family): 1,650;
  39. Convolvulaceae (bindweed family): 1,600;
  40. Proteaceae (protea family): 1,600;
  41. Sapindaceae (soapberry family): 1,580;
  42. Cactaceae (cactus family): 1,500;
  43. Araliaceae (Aralia or ivy family): 1,450.

Of these, the Orchidaceae, Poaceae, Cyperaceae, Araceae, Bromeliaceae, Arecaceae, and Iridaceae are monocot families; Piperaceae, Lauraceae, and Annonaceae are magnoliid dicots; the rest of the families are eudicots.

Reproduction

Fertilisation and embryogenesis

Angiosperm life cycle

Double fertilization refers to a process in which two sperm cells fertilise cells in the ovule. This process begins when a pollen grain adheres to the stigma of the pistil (female reproductive structure), germinates, and grows a long pollen tube. While this pollen tube is growing, a haploid generative cell travels down the tube behind the tube nucleus. The generative cell divides by mitosis to produce two haploid (n) sperm cells. As the pollen tube grows, it makes its way from the stigma, down the style and into the ovary. Here the pollen tube reaches the micropyle of the ovule and digests its way into one of the synergids, releasing its contents (which include the sperm cells). The synergid that the cells were released into degenerates and one sperm makes its way to fertilise the egg cell, producing a diploid (2n) zygote. The second sperm cell fuses with both central cell nuclei, producing a triploid (3n) cell. As the zygote develops into an embryo, the triploid cell develops into the endosperm, which serves as the embryo's food supply. The ovary will now develop into a fruit and the ovule will develop into a seed.

Fruit and seed

The fruit of Aesculus hippocastanum, the horse chestnut tree

As the development of the embryo and endosperm proceeds within the embryo sac, the sac wall enlarges and combines with the nucellus (which is likewise enlarging) and the integument to form the seed coat. The ovary wall develops to form the fruit or pericarp, whose form is closely associated with type of seed dispersal system.

Frequently, the influence of fertilisation is felt beyond the ovary, and other parts of the flower take part in the formation of the fruit, e.g., the floral receptacle in the apple, strawberry, and others.

The character of the seed coat bears a definite relation to that of the fruit. They protect the embryo and aid in dissemination; they may also directly promote germination. Among plants with indehiscent fruits, in general, the fruit provides protection for the embryo and secures dissemination. In this case, the seed coat is only slightly developed. If the fruit is dehiscent and the seed is exposed, in general, the seed-coat is well developed and must discharge the functions otherwise executed by the fruit.

In some cases, like in the Asteraceae family, species have evolved to exhibit heterocarpy, or the production of different fruit morphs. These fruit morphs, produced from one plant, are different in size and shape, which influence dispersal range and germination rate. These fruit morphs are adapted to different environments, increasing chances for survival.

Meiosis

Like all diploid multicellular organisms that use sexual reproduction, flowering plants generate gametes using a specialised type of cell division called meiosis. Meiosis takes place in the ovule—a structure within the ovary that is located within the pistil at the centre of the flower (see diagram labeled "Angiosperm lifecycle"). A diploid cell (megaspore mother cell) in the ovule undergoes meiosis (involving two successive cell divisions) to produce four cells (megaspores) with haploid nuclei. It is thought that the basal chromosome number in angiosperms is n = 7. One of these four cells (megaspore) then undergoes three successive mitotic divisions to produce an immature embryo sac (megagametophyte) with eight haploid nuclei. Next, these nuclei are segregated into separate cells by cytokinesis to produce three antipodal cells, two synergid cells and an egg cell. Two polar nuclei are left in the central cell of the embryo sac.

Pollen is also produced by meiosis in the male anther (microsporangium). During meiosis, a diploid microspore mother cell undergoes two successive meiotic divisions to produce four haploid cells (microspores or male gametes). Each of these microspores, after further mitoses, becomes a pollen grain (microgametophyte) containing two haploid generative (sperm) cells and a tube nucleus. When a pollen grain makes contact with the female stigma, the pollen grain forms a pollen tube that grows down the style into the ovary. In the act of fertilisation, a male sperm nucleus fuses with the female egg nucleus to form a diploid zygote that can then develop into an embryo within the newly forming seed. Upon germination of the seed, a new plant can grow and mature.

The adaptive function of meiosis is currently a matter of debate. A key event during meiosis in a diploid cell is the pairing of homologous chromosomes and homologous recombination (the exchange of genetic information) between homologous chromosomes. This process promotes the production of increased genetic diversity among progeny and the recombinational repair of damages in the DNA to be passed on to progeny. To explain the adaptive function of meiosis in flowering plants, some authors emphasise diversity and others emphasise DNA repair.

Apomixis

Apomixis (reproduction via asexually formed seeds) is found naturally in about 2.2% of angiosperm genera. One type of apomixis, gametophytic apomixis found in a dandelion species involves formation of an unreduced embryo sac due to incomplete meiosis (apomeiosis) and development of an embryo from the unreduced egg inside the embryo sac, without fertilisation (parthenogenesis).

Some angiosperms, including many citrus varieties, are able to produce fruits through a type of apomixis called nucellar embryony.

Uses

Agriculture is almost entirely dependent on angiosperms, which provide virtually all plant-based food, and also provide a significant amount of livestock feed. Of all the families of plants, the Poaceae, or grass family (providing grains), is by far the most important, providing the bulk of all feedstocks (rice, maize, wheat, barley, rye, oats, pearl millet, sugar cane, sorghum). The Fabaceae, or legume family, comes in second place. Also of high importance are the Solanaceae, or nightshade family (potatoes, tomatoes, and peppers, among others); the Cucurbitaceae, or gourd family (including pumpkins and melons); the Brassicaceae, or mustard plant family (including rapeseed and the innumerable varieties of the cabbage species Brassica oleracea); and the Apiaceae, or parsley family. Many of our fruits come from the Rutaceae, or rue family (including oranges, lemons, grapefruits, etc.), and the Rosaceae, or rose family (including apples, pears, cherries, apricots, plums, etc.).

In some parts of the world, certain single species assume paramount importance because of their variety of uses, for example the coconut (Cocos nucifera) on Pacific atolls, and the olive (Olea europaea) in the Mediterranean region.

Flowering plants also provide economic resources in the form of wood, paper, fiber (cotton, flax, and hemp, among others), medicines (digitalis, camphor), decorative and landscaping plants, and many other uses. Coffee and cocoa are the common beverages obtained from the flowering plants. The main area in which they are surpassed by other plants—namely, coniferous trees (Pinales), which are non-flowering (gymnosperms)—is timber and paper production.

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...