Search This Blog

Thursday, November 17, 2022

Signal transduction

From Wikipedia, the free encyclopedia
 
Simplified representation of major signal transduction pathways in mammals.

Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellular response. Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. The changes elicited by ligand binding (or signal sensing) in a receptor give rise to a biochemical cascade, which is a chain of biochemical events known as a signaling pathway.

When signaling pathways interact with one another they form networks, which allow cellular responses to be coordinated, often by combinatorial signaling events. At the molecular level, such responses include changes in the transcription or translation of genes, and post-translational and conformational changes in proteins, as well as changes in their location. These molecular events are the basic mechanisms controlling cell growth, proliferation, metabolism and many other processes. In multicellular organisms, signal transduction pathways regulate cell communication in a wide variety of ways.

Each component (or node) of a signaling pathway is classified according to the role it plays with respect to the initial stimulus. Ligands are termed first messengers, while receptors are the signal transducers, which then activate primary effectors. Such effectors are typically proteins and are often linked to second messengers, which can activate secondary effectors, and so on. Depending on the efficiency of the nodes, a signal can be amplified (a concept known as signal gain), so that one signaling molecule can generate a response involving hundreds to millions of molecules. As with other signals, the transduction of biological signals is characterised by delay, noise, signal feedback and feedforward and interference, which can range from negligible to pathological. With the advent of computational biology, the analysis of signaling pathways and networks has become an essential tool to understand cellular functions and disease, including signaling rewiring mechanisms underlying responses to acquired drug resistance.

Domino cascade is a daily life analogy of signal transduction cascade

Stimuli

3D Medical animation still showing signal transduction.

The basis for signal transduction is the transformation of a certain stimulus into a biochemical signal. The nature of such stimuli can vary widely, ranging from extracellular cues, such as the presence of EGF, to intracellular events, such as the DNA damage resulting from replicative telomere attrition. Traditionally, signals that reach the central nervous system are classified as senses. These are transmitted from neuron to neuron in a process called synaptic transmission. Many other intercellular signal relay mechanisms exist in multicellular organisms, such as those that govern embryonic development.

Ligands

The majority of signal transduction pathways involve the binding of signaling molecules, known as ligands, to receptors that trigger events inside the cell. The binding of a signaling molecule with a receptor causes a change in the conformation of the receptor, known as receptor activation. Most ligands are soluble molecules from the extracellular medium which bind to cell surface receptors. These include growth factors, cytokines and neurotransmitters. Components of the extracellular matrix such as fibronectin and hyaluronan can also bind to such receptors (integrins and CD44, respectively). In addition, some molecules such as steroid hormones are lipid-soluble and thus cross the plasma membrane to reach cytoplasmic or nuclear receptors. In the case of steroid hormone receptors, their stimulation leads to binding to the promoter region of steroid-responsive genes.

Not all classifications of signaling molecules take into account the molecular nature of each class member. For example, odorants belong to a wide range of molecular classes, as do neurotransmitters, which range in size from small molecules such as dopamine to neuropeptides such as endorphins. Moreover, some molecules may fit into more than one class, e.g. epinephrine is a neurotransmitter when secreted by the central nervous system and a hormone when secreted by the adrenal medulla.

Some receptors such as HER2 are capable of ligand-independent activation when overexpressed or mutated. This leads to constituitive activation of the pathway, which may or may not be overturned by compensation mechanisms. In the case of HER2, which acts as a dimerization partner of other EGFRs, constituitive activation leads to hyperproliferation and cancer.

Mechanical forces

The prevalence of basement membranes in the tissues of Eumetazoans means that most cell types require attachment to survive. This requirement has led to the development of complex mechanotransduction pathways, allowing cells to sense the stiffness of the substratum. Such signaling is mainly orchestrated in focal adhesions, regions where the integrin-bound actin cytoskeleton detects changes and transmits them downstream through YAP1. Calcium-dependent cell adhesion molecules such as cadherins and selectins can also mediate mechanotransduction. Specialised forms of mechanotransduction within the nervous system are responsible for mechanosensation: hearing, touch, proprioception and balance.

Osmolarity

Cellular and systemic control of osmotic pressure (the difference in osmolarity between the cytosol and the extracellular medium) is critical for homeostasis. There are three ways in which cells can detect osmotic stimuli: as changes in macromolecular crowding, ionic strength, and changes in the properties of the plasma membrane or cytoskeleton (the latter being a form of mechanotransduction). These changes are detected by proteins known as osmosensors or osmoreceptors. In humans, the best characterised osmosensors are transient receptor potential channels present in the primary cilium of human cells. In yeast, the HOG pathway has been extensively characterised.

Temperature

The sensing of temperature in cells is known as thermoception and is primarily mediated by transient receptor potential channels. Additionally, animal cells contain a conserved mechanism to prevent high temperatures from causing cellular damage, the heat-shock response. Such response is triggered when high temperatures cause the dissociation of inactive HSF1 from complexes with heat shock proteins Hsp40/Hsp70 and Hsp90. With help from the ncRNA hsr1, HSF1 then trimerizes, becoming active and upregulating the expression of its target genes. Many other thermosensory mechanisms exist in both prokaryotes and eukaryotes.

Light

In mammals, light controls the sense of sight and the circadian clock by activating light-sensitive proteins in photoreceptor cells in the eye's retina. In the case of vision, light is detected by rhodopsin in rod and cone cells. In the case of the circadian clock, a different photopigment, melanopsin, is responsible for detecting light in intrinsically photosensitive retinal ganglion cells.

Receptors

Receptors can be roughly divided into two major classes: intracellular and extracellular receptors.

Extracellular receptors

Extracellular receptors are integral transmembrane proteins and make up most receptors. They span the plasma membrane of the cell, with one part of the receptor on the outside of the cell and the other on the inside. Signal transduction occurs as a result of a ligand binding to the outside region of the receptor (the ligand does not pass through the membrane). Ligand-receptor binding induces a change in the conformation of the inside part of the receptor, a process sometimes called "receptor activation". This results in either the activation of an enzyme domain of the receptor or the exposure of a binding site for other intracellular signaling proteins within the cell, eventually propagating the signal through the cytoplasm.

In eukaryotic cells, most intracellular proteins activated by a ligand/receptor interaction possess an enzymatic activity; examples include tyrosine kinase and phosphatases. Often such enzymes are covalently linked to the receptor. Some of them create second messengers such as cyclic AMP and IP3, the latter controlling the release of intracellular calcium stores into the cytoplasm. Other activated proteins interact with adaptor proteins that facilitate signaling protein interactions and coordination of signaling complexes necessary to respond to a particular stimulus. Enzymes and adaptor proteins are both responsive to various second messenger molecules.

Many adaptor proteins and enzymes activated as part of signal transduction possess specialized protein domains that bind to specific secondary messenger molecules. For example, calcium ions bind to the EF hand domains of calmodulin, allowing it to bind and activate calmodulin-dependent kinase. PIP3 and other phosphoinositides do the same thing to the Pleckstrin homology domains of proteins such as the kinase protein AKT.

G protein–coupled receptors

G protein–coupled receptors (GPCRs) are a family of integral transmembrane proteins that possess seven transmembrane domains and are linked to a heterotrimeric G protein. With nearly 800 members, this is the largest family of membrane proteins and receptors in mammals. Counting all animal species, they add up to over 5000. Mammalian GPCRs are classified into 5 major families: rhodopsin-like, secretin-like, metabotropic glutamate, adhesion and frizzled/smoothened, with a few GPCR groups being difficult to classify due to low sequence similarity, e.g. vomeronasal receptors. Other classes exist in eukaryotes, such as the Dictyostelium cyclic AMP receptors and fungal mating pheromone receptors.

Signal transduction by a GPCR begins with an inactive G protein coupled to the receptor; the G protein exists as a heterotrimer consisting of Gα, Gβ, and Gγ subunits. Once the GPCR recognizes a ligand, the conformation of the receptor changes to activate the G protein, causing Gα to bind a molecule of GTP and dissociate from the other two G-protein subunits. The dissociation exposes sites on the subunits that can interact with other molecules. The activated G protein subunits detach from the receptor and initiate signaling from many downstream effector proteins such as phospholipases and ion channels, the latter permitting the release of second messenger molecules. The total strength of signal amplification by a GPCR is determined by the lifetimes of the ligand-receptor complex and receptor-effector protein complex and the deactivation time of the activated receptor and effectors through intrinsic enzymatic activity; e.g. via protein kinase phosphorylation or b-arrestin-dependent internalization.

A study was conducted where a point mutation was inserted into the gene encoding the chemokine receptor CXCR2; mutated cells underwent a malignant transformation due to the expression of CXCR2 in an active conformation despite the absence of chemokine-binding. This meant that chemokine receptors can contribute to cancer development.

Tyrosine, Ser/Thr and Histidine-specific protein kinases

Receptor tyrosine kinases (RTKs) are transmembrane proteins with an intracellular kinase domain and an extracellular domain that binds ligands; examples include growth factor receptors such as the insulin receptor. To perform signal transduction, RTKs need to form dimers in the plasma membrane; the dimer is stabilized by ligands binding to the receptor. The interaction between the cytoplasmic domains stimulates the autophosphorylation of tyrosine residues within the intracellular kinase domains of the RTKs, causing conformational changes. Subsequent to this, the receptors' kinase domains are activated, initiating phosphorylation signaling cascades of downstream cytoplasmic molecules that facilitate various cellular processes such as cell differentiation and metabolism. Many Ser/Thr and dual-specificity protein kinases are important for signal transduction, either acting downstream of [receptor tyrosine kinases], or as membrane-embedded or cell-soluble versions in their own right. The process of signal transduction involves around 560 known protein kinases and pseudokinases, encoded by the human kinome.

As is the case with GPCRs, proteins that bind GTP play a major role in signal transduction from the activated RTK into the cell. In this case, the G proteins are members of the Ras, Rho, and Raf families, referred to collectively as small G proteins. They act as molecular switches usually tethered to membranes by isoprenyl groups linked to their carboxyl ends. Upon activation, they assign proteins to specific membrane subdomains where they participate in signaling. Activated RTKs in turn activate small G proteins that activate guanine nucleotide exchange factors such as SOS1. Once activated, these exchange factors can activate more small G proteins, thus amplifying the receptor's initial signal. The mutation of certain RTK genes, as with that of GPCRs, can result in the expression of receptors that exist in a constitutively activated state; such mutated genes may act as oncogenes.

Histidine-specific protein kinases are structurally distinct from other protein kinases and are found in prokaryotes, fungi, and plants as part of a two-component signal transduction mechanism: a phosphate group from ATP is first added to a histidine residue within the kinase, then transferred to an aspartate residue on a receiver domain on a different protein or the kinase itself, thus activating the aspartate residue.

Integrins

An overview of integrin-mediated signal transduction, adapted from Hehlgens et al. (2007).

Integrins are produced by a wide variety of cells; they play a role in cell attachment to other cells and the extracellular matrix and in the transduction of signals from extracellular matrix components such as fibronectin and collagen. Ligand binding to the extracellular domain of integrins changes the protein's conformation, clustering it at the cell membrane to initiate signal transduction. Integrins lack kinase activity; hence, integrin-mediated signal transduction is achieved through a variety of intracellular protein kinases and adaptor molecules, the main coordinator being integrin-linked kinase. As shown in the adjacent picture, cooperative integrin-RTK signaling determines the timing of cellular survival, apoptosis, proliferation, and differentiation.

Important differences exist between integrin-signaling in circulating blood cells and non-circulating cells such as epithelial cells; integrins of circulating cells are normally inactive. For example, cell membrane integrins on circulating leukocytes are maintained in an inactive state to avoid epithelial cell attachment; they are activated only in response to stimuli such as those received at the site of an inflammatory response. In a similar manner, integrins at the cell membrane of circulating platelets are normally kept inactive to avoid thrombosis. Epithelial cells (which are non-circulating) normally have active integrins at their cell membrane, helping maintain their stable adhesion to underlying stromal cells that provide signals to maintain normal functioning.

In plants, there are no bona fide integrin receptors identified to date; nevertheless, several integrin-like proteins were proposed based on structural homology with the metazoan receptors. Plants contain integrin-linked kinases that are very similar in their primary structure with the animal ILKs. In the experimental model plant Arabidopsis thaliana, one of the integrin-linked kinase genes, ILK1, has been shown to be a critical element in the plant immune response to signal molecules from bacterial pathogens and plant sensitivity to salt and osmotic stress. ILK1 protein interacts with the high-affinity potassium transporter HAK5 and with the calcium sensor CML9.

Toll-like receptors

When activated, toll-like receptors (TLRs) take adapter molecules within the cytoplasm of cells in order to propagate a signal. Four adaptor molecules are known to be involved in signaling, which are Myd88, TIRAP, TRIF, and TRAM. These adapters activate other intracellular molecules such as IRAK1, IRAK4, TBK1, and IKKi that amplify the signal, eventually leading to the induction or suppression of genes that cause certain responses. Thousands of genes are activated by TLR signaling, implying that this method constitutes an important gateway for gene modulation.

Ligand-gated ion channels

A ligand-gated ion channel, upon binding with a ligand, changes conformation to open a channel in the cell membrane through which ions relaying signals can pass. An example of this mechanism is found in the receiving cell of a neural synapse. The influx of ions that occurs in response to the opening of these channels induces action potentials, such as those that travel along nerves, by depolarizing the membrane of post-synaptic cells, resulting in the opening of voltage-gated ion channels.

An example of an ion allowed into the cell during a ligand-gated ion channel opening is Ca2+; it acts as a second messenger initiating signal transduction cascades and altering the physiology of the responding cell. This results in amplification of the synapse response between synaptic cells by remodelling the dendritic spines involved in the synapse.

Intracellular receptors

Intracellular receptors, such as nuclear receptors and cytoplasmic receptors, are soluble proteins localized within their respective areas. The typical ligands for nuclear receptors are non-polar hormones like the steroid hormones testosterone and progesterone and derivatives of vitamins A and D. To initiate signal transduction, the ligand must pass through the plasma membrane by passive diffusion. On binding with the receptor, the ligands pass through the nuclear membrane into the nucleus, altering gene expression.

Activated nuclear receptors attach to the DNA at receptor-specific hormone-responsive element (HRE) sequences, located in the promoter region of the genes activated by the hormone-receptor complex. Due to their enabling gene transcription, they are alternatively called inductors of gene expression. All hormones that act by regulation of gene expression have two consequences in their mechanism of action; their effects are produced after a characteristically long period of time and their effects persist for another long period of time, even after their concentration has been reduced to zero, due to a relatively slow turnover of most enzymes and proteins that would either deactivate or terminate ligand binding onto the receptor.

Nucleic receptors have DNA-binding domains containing zinc fingers and a ligand-binding domain; the zinc fingers stabilize DNA binding by holding its phosphate backbone. DNA sequences that match the receptor are usually hexameric repeats of any kind; the sequences are similar but their orientation and distance differentiate them. The ligand-binding domain is additionally responsible for dimerization of nucleic receptors prior to binding and providing structures for transactivation used for communication with the translational apparatus.

Steroid receptors are a subclass of nuclear receptors located primarily within the cytosol. In the absence of steroids, they associate in an aporeceptor complex containing chaperone or heatshock proteins (HSPs). The HSPs are necessary to activate the receptor by assisting the protein to fold in a way such that the signal sequence enabling its passage into the nucleus is accessible. Steroid receptors, on the other hand, may be repressive on gene expression when their transactivation domain is hidden. Receptor activity can be enhanced by phosphorylation of serine residues at their N-terminal as a result of another signal transduction pathway, a process called crosstalk.

Retinoic acid receptors are another subset of nuclear receptors. They can be activated by an endocrine-synthesized ligand that entered the cell by diffusion, a ligand synthesised from a precursor like retinol brought to the cell through the bloodstream or a completely intracellularly synthesised ligand like prostaglandin. These receptors are located in the nucleus and are not accompanied by HSPs. They repress their gene by binding to their specific DNA sequence when no ligand binds to them, and vice versa.

Certain intracellular receptors of the immune system are cytoplasmic receptors; recently identified NOD-like receptors (NLRs) reside in the cytoplasm of some eukaryotic cells and interact with ligands using a leucine-rich repeat (LRR) motif similar to TLRs. Some of these molecules like NOD2 interact with RIP2 kinase that activates NF-κB signaling, whereas others like NALP3 interact with inflammatory caspases and initiate processing of particular cytokines like interleukin-1β.

Second messengers

First messengers are the signaling molecules (hormones, neurotransmitters, and paracrine/autocrine agents) that reach the cell from the extracellular fluid and bind to their specific receptors. Second messengers are the substances that enter the cytoplasm and act within the cell to trigger a response. In essence, second messengers serve as chemical relays from the plasma membrane to the cytoplasm, thus carrying out intracellular signal transduction.

Calcium

The release of calcium ions from the endoplasmic reticulum into the cytosol results in its binding to signaling proteins that are then activated; it is then sequestered in the smooth endoplasmic reticulum and the mitochondria. Two combined receptor/ion channel proteins control the transport of calcium: the InsP3-receptor that transports calcium upon interaction with inositol triphosphate on its cytosolic side; and the ryanodine receptor named after the alkaloid ryanodine, similar to the InsP3 receptor but having a feedback mechanism that releases more calcium upon binding with it. The nature of calcium in the cytosol means that it is active for only a very short time, meaning its free state concentration is very low and is mostly bound to organelle molecules like calreticulin when inactive.

Calcium is used in many processes including muscle contraction, neurotransmitter release from nerve endings, and cell migration. The three main pathways that lead to its activation are GPCR pathways, RTK pathways, and gated ion channels; it regulates proteins either directly or by binding to an enzyme.

Lipid messengers

Lipophilic second messenger molecules are derived from lipids residing in cellular membranes; enzymes stimulated by activated receptors activate the lipids by modifying them. Examples include diacylglycerol and ceramide, the former required for the activation of protein kinase C.

Nitric oxide

Nitric oxide (NO) acts as a second messenger because it is a free radical that can diffuse through the plasma membrane and affect nearby cells. It is synthesised from arginine and oxygen by the NO synthase and works through activation of soluble guanylyl cyclase, which when activated produces another second messenger, cGMP. NO can also act through covalent modification of proteins or their metal co-factors; some have a redox mechanism and are reversible. It is toxic in high concentrations and causes damage during stroke, but is the cause of many other functions like the relaxation of blood vessels, apoptosis, and penile erections.

Redox signaling

In addition to nitric oxide, other electronically activated species are also signal-transducing agents in a process called redox signaling. Examples include superoxide, hydrogen peroxide, carbon monoxide, and hydrogen sulfide. Redox signaling also includes active modulation of electronic flows in semiconductive biological macromolecules.

Cellular responses

Gene activations and metabolism alterations are examples of cellular responses to extracellular stimulation that require signal transduction. Gene activation leads to further cellular effects, since the products of responding genes include instigators of activation; transcription factors produced as a result of a signal transduction cascade can activate even more genes. Hence, an initial stimulus can trigger the expression of a large number of genes, leading to physiological events like the increased uptake of glucose from the blood stream and the migration of neutrophils to sites of infection. The set of genes and their activation order to certain stimuli is referred to as a genetic program.

Mammalian cells require stimulation for cell division and survival; in the absence of growth factor, apoptosis ensues. Such requirements for extracellular stimulation are necessary for controlling cell behavior in unicellular and multicellular organisms; signal transduction pathways are perceived to be so central to biological processes that a large number of diseases are attributed to their dysregulation. Three basic signals determine cellular growth:

  • Stimulatory (growth factors)
    • Transcription dependent response
      For example, steroids act directly as transcription factor (gives slow response, as transcription factor must bind DNA, which needs to be transcribed. Produced mRNA needs to be translated, and the produced protein/peptide can undergo posttranslational modification (PTM))
    • Transcription independent response
      For example, epidermal growth factor (EGF) binds the epidermal growth factor receptor (EGFR), which causes dimerization and autophosphorylation of the EGFR, which in turn activates the intracellular signaling pathway.
  • Inhibitory (cell-cell contact)
  • Permissive (cell-matrix interactions)

The combination of these signals is integrated into altered cytoplasmic machinery which leads to altered cell behaviour.

Major pathways

How to read signal transduction diagrams, what does normal arrow and flathead arrow means.
 
Elements of Signal transduction cascade networking

Following are some major signaling pathways, demonstrating how ligands binding to their receptors can affect second messengers and eventually result in altered cellular responses.

History

Occurrence of the term "signal transduction" in MEDLINE-indexed papers since 1977

The earliest notion of signal transduction can be traced back to 1855, when Claude Bernard proposed that ductless glands such as the spleen, the thyroid and adrenal glands, were responsible for the release of "internal secretions" with physiological effects. Bernard's "secretions" were later named "hormones" by Ernest Starling in 1905. Together with William Bayliss, Starling had discovered secretin in 1902. Although many other hormones, most notably insulin, were discovered in the following years, the mechanisms remained largely unknown.

The discovery of nerve growth factor by Rita Levi-Montalcini in 1954, and epidermal growth factor by Stanley Cohen in 1962, led to more detailed insights into the molecular basis of cell signaling, in particular growth factors. Their work, together with Earl Wilbur Sutherland's discovery of cyclic AMP in 1956, prompted the redefinition of endocrine signaling to include only signaling from glands, while the terms autocrine and paracrine began to be used. Sutherland was awarded the 1971 Nobel Prize in Physiology or Medicine, while Levi-Montalcini and Cohen shared it in 1986.

In 1970, Martin Rodbell examined the effects of glucagon on a rat's liver cell membrane receptor. He noted that guanosine triphosphate disassociated glucagon from this receptor and stimulated the G-protein, which strongly influenced the cell's metabolism. Thus, he deduced that the G-protein is a transducer that accepts glucagon molecules and affects the cell. For this, he shared the 1994 Nobel Prize in Physiology or Medicine with Alfred G. Gilman. Thus, the characterization of RTKs and GPCRs led to the formulation of the concept of "signal transduction", a word first used in 1972. Some early articles used the terms signal transmission and sensory transduction. In 2007, a total of 48,377 scientific papers—including 11,211 review papers—were published on the subject. The term first appeared in a paper's title in 1979. Widespread use of the term has been traced to a 1980 review article by Rodbell:[60][66] Research papers focusing on signal transduction first appeared in large numbers in the late 1980s and early 1990s.

Signal transduction in Immunology

The purpose of this section is to briefly describe some developments in immunology in the 1960s and 1970s, relevant to the initial stages of transmembrane signal transduction, and how they impacted our understanding of immunology, and ultimately of other areas of cell biology.

The relevant events begin with the sequencing of myeloma protein light chains, which are found in abundance in the urine of individuals with multiple myeloma. Biochemical experiments revealed that these so-called Bence Jones proteins consisted of 2 discrete domains –one that varied from one molecule to the next (the V domain) and one that did not (the Fc domain or the Fragment crystallizable region). An analysis of multiple V region sequences by Wu and Kabat  identified locations within the V region that were hypervariable and which, they hypothesized, combined in the folded protein to form the antigen recognition site. Thus, within a relatively short time a plausible model was developed for the molecular basis of immunological specificity, and for mediation of biological function through the Fc domain. Crystallization of an IgG molecule soon followed) confirming the inferences based on sequencing, and providing an understanding of immunological specificity at the highest level of resolution.

The biological significance of these developments was encapsulated in the theory of clonal selection which holds that a B cell has on its surface immunoglobulin receptors whose antigen-binding site is identical to that of antibodies that are secreted by the cell when it encounters an antigen, and more specifically a particular B cell clone secretes antibodies with identical sequences. The final piece of the story, the Fluid mosaic model of the plasma membrane provided all the ingredients for a new model for the initiation of signal transduction; viz, receptor dimerization.

The first hints of this were obtained by Becker et al  who demonstrated that the extent to which human basophils—for which bivalent Immunoglobulin E (IgE) functions as a surface receptor – degranulate, depends on the concentration of anti IgE antibodies to which they are exposed, and results in a redistribution of surface molecules, which is absent when monovalent ligand is used. The latter observation was consistent with earlier findings by Fanger et al. These observations tied a biological response to events and structural details of molecules on the cell surface. A preponderance of evidence soon developed that receptor dimerization initiates responses in a variety of cell types, including B cells.

Such observations led to a number of theoretical (mathematical) developments. The first of these was a simple model proposed by Bell  which resolved an apparent paradox: clustering forms stable networks; i.e. binding is essentially irreversible, whereas the affinities of antibodies secreted by B cells increase as the immune response progresses. A theory of the dynamics of cell surface clustering on lymphocyte membranes was developed by DeLisi and Perelson  who found the size distribution of clusters as a function of time, and its dependence on the affinity and valence of the ligand. Subsequent theories for basophils and mast cells were developed by Goldstein and Sobotka and their collaborators, all aimed at the analysis of dose-response patterns of immune cells and their biological correlates. For a recent review of clustering in immunological systems see.

Ligand binding to cell surface receptors is also critical to motility, a phenomenon that is best understood in single-celled organisms. An example is a detection and response to concentration gradients by bacteria -–the classic mathematical theory appearing in.

Temperature record of the last 2,000 years

Global average temperatures show that the Medieval Warm Period was not a planet-wide phenomenon, and that the Little Ice Age was not a distinct planet-wide time period but rather the end of a long temperature decline that preceded recent global warming.

The temperature record of the last 2,000 years is reconstructed using data from climate proxy records in conjunction with the modern instrumental temperature record which only covers the last 170 years at a global scale. Large-scale reconstructions covering part or all of the 1st millennium and 2nd millennium have shown that recent temperatures are exceptional: the Intergovernmental Panel on Climate Change Fourth Assessment Report of 2007 concluded that "Average Northern Hemisphere temperatures during the second half of the 20th century were very likely higher than during any other 50-year period in the last 500 years and likely the highest in at least the past 1,300 years." The curve shown in graphs of these reconstructions is widely known as the hockey stick graph because of the sharp increase in temperatures during the last century. As of 2010 this broad pattern was supported by more than two dozen reconstructions, using various statistical methods and combinations of proxy records, with variations in how flat the pre-20th-century "shaft" appears. Sparseness of proxy records results in considerable uncertainty for earlier periods.

Individual proxy records, such as tree ring widths and densities used in dendroclimatology, are calibrated against the instrumental record for the period of overlap. Networks of such records are used to reconstruct past temperatures for regions: tree ring proxies have been used to reconstruct Northern Hemisphere extratropical temperatures (within the tropics trees do not form rings) but are confined to land areas and are scarce in the Southern Hemisphere which is largely ocean. Wider coverage is provided by multiproxy reconstructions, incorporating proxies such as lake sediments, ice cores and corals which are found in different regions, and using statistical methods to relate these sparser proxies to the greater numbers of tree ring records. The "Composite Plus Scaling" (CPS) method is widely used for large-scale multiproxy reconstructions of hemispheric or global average temperatures; this is complemented by Climate Field Reconstruction (CFR) methods which show how climate patterns have developed over large spatial areas, making the reconstruction useful for investigating natural variability and long-term oscillations as well as for comparisons with patterns produced by climate models.

During the 1,900 years before the 20th century, it is likely that the next warmest period was from 950 to 1100, with peaks at different times in different regions. This has been called the Medieval Warm Period, and some evidence suggests widespread cooler conditions during a period around the 17th century known as the Little Ice Age. In the "hockey stick controversy", climate change deniers have asserted that the Medieval Warm Period was warmer than at present, and have disputed the data and methods of climate reconstructions.

Temperature change in the last 2,000 years

According to IPCC Sixth Assessment Report, in the last 170 years, humans have caused the global temperature to increase to the highest level in the last 2,000 years. The current multi-century period is the warmest in the past 100,000 years. The temperature in the years 2011-2020 was 1.09°C higher than in 1859-1890. The temperature on land rose by 1.59°C while over the ocean it rose only by 0.88°C.

General techniques and accuracy

By far the best observed period is from 1850 to the present day, with coverage improving over time. Over this period the recent instrumental record, mainly based on direct thermometer readings, has approximately global coverage. It shows a general warming in global temperatures.

Before this time various proxies must be used. These proxies are less accurate than direct thermometer measurements, have lower temporal resolution, and have less spatial coverage. Their only advantage is that they enable a longer record to be reconstructed. Since the direct temperature record is more accurate than the proxies (indeed, it is needed to calibrate them) it is used when available: i.e., from 1850 onwards.

Quantitative methods using proxy data

As there are few instrumental records before 1850, temperatures before then must be reconstructed based on proxy methods. One such method, based on principles of dendroclimatology, uses the width and other characteristics of tree rings to infer temperature. The isotopic composition of snow, corals, and stalactites can also be used to infer temperature. Other techniques which have been used include examining records of the time of crop harvests, the treeline in various locations, and other historical records to make inferences about the temperature. These proxy reconstructions are indirect inferences of temperature and thus tend to have greater uncertainty than instrumental data.

Most proxy records have to be calibrated against local temperature records during their period of overlap, to estimate the relationship between temperature and the proxy. The longer history of the proxy is then used to reconstruct temperature from earlier periods.

Proxy records must be averaged in some fashion if a global or hemispheric record is desired. The "Composite Plus Scaling" (CPS) method is widely used for large-scale multiproxy reconstructions of hemispheric or global average temperatures. This is complemented by Climate Field Reconstruction (CFR) methods which show how climate patterns have developed over large spatial areas.

Considerable care must be taken in the averaging process; for example, if a certain region has a large number of tree ring records, a simple average of all the data would strongly over-weight that region, and statistical techniques are used to avoid such over-weighting. In the Mann, Bradley & Hughes 1998 and Mann, Bradley & Hughes 1999 CFR reconstructions, principal components analysis was used to combine some of these regional records before they were globally combined. An important distinction is between so-called 'multi-proxy' reconstructions, which attempt to obtain a global temperature reconstruction by using multiple proxy records distributed over the globe and more regional reconstructions. Usually, the various proxy records are combined arithmetically, in some weighted average. More recently, Osborn and Briffa used a simpler technique, counting the proportion of records that are positive, negative or neutral in any time period. This produces a result in general agreement with the conventional multi-proxy studies.

The 2007 IPCC Fourth Assessment Report cited 14 reconstructions, 10 of which covered 1,000 years or longer, to support its conclusion that "Average Northern Hemisphere temperatures during the second half of the 20th century were very likely higher than during any other 50-year period in the last 500 years and likely the highest in at least the past 1,300 years".

Qualitative reconstruction using historical records

It is also possible to use historical data such as times of grape harvests, sea-ice-free periods in harbours and diary entries of frost or heatwaves to produce indications of when it was warm or cold in particular regions. These records are harder to calibrate, are often only available sparsely through time, may be available only from developed regions, and are unlikely to come with good error estimates. These historical observations of the same time period show periods of both warming and cooling.

Limitations

The apparent differences between the quantitative and qualitative approaches are not fully reconciled. The reconstructions mentioned above rely on various assumptions to generate their results. If these assumptions do not hold, the reconstructions would be unreliable. For quantitative reconstructions, the most fundamental assumptions are that proxy records vary with temperature and that non-temperature factors do not confound the results. In the historical records temperature fluctuations may be regional rather than hemispheric in scale.

In a letter to Nature Bradley, Hughes & Mann (2006) pointed at the original title of their 1998 article: Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations and pointed out more widespread high-resolution data are needed before more confident conclusions can be reached and that the uncertainties were the point of the article.

History

In the 1960s, Hubert Lamb generalised from historical documents and temperature records of central England to propose a Medieval Warm Period in the North Atlantic region, followed by Little Ice Age. This was discussed in the IPCC First Assessment Report with cautions that the medieval warming might not have been global. Using proxy indicators for quantitative estimates of past temperature record had developed sporadically from the 1930s onwards, and Bradley & Jones 1993 introduced the "Composite Plus Scaling" (CPS) method. Their reconstruction back to 1400 featured in the IPCC Second Assessment Report.

The Michael E. Mann, Raymond S. Bradley and Malcolm K. Hughes reconstruction (Mann, Bradley & Hughes 1998, MBH98) showed global patterns of annual surface temperature, and average hemispheric temperatures back to 1400 with emphasising on uncertainties.

Jones et al. 1998 independently produced a CPS reconstruction extending back for a thousand years, and Mann, Bradley & Hughes 1999 (MBH99) used the MBH98 methodology to extend their study back to 1000. The term hockey stick was used by the climatologist Jerry Mahlman to describe the pattern this showed, envisaging a graph that is relatively flat to 1900 as forming an ice hockey stick's "shaft", followed by a sharp increase corresponding to the "blade".

A version of the MBH99 graph was featured prominently in the 2001 IPCC Third Assessment Report (TAR), which also drew on Jones et al. 1998 and three other reconstructions to support the conclusion that, in the Northern Hemisphere, the 1990s was likely to have been the warmest decade and 1998 the warmest year during the past 1,000 years. The graph was featured in publicity, and became a focus of dispute for those opposed to the strengthening scientific consensus that late 20th century warmth was exceptional.

In 2003, as lobbying over the 1997 Kyoto Protocol intensified, efforts by the Bush administration to remove climate reconstructions from the first Environmental Protection Agency and Jim Inhofe's Senate speech claiming that man-made global warming is a hoax both drew on the Soon and Baliunas controversy. Later in 2003, Stephen McIntyre and Ross McKitrick published McIntyre & McKitrick 2003 disputing data in the MBH98 paper, but their argument was refuted. In 2004 Hans von Storch said that the MBH98 statistical techniques understated variability, but he erred in saying this undermined the overall graph. In 2005 McIntyre and McKitrick criticised the principal components analysis methodology in MBH98 and MBH99, but Huybers 2005 and Wahl & Ammann 2007 pointed to errors made by McIntyre and McKitrick. The National Research Council North Report in 2006 supported MBH with minor caveats. The Wegman Report supported McIntyre and McKitrick's study, but was subsequently discredited. Arguments against the MBH studies were reintroduced as part of the Climatic Research Unit email controversy, but dismissed by eight independent investigations.

The test in science is whether findings can be replicated using different data and methods. More than two dozen reconstructions, using various statistical methods and combinations of proxy records, have supported the broad consensus shown in the original 1998 hockey-stick graph, with variations in how flat the pre-20th century "shaft" appears. The IPCC Fifth Assessment Report (AR5 WG1) of 2013 examined temperature variations during the last two millennia, and concluded that for average annual Northern Hemisphere temperatures, "the period 1983–2012 was very likely the warmest 30-year period of the last 800 years (high confidence) and likely the warmest 30-year period of the last 1400 years (medium confidence)".

Surveys of scientists' views on climate change

Scientific consensus on causation: Academic studies of scientific agreement on human-caused global warming among climate experts (2010–2015) reflect that the level of consensus correlates with expertise in climate science. A 2019 study found scientific consensus to be at 100%, and a 2021 study concluded that consensus exceeded 99%. Another 2021 study found that 98.7% of climate experts indicated that the Earth is getting warmer mostly because of human activity.

Surveys of scientists' views on climate change – with a focus on human-caused or anthropogenic global warming (AGW) – have been undertaken since the 1990s. A 2016 paper (which was co-authored by Naomi Oreskes, Peter Doran, William Anderegg, Bart Verheggen, Ed Maibach, J. Stuart Carlton and John Cook, and which was based on a half a dozen independent studies by the authors) concluded that "the finding of 97% consensus [that humans are causing recent global warming] in published climate research is robust and consistent with other surveys of climate scientists and peer-reviewed studies." A 2019 study found scientific consensus to be at 100%, and a 2021 study found that consensus exceeded 99%.

2020s

Myers et al., 2021

Krista Myers led a paper which surveyed 2780 Earth scientists. Depending on expertise, between 91% (all scientists) to 100% (climate scientists with high levels of expertise, 20+ papers published) agreed human activity is causing climate change. Among the total group of climate scientists, 98.7% agreed. The agreement was lowest among scientists who chose Economic Geology as one of their fields of research (84%).

Lynas et al., 2021

In 2021, Mark Lynas et al assessed studies published between 2012 and 2020. They found over 80,000 studies. They analysed a random subset of 3000. Four of these were skeptical of the human cause of climate change, 845 were endorsing the human cause perspective at different levels, and 1869 were indifferent to the question. The authors estimated the proportion of papers not skeptical of the human cause as 99.85% (95% confidence limit 99.62%–99.96%). Excluding papers which took no position on the human cause led to an estimate of the proportion of consensus papers as 99.53% (95% confidence limit 98.80%–99.87%). They confirmed their numbers by explicitly looking for alternative hypotheses in the entire dataset, which resulted in 28 papers.

2010s

Powell, 2019

In 2019, James L. Powell, a former member of the National Science Board, analysed titles of peer-reviewed studies published in the first seven months of 2019 and found not a single study disagreed with the consensus view. When the titles implied uncertainty about the cause of climate change, the abstracts or the article in its entirety were examined. The total amount of articles found via Web of Science was 11,602.

Verheggen et al., 2014

In 2014, Bart Verheggen of the Netherlands Environmental Assessment Agency surveyed 1,868 climate scientists. They found that, consistent with other research, the level of agreement on anthropogenic causation correlated with expertise - 90% of those surveyed with more than 10 peer-reviewed papers related to climate (just under half of survey respondents) explicitly agreed that greenhouse gases were the main cause of global warming. They included researchers on mitigation and adaptation in their surveys in addition to physical climate scientists, leading to a slightly lower level of consensus compared to previous studies.

Powell, 2013

James L. Powell analyzed published research on global warming and climate change between 1991 and 2012 and found that of the 13,950 articles in peer-reviewed journals, only 24 (<0.2%) rejected anthropogenic global warming. This was a follow-up to an analysis looking at 2,258 peer-reviewed articles published between November 2012 and December 2013 revealed that only one of the 9,136 authors rejected anthropogenic global warming.

John Cook et al., 2013

Cook et al. examined 11,944 abstracts from the peer-reviewed scientific literature from 1991 to 2011 that matched the topics 'global climate change' or 'global warming'. They found that, while 66.4% of them expressed no position on anthropogenic global warming (AGW), of those that did, 97.1% endorsed the consensus position that humans are contributing to global warming. They also invited authors to rate their own papers and found that, while 35.5% rated their paper as expressing no position on AGW, 97.2% of the rest endorsed the consensus. In both cases the percentage of endorsements among papers expressing a position was marginally increasing over time. They concluded that the number of papers actually rejecting the consensus on AGW is a vanishingly small proportion of the published research.

In their discussion of the results, the authors said that the large proportion of abstracts that state no position on AGW is as expected in a consensus situation, as anticipated in a chapter published in 2007, adding that "the fundamental science of AGW is no longer controversial among the publishing science community and the remaining debate in the field has moved on to other topics."

A 2016 study entitled Learning from mistakes in climate research examined the quality of the 3% of peer-reviewed papers discovered by this work to reject the consensus view. They discovered that "replication reveals a number of methodological flaws, and a pattern of common mistakes emerges that is not visible when looking at single isolated cases".

Farnsworth and Lichter, 2011

In an October 2011 paper published in the International Journal of Public Opinion Research, researchers from George Mason University analyzed the results of a survey of 998 scientists working in academia, government, and industry. The scientists polled were members of the American Geophysical Union (AGU) or the American Meteorological Society (AMS) and listed in the 23rd edition of American Men and Women of Science, a biographical reference work on leading American scientists, and 489 returned completed questionnaires. Of those who replied, 97% agreed that global temperatures have risen over the past century. 84% agreed that "human-induced greenhouse warming is now occurring," 5% disagreed, and 12% didn't know.

When asked what they regard as "the likely effects of global climate change in the next 50 to 100 years," on a scale of 1 to 10, from Trivial to Catastrophic: 13% of respondents replied 1 to 3 (trivial/mild), 44% replied 4 to 7 (moderate), 41% replied 8 to 10 (severe/catastrophic), and 2% didn't know.

Anderegg, Prall, Harold, and Schneider, 2010

By Cook 2011 based on Doran 2009 and Anderegg 2010 studies. 97–98% of the most published climate researchers say humans are very likely causing most global warming. In another study 97.4% of publishing specialists in climate change say that human activity is a significant contributing factor in changing mean global temperatures.

Anderegg et al., in a 2010 paper in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), reviewed publication and citation data for 1,372 climate researchers, based on authorship of scientific assessment reports and membership on multisignatory statements about anthropogenic climate change. The number of climate-relevant publications authored or coauthored by each researcher was used to define their 'expertise', and the number of citations for each of the researcher's four highest-cited papers was used to define their 'prominence'. Removing researchers who had authored fewer than 20 climate publications reduced the database to 908 researchers but did not materially alter the results. The authors of the paper say that their database of researchers "is not comprehensive nor designed to be representative of the entire climate science community," but say that since they drew the researchers from the most high-profile reports and public statements, it is likely that it represents the "strongest and most credentialed" researchers both 'convinced by the evidence' (CE) and 'unconvinced by the evidence' (UE) on the tenets of anthropogenic climate change.

Anderegg et al. drew the following two conclusions:

(i) 97–98% of the climate researchers most actively publishing in the field surveyed here support the tenets of ACC (Anthropogenic Climate Change) outlined by the Intergovernmental Panel on Climate Change, and (ii) the relative climate expertise and scientific prominence of the researchers unconvinced of ACC are substantially below that of the convinced researchers.

2000s

Doran and Kendall Zimmerman, 2009

This paper is based on the Zimmerman 2008 MS thesis; the full methods are in the MS thesis. A web-based poll performed by Peter Doran and Maggie Kendall Zimmerman of the Earth and Environmental Sciences department, University of Illinois at Chicago. They received replies from 3,146 of the 10,257 polled Earth scientists. The survey was designed to take less than two minutes to complete. Results were analyzed globally and by specialization. Among all respondents, 90% agreed that temperatures had generally risen compared to pre-1800 levels, and 82% agreed that humans significantly influence the global temperature. 76 out of the 79 respondents who "listed climate science as their area of expertise, and who also have published more than 50% of their recent peer-reviewed papers on the subject of climate change", thought that mean global temperatures had risen compared to pre-1800s levels. Of those 79 scientists, 75 out of the 77 (97.4%) answered that human activity was a significant factor in changing mean global temperatures. The remaining two were not asked, because in question one they responded that temperatures had remained relatively constant. Economic geologists and meteorologists were among the biggest doubters, with only 47 percent and 64 percent respectively thinking that human activity was a significant contributing factor. In summary, Doran and Zimmerman wrote:

It seems that the debate on the authenticity of global warming and the role played by human activity is largely nonexistent among those who understand the nuances and scientific basis of long-term climate processes.

Bray and von Storch, 2008

Dennis Bray and Hans von Storch, of the Institute for Coastal Research at the Helmholtz Research Centre in Germany, conducted an online survey in August 2008, of 2,059 climate scientists from 34 different countries, the third survey on this topic by these authors. A web link with a unique identifier was given to each respondent to eliminate multiple responses. A total of 375 responses were received giving an overall response rate of 18%. The climate change consensus results were published by Bray, and another paper has also been published based on the survey.

The survey was composed of 76 questions split into a number of sections. There were sections on the demographics of the respondents, their assessment of the state of climate science, how good the science is, climate change impacts, adaptation and mitigation, their opinion of the IPCC, and how well climate science was being communicated to the public. Most of the answers were on a scale from 1 to 7 from 'not at all' to 'very much'.

In the section on climate change impacts, questions 20 and 21 were relevant to scientific opinion on climate change. Question 20, "How convinced are you that climate change, whether natural or anthropogenic, is occurring now?" Answers: 67.1% very much convinced (7), 26.7% to some large extent (5–6), 6.2% said to some small extent (2–4), none said not at all. Question 21, "How convinced are you that most of recent or near future climate change is, or will be, a result of anthropogenic causes?" Answers: 34.6% very much convinced (7), 48.9% being convinced to a large extent (5–6), 15.1% to a small extent (2–4), and 1.35% not convinced at all (1).

STATS, 2007

In 2007, Harris Interactive surveyed 489 randomly selected members of either the American Meteorological Society or the American Geophysical Union for the Statistical Assessment Service (STATS) at George Mason University. The survey found 97% agreed that global temperatures have increased during the past 100 years; 84% say they personally believe human-induced warming is occurring, and 74% agree that "currently available scientific evidence" substantiates its occurrence. Only 5% believe that human activity does not contribute to greenhouse warming; 41% say they thought the effects of global warming would be near catastrophic over the next 50–100 years; 44% say said effects would be moderately dangerous; 13% saw relatively little danger; 56% say global climate change is a mature science; 39% say it is an emerging science.

Oreskes, 2004

A 2004 article by geologist and historian of science Naomi Oreskes summarized a study of the scientific literature on climate change. The essay concluded that there is a scientific consensus on the reality of anthropogenic climate change. The author analyzed 928 abstracts of papers from refereed scientific journals between 1993 and 2003, listed with the keywords "global climate change". Oreskes divided the abstracts into six categories: explicit endorsement of the consensus position, evaluation of impacts, mitigation proposals, methods, paleoclimate analysis, and rejection of the consensus position. 75% of the abstracts were placed in the first three categories, thus either explicitly or implicitly accepting the consensus view; 25% dealt with methods or paleoclimate, thus taking no position on current anthropogenic climate change; none of the abstracts disagreed with the consensus position, which the author found to be "remarkable". According to the report, "authors evaluating impacts, developing methods, or studying paleoclimatic change might believe that current climate change is natural. However, none of these papers argued that point."

Bray and von Storch, 2003

In 2003, Bray and von Storch conducted a survey of the perspectives of climate scientists on global climate change. The survey received 530 responses from 27 different countries. The 2003 survey has been strongly criticized on the grounds that it was performed on the web with no means to verify that the respondents were climate scientists or to prevent multiple submissions. The survey required entry of a username and password, but the username and password were circulated to a climate change denial mailing list and elsewhere on the internet. Bray and von Storch defended their results and accused climate change deniers of interpreting the results with bias. Bray's submission to Science on 22 December 2004 was rejected.

One of the questions asked in the survey was "To what extent do you agree or disagree that climate change is mostly the result of anthropogenic causes?", with a value of 1 indicating strongly agree and a value of 7 indicating strongly disagree. The results showed a mean of 3.62, with 50 responses (9.4%) indicating "strongly agree" and 54 responses (9.7%) indicating "strongly disagree". The same survey indicates a 72% to 20% endorsement of the IPCC reports as accurate, and a 15% to 80% rejection of the thesis that "there is enough uncertainty about the phenomenon of global warming that there is no need for immediate policy decisions."

1990s

  • In 1996, Dennis Bray and Hans von Storch undertook a survey of climate scientists on attitudes towards global warming and related matters. The results were subsequently published in the Bulletin of the American Meteorological Society. The paper addressed the views of climate scientists, with a response rate of 40% from a mail survey questionnaire to 1000 scientists in Germany, the United States and Canada. Most of the scientists accepted that global warming was occurring and appropriate policy action should be taken, but there was wide disagreement about the likely effects on society and almost all agreed that the predictive ability of currently existing models was limited. On a scale of 1 (highest confidence) to 7 (lowest confidence) regarding belief in the ability to make "reasonable predictions" the mean was 4.8 and 5.2 for 10- and 100-year predictions, respectively. On the question of whether global warming is occurring or will occur, the mean response was 3.3, and for future prospects of warming the mean was 2.6.
  • A Gallup poll of 400 members of the American Geophysical Union and the American Meteorological Society along with an analysis of reporting on global warming by the Center for Media and Public Affairs, a report on which was issued in 1992. Accounts of the results of that survey differ in their interpretation and even in the basic statistical percentages:
    • Fairness and Accuracy in Reporting states that the report said that 67% of the scientists said that human-induced global warming was occurring, with 11% disagreeing and the rest undecided.
    • George Will reported "53 percent do not believe warming has occurred, and another 30 percent are uncertain." (Washington Post, 3 September 1992). In a correction Gallup stated: "Most scientists involved in research in this area believe that human-induced global warming is occurring now."
  • Stewart, T. R., Mumpower, J. L., and Reagan-Cirincione, P. (1992). Scientists' opinions about global climate change: Summary of the results of a survey. NAEP (National Association of Environmental Professionals) Newsletter, 17(2), 6–7.
  • In 1991, the Center for Science, Technology, and Media conducted a survey of 118 scientists regarding views on the climate change. Analysis by the authors of the respondents projections of warming and agreement with statements about warming resulted in them categorizing response in 3 "clusters": 13 (15%) expressing skepticism of the 1990 IPCC estimate, 39 (44%) expressing uncertainty with the IPCC estimate, and 37 (42%) agreeing with the IPCC estimate.
  • Global Environmental Change Report, 1990: GECR climate survey shows strong agreement on action, less so on warming. Global Environmental Change Report 2, No. 9, pp. 1–3

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...