Search This Blog

Tuesday, March 14, 2023

Natural environment

From Wikipedia, the free encyclopedia

Land management has preserved the natural characteristics of Hopetoun Falls, Australia while allowing ample access for visitors.
 
An image of the Sahara desert from satellite. It is the world's largest hot desert and third-largest desert after the polar deserts.

The natural environment or natural world encompasses all living and non-living things occurring naturally, meaning in this case not artificial. The term is most often applied to the Earth or some parts of Earth. This environment encompasses the interaction of all living species, climate, weather and natural resources that affect human survival and economic activity. The concept of the natural environment can be distinguished as components:

In contrast to the natural environment is the built environment. Built environments are where humans have fundamentally transformed landscapes such as urban settings and agricultural land conversion, the natural environment is greatly changed into a simplified human environment. Even acts which seem less extreme, such as building a mud hut or a photovoltaic system in the desert, the modified environment becomes an artificial one. Though many animals build things to provide a better environment for themselves, they are not human, hence beaver dams, and the works of mound-building termites, are thought of as natural.

People cannot find absolutely natural environments on Earth, and naturalness usually varies in a continuum, from 100% natural in one extreme to 0% natural in the other. The massive environmental changes of humanity in the Anthropocene have fundamentally effected all natural environments: including from climate change, biodiversity loss and pollution from plastic and other chemicals in the air and water. More precisely, we can consider the different aspects or components of an environment, and see that their degree of naturalness is not uniform. If, for instance, in an agricultural field, the mineralogic composition and the structure of its soil are similar to those of an undisturbed forest soil, but the structure is quite different.

Composition

A volcanic fissure and lava channel
 
Earth's layered structure: (1) inner core; (2) outer core; (3) lower mantle; (4) upper mantle; (5) lithosphere; (6) crust

Earth science generally recognizes four spheres, the lithosphere, the hydrosphere, the atmosphere, and the biosphere as correspondent to rocks, water, air, and life respectively. Some scientists include as part of the spheres of the Earth, the cryosphere (corresponding to ice) as a distinct portion of the hydrosphere, as well as the pedosphere (to soil) as an active and intermixed sphere. Earth science (also known as geoscience, the geographical sciences or the Earth Sciences), is an all-embracing term for the sciences related to the planet Earth. There are four major disciplines in earth sciences, namely geography, geology, geophysics and geodesy. These major disciplines use physics, chemistry, biology, chronology and mathematics to build a qualitative and quantitative understanding of the principal areas or spheres of Earth.

Geological activity

The Earth's crust, or lithosphere, is the outermost solid surface of the planet and is chemically and mechanically different from underlying mantle. It has been generated greatly by igneous processes in which magma cools and solidifies to form solid rock. Beneath the lithosphere lies the mantle which is heated by the decay of radioactive elements. The mantle though solid is in a state of rheic convection. This convection process causes the lithospheric plates to move, albeit slowly. The resulting process is known as plate tectonics. Volcanoes result primarily from the melting of subducted crust material or of rising mantle at mid-ocean ridges and mantle plumes.

Water on Earth

Coral reefs have significant marine biodiversity.

Most water is found in various kinds of natural body of water.

Oceans

An ocean is a major body of saline water, and a component of the hydrosphere. Approximately 71% of the surface of the Earth (an area of some 362 million square kilometers) is covered by ocean, a continuous body of water that is customarily divided into several principal oceans and smaller seas. More than half of this area is over 3,000 meters (9,800 ft) deep. Average oceanic salinity is around 35 parts per thousand (ppt) (3.5%), and nearly all seawater has a salinity in the range of 30 to 38 ppt. Though generally recognized as several separate oceans, these waters comprise one global, interconnected body of salt water often referred to as the World Ocean or global ocean. The deep seabeds are more than half the Earth's surface, and are among the least-modified natural environments. The major oceanic divisions are defined in part by the continents, various archipelagos, and other criteria: these divisions are (in descending order of size) the Pacific Ocean, the Atlantic Ocean, the Indian Ocean, the Southern Ocean and the Arctic Ocean.

Rivers

A river is a natural watercourse, usually freshwater, flowing toward an ocean, a lake, a sea or another river. A few rivers simply flow into the ground and dry up completely without reaching another body of water.

Rocky stream in the U.S. state of Hawaii

The water in a river is usually in a channel, made up of a stream bed between banks. In larger rivers there is often also a wider floodplain shaped by waters over-topping the channel. Flood plains may be very wide in relation to the size of the river channel. Rivers are a part of the hydrological cycle. Water within a river is generally collected from precipitation through surface runoff, groundwater recharge, springs, and the release of water stored in glaciers and snowpacks.

Small rivers may also be called by several other names, including stream, creek and brook. Their current is confined within a bed and stream banks. Streams play an important corridor role in connecting fragmented habitats and thus in conserving biodiversity. The study of streams and waterways in general is known as surface hydrology.

Lakes

Lácar Lake, of glacial origin, in the province of Neuquén, Argentina
 

A lake (from Latin lacus) is a terrain feature, a body of water that is localized to the bottom of basin. A body of water is considered a lake when it is inland, is not part of an ocean, and is larger and deeper than a pond.

Natural lakes on Earth are generally found in mountainous areas, rift zones, and areas with ongoing or recent glaciation. Other lakes are found in endorheic basins or along the courses of mature rivers. In some parts of the world, there are many lakes because of chaotic drainage patterns left over from the last ice age. All lakes are temporary over geologic time scales, as they will slowly fill in with sediments or spill out of the basin containing them.

Ponds

A pond is a body of standing water, either natural or man-made, that is usually smaller than a lake. A wide variety of man-made bodies of water are classified as ponds, including water gardens designed for aesthetic ornamentation, fish ponds designed for commercial fish breeding, and solar ponds designed to store thermal energy. Ponds and lakes are distinguished from streams by their current speed. While currents in streams are easily observed, ponds and lakes possess thermally driven micro-currents and moderate wind driven currents. These features distinguish a pond from many other aquatic terrain features, such as stream pools and tide pools.

Human impact on water

Humans impact the water in different ways such as modifying rivers (through dams and stream channelization), urbanization, and deforestation. These impact lake levels, groundwater conditions, water pollution, thermal pollution, and marine pollution. Humans modify rivers by using direct channel manipulation. We build dams and reservoirs and manipulate the direction of the rivers and water path. Dams can usefully create reservoirs and hydroelectric power. However, reservoirs and dams may negatively impact the environment and wildlife. Dams stop fish migration and the movement of organisms downstream. Urbanization affects the environment because of deforestation and changing lake levels, groundwater conditions, etc. Deforestation and urbanization go hand in hand. Deforestation may cause flooding, declining stream flow, and changes in riverside vegetation. The changing vegetation occurs because when trees cannot get adequate water they start to deteriorate, leading to a decreased food supply for the wildlife in an area.

Atmosphere, climate and weather

Atmospheric gases scatter blue light more than other wavelengths, creating a blue halo when seen from space.
 
A view of Earth's troposphere from an airplane
 
Lightning is an atmospheric discharge of electricity accompanied by thunder, which occurs during thunderstorms and certain other natural conditions.

The atmosphere of the Earth serves as a key factor in sustaining the planetary ecosystem. The thin layer of gases that envelops the Earth is held in place by the planet's gravity. Dry air consists of 78% nitrogen, 21% oxygen, 1% argon and other inert gases, and carbon dioxide. The remaining gases are often referred to as trace gases. The atmosphere includes greenhouse gases such as carbon dioxide, methane, nitrous oxide, and ozone. Filtered air includes trace amounts of many other chemical compounds. Air also contains a variable amount of water vapor and suspensions of water droplets and ice crystals seen as clouds. Many natural substances may be present in tiny amounts in an unfiltered air sample, including dust, pollen and spores, sea spray, volcanic ash, and meteoroids. Various industrial pollutants also may be present, such as chlorine (elementary or in compounds), fluorine compounds, elemental mercury, and sulphur compounds such as sulphur dioxide (SO2).

The ozone layer of the Earth's atmosphere plays an important role in reducing the amount of ultraviolet (UV) radiation that reaches the surface. As DNA is readily damaged by UV light, this serves to protect life at the surface. The atmosphere also retains heat during the night, thereby reducing the daily temperature extremes.

Layers of the atmosphere

Principal layers

Earth's atmosphere can be divided into five main layers. These layers are mainly determined by whether temperature increases or decreases with altitude. From highest to lowest, these layers are:

  • Exosphere: The outermost layer of Earth's atmosphere extends from the exobase upward, mainly composed of hydrogen and helium.
  • Thermosphere: The top of the thermosphere is the bottom of the exosphere, called the exobase. Its height varies with solar activity and ranges from about 350–800 km (220–500 mi; 1,150,000–2,620,000 ft). The International Space Station orbits in this layer, between 320 and 380 km (200 and 240 mi).
  • Mesosphere: The mesosphere extends from the stratopause to 80–85 km (50–53 mi; 262,000–279,000 ft). It is the layer where most meteors burn up upon entering the atmosphere.
  • Stratosphere: The stratosphere extends from the tropopause to about 51 km (32 mi; 167,000 ft). The stratopause, which is the boundary between the stratosphere and mesosphere, typically is at 50 to 55 km (31 to 34 mi; 164,000 to 180,000 ft).
  • Troposphere: The troposphere begins at the surface and extends to between 7 km (23,000 ft) at the poles and 17 km (56,000 ft) at the equator, with some variation due to weather. The troposphere is mostly heated by transfer of energy from the surface, so on average the lowest part of the troposphere is warmest and temperature decreases with altitude. The tropopause is the boundary between the troposphere and stratosphere.
Other layers

Within the five principal layers determined by temperature there are several layers determined by other properties.

  • The ozone layer is contained within the stratosphere. It is mainly located in the lower portion of the stratosphere from about 15–35 km (9.3–21.7 mi; 49,000–115,000 ft), though the thickness varies seasonally and geographically. About 90% of the ozone in our atmosphere is contained in the stratosphere.
  • The ionosphere, the part of the atmosphere that is ionized by solar radiation, stretches from 50 to 1,000 km (31 to 621 mi; 160,000 to 3,280,000 ft) and typically overlaps both the exosphere and the thermosphere. It forms the inner edge of the magnetosphere.
  • The homosphere and heterosphere: The homosphere includes the troposphere, stratosphere, and mesosphere. The upper part of the heterosphere is composed almost completely of hydrogen, the lightest element.
  • The planetary boundary layer is the part of the troposphere that is nearest the Earth's surface and is directly affected by it, mainly through turbulent diffusion.

Effects of global warming

The retreat of glaciers since 1850 of Aletsch Glacier in the Swiss Alps (situation in 1979, 1991 and 2002), due to global warming
 

The dangers of global warming are being increasingly studied by a wide global consortium of scientists. These scientists are increasingly concerned about the potential long-term effects of global warming on our natural environment and on the planet. Of particular concern is how climate change and global warming caused by anthropogenic, or human-made releases of greenhouse gases, most notably carbon dioxide, can act interactively, and have adverse effects upon the planet, its natural environment and humans' existence. It is clear the planet is warming, and warming rapidly. This is due to the greenhouse effect, which is caused by greenhouse gases, which trap heat inside the Earth's atmosphere because of their more complex molecular structure which allows them to vibrate and in turn trap heat and release it back towards the Earth. This warming is also responsible for the extinction of natural habitats, which in turn leads to a reduction in wildlife population. The most recent report from the Intergovernmental Panel on Climate Change (the group of the leading climate scientists in the world) concluded that the earth will warm anywhere from 2.7 to almost 11 degrees Fahrenheit (1.5 to 6 degrees Celsius) between 1990 and 2100. Efforts have been increasingly focused on the mitigation of greenhouse gases that are causing climatic changes, on developing adaptative strategies to global warming, to assist humans, other animal, and plant species, ecosystems, regions and nations in adjusting to the effects of global warming. Some examples of recent collaboration to address climate change and global warming include:

Another view of the Aletsch Glacier in the Swiss Alps, which because of global warming has been decreasing

A significantly profound challenge is to identify the natural environmental dynamics in contrast to environmental changes not within natural variances. A common solution is to adapt a static view neglecting natural variances to exist. Methodologically, this view could be defended when looking at processes which change slowly and short time series, while the problem arrives when fast processes turns essential in the object of the study.

Climate

Map of world dividing climate zones, largely influenced by latitude. The zones, going from the equator upward (and downward) are Tropical, Dry, Moderate, Continental and Polar. There are subzones within these zones.
Worldwide climate classifications map
 

Climate looks at the statistics of temperature, humidity, atmospheric pressure, wind, rainfall, atmospheric particle count and other meteorological elements in a given region over long periods of time. Weather, on the other hand, is the present condition of these same elements over periods up to two weeks.

Climates can be classified according to the average and typical ranges of different variables, most commonly temperature and precipitation. The most commonly used classification scheme is the one originally developed by Wladimir Köppen. The Thornthwaite system, in use since 1948, uses evapotranspiration as well as temperature and precipitation information to study animal species diversity and the potential impacts of climate changes.

Weather

A rainbow is an optical and meteorological phenomenon that causes a spectrum of light to appear in the sky when the Sun shines onto droplets of moisture in the Earth's atmosphere.
 

Weather is a set of all the phenomena occurring in a given atmospheric area at a given time. Most weather phenomena occur in the troposphere, just below the stratosphere. Weather refers, generally, to day-to-day temperature and precipitation activity, whereas climate is the term for the average atmospheric conditions over longer periods of time. When used without qualification, "weather" is understood to be the weather of Earth.

Weather occurs due to density (temperature and moisture) differences between one place and another. These differences can occur due to the sun angle at any particular spot, which varies by latitude from the tropics. The strong temperature contrast between polar and tropical air gives rise to the jet stream. Weather systems in the mid-latitudes, such as extratropical cyclones, are caused by instabilities of the jet stream flow. Because the Earth's axis is tilted relative to its orbital plane, sunlight is incident at different angles at different times of the year. On the Earth's surface, temperatures usually range ±40 °C (100 °F to −40 °F) annually. Over thousands of years, changes in the Earth's orbit have affected the amount and distribution of solar energy received by the Earth and influence long-term climate

Surface temperature differences in turn cause pressure differences. Higher altitudes are cooler than lower altitudes due to differences in compressional heating. Weather forecasting is the application of science and technology to predict the state of the atmosphere for a future time and a given location. The atmosphere is a chaotic system, and small changes to one part of the system can grow to have large effects on the system as a whole. Human attempts to control the weather have occurred throughout human history, and there is evidence that civilized human activity such as agriculture and industry has inadvertently modified weather patterns.

Life

There are many plant species on the planet.
 
An example of the many animal species on the Earth
 

Evidence suggests that life on Earth has existed for about 3.7 billion years. All known life forms share fundamental molecular mechanisms, and based on these observations, theories on the origin of life attempt to find a mechanism explaining the formation of a primordial single cell organism from which all life originates. There are many different hypotheses regarding the path that might have been taken from simple organic molecules via pre-cellular life to protocells and metabolism.

Although there is no universal agreement on the definition of life, scientists generally accept that the biological manifestation of life is characterized by organization, metabolism, growth, adaptation, response to stimuli and reproduction. Life may also be said to be simply the characteristic state of organisms. In biology, the science of living organisms, "life" is the condition which distinguishes active organisms from inorganic matter, including the capacity for growth, functional activity and the continual change preceding death.

A diverse variety of living organisms (life forms) can be found in the biosphere on Earth, and properties common to these organisms—plants, animals, fungi, protists, archaea, and bacteria—are a carbon- and water-based cellular form with complex organization and heritable genetic information. Living organisms undergo metabolism, maintain homeostasis, possess a capacity to grow, respond to stimuli, reproduce and, through natural selection, adapt to their environment in successive generations. More complex living organisms can communicate through various means.

Ecosystems

Rainforests often have a great deal of biodiversity with many plant and animal species. This is the Gambia River in Senegal's Niokolo-Koba National Park.
 

An ecosystem (also called as environment) is a natural unit consisting of all plants, animals and micro-organisms (biotic factors) in an area functioning together with all of the non-living physical (abiotic) factors of the environment.

Central to the ecosystem concept is the idea that living organisms are continually engaged in a highly interrelated set of relationships with every other element constituting the environment in which they exist. Eugene Odum, one of the founders of the science of ecology, stated: "Any unit that includes all of the organisms (i.e.: the "community") in a given area interacting with the physical environment so that a flow of energy leads to clearly defined trophic structure, biotic diversity, and material cycles (i.e.: exchange of materials between living and nonliving parts) within the system is an ecosystem."

Old-growth forest and a creek on Larch Mountain, in the U.S. state of Oregon

The human ecosystem concept is then grounded in the deconstruction of the human/nature dichotomy, and the emergent premise that all species are ecologically integrated with each other, as well as with the abiotic constituents of their biotope.

A greater number or variety of species or biological diversity of an ecosystem may contribute to greater resilience of an ecosystem, because there are more species present at a location to respond to change and thus "absorb" or reduce its effects. This reduces the effect before the ecosystem's structure is fundamentally changed to a different state. This is not universally the case and there is no proven relationship between the species diversity of an ecosystem and its ability to provide goods and services on a sustainable level.

The term ecosystem can also pertain to human-made environments, such as human ecosystems and human-influenced ecosystems, and can describe any situation where there is relationship between living organisms and their environment. Fewer areas on the surface of the earth today exist free from human contact, although some genuine wilderness areas continue to exist without any forms of human intervention.

Biogeochemical cycles

Chloroplasts conduct photosynthesis and are found in plant cells and other eukaryotic organisms. These are chloroplasts visible in the cells of Plagiomnium affine — many-fruited thyme-moss.
 

Global biogeochemical cycles are critical to life, most notably those of water, oxygen, carbon, nitrogen and phosphorus.

  • The nitrogen cycle is the transformation of nitrogen and nitrogen-containing compounds in nature. It is a cycle which includes gaseous components.
  • The water cycle, is the continuous movement of water on, above, and below the surface of the Earth. Water can change states among liquid, vapour, and ice at various places in the water cycle. Although the balance of water on Earth remains fairly constant over time, individual water molecules can come and go.
  • The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth.
  • The oxygen cycle is the movement of oxygen within and between its three main reservoirs: the atmosphere, the biosphere, and the lithosphere. The main driving factor of the oxygen cycle is photosynthesis, which is responsible for the modern Earth's atmospheric composition and life.
  • The phosphorus cycle is the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. The atmosphere does not play a significant role in the movements of phosphorus, because phosphorus and phosphorus compounds are usually solids at the typical ranges of temperature and pressure found on Earth.

Wilderness

The Ahklun Mountains and the Togiak Wilderness within the Togiak National Wildlife Refuge in the U.S. state of Alaska
 

Wilderness is generally defined as a natural environment on Earth that has not been significantly modified by human activity. The WILD Foundation goes into more detail, defining wilderness as: "The most intact, undisturbed wild natural areas left on our planet – those last truly wild places that humans do not control and have not developed with roads, pipelines or other industrial infrastructure." Wilderness areas and protected parks are considered important for the survival of certain species, ecological studies, conservation, solitude, and recreation. Wilderness is deeply valued for cultural, spiritual, moral, and aesthetic reasons. Some nature writers believe wilderness areas are vital for the human spirit and creativity.

The word, "wilderness", derives from the notion of wildness; in other words that which is not controllable by humans. The word's etymology is from the Old English wildeornes, which in turn derives from wildeor meaning wild beast (wild + deor = beast, deer). From this point of view, it is the wildness of a place that makes it a wilderness. The mere presence or activity of people does not disqualify an area from being "wilderness." Many ecosystems that are, or have been, inhabited or influenced by activities of people may still be considered "wild." This way of looking at wilderness includes areas within which natural processes operate without very noticeable human interference.

Wildlife includes all non-domesticated plants, animals and other organisms. Domesticating wild plant and animal species for human benefit has occurred many times all over the planet, and has a major impact on the environment, both positive and negative. Wildlife can be found in all ecosystems. Deserts, rain forests, plains, and other areas—including the most developed urban sites—all have distinct forms of wildlife. While the term in popular culture usually refers to animals that are untouched by civilized human factors, most scientists agree that wildlife around the world is (now) impacted by human activities.

A view of wilderness in Estonia

Challenges

Before flue-gas desulfurization was installed, the air-polluting emissions from this power plant in New Mexico contained excessive amounts of sulfur dioxide.
 
Amazon rainforest in Brazil. The tropical rainforests of South America contain the largest diversity of species on Earth, including some that have evolved within the past few hundred thousand years.
 

It is the common understanding of natural environment that underlies environmentalism — a broad political, social, and philosophical movement that advocates various actions and policies in the interest of protecting what nature remains in the natural environment, or restoring or expanding the role of nature in this environment. While true wilderness is increasingly rare, wild nature (e.g., unmanaged forests, uncultivated grasslands, wildlife, wildflowers) can be found in many locations previously inhabited by humans.

Goals for the benefit of people and natural systems, commonly expressed by environmental scientists and environmentalists include:

Criticism

In some cultures the term environment is meaningless because there is no separation between people and what they view as the natural world, or their surroundings. Specifically in the United States and Arabian countries many native cultures do not recognize the "environment", or see themselves as environmentalists.

Anoxic waters

From Wikipedia, the free encyclopedia

Anoxic waters are areas of sea water, fresh water, or groundwater that are depleted of dissolved oxygen. The US Geological Survey defines anoxic groundwater as those with dissolved oxygen concentration of less than 0.5 milligrams per litre. Anoxic waters can be contrasted with hypoxic waters, which are low (but not lacking) in dissolved oxygen. This condition is generally found in areas that have restricted water exchange.

In most cases, oxygen is prevented from reaching the deeper levels by a physical barrier, as well as by a pronounced density stratification, in which, for instance, heavier hypersaline waters rest at the bottom of a basin. Anoxic conditions will occur if the rate of oxidation of organic matter by bacteria is greater than the supply of dissolved oxygen.

Anoxic waters are a natural phenomenon, and have occurred throughout geological history. The Permian–Triassic extinction event, a mass extinction of species from the world's oceans, may have resulted from widespread anoxic conditions combined with ocean acidification driven by a massive release of carbon dioxide into Earth's atmosphere. Many lakes have a permanent or temporary anoxic layer created by respiration depleting oxygen at depth and thermal stratification preventing its resupply.

Anoxic basins exist in the Baltic Sea, the Black Sea, the Cariaco Trench, various fjord valleys, and elsewhere. Eutrophication has likely increased the extent of anoxic zones in areas including the Baltic Sea, the Gulf of Mexico, and Hood Canal in Washington State.

Causes and effects

Anoxic conditions result from a combination of environmental conditions including density stratification, inputs of organic material or other reducing agents, and physical barriers to water circulation. In fjords, shallow sills at the entrance may prevent circulation, while at continental boundaries, circulation may be especially low while organic material input from production at upper levels is exceptionally high. In wastewater treatment, the absence of oxygen alone is indicated anoxic while the term anaerobic is used to indicate the absence of any common electron acceptor such as nitrate, sulfate or oxygen.

When oxygen is depleted in a basin, bacteria first turn to the second-best electron acceptor, which in sea water, is nitrate. Denitrification occurs, and the nitrate will be consumed rather rapidly. After reducing some other minor elements, the bacteria will turn to reducing sulfate. This results in the byproduct of hydrogen sulfide (H2S), a chemical toxic to most biota and responsible for the characteristic "rotten egg" smell and dark black sediment color:

2 CH2O + SO2−
4
→ 2 HCO
3
+ H2S + chemical energy

These sulfides will mostly be oxidized to either sulfates (~90%) in more oxygen-rich water or precipitated and converted into pyrite (~10%), according to the following chemical equations:

  1. H2S ⇌ HS + H+
    HS + 2 O2HSO
    4
  2. H2S ⇌ HS + H+
    Fe2+ + HSFeS + H+
    FeS + H2S → FeS2 + H2

Some chemolithotrophs can also facilitate the oxidation of hydrogen sulfide into elemental sulfur, according to the following chemical equation:

H2S + O2 → S + H2O2

Anoxia is quite common in muddy ocean bottoms where there are both high amounts of organic matter and low levels of inflow of oxygenated water through the sediment. Below a few centimeters from the surface the interstitial water (water between sediment) is oxygen free.

Anoxia is further influenced by biochemical oxygen demand (BOD), which is the amount of oxygen used by marine organisms in the process of breaking down organic matter. BOD is influenced by the type of organisms present, the pH of the water, temperature, and the type of organic matter present in the area. BOD is directly related to the amount of dissolved oxygen available, especially in smaller bodies of water such as rivers and streams. As BOD increases, available oxygen decreases. This causes stress on larger organisms. BOD comes from natural and anthropogenic sources, including: dead organisms, manure, wastewater, and urban runoff.

Human caused anoxic conditions

Eutrophication, an influx of nutrients (phosphate/nitrate), often a byproduct of agricultural run-off and sewage discharge, can result in large but short-lived algae blooms. Upon a bloom's conclusion, the dead algae sink to the bottom and are broken down until all oxygen is expended. Such a case is the Gulf of Mexico where a seasonal dead zone occurs, which can be disturbed by weather patterns such as hurricanes and tropical convection. Sewage discharge, specifically that of nutrient concentrated "sludge", can be especially damaging to ecosystem diversity. Species sensitive to anoxic conditions are replaced by fewer hardier species, reducing the overall variability of the affected area.

Gradual environmental changes through eutrophication or global warming can cause major oxic-anoxic regime shifts. Based on model studies this can occur abruptly, with a transition between an oxic state dominated by cyanobacteria, and an anoxic state with sulfate-reducing bacteria and phototrophic sulfur bacteria.

Daily and seasonal cycles

The temperature of a body of water directly affects the amount of dissolved oxygen it can hold. Following Henry's law, as water becomes warmer, oxygen becomes less soluble in it. This property leads to daily anoxic cycles on small geographic scales and seasonal cycles of anoxia on larger scales. Thus, bodies of water are more vulnerable to anoxic conditions during the warmest period of the day and during summer months. This problem can be further exacerbated in the vicinity of industrial discharge where warm water used to cool machinery is less able to hold oxygen than the basin to which it is released.

Daily cycles are also influenced by the activity of photosynthetic organisms. The lack of photosynthesis during nighttime hours in the absence of light can result in anoxic conditions intensifying throughout the night with a maximum shortly after sunrise.

Biological adaptation

Individual species’ reactions to eutrophication can vary widely. For example, some organisms, such as primary producers, can adapt very quickly and even thrive under anoxic conditions. However, most organisms are extremely susceptible to slight changes in aquatic oxygen levels. Simply put - if a respirating organism is presented with little to no oxygen, its chances of survival will decrease. Therefore, eutrophication and anoxic conditions in water leads to a decrease in biodiversity.

For example, the soft coral Xenia umbellata can resist some anoxic conditions for short periods of time, but after about 3 weeks, mean survival decreases to about 81% and about 40% of surviving species experience size reductions, lessening in coloration, and compromised pinnate structures (Simancas-Giraldo et al., 2021). Another example of a susceptible organism is observed with The Sydney Cockle, Anadara trapezia. Enriched sediments have lethal and sublethal effects on this Cockle and, as stated in [Vadillo Gonzalez et al., 2021], “movement of cockles was reduced in enriched sediments compared to natural treatments.” These are just a few examples of the hundreds of thousands of aquatic species that exist, but these and other examples show important results.

A study collecting over 850 published experiments "reporting oxygen thresholds and/or lethal times for a total of 206 species spanning the full taxonomic range of benthic metazoans."

Individual species will have different adaptive responses to anoxic conditions based on their biological makeup and the condition of their habitat. While some are able to pump oxygen from higher water levels down into the sediment, other adaptations include specific hemoglobins for low oxygen environments, slow movement to reduce rate of metabolism, and symbiotic relationships with anaerobic bacteria. In all cases, the prevalence of excess nutrients results in low levels of biologic activity and a lower level of species diversity if the area is not normally anoxic.

Anoxic basins

Chemical substance

From Wikipedia, the free encyclopedia

Steam and liquid water are two different forms of the same chemical (pure) substance: water.

A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., without breaking chemical bonds. Chemical substances can be simple substances (substances consisting of a single chemical element), chemical compounds, or alloys.

Chemical substances are often called 'pure' to set them apart from mixtures. A common example of a chemical substance is pure water; it has the same properties and the same ratio of hydrogen to oxygen whether it is isolated from a river or made in a laboratory. Other chemical substances commonly encountered in pure form are diamond (carbon), gold, table salt (sodium chloride) and refined sugar (sucrose). However, in practice, no substance is entirely pure, and chemical purity is specified according to the intended use of the chemical.

Chemical substances exist as solids, liquids, gases, or plasma, and may change between these phases of matter with changes in temperature or pressure and time. Chemical substances may be combined or converted to others by means of chemical reactions.

Definition

Colors of a single chemical (Nile red) in different solvents, under visible and UV light, showing how the chemical interacts dynamically with its solvent environment.

A chemical substance may well be defined as "any material with a definite chemical composition" in an introductory general chemistry textbook. According to this definition a chemical substance can either be a pure chemical element or a pure chemical compound. But, there are exceptions to this definition; a pure substance can also be defined as a form of matter that has both definite composition and distinct properties. The chemical substance index published by CAS also includes several alloys of uncertain composition. Non-stoichiometric compounds are a special case (in inorganic chemistry) that violates the law of constant composition, and for them, it is sometimes difficult to draw the line between a mixture and a compound, as in the case of palladium hydride. Broader definitions of chemicals or chemical substances can be found, for example: "the term 'chemical substance' means any organic or inorganic substance of a particular molecular identity, including – (i) any combination of such substances occurring in whole or in part as a result of a chemical reaction or occurring in nature".

In geology, substances of uniform composition are called minerals, while physical mixtures (aggregates) of several minerals (different substances) are defined as rocks. Many minerals, however, mutually dissolve into solid solutions, such that a single rock is a uniform substance despite being a mixture in stoichiometric terms. Feldspars are a common example: anorthoclase is an alkali aluminum silicate, where the alkali metal is interchangeably either sodium or potassium.

In law, "chemical substances" may include both pure substances and mixtures with a defined composition or manufacturing process. For example, the EU regulation REACH defines "monoconstituent substances", "multiconstituent substances" and "substances of unknown or variable composition". The latter two consist of multiple chemical substances; however, their identity can be established either by direct chemical analysis or reference to a single manufacturing process. For example, charcoal is an extremely complex, partially polymeric mixture that can be defined by its manufacturing process. Therefore, although the exact chemical identity is unknown, identification can be made with a sufficient accuracy. The CAS index also includes mixtures.

Polymers almost always appear as mixtures of molecules of multiple molar masses, each of which could be considered a separate chemical substance. However, the polymer may be defined by a known precursor or reaction(s) and the molar mass distribution. For example, polyethylene is a mixture of very long chains of -CH2- repeating units, and is generally sold in several molar mass distributions, LDPE, MDPE, HDPE and UHMWPE.

History

The concept of a "chemical substance" became firmly established in the late eighteenth century after work by the chemist Joseph Proust on the composition of some pure chemical compounds such as basic copper carbonate. He deduced that, "All samples of a compound have the same composition; that is, all samples have the same proportions, by mass, of the elements present in the compound." This is now known as the law of constant composition. Later with the advancement of methods for chemical synthesis particularly in the realm of organic chemistry; the discovery of many more chemical elements and new techniques in the realm of analytical chemistry used for isolation and purification of elements and compounds from chemicals that led to the establishment of modern chemistry, the concept was defined as is found in most chemistry textbooks. However, there are some controversies regarding this definition mainly because the large number of chemical substances reported in chemistry literature need to be indexed.

Isomerism caused much consternation to early researchers, since isomers have exactly the same composition, but differ in configuration (arrangement) of the atoms. For example, there was much speculation about the chemical identity of benzene, until the correct structure was described by Friedrich August Kekulé. Likewise, the idea of stereoisomerism – that atoms have rigid three-dimensional structure and can thus form isomers that differ only in their three-dimensional arrangement – was another crucial step in understanding the concept of distinct chemical substances. For example, tartaric acid has three distinct isomers, a pair of diastereomers with one diastereomer forming two enantiomers.

Chemical elements

Native sulfur crystals. Sulfur occurs naturally as elemental sulfur, in sulfide and sulfate minerals and in hydrogen sulfide.
 

An element is a chemical substance made up of a particular kind of atom and hence cannot be broken down or transformed by a chemical reaction into a different element, though it can be transmuted into another element through a nuclear reaction. This is because all of the atoms in a sample of an element have the same number of protons, though they may be different isotopes, with differing numbers of neutrons.

As of 2019, there are 118 known elements, about 80 of which are stable – that is, they do not change by radioactive decay into other elements. Some elements can occur as more than a single chemical substance (allotropes). For instance, oxygen exists as both diatomic oxygen (O2) and ozone (O3). The majority of elements are classified as metals. These are elements with a characteristic lustre such as iron, copper, and gold. Metals typically conduct electricity and heat well, and they are malleable and ductile. Around 14 to 21 elements, such as carbon, nitrogen, and oxygen, are classified as non-metals. Non-metals lack the metallic properties described above, they also have a high electronegativity and a tendency to form negative ions. Certain elements such as silicon sometimes resemble metals and sometimes resemble non-metals, and are known as metalloids.

Chemical compounds

Potassium ferricyanide is a compound of potassium, iron, carbon and nitrogen; although it contains cyanide anions, it does not release them and is nontoxic.
 

A chemical compound is a chemical substance that is composed of a particular set of atoms or ions. Two or more elements combined into one substance through a chemical reaction form a chemical compound. All compounds are substances, but not all substances are compounds.

A chemical compound can be either atoms bonded together in molecules or crystals in which atoms, molecules or ions form a crystalline lattice. Compounds based primarily on carbon and hydrogen atoms are called organic compounds, and all others are called inorganic compounds. Compounds containing bonds between carbon and a metal are called organometallic compounds.

Compounds in which components share electrons are known as covalent compounds. Compounds consisting of oppositely charged ions are known as ionic compounds, or salts.

Coordination complexes are compounds where a dative bond keeps the substance together without a covalent or ionic bond. Coordination complexes are distinct substances with distinct properties different from a simple mixture. Typically these have a metal, such as a copper ion, in the center and a nonmetals atom, such as the nitrogen in an ammonia molecule or oxygen in water in a water molecule, forms a dative bond to the metal center, e.g. tetraamminecopper(II) sulfate [Cu(NH3)4]SO4·H2O. The metal is known as a "metal center" and the substance that coordinates to the center is called a "ligand". However, the center does not need to be a metal, as exemplified by boron trifluoride etherate BF3OEt2, where the highly Lewis acidic, but nonmetallic boron center takes the role of the "metal". If the ligand bonds to the metal center with multiple atoms, the complex is called a chelate.

In organic chemistry, there can be more than one chemical compound with the same composition and molecular weight. Generally, these are called isomers. Isomers usually have substantially different chemical properties, and often may be isolated without spontaneously interconverting. A common example is glucose vs. fructose. The former is an aldehyde, the latter is a ketone. Their interconversion requires either enzymatic or acid-base catalysis.

However, tautomers are an exception: the isomerization occurs spontaneously in ordinary conditions, such that a pure substance cannot be isolated into its tautomers, even if these can be identified spectroscopically or even isolated in special conditions. A common example is glucose, which has open-chain and ring forms. One cannot manufacture pure open-chain glucose because glucose spontaneously cyclizes to the hemiacetal form.

Substances versus mixtures

Cranberry glass, while appearing homogeneous, is a mixture consisting of glass and gold colloidal particles of about 40 nm in diameter, giving it a red color.
 

All matter consists of various elements and chemical compounds, but these are often intimately mixed together. Mixtures contain more than one chemical substance, and they do not have a fixed composition. In principle, they can be separated into the component substances by purely mechanical processes. Butter, soil and wood are common examples of mixtures.

Grey iron metal and yellow sulfur are both chemical elements, and they can be mixed together in any ratio to form a yellow-grey mixture. No chemical process occurs, and the material can be identified as a mixture by the fact that the sulfur and the iron can be separated by a mechanical process, such as using a magnet to attract the iron away from the sulfur.

In contrast, if iron and sulfur are heated together in a certain ratio (1 atom of iron for each atom of sulfur, or by weight, 56 grams (1 mol) of iron to 32 grams (1 mol) of sulfur), a chemical reaction takes place and a new substance is formed, the compound iron(II) sulfide, with chemical formula FeS. The resulting compound has all the properties of a chemical substance and is not a mixture. Iron(II) sulfide has its own distinct properties such as melting point and solubility, and the two elements cannot be separated using normal mechanical processes; a magnet will be unable to recover the iron, since there is no metallic iron present in the compound.

Chemicals versus chemical substances

Chemicals in graduated cylinders and beaker.
 

While the term chemical substance is a precise technical term that is synonymous with chemical for chemists, the word chemical is used in general usage to refer to both (pure) chemical substances and mixtures (often called compounds), and especially when produced or purified in a laboratory or an industrial process. In other words, the chemical substances of which fruits and vegetables, for example, are naturally composed even when growing wild are not called "chemicals" in general usage. In countries that require a list of ingredients in products, the "chemicals" listed are industrially produced "chemical substances". The word "chemical" is also often used to refer to addictive, narcotic, or mind-altering drugs.

Within the chemical industry, manufactured "chemicals" are chemical substances, which can be classified by production volume into bulk chemicals, fine chemicals and chemicals found in research only:

  • Bulk chemicals are produced in very large quantities, usually with highly optimized continuous processes and to a relatively low price.
  • Fine chemicals are produced at a high cost in small quantities for special low-volume applications such as biocides, pharmaceuticals and speciality chemicals for technical applications.
  • Research chemicals are produced individually for research, such as when searching for synthetic routes or screening substances for pharmaceutical activity. In effect, their price per gram is very high, although they are not sold.

The cause of the difference in production volume is the complexity of the molecular structure of the chemical. Bulk chemicals are usually much less complex. While fine chemicals may be more complex, many of them are simple enough to be sold as "building blocks" in the synthesis of more complex molecules targeted for single use, as named above. The production of a chemical includes not only its synthesis but also its purification to eliminate by-products and impurities involved in the synthesis. The last step in production should be the analysis of batch lots of chemicals in order to identify and quantify the percentages of impurities for the buyer of the chemicals. The required purity and analysis depends on the application, but higher tolerance of impurities is usually expected in the production of bulk chemicals. Thus, the user of the chemical in the US might choose between the bulk or "technical grade" with higher amounts of impurities or a much purer "pharmaceutical grade" (labeled "USP", United States Pharmacopeia). "Chemicals" in the commercial and legal sense may also include mixtures of highly variable composition, as they are products made to a technical specification instead of particular chemical substances. For example, gasoline is not a single chemical compound or even a particular mixture: different gasolines can have very different chemical compositions, as "gasoline" is primarily defined through source, properties and octane rating.

Naming and indexing

Every chemical substance has one or more systematic names, usually named according to the IUPAC rules for naming. An alternative system is used by the Chemical Abstracts Service (CAS).

Many compounds are also known by their more common, simpler names, many of which predate the systematic name. For example, the long-known sugar glucose is now systematically named 6-(hydroxymethyl)oxane-2,3,4,5-tetrol. Natural products and pharmaceuticals are also given simpler names, for example the mild pain-killer Naproxen is the more common name for the chemical compound (S)-6-methoxy-α-methyl-2-naphthaleneacetic acid.

Chemists frequently refer to chemical compounds using chemical formulae or molecular structure of the compound. There has been a phenomenal growth in the number of chemical compounds being synthesized (or isolated), and then reported in the scientific literature by professional chemists around the world. An enormous number of chemical compounds are possible through the chemical combination of the known chemical elements. As of Feb 2021, about "177 million organic and inorganic substances" (including 68 million defined-sequence biopolymers) are in the scientific literature and registered in public databases. The names of many of these compounds are often nontrivial and hence not very easy to remember or cite accurately. Also it is difficult to keep the track of them in the literature. Several international organizations like IUPAC and CAS have initiated steps to make such tasks easier. CAS provides the abstracting services of the chemical literature, and provides a numerical identifier, known as CAS registry number to each chemical substance that has been reported in the chemical literature (such as chemistry journals and patents). This information is compiled as a database and is popularly known as the Chemical substances index. Other computer-friendly systems that have been developed for substance information, are: SMILES and the International Chemical Identifier or InChI.

Identification of a typical chemical substance
Common name Systematic name Chemical formula Chemical structure CAS registry number InChI
Alcohol, or
ethyl alcohol
Ethanol C2H5OH
Ethanol-2D-skeletal.png
[64-17-5] 1/C2H6O/c1-2-3/h3H,2H2,1H3

Isolation, purification, characterization, and identification

Often a pure substance needs to be isolated from a mixture, for example from a natural source (where a sample often contains numerous chemical substances) or after a chemical reaction (which often gives mixtures of chemical substances).

Subatomic particle

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Subatomic_particle ...