Search This Blog

Friday, August 11, 2023

Fertilizer

From Wikipedia, the free encyclopedia
A farmer spreading manure to improve soil fertility

A fertilizer (American English) or fertiliser (British English) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Many sources of fertilizer exist, both natural and industrially produced. For most modern agricultural practices, fertilization focuses on three main macro nutrients: nitrogen (N), phosphorus (P), and potassium (K) with occasional addition of supplements like rock flour for micronutrients. Farmers apply these fertilizers in a variety of ways: through dry or pelletized or liquid application processes, using large agricultural equipment or hand-tool methods.

Historically fertilization came from natural or organic sources: compost, animal manure, human manure, harvested minerals, crop rotations and byproducts of human-nature industries (i.e. fish processing waste, or bloodmeal from animal slaughter). However, starting in the 19th century, after innovations in plant nutrition, an agricultural industry developed around synthetically created fertilizers. This transition was important in transforming the global food system, allowing for larger-scale industrial agriculture with large crop yields.

Nitrogen-fixing chemical processes, such as the Haber process invented at the beginning of the 20th century, and amplified by production capacity created during World War II, led to a boom in using nitrogen fertilizers. In the latter half of the 20th century, increased use of nitrogen fertilizers (800% increase between 1961 and 2019) has been a crucial component of the increased productivity of conventional food systems (more than 30% per capita) as part of the so-called "Green Revolution".

The use of artificial and industrially-applied fertilizers has caused environmental consequences such as water pollution and eutrophication due to nutritional runoff; carbon and other emissions from fertilizer production and mining; and contamination and pollution of soil. Various sustainable-agriculture practices can be implemented to reduce the adverse environmental effects of fertilizer and pesticide use as well as other environmental damage caused by industrial agriculture.

History

Total fertilizer production by type.
World population supported with and without synthetic nitrogen fertilizers.
Founded in 1812, Mirat, producer of manures and fertilizers, is claimed to be the oldest industrial business in Salamanca (Spain).

Management of soil fertility has preoccupied farmers for thousands of years. Egyptians, Romans, Babylonians, and early Germans are all recorded as using minerals or manure to enhance the productivity of their farms. The science of plant nutrition started well before the work of German chemist Justus von Liebig although his name is most mentioned. Nicolas Théodore de Saussure and scientific colleagues at the time were quick to disprove the simplifications of Justus von Liebig. There was a complex scientific understanding of plant nutrition, where the role of humus and organo-mineral interactions were central, and which was in line with more recent discoveries from 1990 onwards. Prominent scientists on whom Justus von Liebig drew were Carl Ludwig Sprenger and Hermann Hellriegel. In this field, a 'knowledge erosion' took place, partly driven by an intermingling of economics and research. John Bennet Lawes, an English entrepreneur, began to experiment on the effects of various manures on plants growing in pots in 1837, and a year or two later the experiments were extended to crops in the field. One immediate consequence was that in 1842 he patented a manure formed by treating phosphates with sulfuric acid, and thus was the first to create the artificial manure industry. In the succeeding year he enlisted the services of Joseph Henry Gilbert; together they performed crop experiments at the Institute of Arable Crops Research.

The Birkeland–Eyde process was one of the competing industrial processes in the beginning of nitrogen-based fertilizer production. This process was used to fix atmospheric nitrogen (N2) into nitric acid (HNO3), one of several chemical processes generally referred to as nitrogen fixation. The resultant nitric acid was then used as a source of nitrate (NO3). A factory based on the process was built in Rjukan and Notodden in Norway, combined with the building of large hydroelectric power facilities.

The 1910s and 1920s witnessed the rise of the Haber process and the Ostwald process. The Haber process produces ammonia (NH3) from methane (CH4) (natural gas) gas and molecular nitrogen (N2) from the air. The ammonia from the Haber process is then partially converted into nitric acid (HNO3) in the Ostwald process. After World War II, nitrogen production plants that had ramped up for wartime bomb manufacturing were pivoted towards agriculture uses. The use of synthetic nitrogen fertilizers has increased steadily over the last 50 years, rising almost 20-fold to the current rate of 100 million tonnes of nitrogen per year.

The development of synthetic nitrogen fertilizer has significantly supported global population growth. It has been estimated that almost half the people on the Earth are currently fed as a result of synthetic nitrogen fertilizer use. The use of phosphate fertilizers has also increased from 9 million tonnes per year in 1960 to 40 million tonnes per year in 2000. A maize crop yielding 6–9 tonnes of grain per hectare (2.5 acres) requires 31–50 kilograms (68–110 lb) of phosphate fertilizer to be applied; soybean crops require about half, 20–25 kg per hectare. Yara International is the world's largest producer of nitrogen-based fertilizers.

Mechanism

Six tomato plants grown with and without nitrate fertilizer on nutrient-poor sand/clay soil. One of the plants in the nutrient-poor soil has died.
Inorganic fertilizer use by region

Fertilizers enhance the growth of plants. This goal is met in two ways, the traditional one being additives that provide nutrients. The second mode by which some fertilizers act is to enhance the effectiveness of the soil by modifying its water retention and aeration. This article, like many on fertilizers, emphasises the nutritional aspect. Fertilizers typically provide, in varying proportions:

The nutrients required for healthy plant life are classified according to the elements, but the elements are not used as fertilizers. Instead compounds containing these elements are the basis of fertilizers. The macro-nutrients are consumed in larger quantities and are present in plant tissue in quantities from 0.15% to 6.0% on a dry matter (DM) (0% moisture) basis. Plants are made up of four main elements: hydrogen, oxygen, carbon, and nitrogen. Carbon, hydrogen and oxygen are widely available as water and carbon dioxide. Although nitrogen makes up most of the atmosphere, it is in a form that is unavailable to plants. Nitrogen is the most important fertilizer since nitrogen is present in proteins, DNA and other components (e.g., chlorophyll). To be nutritious to plants, nitrogen must be made available in a "fixed" form. Only some bacteria and their host plants (notably legumes) can fix atmospheric nitrogen (N2) by converting it to ammonia. Phosphate is required for the production of DNA and ATP, the main energy carrier in cells, as well as certain lipids.

Microbiological considerations

Two sets of enzymatic reactions are highly relevant to the efficiency of nitrogen-based fertilizers.

Urease

The first is the hydrolysis (reaction with water) of urea. Many soil bacteria possess the enzyme urease, which catalyzes conversion of urea to ammonium ion (NH4+) and bicarbonate ion (HCO3).

Ammonia oxidation

Ammonia-oxidizing bacteria (AOB), such as species of Nitrosomonas, oxidize ammonia to nitrite, a process termed nitrification.[19] Nitrite-oxidizing bacteria, especially Nitrobacter, oxidize nitrite to nitrate, which is extremely mobile and is a major cause of eutrophication.

Classification

Fertilizers are classified in several ways. They are classified according to whether they provide a single nutrient (e.g., K, P, or N), in which case they are classified as "straight fertilizers". "multinutrient fertilizers" (or "complex fertilizers") provide two or more nutrients, for example N and P. Fertilizers are also sometimes classified as inorganic (the topic of most of this article) versus organic. Inorganic fertilizers exclude carbon-containing materials except ureas. Organic fertilizers are usually (recycled) plant- or animal-derived matter. Inorganic are sometimes called synthetic fertilizers since various chemical treatments are required for their manufacture.

Single nutrient ("straight") fertilizers

The main nitrogen-based straight fertilizer is ammonium (NH3) ammonium (NH4+) or its solutions, including:

  • Ammonium nitrate (NH4NO3) is also widely used
  • Urea (CO(NH2)2.) another popular source of nitrogen, having the advantage that it is solid and non-explosive, unlike ammonia and ammonium nitrate.
  • Calcium ammonium nitrate (Ca(NO3)2 · NH4 · 10 H2O), reportedly holding few percent of the nitrogen fertilizer market (4% in 2007).

The main straight phosphate fertilizers are the superphosphates:

  • "Single superphosphate" (SSP) consisting of 14–18% P2O5, again in the form of Ca(H2PO4)2, but also phosphogypsum (CaSO4 · 2 H2O).
  • Triple superphosphate (TSP) typically consists of 44–48% of P2O5 and no gypsum.

A mixture of single superphosphate and triple superphosphate is called double superphosphate. More than 90% of a typical superphosphate fertilizer is water-soluble.

The main potassium-based straight fertilizer is muriate of potash (MOP, 95–99% KCl). It's typically available as 0-0-60 or 0-0-62 fertilizer.

Multinutrient fertilizers

These fertilizers are common. They consist of two or more nutrient components.

Binary (NP, NK, PK) fertilizers

Major two-component fertilizers provide both nitrogen and phosphorus to the plants. These are called NP fertilizers. The main NP fertilizers are monoammonium phosphate (MAP) and diammonium phosphate (DAP). The active ingredient in MAP is NH4H2PO4. The active ingredient in DAP is (NH4)2HPO4. About 85% of MAP and DAP fertilizers are soluble in water.

NPK fertilizers

NPK fertilizers are three-component fertilizers providing nitrogen, phosphorus, and potassium. There exist two types of NPK fertilizers: compound and blends. Compound NPK fertilizers contain chemically bound ingredients, while blended NPK fertilizers are physical mixtures of single nutrient components.

NPK rating is a rating system describing the amount of nitrogen, phosphorus, and potassium in a fertilizer. NPK ratings consist of three numbers separated by dashes (e.g., 10-10-10 or 16-4-8) describing the chemical content of fertilizers. The first number represents the percentage of nitrogen in the product; the second number, P2O5; the third, K2O. Fertilizers do not actually contain P2O5 or K2O, but the system is a conventional shorthand for the amount of the phosphorus (P) or potassium (K) in a fertilizer. A 50-pound (23 kg) bag of fertilizer labeled 16-4-8 contains 8 lb (3.6 kg) of nitrogen (16% of the 50 pounds), an amount of phosphorus equivalent to that in 2 pounds of P2O5 (4% of 50 pounds), and 4 pounds of K2O (8% of 50 pounds). Most fertilizers are labeled according to this N-P-K convention, although Australian convention, following an N-P-K-S system, adds a fourth number for sulfur, and uses elemental values for all values including P and K.

Micronutrients

Micronutrients are consumed in smaller quantities and are present in plant tissue on the order of parts-per-million (ppm), ranging from 0.15 to 400 ppm or less than 0.04% dry matter. These elements are often required for enzymes essential to the plant's metabolism. Because these elements enable catalysts (enzymes), their impact far exceeds their weight percentage. Typical micronutrients are boron, zinc, molybdenum, iron, and manganese. These elements are provided as water-soluble salts. Iron presents special problems because it converts to insoluble (bio-unavailable) compounds at moderate soil pH and phosphate concentrations. For this reason, iron is often administered as a chelate complex, e.g., the EDTA or EDDHA derivatives. The micronutrient needs depend on the plant and the environment. For example, sugar beets appear to require boron, and legumes require cobalt, while environmental conditions such as heat or drought make boron less available for plants.

Production

The production of synthetic, or inorganic, fertilizers requires prepared chemicals, whereas organic fertilizers are derived from the organic processes of plants and animals in biological processes using biochemicals.

Nitrogen fertilizers

Total nitrogenous fertilizer consumption per region, measured in tonnes of total nutrient per year.

Top users of nitrogen-based fertilizer
Country Total N use
(Mt pa)
Amt. used for
feed/pasture
(Mt pa)
China 18.7 3.0
India 11.9
U.S. 9.1 4.7
France 2.5 1.3
Germany 2.0 1.2
Brazil 1.7 0.7
Canada 1.6 0.9
Turkey 1.5 0.3
UK 1.3 0.9
Mexico 1.3 0.3
Spain 1.2 0.5
Argentina 0.4 0.1

Nitrogen fertilizers are made from ammonia (NH3) produced by the Haber–Bosch process. In this energy-intensive process, natural gas (CH4) usually supplies the hydrogen, and the nitrogen (N2) is derived from the air. This ammonia is used as a feedstock for all other nitrogen fertilizers, such as anhydrous ammonium nitrate (NH4NO3) and urea (CO(NH2)2).

Deposits of sodium nitrate (NaNO3) (Chilean saltpeter) are also found in the Atacama desert in Chile and was one of the original (1830) nitrogen-rich fertilizers used. It is still mined for fertilizer. Nitrates are also produced from ammonia by the Ostwald process.

Phosphate fertilizers

An apatite mine in Siilinjärvi, Finland

Phosphate fertilizers are obtained by extraction from phosphate rock, which contains two principal phosphorus-containing minerals, fluorapatite Ca5(PO4)3F (CFA) and hydroxyapatite Ca5(PO4)3OH. These minerals are converted into water-soluble phosphate salts by treatment with sulfuric (H2SO4) or phosphoric acids (H3PO4). The large production of sulfuric acid is primarily motivated by this application. In the nitrophosphate process or Odda process (invented in 1927), phosphate rock with up to a 20% phosphorus (P) content is dissolved with nitric acid (HNO3) to produce a mixture of phosphoric acid (H3PO4) and calcium nitrate (Ca(NO3)2). This mixture can be combined with a potassium fertilizer to produce a compound fertilizer with the three macronutrients N, P and K in easily dissolved form.

Potassium fertilizers

Potash is a mixture of potassium minerals used to make potassium (chemical symbol: K) fertilizers. Potash is soluble in water, so the main effort in producing this nutrient from the ore involves some purification steps; e.g., to remove sodium chloride (NaCl) (common salt). Sometimes potash is referred to as K2O, as a matter of convenience to those describing the potassium content. In fact, potash fertilizers are usually potassium chloride, potassium sulfate, potassium carbonate, or potassium nitrate.

NPK fertilizers

There are four major routes for manufacturing NPK fertilizers (named for their main ingredients: nitrogen (N), phosphorus (P), and potassium (K)):

  1. steam granulation,
  2. chemical granulation,
  3. compaction,
  4. bulk blending.

The first three processes are used to produce compound NPKs. During steam granulation raw materials are mixed and further granulated using steam as binding agent. Chemical granulation process is based on chemical reactions between liquid raw materials (such as phosphoric acid, sulfuric acid, ammonia) and solid raw materials (such as potassium chloride, recycle material). Compaction implements high pressure to agglomerate dry powder materials. Lastly, bulk blends are produced by mixing straight fertilizers.

Organic fertilizers

Compost bin for small-scale production of organic fertilizer
A large commercial compost operation

"Organic fertilizers" can describe those fertilizers with an organic – biologic – origin—that is, fertilizers derived from living or formerly living materials. Organic fertilizers can also describe commercially available and frequently packaged products that strive to follow the expectations and restrictions adopted by "organic agriculture" and "environmentally friendly" gardening – related systems of food and plant production that significantly limit or strictly avoid the use of synthetic fertilizers and pesticides. The "organic fertilizer" products typically contain both some organic materials as well as acceptable additives such as nutritive rock powders, ground sea shells (crab, oyster, etc.), other prepared products such as seed meal or kelp, and cultivated microorganisms and derivatives.

Fertilizers of an organic origin (the first definition) include animal wastes, plant wastes from agriculture, seaweed, compost, and treated sewage sludge (biosolids). Beyond manures, animal sources can include products from the slaughter of animals – bloodmeal, bone meal, feather meal, hides, hoofs, and horns all are typical components. Organically derived materials available to industry such as sewage sludge may not be acceptable components of organic farming and gardening, because of factors ranging from residual contaminants to public perception. On the other hand, marketed "organic fertilizers" may include, and promote, processed organics because the materials have consumer appeal. No matter the definition nor composition, most of these products contain less-concentrated nutrients, and the nutrients are not as easily quantified. They can offer soil-building advantages as well as be appealing to those who are trying to farm / garden more "naturally".

In terms of volume, peat is the most widely used packaged organic soil amendment. It is an immature form of coal and improves the soil by aeration and absorbing water but confers no nutritional value to the plants. It is therefore not a fertilizer as defined in the beginning of the article, but rather an amendment. Coir, (derived from coconut husks), bark, and sawdust when added to soil all act similarly (but not identically) to peat and are also considered organic soil amendments – or texturizers – because of their limited nutritive inputs. Some organic additives can have a reverse effect on nutrients – fresh sawdust can consume soil nutrients as it breaks down, and may lower soil pH – but these same organic texturizers (as well as compost, etc.) may increase the availability of nutrients through improved cation exchange, or through increased growth of microorganisms that in turn increase availability of certain plant nutrients. Organic fertilizers such as composts and manures may be distributed locally without going into industry production, making actual consumption more difficult to quantify.

Statistics

Fertilizer use (2018). From FAO's World Food and Agriculture – Statistical Yearbook 2020

China has become the largest producer and consumer of nitrogen fertilizers while Africa has little reliance on nitrogen fertilizers. Agricultural and chemical minerals are very important in industrial use of fertilizers, which is valued at approximately $200 billion. Nitrogen has a significant impact in the global mineral use, followed by potash and phosphate. The production of nitrogen has drastically increased since the 1960s. Phosphate and potash have increased in price since the 1960s, which is larger than the consumer price index. Potash is produced in Canada, Russia and Belarus, together making up over half of the world production. Potash production in Canada rose in 2017 and 2018 by 18.6%. Conservative estimates report 30 to 50% of crop yields are attributed to natural or synthetic commercial fertilizers. Fertilizer consumption has surpassed the amount of farmland in the United States.

Data on the fertilizer consumption per hectare arable land in 2012 are published by The World Bank. The diagram below shows fertilizer consumption by the European Union (EU) countries as kilograms per hectare (pounds per acre). The total consumption of fertilizer in the EU is 15.9 million tons for 105 million hectare arable land area (or 107 million hectare arable land according to another estimate). This figure equates to 151 kg of fertilizers consumed per ha arable land on average by the EU countries.

The diagram displays the statistics of fertilizer consumption in western and central European counties from data published by The World Bank for 2012.

Application

Fertilizer sprayer
Applying superphosphate fertilizer by hand, New Zealand, 1938

Fertilizers are commonly used for growing all crops, with application rates depending on the soil fertility, usually as measured by a soil test and according to the particular crop. Legumes, for example, fix nitrogen from the atmosphere and generally do not require nitrogen fertilizer.

Liquid vs solid

Fertilizers are applied to crops both as solids and as liquid. About 90% of fertilizers are applied as solids. The most widely used solid inorganic fertilizers are urea, diammonium phosphate and potassium chloride. Solid fertilizer is typically granulated or powdered. Often solids are available as prills, a solid globule. Liquid fertilizers comprise anhydrous ammonia, aqueous solutions of ammonia, aqueous solutions of ammonium nitrate or urea. These concentrated products may be diluted with water to form a concentrated liquid fertilizer (e.g., UAN). Advantages of liquid fertilizer are its more rapid effect and easier coverage. The addition of fertilizer to irrigation water is called "fertigation".

Urea

Urea is highly soluble in water and is therefore also very suitable for use in fertilizer solutions (in combination with ammonium nitrate: UAN), e.g., in 'foliar feed' fertilizers. For fertilizer use, granules are preferred over prills because of their narrower particle size distribution, which is an advantage for mechanical application.

Urea is usually spread at rates of between 40 and 300 kg/ha (35 to 270 lbs/acre) but rates vary. Smaller applications incur lower losses due to leaching. During summer, urea is often spread just before or during rain to minimize losses from volatilization (a process wherein nitrogen is lost to the atmosphere as ammonia gas).

Because of the high nitrogen concentration in urea, it is very important to achieve an even spread. Drilling must not occur on contact with or close to seed, due to the risk of germination damage. Urea dissolves in water for application as a spray or through irrigation systems.

In grain and cotton crops, urea is often applied at the time of the last cultivation before planting. In high rainfall areas and on sandy soils (where nitrogen can be lost through leaching) and where good in-season rainfall is expected, urea can be side- or top-dressed during the growing season. Top-dressing is also popular on pasture and forage crops. In cultivating sugarcane, urea is side-dressed after planting, and applied to each ratoon crop.

Because it absorbs moisture from the atmosphere, urea is often stored in closed containers.

Overdose or placing urea near seed is harmful.

Slow- and controlled-release fertilizers

Methylene diurea (MDU) is component of the most popular controlled-release fertilizers.
A controlled-release fertiliser (CRF) is a granulated fertiliser that releases nutrients gradually into the soil (i.e., with a controlled release period). Controlled-release fertilizer is also known as controlled-availability fertilizer, delayed-release fertilizer, metered-release fertilizer, or slow-acting fertilizer. Usually CRF refers to nitrogen-based fertilizers. Slow- and controlled-release involve only 0.15% (562,000 tons) of the fertilizer market (1995).

Foliar application

Foliar fertilizers are applied directly to leaves. This method is almost invariably used to apply water-soluble straight nitrogen fertilizers and used especially for high-value crops such as fruits. Urea is the most common foliar fertilizer.

Fertilizer burn

Chemicals that affect nitrogen uptake

N-Butylthiophosphoryltriamide, an enhanced efficiency fertilizer.

Various chemicals are used to enhance the efficiency of nitrogen-based fertilizers. In this way farmers can limit the polluting effects of nitrogen run-off. Nitrification inhibitors (also known as nitrogen stabilizers) suppress the conversion of ammonia into nitrate, an anion that is more prone to leaching. 1-Carbamoyl-3-methylpyrazole (CMP), dicyandiamide, nitrapyrin (2-chloro-6-trichloromethylpyridine) and 3,4-Dimethylpyrazole phosphate (DMPP) are popular. Urease inhibitors are used to slow the hydrolytic conversion of urea into ammonia, which is prone to evaporation as well as nitrification. The conversion of urea to ammonia catalyzed by enzymes called ureases. A popular inhibitor of ureases is N-(n-butyl)thiophosphoric triamide (NBPT).

Overfertilization

Careful use of fertilization technologies is important because excess nutrients can be detrimental. Fertilizer burn can occur when too much fertilizer is applied, resulting in damage or even death of the plant. Fertilizers vary in their tendency to burn roughly in accordance with their salt index.

Environmental effects

Runoff of soil and fertilizer during a rain storm

Synthetic fertilizer used in agriculture has wide-reaching environmental consequences.

According to the Intergovernmental Panel on Climate Change (IPCC) Special Report on Climate Change and Land, production of these fertilizers and associated land use practices are drivers of global warming. The use of fertilizer has also led to a number of direct environmental consequences: agricultural runoff which leads to downstream effects like ocean dead zones and waterway contamination, soil microbiome degradation, and accumulation of toxins in ecosystems. Indirect environmental impacts include: the environmental impacts of fracking for natural gas used in the Haber process, the agricultural boom is partially responsible for the rapid growth in human population and large-scale industrial agricultural practices are associated with habitat destruction, pressure on biodiversity and agricultural soil loss.

In order to mitigate environmental and food security concerns, the international community has included food systems in Sustainable Development Goal 2 which focuses on creating a climate-friendly and sustainable food production system. Most policy and regulatory approaches to address these issues focus on pivoting agricultural practices towards sustainable or regenerative agricultural practices: these use less synthetic fertilizers, better soil management (for example no-till agriculture) and more organic fertilizers.

Large pile of phosphogypsum waste near Fort Meade, Florida.

For each ton of phosphoric acid produced by the processing of phosphate rock, five tons of waste are generated. This waste takes the form of impure, useless, radioactive solid called phosphogypsum. Estimates range from 100,000,000 and 280,000,000 tons of phosphogypsum waste produced annually worldwide.

Water

Red circles show the location and size of many dead zones.

Phosphorus and nitrogen fertilizers can affect soil, surface water, and groundwater due to the dispersion of minerals into waterways due to high rainfall, snowmelt and can leaching into groundwater over time. Agricultural run-off is a major contributor to the eutrophication of fresh water bodies. For example, in the US, about half of all the lakes are eutrophic. The main contributor to eutrophication is phosphate, which is normally a limiting nutrient; high concentrations promote the growth of cyanobacteria and algae, the demise of which consumes oxygen. Cyanobacteria blooms ('algal blooms') can also produce harmful toxins that can accumulate in the food chain, and can be harmful to humans. Fertilizer run-off can be reduced by using weather-optimised fertilization strategies.

The nitrogen-rich compounds found in fertilizer runoff are the primary cause of serious oxygen depletion in many parts of oceans, especially in coastal zones, lakes and rivers. The resulting lack of dissolved oxygen greatly reduces the ability of these areas to sustain oceanic fauna. The number of oceanic dead zones near inhabited coastlines is increasing.

As of 2006, the application of nitrogen fertilizer is being increasingly controlled in northwestern Europe and the United States. In cases where eutrophication can be reversed, it may nevertheless take decades and significant soil management before the accumulated nitrates in groundwater can be broken down by natural processes.

Nitrate pollution

Only a fraction of the nitrogen-based fertilizers is converted to plant matter. The remainder accumulates in the soil or is lost as run-off. High application rates of nitrogen-containing fertilizers combined with the high water solubility of nitrate leads to increased runoff into surface water as well as leaching into groundwater, thereby causing groundwater pollution. The excessive use of nitrogen-containing fertilizers (be they synthetic or natural) is particularly damaging, as much of the nitrogen that is not taken up by plants is transformed into nitrate which is easily leached.

Nitrate levels above 10 mg/L (10 ppm) in groundwater can cause 'blue baby syndrome' (acquired methemoglobinemia). The nutrients, especially nitrates, in fertilizers can cause problems for natural habitats and for human health if they are washed off soil into watercourses or leached through soil into groundwater. Run-off can lead to fertilizing blooms of algae that use up all the oxygen and leave huge "dead zones" behind where other fish and aquatic life can not live. 

Soil

Acidification

Nitrogen-containing fertilizers can cause soil acidification when added. This may lead to decrease in nutrient availability which may be offset by liming.

Accumulation of toxic elements

Cadmium

The concentration of cadmium in phosphorus-containing fertilizers varies considerably and can be problematic. For example, mono-ammonium phosphate fertilizer may have a cadmium content of as low as 0.14 mg/kg or as high as 50.9 mg/kg. The phosphate rock used in their manufacture can contain as much as 188 mg/kg cadmium (examples are deposits on Nauru and the Christmas islands). Continuous use of high-cadmium fertilizer can contaminate soil (as shown in New Zealand) and plants. Limits to the cadmium content of phosphate fertilizers has been considered by the European Commission.[86][87][88] Producers of phosphorus-containing fertilizers now select phosphate rock based on the cadmium content.

Fluoride

Phosphate rocks contain high levels of fluoride. Consequently, the widespread use of phosphate fertilizers has increased soil fluoride concentrations. It has been found that food contamination from fertilizer is of little concern as plants accumulate little fluoride from the soil; of greater concern is the possibility of fluoride toxicity to livestock that ingest contaminated soils. Also of possible concern are the effects of fluoride on soil microorganisms.

Radioactive elements

The radioactive content of the fertilizers varies considerably and depends both on their concentrations in the parent mineral and on the fertilizer production process. Uranium-238 concentrations can range from 7 to 100 pCi/g (picocuries per gram) in phosphate rock and from 1 to 67 pCi/g in phosphate fertilizers. Where high annual rates of phosphorus fertilizer are used, this can result in uranium-238 concentrations in soils and drainage waters that are several times greater than are normally present. However, the impact of these increases on the risk to human health from radinuclide contamination of foods is very small (less than 0.05 mSv/y).

Other metals

Steel industry wastes, recycled into fertilizers for their high levels of zinc (essential to plant growth), wastes can include the following toxic metals: lead arsenic, cadmium, chromium, and nickel. The most common toxic elements in this type of fertilizer are mercury, lead, and arsenic. These potentially harmful impurities can be removed; however, this significantly increases cost. Highly pure fertilizers are widely available and perhaps best known as the highly water-soluble fertilizers containing blue dyes used around households, such as Miracle-Gro. These highly water-soluble fertilizers are used in the plant nursery business and are available in larger packages at significantly less cost than retail quantities. Some inexpensive retail granular garden fertilizers are made with high purity ingredients.

Trace mineral depletion

Attention has been addressed to the decreasing concentrations of elements such as iron, zinc, copper and magnesium in many foods over the last 50–60 years. Intensive farming practices, including the use of synthetic fertilizers are frequently suggested as reasons for these declines and organic farming is often suggested as a solution. Although improved crop yields resulting from NPK fertilizers are known to dilute the concentrations of other nutrients in plants, much of the measured decline can be attributed to the use of progressively higher-yielding crop varieties that produce foods with lower mineral concentrations than their less-productive ancestors. It is, therefore, unlikely that organic farming or reduced use of fertilizers will solve the problem; foods with high nutrient density are posited to be achieved using older, lower-yielding varieties or the development of new high-yield, nutrient-dense varieties.

Fertilizers are, in fact, more likely to solve trace mineral deficiency problems than cause them: In Western Australia deficiencies of zinc, copper, manganese, iron and molybdenum were identified as limiting the growth of broad-acre crops and pastures in the 1940s and 1950s. Soils in Western Australia are very old, highly weathered and deficient in many of the major nutrients and trace elements. Since this time these trace elements are routinely added to fertilizers used in agriculture in this state. Many other soils around the world are deficient in zinc, leading to deficiency in both plants and humans, and zinc fertilizers are widely used to solve this problem.

Changes in soil biology

High levels of fertilizer may cause the breakdown of the symbiotic relationships between plant roots and mycorrhizal fungi.

Energy consumption and sustainability

In the US in 2004, 317 billion cubic feet of natural gas were consumed in the industrial production of ammonia, less than 1.5% of total U.S. annual consumption of natural gas. A 2002 report suggested that the production of ammonia consumes about 5% of global natural gas consumption, which is somewhat under 2% of world energy production.

Ammonia is produced from natural gas and air. The cost of natural gas makes up about 90% of the cost of producing ammonia. The increase in price of natural gases over the past decade, along with other factors such as increasing demand, have contributed to an increase in fertilizer price.

Contribution to climate change

The amount of greenhouse gases carbon dioxide, methane and nitrous oxide produced during the manufacture and use of nitrogen fertilizer is estimated as around 5% of anthropogenic greenhouse gas emissions. One third is produced during the production and two thirds during the use of fertilizers. The single most important way to cut emissions from it is to use less fertilizers. According to Dr André Cabrera Serrenho: ""We're incredibly inefficient in our use of fertilisers," "We're using far more than we need". Nitrogen fertilizer can be converted by soil bacteria to nitrous oxide, a greenhouse gas. Nitrous oxide emissions by humans, most of which are from fertilizer, between 2007 and 2016 have been estimated at 7 million tonnes per year, which is incompatible with limiting global warming to below 2 °C.

Atmosphere

Global methane concentrations (surface and atmospheric) for 2005; note distinct plumes

Through the increasing use of nitrogen fertilizer, which was used at a rate of about 110 million tons (of N) per year in 2012, adding to the already existing amount of reactive nitrogen, nitrous oxide (N2O) has become the third most important greenhouse gas after carbon dioxide and methane. It has a global warming potential 296 times larger than an equal mass of carbon dioxide and it also contributes to stratospheric ozone depletion. By changing processes and procedures, it is possible to mitigate some, but not all, of these effects on anthropogenic climate change.

Methane emissions from crop fields (notably rice paddy fields) are increased by the application of ammonium-based fertilizers. These emissions contribute to global climate change as methane is a potent greenhouse gas.

Policy

Regulation

In Europe, problems with high nitrate concentrations in runoff are being addressed by the European Union's Nitrates Directive. Within Britain, farmers are encouraged to manage their land more sustainably in 'catchment-sensitive farming'. In the US, high concentrations of nitrate and phosphorus in runoff and drainage water are classified as nonpoint source pollutants due to their diffuse origin; this pollution is regulated at the state level. Oregon and Washington, both in the United States, have fertilizer registration programs with on-line databases listing chemical analyses of fertilizers.

In China, regulations have been implemented to control the use of N fertilizers in farming. In 2008, Chinese governments began to partially withdraw fertilizer subsidies, including subsidies to fertilizer transportation and to electricity and natural gas use in the industry. In consequence, the price of fertilizer has gone up and large-scale farms have begun to use less fertilizer. If large-scale farms keep reducing their use of fertilizer subsidies, they have no choice but to optimize the fertilizer they have which would therefore gain an increase in both grain yield and profit.

In March 2022, the United States Department of Agriculture announced a new $250M grant to promote American fertilizer production. Part of the Commodity Credit Corporation, the grant program will support fertilizer production that is independent of dominant fertilizer suppliers, made in America, and utilizing innovative production techniques to jumpstart future competition.

Two types of agricultural management practices include organic agriculture and conventional agriculture. The former encourages soil fertility using local resources to maximize efficiency. Organic agriculture avoids synthetic agrochemicals. Conventional agriculture uses all the components that organic agriculture does not use.

Melanin

From Wikipedia, the free encyclopedia
Melanin
One possible structure of Eumelanin
One possible structure of Eumelanin

Material typeHeterogeneous Biopolymer
Micrograph of Melanin pigment (light refracting granular material—center of image) in a pigmented melanoma.
Micrograph of the epidermis, with melanin labeled at left.

Melanin (from Ancient Greek μέλας (mélas) 'black, dark') is a broad term for a group of natural pigments found in most organisms. The melanin pigments are produced in a specialized group of cells known as melanocytes.

There are five basic types of melanin: eumelanin, pheomelanin, neuromelanin, allomelanin and pyomelanin. The most common type is eumelanin, of which there are two types — brown eumelanin and black eumelanin. Eumelanin is produced through a multistage chemical process known as melanogenesis, where the oxidation of the amino acid tyrosine is followed by polymerization. Pheomelanin, which is produced when melanocytes are malfunctioning due to derivation of the gene to its recessive format is a cysteine-derivative that contains polybenzothiazine portions that are largely responsible for the red or yellow tint given to some skin or hair colors. Neuromelanin is found in the brain. Research has been undertaken to investigate its efficacy in treating neurodegenerative disorders such as Parkinson's. Allomelanin and pyomelanin are two types of nitrogen-free melanin.

In the human skin, melanogenesis is initiated by exposure to UV radiation, causing the skin to darken. Eumelanin is an effective absorbent of light; the pigment is able to dissipate over 99.9% of absorbed UV radiation. Because of this property, eumelanin is thought to protect skin cells from UVA and UVB radiation damage, reducing the risk of folate depletion and dermal degradation. Exposure to UV radiation is associated with increased risk of malignant melanoma, a cancer of melanocytes (melanin cells). Studies have shown a lower incidence for skin cancer in individuals with more concentrated melanin, i.e. darker skin tone.

Humans

Albinism occurs when melanocytes produce little melanin. This albino girl is from Papua New Guinea.

In humans, melanin is the primary determinant of skin color. It is also found in hair, the pigmented tissue underlying the iris of the eye, and the stria vascularis of the inner ear. In the brain, tissues with melanin include the medulla and pigment-bearing neurons within areas of the brainstem, such as the locus coeruleus. It also occurs in the zona reticularis of the adrenal gland.

The melanin in the skin is produced by melanocytes, which are found in the basal layer of the epidermis. Although, in general, human beings possess a similar concentration of melanocytes in their skin, the melanocytes in some individuals and ethnic groups produce variable amounts of melanin. Some humans have very little or no melanin synthesis in their bodies, a condition known as albinism.

Because melanin is an aggregate of smaller component molecules, there are many different types of melanin with different proportions and bonding patterns of these component molecules. Both pheomelanin and eumelanin are found in human skin and hair, but eumelanin is the most abundant melanin in humans, as well as the form most likely to be deficient in albinism.

Eumelanin

Part of the structural formula of eumelanin. "(COOH)" can be COOH or H, or (more rarely) other substituents. The arrow denotes where the polymer continues.

Eumelanin polymers have long been thought to comprise numerous cross-linked 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) polymers.

There are two types of eumelanin, which are brown eumelanin and black eumelanin. Those two types of eumelanin chemically differ from each other in their pattern of polymeric bonds. A small amount of black eumelanin in the absence of other pigments causes grey hair. A small amount of brown eumelanin in the absence of other pigments causes yellow (blond) hair. The eumelanin is present in the skin and hair, etc.

Pheomelanin

Part of the structural formula of pheomelanin. "(COOH)" can be COOH or H, or (more rarely) other substituents. The arrows denote where the polymer continues.

Pheomelanins (or phaeomelanins) impart a range of yellowish to reddish colors. Pheomelanins are particularly concentrated in the lips, nipples, glans of the penis, and vagina. When a small amount of brown eumelanin in hair (which would otherwise cause blond hair) is mixed with red pheomelanin, the result is orange hair, which is typically called "red" or "ginger" hair. Pheomelanin is also present in the skin, and redheads consequently often have a more pinkish hue to their skin as well. Exposure of the skin to ultraviolet light increases pheomelanin content, as it does for eumelanin; but rather than absorbing light, pheomelanin within the hair and skin reflect yellow to red light, which may increase damage from UV radiation exposure.

In chemical terms, pheomelanins differ from eumelanins in that the oligomer structure incorporates benzothiazine and benzothiazole units that are produced, instead of DHI and DHICA, when the amino acid L-cysteine is present.

Trichochromes

Trichochromes (formerly called trichosiderins) are pigments produced from the same metabolic pathway as the eumelanins and pheomelanins, but unlike those molecules they have low molecular weight. They occur in some red human hair.

Neuromelanin

Neuromelanin (NM) is a dark insoluble polymer pigment produced in specific populations of catecholaminergic neurons in the brain. Humans have the largest amount of NM, which is present in lesser amounts in other primates, and totally absent in many other species. The biological function remains unknown, although human NM has been shown to efficiently bind transition metals such as iron, as well as other potentially toxic molecules. Therefore, it may play crucial roles in apoptosis and the related Parkinson's disease.

Other organisms

Melanins have very diverse roles and functions in various organisms. A form of melanin makes up the ink used by many cephalopods (see cephalopod ink) as a defense mechanism against predators. Melanins also protect microorganisms, such as bacteria and fungi, against stresses that involve cell damage such as UV radiation from the sun and reactive oxygen species. Melanin also protects against damage from high temperatures, chemical stresses (such as heavy metals and oxidizing agents), and biochemical threats (such as host defenses against invading microbes). Therefore, in many pathogenic microbes (for example, in Cryptococcus neoformans, a fungus) melanins appear to play important roles in virulence and pathogenicity by protecting the microbe against immune responses of its host. In invertebrates, a major aspect of the innate immune defense system against invading pathogens involves melanin. Within minutes after infection, the microbe is encapsulated within melanin (melanization), and the generation of free radical byproducts during the formation of this capsule is thought to aid in killing them. Some types of fungi, called radiotrophic fungi, appear to be able to use melanin as a photosynthetic pigment that enables them to capture gamma rays and harness this energy for growth.

The darker feathers of birds owe their color to melanin and are less readily degraded by bacteria than unpigmented ones or those containing carotenoid pigments. Feathers that contain melanin are also 39% more resistant to abrasion than those that do not because melanin granules help fill the space between the keratin strands that form feathers. Pheomelanin synthesis in birds implies the consumption of cysteine, a semi‐essential amino acid that is necessary for the synthesis of the antioxidant glutathione (GSH) but that may be toxic if in excess in the diet. Indeed, many carnivorous birds, which have a high protein content in their diet, exhibit pheomelanin‐based coloration.

Melanin is also important in mammalian pigmentation. The coat pattern of mammals is determined by the agouti gene which regulates the distribution of melanin. The mechanisms of the gene have been extensively studied in mice to provide an insight into the diversity of mammalian coat patterns.

Melanin in arthropods has been observed to be deposited in layers thus producing a Bragg reflector of alternating refractive index. When the scale of this pattern matches the wavelength of visible light, structural coloration arises: giving a number of species an iridescent color.

Arachnids are one of the few groups in which melanin has not been easily detected, though researchers found data suggesting spiders do in fact produce melanin.

Some moth species, including the wood tiger moth, convert resources to melanin to enhance their thermoregulation. As the wood tiger moth has populations over a large range of latitudes, it has been observed that more northern populations showed higher rates of melanization. In both yellow and white male phenotypes of the wood tiger moth, individuals with more melanin had a heightened ability to trap heat but an increased predation rate due to a weaker and less effective aposematic signal.

Melanin protects Drosophila flies and mice against DNA damage from non-UV radiation. Important studies in Drosophila models include Hopwood et al., 1985. Much of our understanding of the radioprotective effects of melanin against gamma radiation come from the laboratories and research groups of Irma Mosse. Mosse began in radiobiology in the Soviet era, was increasingly supported by government funding in the wake of the discovery of radiotrophic microbes in Chernobyl, and as of 2022 continues under the Belarusian Institute of Genetics and Cytology. Her most significant contribution is Mosse et al., 2000 on mice but also includes Mosse et al., 1994, Mosse et al., 1997, Mosse et al., 1998, Mosse et al., 2001, Mosse et al., 2002. Mosse et al., 2006, Mosse et al., 2007 and Mosse et al., 2008.

Plants

Chemical structure of indole-5,6-quinone

Melanin produced by plants are sometimes referred to as 'catechol melanins' as they can yield catechol on alkali fusion. It is commonly seen in the enzymatic browning of fruits such as bananas. Chestnut shell melanin can be used as an antioxidant and coloring agent. Biosynthesis involves the oxidation of indole-5,6-quinone by the tyrosinase type polyphenol oxidase from tyrosine and catecholamines leading to the formation of catechol melanin. Despite this many plants contain compounds which inhibit the production of melanins.

Interpretation as a single monomer

It is now understood that melanins do not have a single structure or stoichiometry. Nonetheless, chemical databases such as PubChem include structural and empirical formulae; typically 3,8-Dimethyl-2,7-dihydrobenzo[1,2,3-cd:4,5,6-cd′]diindole-4,5,9,10-tetrone. This can be thought of as a single monomer that accounts for the measured elemental composition and some properties of melanin, but is unlikely to be found in nature. Solano claims that this misleading trend stems from a report of an empirical formula in 1948, but provides no other historical detail.

3,8-Dimethyl-2,7-dihydrobenzo[1,2,3-cd:4,5,6-cd′]diindole-4,5,9,10-tetrone
3,8-Dimethyl-2,7-dihydrobenzo[1,2,3-cd:4,5,6-c′d′]diindole-4,5,9,10-tetrone
3,8-Dimethyl-2,7-dihydrobenzo[1,2,3-cd:4,5,6-c′d′]diindole-4,5,9,10-tetrone ball and stick model
Names
Preferred IUPAC name
3,8-Dimethyl-2,7-dihydrobenzo[1,2,3-cd:4,5,6-cd′]diindole-4,5,9,10-tetrone
Properties
C18H10N2O4
Molar mass 318.288 g·mol−1
Density 1.6 to 1.8 g/cm3
Melting point < −20 °C (−4 °F; 253 K)
Boiling point 450 to 550 °C (842 to 1,022 °F; 723 to 823 K)

Biosynthetic pathways

The first step of the biosynthetic pathway for both eumelanins and pheomelanins is catalysed by tyrosinase.

TyrosineDOPAdopaquinone

Dopaquinone can combine with cysteine by two pathways to benzothiazines and pheomelanins

Dopaquinone + cysteine → 5-S-cysteinyldopa → benzothiazine intermediate → pheomelanin
Dopaquinone + cysteine → 2-S-cysteinyldopa → benzothiazine intermediate → pheomelanin

Also, dopaquinone can be converted to leucodopachrome and follow two more pathways to the eumelanins

Dopaquinone → leucodopachrome → dopachrome → 5,6-dihydroxyindole-2-carboxylic acid → quinone → eumelanin
Dopaquinone → leucodopachrome → dopachrome → 5,6-dihydroxyindole → quinone → eumelanin

Detailed metabolic pathways can be found in the KEGG database (see External links).

Microscopic appearance

Melanin is brown, non-refractile, and finely granular with individual granules having a diameter of less than 800 nanometers. This differentiates melanin from common blood breakdown pigments, which are larger, chunky, and refractile, and range in color from green to yellow or red-brown. In heavily pigmented lesions, dense aggregates of melanin can obscure histologic detail. A dilute solution of potassium permanganate is an effective melanin bleach.

Genetic disorders and disease states

There are approximately nine types of oculocutaneous albinism, which is mostly an autosomal recessive disorder. Certain ethnicities have higher incidences of different forms. For example, the most common type, called oculocutaneous albinism type 2 (OCA2), is especially frequent among people of black African descent and white Europeans. People with OCA2 usually have fair skin, but are often not as pale as OCA1. They (OCA2 or OCA1? see comments in History) have pale blonde to golden, strawberry blonde, or even brown hair, and most commonly blue eyes. 98.7–100% of modern Europeans are carriers of the derived allele SLC24A5, a known cause of nonsyndromic oculocutaneous albinism. It is an autosomal recessive disorder characterized by a congenital reduction or absence of melanin pigment in the skin, hair, and eyes. The estimated frequency of OCA2 among African-Americans is 1 in 10,000, which contrasts with a frequency of 1 in 36,000 in white Americans. In some African nations, the frequency of the disorder is even higher, ranging from 1 in 2,000 to 1 in 5,000. Another form of Albinism, the "yellow oculocutaneous albinism", appears to be more prevalent among the Amish, who are of primarily Swiss and German ancestry. People with this IB variant of the disorder commonly have white hair and skin at birth, but rapidly develop normal skin pigmentation in infancy.

Ocular albinism affects not only eye pigmentation but visual acuity, as well. People with albinism typically test poorly, within the 20/60 to 20/400 range. In addition, two forms of albinism, with approximately 1 in 2,700 most prevalent among people of Puerto Rican origin, are associated with mortality beyond melanoma-related deaths.

The connection between albinism and deafness is well known, though poorly understood. In his 1859 treatise On the Origin of Species, Charles Darwin observed that "cats which are entirely white and have blue eyes are generally deaf". In humans, hypopigmentation and deafness occur together in the rare Waardenburg's syndrome, predominantly observed among the Hopi in North America. The incidence of albinism in Hopi Indians has been estimated as approximately 1 in 200 individuals. Similar patterns of albinism and deafness have been found in other mammals, including dogs and rodents. However, a lack of melanin per se does not appear to be directly responsible for deafness associated with hypopigmentation, as most individuals lacking the enzymes required to synthesize melanin have normal auditory function. Instead, the absence of melanocytes in the stria vascularis of the inner ear results in cochlear impairment, though why this is, is not fully understood.

In Parkinson's disease, a disorder that affects neuromotor functioning, there is decreased neuromelanin in the substantia nigra and locus coeruleus as a consequence of specific dropping out of dopaminergic and noradrenergic pigmented neurons. This results in diminished dopamine and norepinephrine synthesis. While no correlation between race and the level of neuromelanin in the substantia nigra has been reported, the significantly lower incidence of Parkinson's in blacks than in whites has "prompt[ed] some to suggest that cutaneous melanin might somehow serve to protect the neuromelanin in substantia nigra from external toxins."

In addition to melanin deficiency, the molecular weight of the melanin polymer may be decreased by various factors such as oxidative stress, exposure to light, perturbation in its association with melanosomal matrix proteins, changes in pH, or in local concentrations of metal ions. A decreased molecular weight or a decrease in the degree of polymerization of ocular melanin has been proposed to turn the normally anti-oxidant polymer into a pro-oxidant. In its pro-oxidant state, melanin has been suggested to be involved in the causation and progression of macular degeneration and melanoma. Rasagiline, an important monotherapy drug in Parkinson's disease, has melanin binding properties, and melanoma tumor reducing properties.

Higher eumelanin levels also can be a disadvantage, however, beyond a higher disposition toward vitamin D deficiency. Dark skin is a complicating factor in the laser removal of port-wine stains. Effective in treating white skin, in general, lasers are less successful in removing port-wine stains in people of Asian or African descent. Higher concentrations of melanin in darker-skinned individuals simply diffuse and absorb the laser radiation, inhibiting light absorption by the targeted tissue. In a similar manner, melanin can complicate laser treatment of other dermatological conditions in people with darker skin.

Freckles and moles are formed where there is a localized concentration of melanin in the skin. They are highly associated with pale skin.

Nicotine has an affinity for melanin-containing tissues because of its precursor function in melanin synthesis or its irreversible binding of melanin. This has been suggested to underlie the increased nicotine dependence and lower smoking cessation rates in darker pigmented individuals.

Human adaptation

Physiology

Melanocytes insert granules of melanin into specialized cellular vesicles called melanosomes. These are then transferred into the keratinocyte cells of the human epidermis. The melanosomes in each recipient cell accumulate atop the cell nucleus, where they protect the nuclear DNA from mutations caused by the ionizing radiation of the sun's ultraviolet rays. In general, people whose ancestors lived for long periods in the regions of the globe near the equator have larger quantities of eumelanin in their skins. This makes their skins brown or black and protects them against high levels of exposure to the sun, which more frequently result in melanomas in lighter-skinned people.

Not all the effects of pigmentation are advantageous. Pigmentation increases the heat load in hot climates, and dark-skinned people absorb 30% more heat from sunlight than do very light-skinned people, although this factor may be offset by more profuse sweating. In cold climates dark skin entails more heat loss by radiation. Pigmentation also hinders synthesis of vitamin D. Since pigmentation appears to be not entirely advantageous to life in the tropics, other hypotheses about its biological significance have been advanced, for example a secondary phenomenon induced by adaptation to parasites and tropical diseases.

Evolutionary origins

Early humans evolved to have dark skin color around 1.2 million years ago, as an adaptation to a loss of body hair that increased the effects of UV radiation. Before the development of hairlessness, early humans had reasonably light skin underneath their fur, similar to that found in other primates. The most recent scientific evidence indicates that anatomically modern humans evolved in Africa between 200,000 and 100,000 years, and then populated the rest of the world through one migration between 80,000 and 50,000 years ago, in some areas interbreeding with certain archaic human species (Neanderthals, Denisovans, and possibly others). It seems likely that the first modern humans had relatively large numbers of eumelanin-producing melanocytes, producing darker skin similar to the indigenous people of Africa today. As some of these original people migrated and settled in areas of Asia and Europe, the selective pressure for eumelanin production decreased in climates where radiation from the sun was less intense. This eventually produced the current range of human skin color. Of the two common gene variants known to be associated with pale human skin, Mc1r does not appear to have undergone positive selection, while SLC24A5 has undergone positive selection.

Effects

As with peoples having migrated northward, those with light skin migrating toward the equator acclimatize to the much stronger solar radiation. Nature selects for less melanin when ultraviolet radiation is weak. Most people's skin darkens when exposed to UV light, giving them more protection when it is needed. This is the physiological purpose of sun tanning. Dark-skinned people, who produce more skin-protecting eumelanin, have a greater protection against sunburn and the development of melanoma, a potentially deadly form of skin cancer, as well as other health problems related to exposure to strong solar radiation, including the photodegradation of certain vitamins such as riboflavins, carotenoids, tocopherol, and folate.

Melanin in the eyes, in the iris and choroid, helps protect them from ultraviolet and high-frequency visible light; people with gray, blue, and green eyes are more at risk of sun-related eye problems. Further, the ocular lens yellows with age, providing added protection. However, the lens also becomes more rigid with age, losing most of its accommodation—the ability to change shape to focus from far to near—a detriment due probably to protein crosslinking caused by UV exposure.

Recent research suggests that melanin may serve a protective role other than photoprotection. Melanin is able to effectively chelate metal ions through its carboxylate and phenolic hydroxyl groups, in many cases much more efficiently than the powerful chelating ligand ethylenediaminetetraacetate (EDTA). Thus, it may serve to sequester potentially toxic metal ions, protecting the rest of the cell. This hypothesis is supported by the fact that the loss of neuromelanin observed in Parkinson's disease is accompanied by an increase in iron levels in the brain.

Physical properties and technological applications

Evidence exists in support of a highly cross-linked heteropolymer bound covalently to matrix scaffolding melanoproteins. It has been proposed that the ability of melanin to act as an antioxidant is directly proportional to its degree of polymerization or molecular weight. Suboptimal conditions for the effective polymerization of melanin monomers may lead to formation of lower-molecular-weight, pro-oxidant melanin that has been implicated in the causation and progression of macular degeneration and melanoma. Signaling pathways that upregulate melanization in the retinal pigment epithelium (RPE) also may be implicated in the downregulation of rod outer segment phagocytosis by the RPE. This phenomenon has been attributed in part to foveal sparing in macular degeneration.

Role in melanoma metastasis

The research done by Sarna's team proved that heavily pigmented melanoma cells have Young's modulus about 4.93 kPa, when in non-pigmented ones it was only 0.98 kPa. In another experiment they found that elasticity of melanoma cells is important for its metastasis and growth: non-pigmented tumors were bigger than pigmented and it was much easier for them to spread. They shown that there are both pigmented and non-pigmented cells in melanoma tumors, so that they can both be drug-resistant and metastatic.

Selenomelanin and possible use against X-ray radiation

It is possible to enrich melanin with selenium instead of sulphur. This selenium analogue of pheomelanin has been successfully synthesized through chemical and biosynthetic routes using selenocystine as a feedstock. Due selenium's higher atomic number, the obtained selenomelanin can be expected to provide better protection against ionising radiation as compared to the other known forms of melanin. This protection has been demonstrated with radiation experiments on human cells and bacteria, opening up the possibility of applications in space travel.

Roaming

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Roaming
An SMS welcome to Proximus (Belgium) customers who have roamed onto T-Mobile (now EE) in the UK

Roaming is a wireless telecommunication term typically used with mobile devices, such as mobile phones. It refers to a mobile phone being used outside the range of its native network and connecting to another available cell network.

Technical definition

In more technical terms, roaming refers to the ability for a cellular customer to automatically make and receive voice calls, send and receive data, or access other services, including home data services, when travelling outside the geographical coverage area of the home network, by means of using a visited network. For example: should a subscriber travel beyond their cell phone company's transmitter range, their cell phone would automatically hop onto another phone company's service, if available.

The process is supported by the Telecommunication processes of mobility management, authentication, authorization and accounting billing procedures (known as AAA or 'triple A').

Roaming in general

Roaming is divided into "SIM-based roaming" and "username/password-based roaming", whereby the technical term "roaming" also encompasses roaming between networks of different network standards, e.g. WLAN (Wireless Local Area Network) or GSM (Global System for Mobile Communications). Device equipment and functionality, such as SIM card capability, antenna and network interfaces, and power management, determine the access possibilities.

Using the example of WLAN/GSM roaming, the following scenarios can be differentiated (cf. GSM Association Permanent Reference Document AA.39):

  • SIM-based (roaming): GSM subscriber roams onto a public WLAN operated by:
    • their GSM operator, or
    • another operator who has a roaming agreement with their GSM operator.
  • Username/password based roaming: GSM subscriber roams onto a public WLAN operated by:
    • their GSM operator, or
    • another operator who has a roaming agreement with their GSM operator.

Although these user/network scenarios focus on roaming from GSM network operator's networks, clearly roaming can be bi-directional, i.e. from public WLAN operators to GSM networks. Traditional roaming in networks of the same standard, e.g. from a WLAN to a WLAN or a GSM network to a GSM network, has already been described above and is likewise defined by the foreignness of the network based on the type of subscriber entry in the home subscriber register.

In the case of session continuity, seamless access to these services across different access types is provided.

Roaming can also be relevant on other networks including Electric Vehicle Charging Networks

Home and visited networks

"Home network" refers to the network the subscriber is registered with.

"Visitor network" refers to the network a subscriber roams temporarily and is outside the bounds of the "home network".

Roaming agreements

The legal roaming business aspects negotiated between the roaming partners for billing of the services obtained are usually stipulated in so called roaming agreements. The GSM Association broadly outlines the content of such roaming agreements in standardized form for its members. For the legal aspects of authentication, authorization and billing of the visiting subscriber, the roaming agreements typically can comprise minimal safety standards, as e.g. location update procedures or financial security or warranty procedures.

The roaming process

The details of the roaming process differ among types of cellular networks, but in general, the process resembles the following:

Location update

Location updating is the mechanism that is used to determine the location of an MS in the idle state (connected to the network, but with no active call).

  1. When the mobile device is turned on or is transferred via a handover to the network, this new "visited" network sees the device, notices that it is not registered with its own system, and attempts to identify its home network. If there is no roaming agreement between the two networks, maintenance of service is impossible, and service is denied by the visited network.
  2. The visited network contacts the home network and requests service information (including whether or not the mobile should be allowed to roam) about the roaming device using the IMSI number.
  3. If successful, the visited network begins to maintain a temporary subscriber record for the device. Likewise, the home network updates its information to indicate that the cell phone is on the visited network so that any information sent to that device can be correctly routed.

Mobile terminated call

It occurs for example when a call is made to a roaming cell phone.

Signaling process:

  1. The calling subscriber (from within the public telephone network) dials the mobile subscriber's MSISDN (the telephone number) of the roaming cell phone.
  2. Based on the information contained in the MSISDN (national destination code and the country code), the call is routed to the mobile network gateway MSC (GMSC). It's done with an ISUP IAM message.
  3. To locate the MS, the GMSC sends to the HLR a MAP SRI (Send Routing Information) message. The MAP SRI message contains the MSISDN number and with this MSISDN the HLR will obtain the IMSI.
  4. Because of past location updates, the HLR already knows the VLR that currently serves the subscriber. The HLR will send to the VLR a MAP PRN (Provide Roaming Number) message to obtain the MSRN of the roaming cell phone. Like that the HLR will be able to route the call to the correct MSC.
  5. With the IMSI contained in the MAP PRN message, the VLR assigns a temporary number known as the mobile station roaming number (MSRN) to the roaming cell phone. This MSRN number is sent back to the HLR in a MAP RIA (Routing Information Acknowledgement) message.
  6. Now with the MSRN number, the GMSC knows how to route the call to reach the roaming cell phone. Then, the call is made using ISUP (or TUP) signaling between the GMSC and the visited MSC. The GMSC will generate an ISUP IAM message with the MSRN as the called party number (and NOT the MSISDN as the called party number).
  7. When the MSC of the visitor network receives the IAM, it recognizes the MSRN and knows the IMSI for which the MSRN was allocated. The MSC then returns the MSRN to the pool for future use on another call. Afterwards, the MSC sends to the VLR a MAP SI (Send Information) message to request information like the called MS's capabilities, services subscribed to, and so on. If the called MS is authorized and capable of taking the call, the VLR sends a MAP CC (Complete Call) message back to the MSC.

In order that a subscriber is able to register on to a visited network, a roaming agreement needs to be in place between the visited network and the home network. This agreement is established after a series of testing processes called IREG (International Roaming Expert Group) and TADIG (Transferred Account Data Interchange Group). While the IREG testing is to test the proper functioning of the established communication links, the TADIG testing is to check the billability of the calls.

The usage by a subscriber in a visited network is captured in a file called the TAP (Transferred Account Procedure) for GSM / CIBER (Cellular Intercarrier Billing Exchange Record) for CDMA, AMPS etc... file and is transferred to the home network. A TAP/CIBER file contains details of the calls made by the subscriber viz. location, calling party, called party, time of call and duration, etc. The TAP/CIBER files are rated as per the tariffs charged by the visited operator. The home operator then bills these calls to its subscribers and may charge a mark-up/tax applicable locally. As recently many carriers launched own retail rate plans and bundles for Roaming, TAP records are generally used for wholesale Inter-Operators settlements only

Tariffs

Roaming fees are typically charged on a per-minute basis for wireless voice service, per text message sent and received and per megabyte of data used for data service, and they are typically determined by the service provider's pricing plan.

Several carriers in both the United States and India have eliminated these fees in their nationwide pricing plans. All of the major carriers now offer pricing plans that allow consumers to purchase nationwide roaming-free minutes. However, carriers define "nationwide" in different ways. For example, some carriers define "nationwide" as anywhere in the U.S., whereas others define it as anywhere within the carrier's network.

In the UK, the main network providers generally send text alerts to advise users that they will now be charged international rates so it is clear when this will apply. UK data roaming charges abroad vary depending on the nature of the phone agreement (either pay as you go or monthly contracts). Some carriers, including T-Mobile and Virgin Mobile, do not allow pay as you go customers to use international roaming without pre-purchase of an international "add on" or "bolt on."

An operator intending to provide roaming services to visitors publishes the tariffs that would be charged in their network at least sixty days prior to its implementation under normal situations. The visited operator tariffs may include tax, discounts etc. and would be based on duration in case of voice calls. For data calls, the charging may be based on the data volume sent and received. Some operators also charge a separate fee for call setup i.e. for the establishment of a call. This charge is called a flagfall charge.

Roaming within the EU

In the European Union, regulation on roaming charges began on 30 June 2007, forcing service providers to lower their roaming fees across the 28-member bloc. It later also included EEA member states. The regulation set a price cap of €0.39 (€0.49 in 2007, €0.46 in 2008, €0.43 in 2009) per minute for outgoing calls, and €0.15 (€0.24 in 2007, €0.22 in 2008, €0.19 in 2009) per minute for incoming calls - excluding tax. Having still found that market conditions did not justify lifting the capping of roaming within the EEA, the Commission replaced the law in 2012. Under the 2012 Regulation, retail roaming capping charges expired in 2017 and wholesale capping charges are due to expire in 2022. In mid-2009 there was also an €0.11 (excluding tax) maximum price for SMS text message included into this regulation.

On 11 June 2013, the European Commission voted to end mobile roaming charges for the first time.

Following a European Commission vote on 15 December 2016, roaming charges within the European Union were to be abolished by June 2017. While the European Commission (EC) believed that ending roaming charges would stimulate entrepreneurship and trade, mobile operators had their doubts about the changes.

On 15 June 2017, Regulation (EU) 2016/2286, nicknamed "Roam like at Home" and having been signed by the European Parliament and Commission in May of the same year came into force. It abolished all roaming charges within the EU, Iceland, Liechtenstein and Norway.

Roaming between other countries

Countries that do not share a supra-national authority have also begun examining the provision of international roaming services. In April 2011, Singapore and Malaysia announced that they had agreed with operators to reduce voice and SMS rates for roaming between their two countries. In August 2012, Australia and New Zealand published a draft report proposing coordinated action on roaming services. This was followed by a final report in February 2013 recommending that the two countries equip their telecommunications regulators with an extended palette of regulatory remedies, when they investigate international roaming. The Australian and New Zealand prime ministers subsequently announced that they would introduce legislation to effect the recommendations of the final report.

On 19 February 2020, Bolivia, Colombia, Ecuador and Peru voted, through the auspice of the Andean Community, to eliminate roaming fees amongst themselves. The agreement is set to start in 2022.

On 1 July 2021, Serbia, Albania, Montenegro, Bosnia & Herzegovina, North Macedonia and Kosovo abolished roaming fees as part of Mini Schengen project, allowing SIM holders on those countries to use their domestic packages on another country in the agreement without having to pay their roaming fee. The agreement was signed in April 2019. There are no additional charges, just like in EU's "Roaming like home" project.

On November 2021, Cameroon, Central African Republic, Congo, Equatorial Guinea, Chad and Gabon committed to bilateral agreements to lift charges and cut interconnection tariffs.

Other types of roaming

Roaming sign shown in notification bar on an Android powered smartphone.

Regional or internal roaming

This type refers to the ability of moving from one region to another region inside national coverage of the mobile operator ("internal roaming"). Initially, operators may have provided commercial offers restricted to a region (sometimes to a town). Due to the success of GSM and the decrease in cost, regional roaming is rarely offered to clients except in nations with wide geographic areas like the US, Russia, India, etc., in which there are a number of regional operators.

In Russia even country-wide operators charge different tariffs depending on whether the users are within or outside of their "home region". A number of legislative attempts to remove the "internal roaming" failed due to opposition from operators. Following the annexation of Crimea in 2014 the Russian operators are facing significant criticism as they do not offer their services inside Crimea directly, even though formally it's recognized as a regular federal subject inside Russia.

National roaming

This type refers to the ability to move from one mobile operator to another in the same country. For example, a postpaid subscriber of T-Mobile USA who is allowed to roam on AT&T Mobility and/or the regional carriers Viaero Wireless and U.S. Cellular's networks would have national roaming rights; prepaid providers on the other hand typically only allow a more restricted national roaming ability for cost reasons. For commercial and license reasons, this type of roaming is not allowed unless under very specific circumstances and under regulatory scrutiny. This has often taken place when a new company is assigned a mobile telephony license (such as Free Italia's 10-year national roaming deal with Wind Tre), to create a more competitive market by allowing the new entrant to offer coverage comparable to that of established operators (by requiring the existing operators to allow roaming while the new entrant has time to build up its own network), or where mobile network infrastructure has been destroyed by natural or man-made means, such as during the 2022 Russian invasion of Ukraine where Ukrainian mobile operators had to quickly implement national roaming with each other to compensate for network infrastructure destroyed in said invasion.

In a country like India, where the number of regional operators is high and the country is divided into telecom circles, this type of roaming is common. Following the launch of the Pebble Network in the UK on 15 July 2015, national roaming has been possible across the major UK networks at no additional cost using a Pebble Network SIM card.

International roaming

This type of roaming refers to the ability to move to a foreign service provider's network. It is, consequently, of particular interest to international tourists and business travelers. Broadly speaking, international roaming is typically easiest when using the GSM standard, as it is used by over 80% of the world's mobile operators, and most devices support it. However, even then, there may be problems, since countries have allocated different frequency bands for GSM communications (there are two groups of countries: most GSM countries use 900/1800 MHz, but the United States and some other countries in the Americas have allocated 850/1900 MHz): for a phone to work in a country with a different frequency allocation, it must support one or both of that country's frequencies, and thus be tri or quad band. If international roaming allows the traveler to stay connected during their trip, it can also generate significant costs for users, due to the trend of carriers pricing GSM usage internationally outrageously high if the traveler elects to not purchase an optional addon to their current phone service. In fact, the use of mobile networks outside its original country can lead to significant billing by its original mobile data operator without an addon to their current phone service.

Inter-standards roaming

This type refers to roaming between two standards. This term is now widely used in mobile communications where especially CDMA customers want to use their phone in areas where there is no CDMA network or there is no roaming agreement in place to support roaming on the used standard. In Europe there are hardly any CDMA networks. Most CDMA customers originate from the Americas or the Far East. In order to enable them to roam in Europe inter-standard roaming is the solution. The CDMA customers arriving in Europe can register on the available GSM networks.

Since mobile communication technologies have evolved independently across continents, there is significant challenge in achieving seamless roaming across these technologies. Typically, these technologies were implemented in accordance with technological standards laid down by different industry bodies and hence the name. A number of the standards making industry bodies have come together to define and achieve interoperability between the technologies as a means to achieve inter-standards roaming. This is currently an ongoing effort.

Mobile signature roaming

Mobile signature roaming allows an access point to get a mobile signature from any end-user, even if the AP and the end-user have not contracted a commercial relationship with the same MSSP. Otherwise, an AP would have to build commercial terms with as many MSSPs as possible, and this might be a cost burden. This means that a mobile signature transaction issued by an Application Provider should be able to reach the appropriate MSSP, and this should be transparent for the AP.

Inter-MSC roaming

Network elements belonging to the same Operator but located in different areas (a typical situation where assignment of local licenses is a common practice) pair depends on the switch and its location. Hence, software changes and a greater processing capability are required, but furthermore this situation could introduce the fairly new concept of roaming on a per MSC basis instead of per Operator basis. But this is actually a burden, so it is avoided.

Permanent roaming

This type refers to customers who purchase service with a mobile phone operator intending to permanently roam, or be off-network. This becomes possible because of the increasing popularity and availability of "free roaming" service plan, where there is no cost difference between on and off network usage. The benefits of getting service from a mobile phone operator, that is not local to a user, can include cheaper rates, or features and phones that are not available on their local mobile phone operator, or to get to a particular mobile phone operator's network to get free calls to other customers of that mobile phone operator through a free unlimited mobile to mobile feature.

Most mobile phone operators will require the customer's living or billing address be inside their coverage area or less often inside the government issued radio frequency license of the mobile phone operator, this is usually determined by a computer estimate because it is impossible to guarantee coverage. If a potential customer's address is not within the requirements of that mobile phone operator, they will be denied service. In order to permanently roam customers may use a false address and online billing, or a relative or friend's address which is in the required area, and a 3rd party billing option.

Most mobile phone operators discourage or prohibit permanent roaming since they must pay per minute rates to the network operator their customer is roaming onto. This is because they can not pass that extra cost onto customers ("free roaming").

Trombone roaming

Roaming calls within a local tariff area, when at least one of the phones belong outside that area. Usually implemented with trombone routing also known as tromboning.

Distance education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Distance_...