Search This Blog

Tuesday, August 15, 2023

Stealth technology

From Wikipedia, the free encyclopedia
F-117 stealth aircraft
PL-01 stealth tank
Surcouf French stealth frigate

Stealth technology, also termed low observable technology (LO technology), is a sub-discipline of military tactics and passive and active electronic countermeasures, which covers a range of methods used to make personnel, aircraft, ships, submarines, missiles, satellites, and ground vehicles less visible (ideally invisible) to radar, infrared, sonar and other detection methods. It corresponds to military camouflage for these parts of the electromagnetic spectrum (i.e., multi-spectral camouflage).

Development of modern stealth technologies in the United States began in 1958, where earlier attempts to prevent radar tracking of its U-2 spy planes during the Cold War by the Soviet Union had been unsuccessful. Designers turned to developing a specific shape for planes that tended to reduce detection by redirecting electromagnetic radiation waves from radars. Radiation-absorbent material was also tested and made to reduce or block radar signals that reflect off the surfaces of aircraft. Such changes to shape and surface composition comprise stealth technology as currently used on the Northrop Grumman B-2 Spirit "Stealth Bomber".

The concept of stealth is to operate or hide while giving enemy forces no indication as to the presence of friendly forces. This concept was first explored through camouflage to make an object's appearance blend into the visual background. As the potency of detection and interception technologies (radar, infrared search and tracking, surface-to-air missiles, etc.) have increased, so too has the extent to which the design and operation of military personnel and vehicles have been affected in response. Some military uniforms are treated with chemicals to reduce their infrared signature. A modern stealth vehicle is designed from the outset to have a chosen spectral signature. The degree of stealth embodied in a given design is chosen according to the projected threats of detection.

History

Camouflage to aid or avoid predation predates humanity, and hunters have been using vegetation to conceal themselves perhaps as long as people have been hunting. The earliest application of camouflage in warfare is impossible to ascertain. Methods for visual concealment in war were documented by Sun Tzu in his book The Art of War in the 5th century BC, and by Frontinus in his work Strategemata in the 1st century AD.

In England, irregular units of gamekeepers in the 17th century were the first to adopt drab colours (common in 16th century Irish units) as a form of camouflage, following examples from the continent.

During World War I, the Germans experimented with the use of Cellon (Cellulose acetate), a transparent covering material, in an attempt to reduce the visibility of military aircraft. Single examples of the Fokker E.III Eindecker fighter monoplane, the Albatros C.I two-seat observation biplane, and the Linke-Hofmann R.I prototype heavy bomber were covered with Cellon. However, sunlight glinting from the material made the aircraft even more visible. Cellon was also found to degrade quickly from both sunlight and in-flight temperature changes, so the effort to make transparent aircraft ceased.

In 1916, the British modified a small SS class airship for the purpose of night-time reconnaissance over German lines on the Western Front. Fitted with a silenced engine and a black gas bag, the craft was both invisible and inaudible from the ground but several night-time flights over German-held territory produced little useful intelligence and the idea was dropped.

Diffused lighting camouflage, a shipborne form of counter-illumination camouflage, was trialled by the Royal Canadian Navy from 1941 to 1943. The concept was followed up for aircraft by the Americans and the British: in 1945 a Grumman Avenger with Yehudi lights reached 3,000 yards (2,700 m) from a ship before being sighted. This ability was rendered obsolete by radar.

Chaff was invented in Britain and Germany early in World War II as a means to hide aircraft from radar. In effect, chaff acted upon radio waves much as a smoke screen acted upon visible light.

The U-boat U-480 may have been the first stealth submarine. It featured an anechoic tile rubber coating, one layer of which contained circular air pockets to defeat ASDIC sonar. Radar-absorbent paints and materials of rubber and semiconductor composites (codenames: Sumpf, Schornsteinfeger) were used by the Kriegsmarine on submarines in World War II. Tests showed they were effective in reducing radar signatures at both short (centimetres) and long (1.5 metre) wavelengths.

In 1956 the CIA began attempts to reduce the radar cross-section (RCS) of the U-2 spyplane. Three systems were developed, Trapeze, a series of wires and ferrite beads around the planform of the aircraft, a covering material with PCB circuitry embedded in it, and radar-absorbent paint. These were deployed in the field on the so-called dirty birds but results were disappointing, the weight and drag increases were not worth any reduction in detection rates. More successful was applying camouflage paint to the originally bare metal aircraft; a deep blue was found to be most effective. The weight of this cost 250 ft in maximum altitude, but made the aircraft harder for interceptors to see.

In 1958, the U.S. Central Intelligence Agency requested funding for a reconnaissance aircraft to replace the existing U-2 spy planes, and Lockheed secured contractual rights to produce it. "Kelly" Johnson and his team at Lockheed's Skunk Works were assigned to produce the A-12 (or OXCART), which operated at high altitude of 70,000 to 80,000 ft and speed of Mach 3.2 to avoid radar detection. Various plane shapes designed to reduce radar detection were developed in earlier prototypes, named A-1 to A-11. The A-12 included a number of stealthy features including special fuel to reduce the signature of the exhaust plume, canted vertical stabilizers, the use of composite materials in key locations, and the overall finish in radar-absorbent paint.

In 1960, the USAF reduced the radar cross-section of a Ryan Q-2C Firebee drone. This was achieved through specially designed screens over the air intake, and radiation-absorbent material on the fuselage, and radar-absorbent paint.

The United States Army issued a specification in 1968 which called for an observation aircraft that would be acoustically undetectable from the ground when flying at an altitude of 1,500 feet (457 m) at night. This resulted in the Lockheed YO-3A Quiet Star, which operated in South Vietnam from late June 1970 to September 1971.

During the 1970s the U.S. Department of Defense launched project Lockheed Have Blue, with the aim of developing a stealth fighter. There was fierce bidding between Lockheed and Northrop to secure the multibillion-dollar contract. Lockheed incorporated into its bid a text written by the Soviet-Russian physicist Pyotr Ufimtsev from 1962, titled Method of Edge Waves in the Physical Theory of Diffraction, Soviet Radio, Moscow, 1962. In 1971 this book was translated into English with the same title by U.S. Air Force, Foreign Technology Division. The theory played a critical role in the design of American stealth-aircraft F-117 and B-2. Equations outlined in the paper quantified how a plane's shape would affect its detectability by radar, termed radar cross-section (RCS). At the time, the Soviet Union did not have supercomputer capacity to solve these equations for actual designs. This was applied by Lockheed in computer simulation to design a novel shape they called the "Hopeless Diamond", a wordplay on the Hope Diamond, securing contractual rights to produce the F-117 Nighthawk starting in 1975. In 1977 Lockheed produced two 60% scale models under the Have Blue contract. The Have Blue program was a stealth technology demonstrator that lasted from 1976 to 1979. The Northrop Grumman Tacit Blue also played a part in the development of composite material and curvilinear surfaces, low observables, fly-by-wire, and other stealth technology innovations. The success of Have Blue led the Air Force to create the Senior Trend program which developed the F-117.

Principles

Stealth technology (or LO for low observability) is not one technology. It is a set of technologies, used in combinations, that can greatly reduce the distances at which a person or vehicle can be detected; more so radar cross-section reductions, but also acoustic, thermal, and other aspects.

Radar cross-section (RCS) reductions

Almost since the invention of radar, various methods have been tried to minimize detection. Rapid development of radar during World War II led to equally rapid development of numerous counter radar measures during the period; a notable example of this was the use of chaff. Modern methods include Radar jamming and deception.

The term stealth in reference to reduced radar signature aircraft became popular during the late eighties when the Lockheed Martin F-117 stealth fighter became widely known. The first large scale (and public) use of the F-117 was during the Gulf War in 1991. However, F-117A stealth fighters were used for the first time in combat during Operation Just Cause, the United States invasion of Panama in 1989.

Vehicle shape

Aircraft

The F-35 Lightning II offers better stealthy features (such as this landing gear door) than prior American multi-role fighters, such as the F-16 Fighting Falcon

The possibility of designing aircraft in such a manner as to reduce their radar cross-section was recognized in the late 1930s, when the first radar tracking systems were employed, and it has been known since at least the 1960s that aircraft shape makes a significant difference in detectability. The Avro Vulcan, a British bomber of the 1960s, had a remarkably small appearance on radar despite its large size, and occasionally disappeared from radar screens entirely. It is now known that it had a fortuitously stealthy shape apart from the vertical element of the tail. Despite being designed before a low radar cross-section (RCS) and other stealth factors were ever a consideration, a Royal Aircraft Establishment technical note of 1957 stated that of all the aircraft so far studied, the Vulcan appeared by far the simplest radar echoing object, due to its shape: only one or two components contributing significantly to the echo at any aspect (one of them being the vertical stabilizer, which is especially relevant for side aspect RCS), compared with three or more on most other types. While writing about radar systems, authors Simon Kingsley and Shaun Quegan singled out the Vulcan's shape as acting to reduce the RCS. In contrast, the Tupolev 95 Russian long-range bomber (NATO reporting name 'Bear') was conspicuous on radar. It is now known that propellers and jet turbine blades produce a bright radar image; the Bear has four pairs of large (5.6-meter diameter) contra-rotating propellers.

Another important factor is internal construction. Some stealth aircraft have skin that is radar transparent or absorbing, behind which are structures termed reentrant triangles. Radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. This method was first used on the Blackbird series: A-12, YF-12A, Lockheed SR-71 Blackbird.

The most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral (two plates) or a trihedral (three orthogonal plates). This configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. Stealth aircraft such as the F-117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. A more radical method is to omit the tail, as in the B-2 Spirit. The B-2's clean, low-drag flying wing configuration gives it exceptional range and reduces its radar profile. The flying wing design most closely resembles a so-called infinite flat plate (as vertical control surfaces dramatically increase RCS), the perfect stealth shape, as it would have no angles to reflect back radar waves.

YF-23 S-duct engine air intake conceals engine from probing radar waves

In addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the compressor blades are not visible to radar. A stealthy shape must be devoid of complex bumps or protrusions of any kind, meaning that weapons, fuel tanks, and other stores must not be carried externally. Any stealthy vehicle becomes un-stealthy when a door or hatch opens.

Parallel alignment of edges or even surfaces is also often used in stealth designs. The technique involves using a small number of edge orientations in the shape of the structure. For example, on the F-22A Raptor, the leading edges of the wing and the tail planes are set at the same angle. Other smaller structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. The effect of this is to return a narrow radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles. The effect is sometimes called "glitter" after the very brief signal seen when the reflected beam passes across a detector. It can be difficult for the radar operator to distinguish between a glitter event and a digital glitch in the processing system.

Stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. The YF-23 has such serrations on the exhaust ports. This is another example in the parallel alignment of features, this time on the external airframe.

The shaping requirements detracted greatly from the F-117's aerodynamic properties. It is inherently unstable, and cannot be flown without a fly-by-wire control system.

Similarly, coating the cockpit canopy with a thin film transparent conductor (vapor-deposited gold or indium tin oxide) helps to reduce the aircraft's radar profile, because radar waves would normally enter the cockpit, reflect off objects (the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. The coating is thin enough that it has no adverse effect on pilot vision.

K32 HMS Helsingborg, a stealth ship

Ships

Ships have also adopted similar methods. Though the earlier Arleigh Burke-class destroyer incorporated some signature-reduction features. the Norwegian Skjold-class corvette was the first coastal defence and the French La Fayette-class frigate the first ocean-going stealth ship to enter service. Other examples are the Dutch De Zeven Provinciƫn class frigates, the Taiwanese Tuo Chiang stealth corvette, German Sachsen-class frigates, the Swedish Visby-class corvette, the USS San Antonio amphibious transport dock, and most modern warship designs.

Materials

Non-metallic airframe

Dielectric composite materials are more transparent to radar, whereas electrically conductive materials such as metals and carbon fibers reflect electromagnetic energy incident on the material's surface. Composites may also contain ferrites to optimize the dielectric and magnetic properties of a material for its application.

Radar-absorbent material

Skin of a B-2 bomber.

Radiation-absorbent material (RAM), often as paints, are used especially on the edges of metal surfaces. While the material and thickness of RAM coatings can vary, the way they work is the same: absorb radiated energy from a ground- or air-based radar station into the coating and convert it to heat rather than reflect it back. Current technologies include dielectric composites and metal fibers containing ferrite isotopes. Ceramic composite coating is a new type of material systems which can sustain at higher temperatures with better sand erosion resistance and thermal resistance. Paint comprises depositing pyramid-like colonies on the reflecting superficies with the gaps filled with ferrite-based RAM. The pyramidal structure deflects the incident radar energy in the maze of RAM. One commonly used material is called iron ball paint. It contains microscopic iron spheres that resonate in tune with incoming radio waves and dissipate most of their energy as heat, leaving little to reflect back to detectors. FSS are planar periodic structures that behave like filters to electromagnetic energy. The considered frequency-selective surfaces are composed of conducting patch elements pasted on the ferrite layer. FSS are used for filtration and microwave absorption.

Radar stealth countermeasures and limits

Low-frequency radar

Shaping offers far fewer stealth advantages against low-frequency radar. If the radar wavelength is roughly twice the size of the target, a half-wave resonance effect can still generate a significant return. However, low-frequency radar is limited by lack of available frequencies (many are heavily used by other systems), by lack of accuracy of the diffraction-limited systems given their long wavelengths, and by the radar's size, making it difficult to transport. A long-wave radar may detect a target and roughly locate it, but not provide enough information to identify it, target it with weapons, or even to guide a fighter to it.

Multiple emitters

Stealth aircraft attempt to minimize all radar reflections, but are specifically designed to avoid reflecting radar waves back in the direction they came from (since in most cases a radar emitter and receiver are in the same location). They are less able to minimize radar reflections in other directions. Thus, detection can be better achieved if emitters are in different locations from receivers. One emitter separate from one receiver is termed bistatic radar; one or more emitters separate from more than one receiver is termed multistatic radar. Proposals exist to use reflections from emitters such as civilian radio transmitters, including cellular telephone radio towers.

Moore's law

By Moore's law the processing power behind radar systems is rising over time. This will eventually erode the ability of physical stealth to hide vehicles.

Ship wakes and spray

Synthetic aperture sidescan radars can be used to detect the location and heading of ships from their wake patterns. These are detectable from orbit. When a ship moves through a seaway it throws up a cloud of spray which can be detected by radar.

Acoustics

Acoustic stealth plays a primary role for submarines and ground vehicles. Submarines use extensive rubber mountings to isolate, damp, and avoid mechanical noises that can reveal locations to underwater passive sonar arrays.

Early stealth observation aircraft used slow-turning propellers to avoid being heard by enemy troops below. Stealth aircraft that stay subsonic can avoid being tracked by sonic boom. The presence of supersonic and jet-powered stealth aircraft such as the SR-71 Blackbird indicates that acoustic signature is not always a major driver in aircraft design, as the Blackbird relied more on its very high speed and altitude.

One method to reduce helicopter rotor noise is modulated blade spacing. Standard rotor blades are evenly spaced, and produce greater noise at a given frequency and its harmonics. Using varied spacing between the blades spreads the noise or acoustic signature of the rotor over a greater range of frequencies.

Visibility

The simplest technology is visual camouflage; the use of paint or other materials to color and break up the lines of a vehicle or person.

Most stealth aircraft use matte paint and dark colors, and operate only at night. Lately, interest in daylight Stealth (especially by the USAF) has emphasized the use of gray paint in disruptive schemes, and it is assumed that Yehudi lights could be used in the future to hide the airframe (against the background of the sky, including at night, aircraft of any colour appear dark) or as a sort of active camouflage. The original B-2 design had wing tanks for a contrail-inhibiting chemical, alleged by some to be chlorofluorosulfonic acid, but this was replaced in the final design with a contrail sensor that alerts the pilot when he should change altitude and mission planning also considers altitudes where the probability of their formation is minimized.

In space, mirrored surfaces can be employed to reflect views of empty space toward known or suspected observers; this approach is compatible with several radar stealth schemes. Careful control of the orientation of the satellite relative to the observers is essential, and mistakes can lead to detectability enhancement rather than the desired reduction.

Infrared

An exhaust plume contributes a significant infrared signature. One means to reduce IR signature is to have a non-circular tail pipe (a slit shape) to minimize the exhaust cross sectional area and maximize the mixing of hot exhaust with cool ambient air (see Lockheed F-117 Nighthawk). Often, cool air is deliberately injected into the exhaust flow to boost this process (see Ryan AQM-91 Firefly and Northrop Grumman B-2 Spirit). The Stefan–Boltzmann law shows how this results in less energy (Thermal radiation in infrared spectrum) being released and thus reduces the heat signature. In some aircraft, the jet exhaust is vented above the wing surface to shield it from observers below, as in the Lockheed F-117 Nighthawk, and the unstealthy Fairchild Republic A-10 Thunderbolt II. To achieve infrared stealth, the exhaust gas is cooled to the temperatures where the brightest wavelengths it radiates are absorbed by atmospheric carbon dioxide and water vapor, greatly reducing the infrared visibility of the exhaust plume. Another way to reduce the exhaust temperature is to circulate coolant fluids such as fuel inside the exhaust pipe, where the fuel tanks serve as heat sinks cooled by the flow of air along the wings.

Ground combat includes the use of both active and passive infrared sensors. Thus, the United States Marine Corps (USMC) ground combat uniform requirements document specifies infrared reflective quality standards.

Reducing radio frequency (RF) emissions

In addition to reducing infrared and acoustic emissions, a stealth vehicle must avoid radiating any other detectable energy, such as from onboard radars, communications systems, or RF leakage from electronics enclosures. The F-117 uses passive infrared and low light level television sensor systems to aim its weapons and the F-22 Raptor has an advanced LPI radar which can illuminate enemy aircraft without triggering a radar warning receiver response.

Measuring

The size of a target's image on radar is measured by the radar cross section (RCS), often represented by the symbol Ļƒ and expressed in square meters. This does not equal geometric area. A perfectly conducting sphere of projected cross sectional area 1 m2 (i.e. a diameter of 1.13 m) will have an RCS of 1 m2. Note that for radar wavelengths much less than the diameter of the sphere, RCS is independent of frequency. Conversely, a square flat plate of area 1 m2 will have an RCS of Ļƒ=4Ļ€ A2 / Ī»2 (where A=area, Ī»=wavelength), or 13,982 m2 at 10 GHz if the radar is perpendicular to the flat surface. At off-normal incident angles, energy is reflected away from the receiver, reducing the RCS. Modern stealth aircraft are said to have an RCS comparable with small birds or large insects, though this varies widely depending on aircraft and radar.

If the RCS was directly related to the target's cross-sectional area, the only way to reduce it would be to make the physical profile smaller. Rather, by reflecting much of the radiation away or by absorbing it, the target achieves a smaller radar cross section.

Tactics

Stealthy strike aircraft such as the Lockheed F-117 Nighthawk, are usually used against heavily defended enemy sites such as command and control centers or surface-to-air missile (SAM) batteries. Enemy radar will cover the airspace around these sites with overlapping coverage, making undetected entry by conventional aircraft nearly impossible. Stealthy aircraft can also be detected, but only at short ranges around the radars; for a stealthy aircraft there are substantial gaps in the radar coverage. Thus a stealthy aircraft flying an appropriate route can remain undetected by radar. Even if a stealth aircraft is detected, fire-control radars operating in C, X and Ku bands cannot paint (for missile guidance) low observable (LO) jets except at very close ranges. Many ground-based radars exploit Doppler filter to improve sensitivity to objects having a radial velocity component relative to the radar. Mission planners use their knowledge of enemy radar locations and the RCS pattern of the aircraft to design a flight path that minimizes radial speed while presenting the lowest-RCS aspects of the aircraft to the threat radar. To be able to fly these "safe" routes, it is necessary to understand an enemy's radar coverage (see electronic intelligence). Airborne or mobile radar systems such as AWACS can complicate tactical strategy for stealth operation.

Research

After the invention of electromagnetic metasurfaces, the conventional means to reduce RCS have been improved significantly. As mentioned earlier, the main objective in purpose shaping is to redirect scattered waves away from the backscattered direction, which is usually the source. However, this usually compromises aerodynamic performance. One feasible solution, which has extensively been explored in recent time, is to use metasurfaces which can redirect scattered waves without altering the geometry of a target. Such metasurfaces can primarily be classified in two categories: (i) checkerboard metasurfaces, (ii) gradient index metasurfaces. Similarly, negative index metamaterials are artificial structures for which refractive index has a negative value for some frequency range, such as in microwave, infrared, or possibly optical. These offer another way to reduce detectability, and may provide electromagnetic near-invisibility in designed wavelengths.

Plasma stealth is a phenomenon proposed to use ionized gas, termed a plasma, to reduce RCS of vehicles. Interactions between electromagnetic radiation and ionized gas have been studied extensively for many purposes, including concealing vehicles from radar. Various methods might form a layer or cloud of plasma around a vehicle to deflect or absorb radar, from simpler electrostatic to radio frequency (RF) more complex laser discharges, but these may be difficult in practice.

Several technology research and development efforts exist to integrate the functions of aircraft flight control systems such as ailerons, elevators, elevons, flaps, and flaperons into wings to perform the aerodynamic purpose with the advantages of lower RCS for stealth, via simpler geometries and lower complexity (mechanically simpler, fewer or no moving parts or surfaces, less maintenance), and lower mass, cost (up to 50% less), drag (up to 15% less during use), and inertia (for faster, stronger control response to change vehicle orientation to reduce detection). Two promising approaches are flexible wings, and fluidics.

In flexible wings, much or all of a wing surface can change shape in flight to deflect air flow. Adaptive compliant wings are a military and commercial effort.[63][64][65] The X-53 Active Aeroelastic Wing was a US Air Force, Boeing, and NASA effort.

In fluidics, fluid injection is being researched for use in aircraft to control direction, in two ways: circulation control and thrust vectoring. In both, larger more complex mechanical parts are replaced by smaller, simpler, lower mass fluidic systems, in which larger forces in fluids are diverted by smaller jets or flows of fluid intermittently, to change the direction of vehicles. Mechanical control surfaces that must move cause an important part of aircraft radar cross-section. Omitting mechanical control surfaces can reduce radar returns. BAE Systems has tested two fluidically controlled unmanned aircraft, one starting in 2010 named Demon, and another starting in 2017 named MAGMA, with the University of Manchester.

In circulation control, near the trailing edges of wings, aircraft flight control systems are replaced by slots which emit fluid flows.

Women in physics

From Wikipedia, the free encyclopedia

This article discusses women who have made an important contribution to the field of physics.

Nobel Laureates

Four women have won the Nobel Prize in Physics, awarded annually since 1901 by the Royal Swedish Academy of Sciences. Marie Curie was the first woman to receive the prize in 1903, along with Pierre Curie and Henri Becquerel - making her the only woman to be awarded two Nobel prizes (her second Nobel prize was in Chemistry in 1911). Maria Goeppert Mayer became the second woman to win the prize in 1963, for her contributions to understanding the nuclear shell structure. Donna Strickland was the third winner of the prize in 2018, for her work in high-intensity, ultra-short optical pulses beginning in the 1980s with GĆ©rard Mourou. Andrea Ghez was the fourth Nobel laureate in 2020, she shared one half of the prize with Reinhard Genzel for the discovery of the supermassive compact object Sagittarius A* at the center of our galaxy, the other half awarded to Roger Penrose for theoretical work regarding black hole formation.

Timeline

Antiquity

  • c. 150 BCE: Aglaonice became the first female astronomer to be recorded in Ancient Greece.
  • c. 355–415 CE: Greek astronomer, mathematician and philosopher, Hypatia became renowned as a respected academic teacher, editor of Ptolemy's Almagest astronomical data, and head of her own science academy.

17th century

  • 1668: After separating from her husband, French polymath Marguerite de la SabliĆØre established a popular salon in Paris. Scientists and scholars from different countries visited the salon regularly to discuss ideas and share knowledge, and SabliĆØre studied physics, astronomy and natural history with her guests.

18th century

19th century

20th century

1900s

1910s

1920s

  • 1925: Astronomer and astrophysicist Cecilia Payne-Gaposchkin established that hydrogen is the most common element in stars, and thus the most abundant element in the universe.
  • 1926: Katharine Burr Blodgett was the first women to earn a Ph.D. in physics from the University of Cambridge.
  • 1926: The first application of quantum mechanics to molecular systems was done by Lucy Mensing. She studied the rotational spectrum of diatomic molecules using the methods of matrix mechanics.

1930s

1940s

1950s

1960s

1970s

1980s

1990s

21st century

2000s

2010s

2020s

  • 2020: American astrophysicist Andrea M. Ghez received the Nobel Prize in Physics "for the discovery of a supermassive compact object at the centre of our galaxy." She shared half of the prize with Reinhard Genzel, while the other half was awarded to Roger Penrose.
  • 2020: German geoscientist Ingeborg Levin was the first woman to receive the Alfred Wegener medal from the European Geosciences Union "for fundamental contributions to our present knowledge and understanding of greenhouse gases in the atmosphere, including the global carbon cycle."
  • 2022: French-Swedish physicist Anne L’Huillier received the Wolf Prize in Physics “for pioneering contributions to ultrafast laser science and attosecond physics”.
  • Carbon offsets and credits

    From Wikipedia, the free encyclopedia
    Wind turbines near Aalborg, Denmark. Renewable energy projects are the most common source of carbon offsets.

    A carbon offset is a reduction or removal of emissions of carbon dioxide or other greenhouse gases made in order to compensate for emissions made elsewhere. A carbon credit or offset credit is a transferrable financial instrument (i.e. a derivative of an underlying commodity) certified by governments or independent certification bodies to represent an emission reduction that can then be bought or sold. Both offsets and credits are measured in tonnes of carbon dioxide-equivalent (CO2e). One carbon offset or credit represents the reduction or removal of one ton of carbon dioxide or its equivalent in other greenhouse gases.

    Carbon credits are a component of national and international attempts to mitigate the growth in concentrations of greenhouse gases (GHGs). In these programs greenhouse gas emissions are capped and then markets are used to allocate the emissions among the group of regulated sources. The goal is to allow market mechanisms to drive these sources towards lower GHG emissions. Since GHG reduction projects generate offset credits, this approach can be used to finance carbon reduction schemes between trading partners around the world. Within the voluntary market, demand for carbon offsets is generated by individuals, companies, organizations, and sub-national governments who purchase carbon offsets to mitigate their greenhouse gas emissions to meet carbon neutral, net-zero, or other GHG reduction goals. This market is aided by certification programs that provide standards and other guidance for project developers to follow in order to generate carbon offsets.

    A variety of greenhouse gas reduction projects can be used to create offsets and credits. Forestry projects are becoming the fastest growing category. Renewable energy is another common type, and includes wind farms, biomass energy, biogas digesters, or hydroelectric dams. Other types include energy efficiency projects (such as efficient cookstoves), and destruction of landfill methane. Some include methods that use negative emission technologies, such as biochar, carbonated building elements and geologically stored carbon.

    Offset and credit programs have been identified as way for countries to meet their NDC commitments and achieve the goals of the Paris agreement at a lower cost. However, there have been a number of news media stories in recent years criticizing these programs on the grounds that carbon reduction claims are often exaggerated or misleading. Organizations can take a variety of due diligence actions to identify "good quality" offsets, ensure that offsetting provides the desired environmental benefits, and avoid reputation risk associated with poor quality offsets.

    Definitions

    A carbon offset is a reduction or removal of emissions of carbon dioxide or other greenhouse gases made in order to compensate for emissions made elsewhere. A carbon credit or offset credit is a transferrable instrument certified by governments or independent certification bodies to represent an emission reduction of one metric ton of CO2, or an equivalent amount of other greenhouse gases (GHGs). Carbon offsets and credits, along with carbon taxes and subsidies, are all forms of carbon pricing. Historically, the concepts of offsets and credits have been intertwined. Both offsets and credits can move amongst the various markets they are traded in.

    There are a variety of labels applied to these one-ton emission reductions, such as "Verified Emission Reduction" or "Certified Emission Reduction". These depend on the particular program that certifies a reduction project.

    The terminology continues to evolve. At COP27, negotiators agreed to define offsets and credits issued under Article 6 of the Paris Agreement as "mitigation contributions", as a means of discouraging carbon neutrality claims by buyers. Certification organizations such as the Gold Standard even have detailed guidance on what descriptive terms are appropriate for buyers of offsets and credits.

    Origins and general features

    The 1977 US Clean Air Act created one of the first tradable emission offset mechanisms. This allowed a permitted facility to increase its emissions if it paid another company to reduce, by a greater amount, its emissions of the same pollutant at one or more of its facilities. The 1990 amendments to that same law established the Acid Rain Trading Program. This introduced the concept of a cap and trade system, where limits on a pollutant would decrease over time. Within those overall limits, companies could buy and sell offsets created by other companies that invested in emission reduction projects. In 1997 the Clean Development Mechanism was created as part of the Kyoto Protocol. This program expanded the concept of emissions trading to a global scale, and focused on the major greenhouse gases that cause climate change. These include: carbon dioxide (CO2), methane, nitrous oxide (N2O), perfluorocarbons, hydrofluorocarbons, and sulfur hexafluoride.

    Carbon offsets and credits have several common features:

    • Vintage. The vintage is the year in which the carbon emissions reduction project generates the carbon offset credit. This is usually done once a third party verifies the project. This can be done by a validation-verification body, a designated operational entity, or other accredited third party reviewers. However, there is a practice called "Forward Crediting" employed by a limited number of programs, whereby credits may be issued for projected emission reductions that the project developer anticipates. This practice risks over-issuing credits if the project does not realize its estimated impact, and allows credit buyers to claim emission reductions in the present for activities that have not yet occurred.
    • Project type. A variety of projects can be used to reduce GHG emissions. These can include land-use (e.g. improved forestry management), methane capture, biomass sequestration, renewable energy, industrial energy efficiency, and more.
    • Co-benefits. Beyond reducing greenhouse gas emissions, projects may provide benefits such as ecosystem services or economic opportunities for communities near the project site. These project benefits are termed "co-benefits". For example, projects that reduce agricultural greenhouse gas emissions may improve water quality by reducing fertilizer usage that results in run-off and may contaminate water.
    • Certification regime. The certification regime describes the systems and procedures that are used to certify and register carbon offsets and credits. These vary in terms of governance and accounting practices, project eligibility, environmental integrity and sustainable development requirements, and Monitoring, Reporting and Verification (MRV) procedures.
    • Carbon retirement. Offset credit holders must "retire" carbon offset credits in order to claim their associated GHG reductions towards a specific GHG reduction goal. In the voluntary market, carbon offset registries define the manner in which retirement happens. Once an offset credit is retired, it cannot be transferred or used (meaning it is effectively taken out of circulation). Voluntary purchasers can also offset their carbon emissions by purchasing carbon allowances from legally mandated cap-and-trade programs such as the Regional Greenhouse Gas Initiative or the European Emissions Trading Scheme.

    Programs and markets

    There is a diverse range of sources of supply, sources of demand, and trading frameworks that drive offset and credit markets. As of 2022, 68 carbon pricing programs were in place or scheduled to be created globally. While some of these involve carbon taxes, many are emission trading programs, or other types of market oriented program involving carbon offsets and credits. International programs include the Clean Development Mechanism, Article 6 of the Paris Agreement, and CORSIA. National programs include ETS systems such as the European Union Emissions Trading System (EU-ETS) and the California Cap and Trade Program. Eligible credits in these programs may also include those issued under international or independent crediting systems. There are also standards and crediting mechanisms managed by independent, nongovernmental entities, such as Verra and Gold Standard.

    Demand for offsets and credits derives from a range of compliance obligations established under international agreements and national laws, as well as voluntary commitments adopted by companies, governments, and other organizations. Voluntary carbon markets (VCMs) usually consist of private entities purchasing carbon offset credits in order to meet voluntary greenhouse gas reduction commitments. In some cases purchases of credits might also be done as a non-covered participant in an ETS, as an alternative to purchasing offsets in a voluntary market.

    Currently there are several exchanges trading in carbon credits and allowances covering both spot and futures markets. These include: Chicago Mercantile Exchange, CTX Global, the European Energy Exchange, Global Carbon Credit Exchange gCCEx, Intercontinental Exchange, MexiCO2, NASDAQ OMX Commodities Europe, Xpansiv. Many companies now engage in emissions abatement, offsetting, and sequestration programs to generate credits that can be sold on one of these exchanges. Some exchanges, such as AirCarbon Exchange and Toucan, tokenize carbon credits for trading using blockchain technology.

    Compliance market credits are the large majority of the offset and credit market today. In 2021, trading on the VCM was 300 MtCO2e in 2021. By comparison, the compliance carbon market trading volume was 12 GtCO2e,[35] and global greenhouse gas emissions in 2019 were 59 GtCO2e.

    Kyoto Protocol and Paris Agreement Article 6 mechanisms

    The original international compliance carbon markets were created as part of the Kyoto Protocol. That treaty provides for three mechanisms that enable countries or operators in developed countries to acquire offset credits The economic basis for these programs was that the marginal cost of reducing emissions would differ among countries. At the time of the original Kyoto targets, studies suggested that the flexibility mechanisms could reduce the overall cost of meeting the targets. The Kyoto Protocol was to expire in 2020, to be superseded by the Paris Agreement. The Paris Agreement determinations regarding the role of carbon offsets are still being determined through international negotiation specifying the "Article 6" language.

    Under the Clean Development Mechanism (CDM) a developed country can 'sponsor' a greenhouse gas reduction project in a developing country where the cost of greenhouse gas reduction project activities is usually much lower, but the atmospheric effect is globally equivalent. The developed country is given credits for meeting its emission reduction targets, while the developing country would receive the capital investment and clean technology or beneficial change in land use. Once approved, these units are termed Certified Emission Reductions, or CERs. Country specific Designated National Authorities approve projects under this program. Under Joint Implementation (JI) a developed country with relatively high costs of domestic greenhouse reduction would set up a project in another developed country. Offset credits under this program are designated as Emission Reduction Units. Nuclear energy projects are not eligible for credits under either of these programs. Under the International Emissions Trading (IET) program, countries can trade in the international carbon credit market to cover their shortfall in assigned amount units. Countries with surplus units can sell them to countries that are exceeding their emission targets under Annex B of the Kyoto Protocol. Current CDM projects will transfer to new arrangements under the Paris agreement.

    Article 6 of the Paris Agreement continues to support offset and credit programs between countries. These are now carried out to help achieve emission reduction targets set out in each country's NDC. Under Article 6, countries will be able to transfer carbon credits earned from the reduction of GHG emissions to help other countries meet climate targets. Article 6.2 creates a program for trading GHG emission reductions via bilateral agreements between countries. Article 6.4 is expected to be similar to the Clean Development Mechanism of the Kyoto Protocol. It establishes a centralized program for trading GHG emission reductions between countries under the supervision of the UNFCCC. Emission reduction (ER) credits purchased under this program can be bought by countries, companies, or even individuals.

    Under Article 6.2 the credits (called internationally transferred mitigation outcomes, or ITMOs) can be transferred from host countries, where the reduction in GHG is achieved. There are a number of ways this can be done.  Credits can go to credit-buying countries towards achieving their NDCs. They can also be transferred and used in market-based schemes such as CORSIA. To avoid double counting of emission reductions, corresponding adjustments (CAs) are required. If the receiving country uses ITMOs towards its NDC, the host country must ‘un-count' those reductions from its emissions budget by adding and reporting that higher total in its biennial reporting. Otherwise Article 6.2 provides countries a lot of flexibility in how they can create trading agreements.

    Projects under Article 6.4 will be overseen by a "Supervisory Board" which has the responsibility of approving methodologies, setting guidance, and implementing procedures. The preparation work for this is expected to last until the end of 2023. Emission reduction (ER) credits issued under Article 6.4 will be reduced by 2% in order to ensure that the program as a whole results in an overall Mitigation of Global Emissions (OMGE). An additional 5% reduction of Article 6.4 ERs is dedicated to a fund to finance adaptation. Administrative fees for program management are still to be determined. CDM projects are allowed to transition to the Article 6.4 program if they are approved by the country where the project is located, and if the project meets the new rules, with the exception of rules on methodologies. Projects can generally continue to use the same CDM methodologies through 2025. From 2026 on, they must meet all Article 6 requirements. Up to 2.8 billion credits could potentially become eligible for issuance under Article 6.4 if all CDM projects were to transition.

    Article 6 does not directly regulate the VCM, and thus in principle carbon offsets can be issued and purchased without reference to Article 6. Given the diversity of carbon offsets, a mult-tier system could emerge with different types of offsets and credits available for investors. Companies may be to able purchase ‘adjusted credits' that eliminate the risk of double counting, possibly with higher perceived value in pursuit of science-based targets and net-zero emissions.  Other ‘non-adjusted' offsets and credits could be used to support claims for other environmental or social indicators, or for emission reductions that have a lower perceived value in terms of these goals. Uncertainty remains around Article 6's effects on future voluntary carbon markets and what investors could claim by purchasing various types of carbon credits.

    Other international programs

    The REDD+ program works to create financial value for carbon stored in forests by using market approaches to compensate landowners for not clearing or degrading their forests. REDD+ also promotes co-benefits from reducing deforestation, such as biodiversity. REDD+ largely addresses tropical regions in developing countries. The concept of REDD+ was introduced in its basic form at COP11 in 2005. It has evolved and grown into a broad policy initiative to address deforestation and forest degradation. In 2015, REDD+ was incorporated into Article 5 of the Paris Agreement. REDD+ initiatives typically incentivize and compensate developing countries or subnational entities for reducing their emissions from deforestation and forest degradation. REDD+ consists of several stages, including (1) achieving REDD+ readiness; (2) formalizing an agreement for financing; (3) monitoring, reporting, and verifying results; and (4) receiving results-based payments. Over 50 countries have national REDD+ initiatives, mostly developing countries in or adjacent to the tropics. REDD+ is also being implemented at the subnational level through provincial and district governments and at the local level through private landowners. As of 2020, there were over 400 ongoing REDD+ projects globally, with Brazil and Colombia accounting for the largest amount of REDD+ project land area.

    The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) is a global, market-based program to reduce emissions from international aviation. Its intent is to allow credits and offsets for emissions that cannot be reduced through the use of technological and operational improvements, or by the use of sustainable aviation fuels. To ensure the environmental integrity of these offsets, the program has developed a list of eligible offsets that can be used. Operating principles for the program are similar to those under existing trading mechanisms and carbon offset certification standards. CORSIA has applied to international aviation since January 2019, when all airlines were required to report their CO2 emissions on an annual basis. International flights have been subject to offsetting obligations under CORSIA since January 2021.

    Emissions trading systems

    Emissions trading has become an important element of regulatory programs to control pollution, including GHG emissions. GHG emissions trading programs exist at the sub-national, national, and international level. Under these programs, emissions are capped, and sources have the flexibility to find and apply the lowest-cost methods for reducing pollution. A central authority or governmental body usually allocates or sells a limited number (a "cap") of permits that allow a discharge of a specific quantity of a specific pollutant over a set time period. Polluters are required to hold permits in amount equal to their emissions. Those that want to increase their emissions must buy permits from others willing to sell them. These programs have been applied to greenhouse gases because their warming effects are the same regardless of where they are emitted, the costs of reducing emissions vary widely by source, and the cap ensures that the environmental goal is attained.

    At the start of 2022 there were 25 operational emissions trading systems around the world, in jurisdictions representing 55% of global GDP. These systems cover 17% of global emissions. EU-ETS is the second largest trading system in the world after the Chinese national carbon trading scheme, covering over 40% of European GHG emissions. California's cap-and-trade program operates along principles, and covers about 85% of statewide GHG emissions.

    Voluntary carbon markets and certification programs

    In voluntary carbon markets, companies or individuals use carbon offsets in order to meet self-defined goals for reducing emissions. Credits are issued under independent crediting standards, though some entities also purchase them under international or domestic crediting mechanisms. Within the overall market national and subnational programs have been increasing in popularity.

    Many different groups exist within the voluntary carbon market. Participants include developers, brokers, auditors, and buyers. Certification programs are a key component of this community. These groups establish accounting standards, project eligibility requirements, and Monitoring, Reporting and Verification (MRV) procedures for credit and offset projects. They include the Verified Carbon Standard, the Gold Standard, the Climate Action Reserve, the American Carbon Registry, and Plan Vivo. Puro Standard, the first standard for engineered carbon removal, is verified by DNV GL. There are also some additional standards for the validation of co-benefits, including the CCBS, issued by Verra and the Social Carbon Standard, issued by the Ecologica Institute.

    VERRA was developed in 2005, and is a widely used voluntary carbon standard. As of 2020 there had been over 1,500 certified VCS projects covering energy, transport, waste, forestry, and other sectors. In 2021 VERRA issued 300 MtCO2e worth of offset credits for 110 projects. Allowable projects under VERRA include energy, transport, waste, and forestry. There are also specific methodologies for REDD+ projects. VERRA is the program of choice for most of the forest credits generated for the voluntary market, and almost all REDD+ projects. Due to criticisms of this program, VERRA will be abandoning its current rules for forestry projects and replacing them with new rules beginning in 2025. General VERRA standards cover the types of projects allowed, allowable project start dates, project boundaries, a 10-year crediting period, as well as a requirement that the project boundaries cover all primary effects and significant secondary effects.  Verra has additional criteria to avoid double counting, as well as requirements for additionality. Negative impacts on sustainable development in the local community are prohibited. It uses accounting principles that include relevance, completeness, consistency, accuracy, transparency, and conservativeness.

    The Gold Standard was developed in 2003 by the World Wide Fund for Nature (WWF) in consultation with an independent Standards Advisory Board. Projects are open to any non-government, community-based organization. Allowable project categories include: renewable energy supply, energy efficiency, afforestation/reforestation, and agriculture. The program's focus includes the promotion of Sustainable Developments Goals. Projects must meet at least three of those goals, in addition to reducing GHG emissions, projects must also make a net-positive contribution to the economic, environmental and social welfare of the local population. Program monitoring requirements help determine this.

    The VCM currently represents less than 1% of the reductions pledged in country NDCs by 2030, and an even smaller portion of the reductions needed to achieve the 1.5 °C Paris temperature goal pathway in 2030. The VCM is, however, experiencing significant growth. Between 2017 and 2021 both the issuance and retirement of VCM carbon offsets more than tripled. Some predictions call for global VCM demand to increase 15 fold between 2021 and 2030, and 100 times by 2050. Carbon removal projects such as forestry and carbon capture and storage are expected to have a larger share of this market in the future, compared to renewable energy projects. However, there is evidence that large companies are becoming more reluctant to use VCM offsets and credits because of a complex web of standards, despite an increased focus on net zero goals.

    Types of offset projects

    A variety of projects have been used to generate carbon offsets and credits. These include renewable energy, methane abatement, energy efficiency, reforestation and fuel switching (i.e. to carbon-neutral fuels and carbon-negative fuels). The CDM identifies over 200 types of projects suitable for generating carbon offsets and credits.

    Offset certification and carbon trading programs vary in the extent to which they consider these specific projects eligible for offsets or credits. For example, under the European Union Emission Trading System nuclear energy projects, afforestation or reforestation activities (LULUCF), and projects involving destruction of industrial gases (HFC-23 and N2O) are considered ineligible.

    Renewable energy

    Renewable energy projects can include hydroelectric, wind, photovoltaic solar, solar hot water, biomass power, and heat production projects, among others. Collectively these types of projects help societies move from fossil fuel-based electricity and heat production towards less carbon intensive forms of energy. However, they may not be accepted as offset projects because it is difficult or impossible to determine their additionality. They usually generate revenue, and involve subsidies or other complex financial arrangements. This can make them ineligible under many offset and credit programs.

    Methane collection and combustion

    Methane is a potent greenhouse gas. It is most often emitted from landfills, livestock, and from coal mining. Methane projects can produce carbon offsets through the capture of methane for energy production. Examples include the combustion or containment of methane generated by farm animals by use of an anaerobic digester, in landfills, or from other industrial waste.

    Energy efficiency

    Chicago Climate Justice activists protesting cap and trade legislation in front of Chicago Climate Exchange building in Chicago Loop

    While carbon offsets that fund renewable energy projects help lower the carbon intensity of energy supply, energy conservation projects seek to reduce the overall demand for energy. Carbon offsets in this category fund projects of three main types.

    Cogeneration plants generate both electricity and heat from the same power source, thus improving upon the energy efficiency of most power plants, which waste the energy generated as heat. Fuel efficiency projects replace a combustion device with one using less fuel per unit of energy provided. This can take the form of both optimized industrial processes (reducing per unit energy costs) and individual action (bicycling to work as opposed to driving). Energy-efficient buildings reduce the amount of energy wasted in buildings through efficient heating, cooling or lighting systems. New buildings can also be constructed using less carbon-intensive input materials.

    Destruction of industrial pollutants

    Industrial pollutants such as hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) have a GWP many thousands of times greater than carbon dioxide by volume. Because these pollutants are easily captured and destroyed at their source, they present a large and low-cost source of carbon offsets. As a category, HFCs, PFCs, and N2O reductions represent 71 percent of offsets issued under the CDM. Since many of these are now banned by an amendment to the Montreal Protocol, they are often no longer eligible for offsets or credits.

    Land use, land-use change and forestry

    Land use, land-use change and forestry (LULUCF) projects focus on natural carbon sinks such as forests and soil. There are a number of different types of LULUCF projects. Forestry-related projects focus on avoiding deforestation by protecting existing forests, restoring forests on land that was once forested, and creating forests on land that was previously unforested, typically for longer than a generation. Soil management projects attempt to preserve or increase the amount of carbon sequestered in soil.

    Deforestation, particularly in Brazil, Indonesia, and parts of Africa, accounts for about 20 percent of greenhouse gas emissions. Deforestation can be avoided either by paying directly for forest preservation, or by using offset funds to provide substitutes for forest-based products. REDD (Reducing emissions from deforestation and forest degradation) credits provide carbon offsets for the protection of forests, and provide a possible mechanism to allow funding from developed nations to assist in the protection of native forests in developing nations. Offset schemes using reforestation are available in developing countries, as well as an increasing number of developed countries including the US and the UK.

    This photo is showing branches overlapping each other with moss on top. These trees that are shown are a part of the carbon offset.

    Soil is one of the important aspects of agriculture and can affect the amount of yield in the crops. Modern agriculture has caused a decrease in the amount of carbon that the soil is able to hold. Farmers can promote sequestration of carbon in soils through practices such as the use of winter cover crops, reducing the intensity and frequency of tillage, and using compost and manure as soil amendments.

    Assuring quality and determining value

    Owing to their indirect nature, many types of offset are difficult to verify. The credibility of the various certification providers has been questioned in numerous reports by NGOs and stories in the media. Prices for offsets and credits vary widely. This may be a reflection of the uncertainty associated with these programs and practices. Recently, these issues have caused many companies to become more skeptical of purchasing offsets or credits.

    Creating offsets and credits

    To assess the quality of carbon offsets and credits it can be helpful to understand the typical process used to create them. Before any GHG reductions can be certified for use as carbon offsets, they must be shown to meet carbon offset quality criteria. This requires a methodology or protocol that is specific to the type of offset project involved. Most carbon offset programs have a library of approved methodologies covering a range of project types. The next steps involve project development, validation, and registration. An offset project is designed by project developers, financed by investors, validated by an independent verifier, and registered with a carbon offset program. Official "registration" indicates that the project has been approved by the program and is eligible to start generating carbon offset credits after it begins operation.

    A commonly used purchasing option is to contract directly with a project developer for delivery of carbon offset credits as they are issued. These contracts provide project developers with a level of certainty about the volume of offset credits they can sell. Buyers are able to lock in a price for offset credits that is typically lower than market prices. However, this may involve some risk for them in terms of the project actually producing offsets.

    Once a project is started, it is monitored and periodically verified to determine the quantity of emission reductions it has generated. The length of time between verifications can vary, but is typically one year. A carbon offset program approves verification reports, and then issues the appropriate number of carbon offset credits. These are then deposited into the project developer's account in a registry system administered by the offset program.

    Criteria for assessing quality

    Criteria for assessing the quality of offsets and credits usually cover the following areas:

    • Baseline and Measurement—What emissions would occur in the absence of a proposed project? And how are the emissions that occur after the project is performed going to be measured?
    • Additionality—Would the project occur anyway without the investment raised by selling carbon offset credits? There are two common reasons why a project may lack additionality: (a) if it is intrinsically financially worthwhile due to energy cost savings, and (b) if it had to be performed due to environmental laws or regulations.
    • Leakage—Does implementing the project cause higher emissions outside the project boundary?
    • Permanence—Are some benefits of the reductions reversible? (for example, trees may be harvested to burn the wood, and does growing trees for fuel wood decrease the need for fossil fuel?) If woodlands are increasing in area or density, then carbon is being sequestered. After roughly 50 years, forests begin to reach maturity, and remove carbon dioxide more quickly than a recently re-planted forest area.
    • Double counting—Is the project claimed as carbon offsetting by more than one organization?
    • Co-benefits—Are there other benefits in addition to the carbon emissions reduction, and to what degree?

    Approaches for increasing integrity

    In addition to the certification programs mentioned above, industry groups have been working since the 2000s to promote the quality of these projects. The International Carbon Reduction and Offset Alliance (ICROA), founded in 2008, continues to promote best practice across the voluntary carbon market.[105] ICROA's membership consists of carbon offset providers based in the United States, European and Asia-Pacific markets who commit to the ICROA Code of Best Practice.

    Other groups are now advocating for new approaches for insuring the integrity of offsets and credits.The Oxford Offsetting Principles take the position that traditional carbon offsetting schemes are "unlikely to deliver the types of offsetting needed to ultimately reach net zero emissions." These princiiples focus instead on cutting emissions as a first priority. In terms of offsets, they advocate for shifting to carbon removal offset projects that involve long term storage. The principles also support the development of net zero aligned offsetting. The Science Based Targets initiative's net-zero criteria also argue for the importance of moving beyond offsets based on reduced or avoided emissions to offsets based on carbon that has been sequestered from the atmosphere, such as CO2 Removal Certificates.

    Some initiatives are focused improving the quality of current carbon offset and credit projects. The Integrity Council for the Voluntary Carbon Market (ICVCM) has published a draft set of principles for determining a high integrity carbon credit, known as the Core Carbon Principles. Final guidelines for this program are expected in late 2023. Similarly, the Voluntary Carbon Markets Integrity Iniitiative, funded in part by the UK government, has developed a code of practice that was published in 2022.

    Determining value

    In 2022 voluntary carbon market (VCM) prices ranged from $8 to $30 per ton of CO2e for the most common types of offset projects. A number of factors can affect these prices.  The costs of developing a project are a significant factor. Those tied to projects that can sequester carbon (also called "Nature Based Solutions") have recently been selling at a premium compared to other projects, such as renewable energy or energy efficiency. Projects which have additional social and environmental benefits can command a higher price. This reflects both the value of the co-benefits as well as the perceived value of association with these projects. Credits from a reputable organization may command a higher price. Some credits located in developed countries may be priced higher, perhaps reflecting company preferences to back projects closer to their business sites. Conversely, carbon credits with older vintages tend to be valued lower on the market.

    Prices on the compliance market are generally higher and vary based on geography, with EU and UK ETS credits trading at higher prices than those in the US in 2022. Lower prices on the VCM are in part due to an excess of supply in relation to demand. Some types of offsets are able to be created at very low costs under present standards. Without this surplus, current VCM prices could be at least $10/tCO2e higher.

    Some pricing forecasts predict VCM prices could increases to as much as $47–$210 per ton by 2050, with an even higher short term spike in certain scenarios. A major driver in future price models is the extent to which programs that support more permanent removals are able to drive future global climate policy. This could have the effect of limiting the supply of approvable offsets, and thereby raise prices.

    Demand for VCM offsets is expected to increase five to ten-fold over the next decade as more companies adopt Net Zero climate commitments. This could be beneficial both for markets and for progress on reducing GHG emissions. If carbon offset prices remain significantly below these forecast levels, companies could be open to criticisms of greenwashing, as some might claim credit for emission reduction projects that would have been undertaken anyway. At prices of $100/tCO2e, a variety of carbon removal technologies (reducing deforestation, forest restoration, CCS, BECCs and renewables in least developed countries) could deliver around 2 GtCO2e per year of annual emission reductions between now and 2050. In addition, as the cost of using offsets and credits rises, investments in reducing supply chain emissions will become more attractive.

    Effectiveness

    Offset and credit programs have been identified as way for countries to meet their NDC commitments and achieve the goals of the Paris agreement at a lower cost. They may also accelerate progress in closing the emissions gap identified in annual UNEP reports.

    These programs also produce important co-benefits. Common environmental co-benefits described for these projects include: better air quality, increased biodiversity, and water & soil protection. There are also social benefits, such as community employment opportunities, energy access, and gender equality. Typical economic co-benefits include job creation, education opportunities, and technology transfer. Some certification programs have tools and research products to help quantify these benefits.

    Limitations

    The ongoing use of offsets and credits faces a variety of criticisms. Some argue that they promote a "business-as-usual" mindset, where companies are able to use carbon offsetting as a way to avoid making larger changes that deal with reducing carbon emissions at its source. These projects are also seen as "Greenwashing". In 2023 a civil suit was brought against Delta Airlines based on its use of carbon credits to support claims of carbon neutrality. In 2016 the Ɩko-Institut found that 85% of CDM projects analyzed had a low likelihood of being truly additional and without over-estimated emission reductions. An additional challenge is that offsets and credits are being marketed in a global environment where carbon pricing and existing policies are still inadequate to meet Paris goals. However, there is evidence that companies that invest in offsets and credits tend to make more ambitious emissions cuts compared with companies that do not.

    Oversight issues

    Several certification standards exist, offering variations for measuring emissions baseline, reductions, additionality, and other key criteria. However, no single standard governs the industry, and some offset providers have been criticized on the grounds that carbon reduction claims are exaggerated or misleading. For example carbon credits issued by the California Air Resources Board were found to use a formula that established fixed boundaries around forest regions, creating simplified, regional averages for the carbon stored in a wide mix of tree species. As a result it is estimated that California's cap and trade program program has generated between 20 million and 39 million forestry credits that do not achieve real climate benefits. This amounts to nearly one in three credits issued through that program.

    Additionality determinations can be difficult, and may present risks for buyers of offsets or credits. Carbon projects that yield strong financial returns even in the absence of revenue from carbon credits; or that are compelled by regulations; or that represent common practice in an industry; are usually not considered additional. A full determination of additionality requires a careful investigation of proposed carbon offset projects.

    Because offsets provide a revenue stream for the reduction of some types of emissions, they can in some cases provide incentives to emit more, so that emitting entities can later get credit for reducing emissions from an artificially high baseline. Actions by regulatory agencies could address these situations. These could include specific standards for verifiability, uniqueness, and transparency.

    Concerns with forestry projects

    Forestry projects have been increasingly criticized in terms of their integrity as offset or credit programs. A number of news stories in 2021–2023 have criticized nature based carbon offsets, the REDD+ program, and certification organizations. In one case it was estimated that ~90% of rainforest offset credits of the Verified Carbon Standard are likely to be "phantom credits".

    Tree planting projects in particular have been problematic. Critics point to a number of concerns. Trees reach maturity over a course of many decades. It is difficult to guarantee the permanence of the forests, which may be susceptible to clearing, burning, or mismanagement. Some tree-planting projects introduce fast-growing invasive species that end up damaging native forests and reducing biodiversity. In response, some certification standards, such as the Climate Community and Biodiversity Standard require multiple species plantings. Tree planting in high latitude forests may have a net warming effect on the Earth's climate. This is because the absorption of sunlight by tree cover creates a warming effect that balances out their absorption of carbon dioxide. Tree-planting projects can also cause conflicts with local communities and indigenous people who are displaced or otherwise find their use of forest resources curtailed.

    Operator (computer programming)

    From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...