Search This Blog

Saturday, October 21, 2023

Hydrogen vehicle

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Hydrogen_vehicle
The 2015 Toyota Mirai is the world's first mass-produced and commercially marketed dedicated hydrogen fuel cell vehicles that is not a modification of an existing model. The Mirai is based on the Toyota fuel cell vehicle (FCV) concept car (shown).

A hydrogen vehicle is a vehicle that uses hydrogen fuel for motive power. Hydrogen vehicles include hydrogen-fueled space rockets, as well as ships and aircraft. Motive power is generated by converting the chemical energy of hydrogen to mechanical energy, either by reacting hydrogen with oxygen in a fuel cell to power electric motors or, less commonly, by burning hydrogen in an internal combustion engine.

As of 2021, there are two models of hydrogen cars publicly available in select markets: the Toyota Mirai (2014–), which is the world's first commercially produced dedicated fuel cell electric vehicle (FCEV), and the Hyundai Nexo (2018–). There are also fuel cell buses. Hydrogen aircraft are not expected to carry many passengers long haul before the 2030s at the earliest.

As of 2019, 98% of hydrogen is produced by steam methane reforming, which emits carbon dioxide. It can be produced by electrolysis of water, or by thermochemical or pyrolytic means using renewable feedstocks, but the processes are currently expensive. Various technologies are being developed that aim to deliver costs low enough, and quantities great enough, to compete with hydrogen production using natural gas.

Vehicles running on hydrogen technology benefit from a long range on a single refuelling, but are subject to several drawbacks: high carbon emissions when hydrogen is produced from natural gas, capital cost burden, high energy inputs in production, low energy content per unit volume at ambient conditions, production and compression of hydrogen, the investment required to build refuelling infrastructure around the world to dispense hydrogen, and transportation of hydrogen. In addition, leaked hydrogen has a global warming effect 11.6 times stronger than CO₂.

For light duty vehicles including passenger cars, hydrogen adoption is behind that of battery electric vehicles. A 2022 study found that technological developments and economies of scale in BEVs, compared with the evolution of the use of hydrogen, have made it unlikely for hydrogen light-duty vehicles to play a significant role in the future.

Vehicles

The Honda FCX, along with the Toyota FCHV, is the world's first government-certified commercial hydrogen fuel cell vehicle.

Rationale and context

The rationale for hydrogen vehicles lies in their potential to reduce reliance on fossil fuels, associated greenhouse gas emissions and localised air pollution from transportation. This would require hydrogen to be produced cleanly, for use in sectors and applications where cheaper and more energy efficient mitigation alternatives are limited.

Aeroplanes

The Boeing Fuel Cell Demonstrator powered by a hydrogen fuel cell

Companies such as Boeing, Lange Aviation, and the German Aerospace Center pursue hydrogen as fuel for crewed and uncrewed aeroplanes. In February 2008 Boeing tested a crewed flight of a small aircraft powered by a hydrogen fuel cell. Uncrewed hydrogen planes have also been tested. For large passenger aeroplanes, The Times reported that "Boeing said that hydrogen fuel cells were unlikely to power the engines of large passenger jet aeroplanes but could be used as backup or auxiliary power units onboard."

In July 2010, Boeing unveiled its hydrogen-powered Phantom Eye UAV, powered by two Ford internal-combustion engines that have been converted to run on hydrogen.

Automobiles

As of 2021, there are two hydrogen cars publicly available in select markets: the Toyota Mirai and the Hyundai Nexo. The Honda Clarity was produced from 2016 to 2021. Hydrogen combustion cars are not commercially available.

In the light road vehicle segment, by the end of 2022, 70,200 fuel cell electric vehicles had been sold worldwide, compared with 26 million plug-in electric vehicles. With the rapid rise of electric vehicles and associated battery technology and infrastructure, the global scope for hydrogen’s role in cars is shrinking relative to earlier expectations.

The first road vehicle powered by a hydrogen fuel cell was the Chevrolet Electrovan, introduced by General Motors in 1966.

The Toyota FCHV and Honda FCX, which began leasing on December 2, 2002, became the world's first government-certified commercial hydrogen fuel cell vehicles, and the Honda FCX Clarity, which began leasing in 2008, was the world's first hydrogen fuel cell vehicle designed for mass production rather than adapting an existing model. Honda established the world's first fuel cell vehicle dealer network in 2008, and at the time was the only company able to lease hydrogen fuel cell vehicles to private customers.

The Hyundai Nexo is a hydrogen fuel cell-powered crossover SUV

The 2013 Hyundai Tucson FCEV, a modified Tucson, was introduced to the market as a lease-only vehicle, and Hyundai Motors claimed it was the world's first mass-produced hydrogen fuel cell vehicle. However, due to high prices and a lack of charging infrastructure, sales fell far short of initial plans, with only 273 units sold by the end of May 2015. Hyundai Nexo, which succeeded the Tucson in 2018, was selected as the "safest SUV" by the Euro NCAP in 2018.

Toyota launched the world's first dedicated mass-produced fuel cell vehicle (FCV), the Mirai, in Japan at the end of 2014 and began sales in California, mainly the Los Angeles area and also in selected markets in Europe, the UK, Germany and Denmark later in 2015. The car has a range of 312 mi (502 km) and takes about five minutes to refill its hydrogen tank. The initial sale price in Japan was about 7 million yen ($69,000). Former European Parliament President Pat Cox estimated that Toyota would initially lose about $100,000 on each Mirai sold. At the end of 2019, Toyota had sold over 10,000 Mirais. Many automobile companies have introduced demonstration models in limited numbers (see List of fuel cell vehicles and List of hydrogen internal combustion engine vehicles).

In 2013 BMW leased hydrogen technology from Toyota, and a group formed by Ford Motor Company, Daimler AG, and Nissan announced a collaboration on hydrogen technology development.

In 2015, Toyota announced that it would offer all 5,680 patents related to hydrogen fuel cell vehicles and hydrogen fuel cell charging station technology, which it has been researching for over 20 years, to its competitors free of charge in order to stimulate the market for hydrogen-powered vehicles.

By 2017, however, Daimler had abandoned hydrogen vehicle development, and most of the automobile companies developing hydrogen cars had switched their focus to battery electric vehicles. By 2020, all but three automobile companies had abandoned plans to manufacture hydrogen cars.

Auto racing

A record of 207.297 miles per hour (333.612 km/h) was set by a prototype Ford Fusion Hydrogen 999 Fuel Cell Race Car at the Bonneville Salt Flats, in August 2007, using a large compressed oxygen tank to increase power. The land-speed record for a hydrogen-powered vehicle of 286.476 miles per hour (461.038 km/h) was set by Ohio State University's Buckeye Bullet 2, which achieved a "flying-mile" speed of 280.007 miles per hour (450.628 km/h) at the Bonneville Salt Flats in August 2008.

In 2007, the Hydrogen Electric Racing Federation was formed as a racing organization for hydrogen fuel cell-powered vehicles. The organization sponsored the Hydrogen 500, a 500-mile race.

Buses

A Solaris Urbino 12 bus near its factory in Bolechowo, Poland

Fuel-cell buses have been trialed by several manufacturers in different locations, for example, the Ursus Lublin. Solaris Bus & Coach introduced its Urbino 12 hydrogen electric buses in 2019. Several dozen were ordered. In 2022, the city of Montpellier, France, cancelled a contract to procure 51 buses powered by hydrogen fuel cells, when it found that "the cost of operation for hydrogen [buses] is 6 times the cost of electricity".

Trams and trains

In the International Energy Agency’s 2022 Net Zero Emissions Scenario, hydrogen is forecast to account for 2% of rail energy demand in 2050, while 90% of rail travel is expected to be electrified by then (up from 45% today). Hydrogen’s role in rail would likely be focused on lines that prove difficult or costly to electrify.

In March 2015, China South Rail Corporation (CSR) demonstrated the world's first hydrogen fuel cell-powered tramcar at an assembly facility in Qingdao. Tracks for the new vehicle have been built in seven Chinese cities.

In northern Germany in 2018 the first fuel-cell powered Coradia iLint trains were placed into service; excess power is stored in lithium-ion batteries.

Ships

As of 2019 Hydrogen fuel cells are not suitable for propulsion in large long-distance ships, but they are being considered as a range-extender for smaller, short-distance, low-speed electric vessels, such as ferries. Hydrogen in ammonia is being considered as a long-distance fuel.

Bicycles

PHB hydrogen bicycle

In 2007, Pearl Hydrogen Power Source Technology Co of Shanghai, China, demonstrated a PHB hydrogen bicycle. In 2014, Australian scientists from the University of New South Wales presented their Hy-Cycle model. The same year, Canyon Bicycles started to work on the Eco Speed concept bicycle.

In 2017, Pragma Industries of France developed a bicycle that was able to travel 100 km on a single hydrogen cylinder. In 2019, Pragma announced that the product, "Alpha Bike", has been improved to offer an electrically assisted pedalling range of 150 km, and the first 200 of the bikes are to be provided to journalists covering the 45th G7 summit in Biarritz, France.

Lloyd Alter of TreeHugger responded to the announcement, asking "why … go through the trouble of using electricity to make hydrogen, only to turn it back into electricity to charge a battery to run the e-bike [or] pick a fuel that needs an expensive filling station that can only handle 35 bikes a day, when you can charge a battery powered bike anywhere. [If] you were a captive fleet operator, why [not] just swap out batteries to get the range and the fast turnover?"

Military vehicles

General Motors' military division, GM Defense, focuses on hydrogen fuel cell vehicles. Its SURUS (Silent Utility Rover Universal Superstructure) is a flexible fuel cell electric platform with autonomous capabilities. Since April 2017, the U.S. Army has been testing the commercial Chevrolet Colorado ZH2 on its U.S. bases to determine the viability of hydrogen-powered vehicles in military mission tactical environments.

Motorcycles and scooters

ENV develops electric motorcycles powered by a hydrogen fuel cell, including the Crosscage and Biplane. Other manufacturers as Vectrix are working on hydrogen scooters. Finally, hydrogen-fuel-cell-electric-hybrid scooters are being made such as the Suzuki Burgman fuel-cell scooter and the FHybrid. The Burgman received "whole vehicle type" approval in the EU. The Taiwanese company APFCT conducted a live street test with 80 fuel-cell scooters for Taiwan's Bureau of Energy.

Auto rickshaws

Hydrogen auto rickshaw concept vehicles have been built by Mahindra HyAlfa and Bajaj Auto.

Quads and tractors

Autostudi S.r.l's H-Due is a hydrogen-powered quad, capable of transporting 1-3 passengers. A concept for a hydrogen-powered tractor has been proposed.

Fork trucks

A hydrogen internal combustion engine (or "HICE") forklift or HICE lift truck is a hydrogen fueled, internal combustion engine-powered industrial forklift truck used for lifting and transporting materials. The first production HICE forklift truck based on the Linde X39 Diesel was presented at an exposition in Hannover on May 27, 2008. It used a 2.0 litre, 43 kW (58 hp) diesel internal combustion engine converted to use hydrogen as a fuel with the use of a compressor and direct injection.

In 2013 there were over 4,000 fuel cell forklifts used in material handling in the US. The global market was estimated at 1 million fuel cell powered forklifts per year for 2014–2016. Fleets are being operated by companies around the world. Pike Research stated in 2011 that fuel-cell-powered forklifts will be the largest driver of hydrogen fuel demand by 2020.

Most companies in Europe and the US do not use petroleum powered forklifts, as these vehicles work indoors where emissions must be controlled and instead use electric forklifts. Fuel-cell-powered forklifts can provide benefits over battery powered forklifts as they can be refueled in 3 minutes. They can be used in refrigerated warehouses, as their performance is not degraded by lower temperatures. The fuel cell units are often designed as drop-in replacements.

Rockets

Centaur (rocket stage) was the first to use liquid hydrogen

Many large rockets use liquid hydrogen as fuel, with liquid oxygen as an oxidizer (LH2/LOX). An advantage of hydrogen rocket fuel is the high effective exhaust velocity compared to kerosene/LOX or UDMH/NTO engines. According to the Tsiolkovsky rocket equation, a rocket with higher exhaust velocity uses less propellant to accelerate. Also the energy density of hydrogen is greater than any other fuel. LH2/LOX also yields the greatest efficiency in relation to the amount of propellant consumed, of any known rocket propellant.

A disadvantage of LH2/LOX engines is the low density and low temperature of liquid hydrogen, which means bigger and insulated and thus heavier fuel tanks are needed. This increases the rocket's structural mass which reduces its delta-v significantly. Another disadvantage is the poor storability of LH2/LOX-powered rockets: Due to the constant hydrogen boil-off, the rocket must be fueled shortly before launch, which makes cryogenic engines unsuitable for ICBMs and other rocket applications with the need for short launch preparations.

Overall, the delta-v of a hydrogen stage is typically not much different from that of a dense fuelled stage, but the weight of a hydrogen stage is much less, which makes it particularly effective for upper stages, since they are carried by the lower stages. For first stages, dense fuelled rockets in studies may show a small advantage, due to the smaller vehicle size and lower air drag.

LH2/LOX were also used in the Space Shuttle to run the fuel cells that power the electrical systems. The byproduct of the fuel cell is water, which is used for drinking and other applications that require water in space.

Heavy trucks

The International Energy Agency’s 2022 net-zero emissions scenario sees hydrogen meeting approximately 30% of heavy truck energy demand in 2050, mainly for long-distance heavy freight (with battery electric power accounting for around 60%).

United Parcel Service began testing of a hydrogen powered delivery vehicle in 2017. In 2020, Hyundai began commercial production of its Xcient fuel cell trucks and shipped ten of them to Switzerland.

In 2022 in Australia, five hydrogen fuel cell class 8 trucks were placed into use to transport zinc from Sun Metals' Townsville mine to the Port of Townsville, Queensland, to be shipped around the world.

Internal combustion vehicle

Hydrogen internal combustion engine cars are different from hydrogen fuel cell cars. The hydrogen internal combustion car is a slightly modified version of the traditional gasoline internal combustion engine car. These hydrogen engines burn fuel in the same manner that gasoline engines do; the main difference is the exhaust product. Gasoline combustion results in emissions of mostly carbon dioxide and water, plus trace amounts of carbon monoxide, NOx, particulates and unburned hydrocarbons, while the main exhaust product of hydrogen combustion is water vapor.

In 1807 François Isaac de Rivaz designed the first hydrogen-fueled internal combustion engine. In 1965, Roger E. Billings, then a high school student, converted a Model A to run on hydrogen. In 1970 Paul Dieges patented a modification to internal combustion engines which allowed a gasoline-powered engine to run on hydrogen.

Mazda has developed Wankel engines burning hydrogen, which are used in the Mazda RX-8 Hydrogen RE. The advantage of using an internal combustion engine, like Wankel and piston engines, is the lower cost of retooling for production.

Fuel cell

Fuel cell cost

Hydrogen fuel cells are relatively expensive to produce, as their designs require rare substances, such as platinum, as a catalyst. In 2014, former European Parliament President Pat Cox estimated that Toyota would initially lose about $100,000 on each Mirai sold. In 2020, researchers at the University of Copenhagen's Department of Chemistry are developing a new type of catalyst that they hope will decrease the cost of fuel cells. This new catalyst uses far less platinum because the platinum nano-particles are not coated over carbon which, in conventional hydrogen fuel cells, keeps the nano-particles in place but also causes the catalyst to become unstable and denatures it slowly, requiring even more platinum. The new technology uses durable nanowires instead of the nano-particles. "The next step for the researchers is to scale up their results so that the technology can be implemented in hydrogen vehicles."

Freezing conditions

The problems in early fuel-cell designs at low temperatures concerning range and cold start capabilities have been addressed so that they "cannot be seen as show-stoppers anymore". Users in 2014 said that their fuel cell vehicles perform flawlessly in temperatures below zero, even with the heaters blasting, without significantly reducing range. Studies using neutron radiography on unassisted cold-start indicate ice formation in the cathode, three stages in cold start and Nafion ionic conductivity. A parameter, defined as coulomb of charge, was also defined to measure cold start capability.

Service life

The service life of fuel cells is comparable to that of other vehicles. Polymer-electrolyte membrane (PEM) fuel cell service life is 7,300 hours under cycling conditions.

Hydrogen

Hydrogen does not exist in convenient reservoirs or deposits like fossil fuels or helium. It is produced from feedstocks such as natural gas and biomass or electrolyzed from water. A suggested benefit of large-scale deployment of hydrogen vehicles is that it could lead to decreased emissions of greenhouse gases and ozone precursors. However, as of 2014, 95% of hydrogen is made from methane. It can be produced by thermochemical or pyrolitic means using renewable feedstocks, but that is an expensive process.

Renewable electricity can however be used to power the conversion of water into hydrogen: Integrated wind-to-hydrogen (power to gas) plants, using electrolysis of water, are exploring technologies to deliver costs low enough, and quantities great enough, to compete with traditional energy sources. The challenges facing the use of hydrogen in vehicles include its storage on board the vehicle. As of September 2023, hydrogen cost $36 per kilogram at public fueling stations in California, 14 times as much per mile for a Mirai as compared with a Tesla Model 3.

Production

The molecular hydrogen needed as an onboard fuel for hydrogen vehicles can be obtained through many thermochemical methods utilizing natural gas, coal (by a process known as coal gasification), liquefied petroleum gas, biomass (biomass gasification), by a process called thermolysis, or as a microbial waste product called biohydrogen or Biological hydrogen production. 95% of hydrogen is produced using natural gas. Hydrogen can be produced from water by electrolysis at working efficiencies of 65–70%. Hydrogen can be made by chemical reduction using chemical hydrides or aluminum. Current technologies for manufacturing hydrogen use energy in various forms, totaling between 25 and 50 percent of the higher heating value of the hydrogen fuel, used to produce, compress or liquefy, and transmit the hydrogen by pipeline or truck.

Environmental consequences of the production of hydrogen from fossil energy resources include the emission of greenhouse gasses, a consequence that would also result from the on-board reforming of methanol into hydrogen. Hydrogen production using renewable energy resources would not create such emissions, but the scale of renewable energy production would need to be expanded to be used in producing hydrogen for a significant part of transportation needs. In a few countries, renewable sources are being used more widely to produce energy and hydrogen. For example, Iceland is using geothermal power to produce hydrogen, and Denmark is using wind.

Storage

Compressed hydrogen storage mark

Compressed hydrogen in hydrogen tanks at 350 bar (5,000 psi) and 700 bar (10,000 psi) is used for hydrogen tank systems in vehicles, based on type IV carbon-composite technology.

Hydrogen has a very low volumetric energy density at ambient conditions, compared with gasoline and other vehicle fuels. It must be stored in a vehicle either as a super-cooled liquid or as highly compressed gas, which require additional energy to accomplish. In 2018, researchers at CSIRO in Australia powered a Toyota Mirai and Hyundai Nexo with hydrogen separated from ammonia using a membrane technology. Ammonia is easier to transport safely in tankers than pure hydrogen.

Infrastructure

Hydrogen car fueling
The refueling of a Hydrogen-powered vehicle. The vehicle is a Hyundai Nexo. Note the condensation around the handle; this is because of the hydrogen gas expanding, causing the handle to freeze.

To enable the delivery of hydrogen fuel to transport end-users, a broad range of investments are needed, including, according to the International Energy Agency (IEA), the "construction and operation of new port infrastructure, buffer storage, pipelines, ships, refueling stations and plants to convert the hydrogen into a more readily transportable commodity (and potentially back to hydrogen)". In particular, the IEA notes that refueling stations will be needed in locations that are suitable for long‐distance trucking such as industrial hubs and identifies the need for investment in airport infrastructure for the storage and delivery of hydrogen. The IEA deems the infrastructure requirements for hydrogen in shipping more challenging, drawing attention to the "need for major investments and co‐ordinated efforts among fuel suppliers, ports, shipbuilders and shippers".

As of 2021, there were 49 publicly accessible hydrogen refueling stations in the US, 48 of which were located in California (compared with 42,830 electric charging stations). By 2017, there were 91 hydrogen fueling stations in Japan.

Codes and standards

Hydrogen codes and standards, as well as codes and technical standards for hydrogen safety and the storage of hydrogen, have been an institutional barrier to deploying hydrogen technologies. To enable the commercialization of hydrogen in consumer products, new codes and standards must be developed and adopted by federal, state and local governments.

Official support

U.S. initiatives

Fuel cell buses are supported.

The New York State Energy Research and Development Authority (NYSERDA) has created incentives for hydrogen fuel cell electric trucks and buses.

Criticism

Critics claim the time frame for overcoming the technical and economic challenges to implementing wide-scale use of hydrogen in cars is likely to be at least several decades. They argue that the focus on the use of the hydrogen car is a dangerous detour from more readily available solutions to reducing the use of fossil fuels in vehicles. In 2008, Wired News reported that "experts say it will be 40 years or more before hydrogen has any meaningful impact on gasoline consumption or global warming, and we can't afford to wait that long. In the meantime, fuel cells are diverting resources from more immediate solutions."

In the 2006 documentary, Who Killed the Electric Car?, former U.S. Department of Energy official Joseph Romm said: "A hydrogen car is one of the least efficient, most expensive ways to reduce greenhouse gases." He also argued that the cost to build out a nationwide network of hydrogen refueling stations would be prohibitive. He held the same views in 2014. In 2009, the Los Angeles Times wrote that "hydrogen is a lousy way to move cars." Robert Zubrin, the author of Energy Victory, stated: "Hydrogen is 'just about the worst possible vehicle fuel'". The Economist noted that most hydrogen is produced through steam methane reformation, which creates at least as much emission of carbon per mile as some of today's gasoline cars, but that if the hydrogen could be produced using renewable energy, "it would surely be easier simply to use this energy to charge the batteries of all-electric or plug-in hybrid vehicles." Over their lifetimes, hydrogen vehicles will emit more carbon than gasoline vehicles. The Washington Post asked in 2009, "[W]hy would you want to store energy in the form of hydrogen and then use that hydrogen to produce electricity for a motor, when electrical energy is already waiting to be sucked out of sockets all over America and stored in auto batteries"?

Volkswagen's Rudolf Krebs said in 2013 that "no matter how excellent you make the cars themselves, the laws of physics hinder their overall efficiency. The most efficient way to convert energy to mobility is electricity." He elaborated: "Hydrogen mobility only makes sense if you use green energy", but ... you need to convert it first into hydrogen "with low efficiencies" where "you lose about 40 percent of the initial energy". You then must compress the hydrogen and store it under high pressure in tanks, which uses more energy. "And then you have to convert the hydrogen back to electricity in a fuel cell with another efficiency loss". Krebs continued: "in the end, from your original 100 percent of electric energy, you end up with 30 to 40 percent." In 2015, CleanTechnica listed some of the disadvantages of hydrogen fuel cell vehicles A 2016 study in Energy by scientists at Stanford University and the Technical University of Munich concluded that, even assuming local hydrogen production, "investing in all-electric battery vehicles is a more economical choice for reducing carbon dioxide emissions".

A 2017 analysis published in Green Car Reports concluded that the best hydrogen-fuel-cell vehicles consume "more than three times more electricity per mile than an electric vehicle ... generate more greenhouse gas emissions than other powertrain technologies ... [and have] very high fuel costs. ... Considering all the obstacles and requirements for new infrastructure (estimated to cost as much as $400 billion), fuel-cell vehicles seem likely to be a niche technology at best, with little impact on U.S. oil consumption. The US Department of Energy agrees, for fuel produced by grid electricity via electrolysis, but not for most other pathways for generation. A 2019 video by Real Engineering noted that, notwithstanding the introduction of vehicles that run on hydrogen, using hydrogen as a fuel for cars does not help to reduce carbon emissions from transportation. The 95% of hydrogen still produced from fossil fuels releases carbon dioxide, and producing hydrogen from water is an energy-consuming process. Storing hydrogen requires more energy either to cool it down to the liquid state or to put it into tanks under high pressure, and delivering the hydrogen to fueling stations requires more energy and may release more carbon. The hydrogen needed to move a FCV a kilometer costs approximately 8 times as much as the electricity needed to move a BEV the same distance. Also in 2019, Katsushi Inoue, the president of Honda Europe, stated, "Our focus is on hybrid and electric vehicles now. Maybe hydrogen fuel cell cars will come, but that's a technology for the next era."

Assessments since 2020 have concluded that hydrogen vehicles are still only 38% efficient, while battery EVs are from 80% to 95% efficient. A 2021 assessment by CleanTechnica concluded that while hydrogen cars are far less efficient than electric cars, the vast majority of hydrogen being produced is polluting grey hydrogen, and delivering hydrogen would require building a vast and expensive new infrastructure, the remaining two "advantages of fuel cell vehicles – longer range and fast fueling times – are rapidly being eroded by improving battery and charging technology." A 2022 study in Nature Electronics agreed. Another 2022 article, in Recharge News, stated that ships are more likely to be powered by ammonia or methanol than hydrogen. Also in 2022, Germany’s Fraunhofer Institute concluded that hydrogen is unlikely to play a major role in road transport.

A 2023 study by the Centre for International Climate and Environmental Research (CICERO) estimated that leaked hydrogen has a global warming effect 11.6 times stronger than CO₂.

Safety and supply

Hydrogen fuel is hazardous because of the low ignition energy (see also Autoignition temperature) and high combustion energy of hydrogen, and because it tends to leak easily from tanks. Explosions at hydrogen filling stations have been reported. Hydrogen fuelling stations generally receive deliveries of hydrogen by truck from hydrogen suppliers. An interruption at a hydrogen supply facility can shut down multiple hydrogen fuelling stations.

Comparison with other types of alternative fuel vehicle

Hydrogen vehicles compete with various proposed alternatives to the modern fossil fuel powered vehicle infrastructure.

Plug-in hybrids

Plug-in hybrid electric vehicles, or PHEVs, are hybrid vehicles that can be plugged into the electric grid and contain an electric motor and also an internal combustion engine. The PHEV concept augments standard hybrid electric vehicles with the ability to recharge their batteries from an external source, enabling increased use of the vehicle's electric motors while reducing their reliance on internal combustion engines.

Natural gas

Internal combustion engine-based compressed natural gas(CNG), HCNG, LPG or LNG vehicles (Natural gas vehicles or NGVs) use methane (Natural gas or Biogas) directly as a fuel source. Natural gas has a higher energy density than hydrogen gas. NGVs using biogas are nearly carbon neutral. Unlike hydrogen vehicles, CNG vehicles have been available for many years, and there is sufficient infrastructure to provide both commercial and home refueling stations. Worldwide, there were 14.8 million natural gas vehicles by the end of 2011. The other use for natural gas is in steam reforming which is the common way to produce hydrogen gas for use in electric cars with fuel cells.

Methane is also an alternative rocket fuel.

Plug-in electric vehicles

In the light road vehicle segment, by 2023 26 million plug-in electric vehicles had been sold worldwide, and there were 65,730 public electric vehicle chargers in North America, in addition to the availability of home and work charging. Long distance electric trucks require more megawatt charging infrastructure.

Disability rights movement

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Disability_rights_movement

The disability rights movement is a global social movement that seeks to secure equal opportunities and equal rights for all people with disabilities.

It is made up of organizations of disability activists, also known as disability advocates, around the world working together with similar goals and demands, such as: accessibility and safety in architecture, transportation, and the physical environment; equal opportunities in independent living, employment equity, education, and housing; and freedom from discrimination, abuse, neglect, and from other rights violations. Disability activists are working to break institutional, physical, and societal barriers that prevent people with disabilities from living their lives like other citizens.

Disability rights is complex because there are multiple ways in which a person with a disability can have their rights violated in different socio-political, cultural, and legal contexts. For example, a common barrier that individuals with disabilities face deals with employment. Specifically, employers are often unwilling or unable to provide the necessary accommodations to enable individuals with disabilities to effectively carry out their job functions.

History

United States

American disability rights have evolved significantly over the past century. Before the disability rights movement, President Franklin D. Roosevelt's refusal to be publicized in a position of vulnerability demonstrated and symbolized the existing stigma surrounding disabilities. While campaigning, giving speeches, or acting as a public figure, he hid his disability. This perpetuated the ideology that "disability equates to weakness".

Disability in the United States was viewed as a personal issue, and not many political or governmental organizations existed to support individuals in these groups. In the 1950s, there was a transition to volunteerism and parent-oriented organizations, such as the March of Dimes. While this was the beginning of activism and seeking support for these groups, children with disabilities were largely hidden by their parents out of fear of forced rehabilitation. When the civil rights movement took off in the 1960s, disability advocates joined it and the women's rights movements in order to promote equal treatment and challenge stereotypes. It was at this time that disability rights advocacy began to have a cross-disability focus. People with different kinds of disabilities (physical and mental disabilities, along with visual and hearing disabilities) and different essential needs came together to fight for a common cause.

It was not until 1990 that the Americans with Disabilities Act (ADA) was passed, legally prohibiting discrimination on account of disability, and mandating disability access in all buildings and public areas. The ADA is historically significant in that it defined the meaning of reasonable accommodation in order to protect employees and employers. Today, disability rights advocates continue protecting those who are discriminated against, including work towards issues like law enforcement and treatment of people with disabilities.

United Nations

On a global scale, the United Nations has established the Convention on the Rights of Persons with Disabilities, specifically discussing indigenous people with disabilities (Lockwood 146).

Disability barriers

Floor marker for visually impaired people in Narita Airport, Japan

The social model of disability suggests disability is caused by the way society is organized, rather than by a person's impairment. This model suggests barriers in society are created by ableism. When barriers are removed, people with disabilities can be independent and equal in society.

There are three main types of barriers:

  1. Attitudinal barriers: are created by people who see only disability when associating with people with disabilities in some way. These attitudinal barriers can be witnessed through bullying, discrimination, and fear. These barriers include low expectations of people with disabilities. These barriers contribute to all other barriers. Attitudes towards people with disabilities in low and middle-income countries can be even more extreme.
  2. Environmental barriers: inaccessible environments, natural or built, create disability by creating barriers to inclusion.
  3. Institutional barriers: include many laws, policies, practices, or strategies that discriminate against people with disabilities. For example, a study of five Southeast Asian countries found that electoral laws do not specially protect the political rights of persons with disabilities, while "some banks do not allow visually disabled people to open accounts, and HIV testing centers often refuse to accept sign language interpreters due to confidentiality policies". Restrictive laws exist in some countries, particularly affecting people with intellectual or psychosocial disabilities.

Other barriers include: internalised barriers (low expectations of people with disabilities can undermine their confidence and aspirations), inadequate data and statistics, lack of participation and consultation of disabled people.

Issues

People with physical disabilities

Access to public areas such as city streets, public buildings, and restrooms are some of the more visible changes brought about in recent decades to remove physical barriers. A noticeable change in some parts of the world is the installation of elevators, automatic doors, wide doors and corridors, transit lifts, wheelchair ramps, curb cuts, and the elimination of unnecessary steps where ramps and elevators are not available, allowing people in wheelchairs and with other mobility disabilities to use public sidewalks and public transit more easily and safely.

People with visual disabilities

Code signs for people with color vision deficiency

People with color vision deficiency regularly deal with implicit discrimination due to their inability to distinguish certain colors. A system of geometrically shaped code signs known as Coloradd was developed by Professor Miguel Neiva of the University of Minho, Portugal, in 2010 to indicate colours to people who have difficulty discerning them.

People with intellectual and developmental disabilities

People with intellectual and developmental disabilities focus their efforts on ensuring that they have the same human rights as other people and that they are treated like human beings. Since the formation of the self advocacy movement in the 1960s, the largest focus of the movement has been to get people with I/DD out of institutions and into the community. Another main focus is ensuring that people with intellectual and developmental disabilities are in integrated workplaces that pay at least minimum wage. In the US, it is still legal to pay people with I/DD below minimum wage in sheltered workshops. Many people with intellectual and developmental disabilities are put under guardianship and are not allowed to make their own decisions about their lives.

Another issue is the continued dehumanization of people with intellectual and developmental disabilities, which prompted the slogan People First, still used as a rallying cry and a common organizational name in the self advocacy movement. Self advocates are also involved in the "R-Word" Campaign, in which they try to eliminate the use of the word "retard". Self advocates successfully advocated to change the name of the Arc.

Autism rights movement

The autism rights movement is a social movement that emphasizes the concept of neurodiversity, viewing the autism spectrum as a result of natural variations in the human brain rather than a disorder to be cured. The autism rights movement advocates for several goals, including greater acceptance of autistic behaviors; therapies that focus on coping skills rather than imitating the behaviors of neurotypical peers; the creation of social networks and events that allow autistic people to socialize on their own terms; and the recognition of the autistic community as a minority group.

Autism rights or neurodiversity advocates believe that the autism spectrum is primarily genetic and should be accepted as a natural expression of the human genome. This perspective is distinct from two other views: the medical perspective, that autism is caused by a genetic defect and should be addressed by targeting the autism gene(s), and fringe theories that autism is caused by environmental factors such as vaccines.

The movement is controversial. A common criticism against autistic activists is that the majority of them are "high-functioning" or have Asperger syndrome and do not represent the views of "low-functioning" autistic people.

People with mental health issues

Advocates for the rights of people with mental health disabilities focus mainly on self-determination, and an individual's ability to live independently.

The right to have an independent life, using paid assistant care instead of being institutionalized, if the individual wishes, is a major goal of the disability rights movement, and is the main goal of the similar independent living and self-advocacy movements, which are most strongly associated with people with intellectual disabilities and mental health disorders. These movements have supported people with disabilities to live as more active participants in society.

Access to education and employment

Access to education and employment have also been a major focus of the disability rights movement. Adaptive technologies, enabling people to work jobs they could not have previously, help create access to jobs and economic independence. Access in the classroom has helped improve education opportunities and independence for people with disabilities.

Freedom from discrimination and abuse

Freedom from abuse, neglect, and violations of a person's rights are also important goals of the disability rights movement. Abuse and neglect includes inappropriate seclusion and restraint, inappropriate use of force by staff and/or providers, threats, harassment and/or retaliation by staff or providers, failure to provide adequate nutrition, clothing, and/or medical and mental health care, and/or failure to provide a clean and safe living environment, as well as other issues which pose a serious threat to the physical and psychological well-being of a person with a disability. Violations of patients' rights include failure to obtain informed consent for treatment, failure to maintain the confidentiality of treatment records, and inappropriate restriction of the right to communicate and associate with others, as well as other restrictions of rights.

As a result of the work done through the disability rights movement, significant disability rights legislation was passed in the 1970s through the 1990s in the U.S.

Major events

Canada

Canada's largest province, Ontario, created legislation, Accessibility for Ontarians with Disabilities Act, 2005, with the goals of becoming accessible by 2025.

In 2019, the Accessible Canada Act became law. This is the first national Canadian legislation on accessibility that affects all government departments and federally regulated agencies.

India

The Rights of Persons with Disabilities Act, 2016 is the disability legislation passed by the Indian Parliament to fulfill its obligation to the United Nations Convention on the Rights of Persons with Disabilities, which India ratified in 2007. The Act replaced the existing Persons With Disabilities (Equal Opportunities, Protection of Rights and Full Participation) Act, 1995. It came into effect on 28 December 2016. This law recognizes 21 disabilities.

United Kingdom

Disability rights activist outside Scottish Parliament, 30 March 2013

In the United Kingdom, following extensive activism by people with disabilities over several decades, the Disability Discrimination Act 1995 (DDA 1995) was passed. This made it unlawful in the United Kingdom to discriminate against people with disabilities in relation to employment, the provision of goods and services, education and transport. The Equality and Human Rights Commission provides support for this Act. Equivalent legislation exists in Northern Ireland, which is enforced by the Northern Ireland Equality Commission.

Following the introduction of the Bedroom Tax (officially the Under-occupancy penalty) in the Welfare Reform Act 2012, disability activists have played a significant role in the development of Bedroom Tax protests. A wide range of benefit changes are estimated to affect disabled people disproportionately and to compromise disabled people's right to independent living.

The Down Syndrome Bill will provide legal recognition to people living with Down syndrome.

United States

In 1948, a watershed for the movement was the proof of the existence of physical and program barriers. The proof was provided as a specification for barrier free usable facilities for people with disabilities. The specifications provided the minimum requirements for barrier free physical and program access. An example of barriers are; providing only steps to enter buildings; lack of maintenance of walkways; locations not connected with public transit; lack of visual and hearing communications ends up segregating individuals with disabilities from independent, participation, and opportunities. The ANSI - Barrier Free Standard (phrase coined by Dr. Timothy Nugent, the lead investigator) called "ANSI A117.1, Making Buildings Accessible to and Usable by the Physically Handicapped", provides the indisputable proof that the barriers exist. The standard is the outcome of physical therapists, bio-mechanical engineers, and individuals with disabilities who developed and participated in over 40 years of research. The standard provides the criteria for modifying programs and the physical site to provide independence. The standard has been emulated globally since its introduction in Europe, Asia, Japan, Australia, and Canada, in the early 1960s.

One of the most important developments of the disability rights movement was the growth of the independent living movement, which emerged in California in the 1960s through the efforts of Edward Roberts and other wheelchair-using individuals. This movement, a subset of the disability rights movement, postulates that people with disabilities are the best experts on their needs, and therefore they must take the initiative, individually and collectively, in designing and promoting better solutions and must organize themselves for political power. Besides de-professionalization and self-representation, the independent living movement's ideology comprises de-medicalization of disability, de-institutionalization and cross-disability (i.e. inclusion in the independent living movement regardless of diagnoses). Similarly, the Architectural Barriers Act was passed in 1968, mandating that federally constructed buildings and facilities be accessible to people with physical disabilities. This act is generally considered to be the first ever-federal disability rights legislation. Unfortunately for those with cognitive disabilities, their disability made it more difficult to be the best expert of their own needs, hindering their ability to self-advocate as their wheelchair-using counterparts could. Self-representation was much more difficult for those who could not articulate their thoughts, leading to their dependence on others to carry on the movement.

In 1973 the (American) Rehabilitation Act became law; Sections 501, 503, and 504 prohibited discrimination in federal programs and services and all other programs or services receiving federal funds. Key language in the Rehabilitation Act, found in Section 504, states "No otherwise qualified handicapped [sic] individual in the United States, shall, solely by reason of his [sic] handicap [sic], be excluded from the participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving federal financial assistance." The act also specifies money that can be allocated to help disabled people receive training for the work force as well as to assist in making sure that they can then reach work without running into inaccessibility problems. This was the first civil rights law guaranteeing equal opportunity for people with disabilities.

Another crucial turning point was the 504 Sit-in in 1977 of government buildings operated by the United States Department of Health, Education, and Welfare (HEW), conceived by Frank Bowe and organized by the American Coalition of Citizens with Disabilities, that led to the release of regulations pursuant to Section 504 of the Rehabilitation Act of 1973. On April 5, 1977, activists began to demonstrate and some sat-in in the offices found in ten of the federal regions including New York City, Los Angeles, Boston, Denver, Chicago, Philadelphia, and Atlanta. One of the most noteworthy protests occurred in San Francisco. The protesters demanded the signing of regulations for Section 504 of the Rehabilitation Act of 1973.The successful sit-in was led by Judith Heumann. The first day of protests marked the first of a 25-day sit-in. Close to 120 disability activists and protesters occupied the HEW building, and Secretary Joseph Califano finally signed on April 28, 1977. This protest was significant not only because its goal was achieved, but also because it was the foremost concerted effort between people of different disabilities coming together in support of legislation that affected the overall disability population, rather than only specific groups.

In 1978 disability rights activists in Denver, Colorado, organized by the Atlantis Community, held a sit-in and blockade of the Denver Regional Transit Authority buses in 1978. They were protesting the fact that city's transit system was completely inaccessible for physically disabled people. This action proved to be just the first in a series of civil disobedience demonstrations that lasted for a year until the Denver Transit Authority finally bought buses equipped with wheelchair lifts. In 1983, Americans Disabled for Accessible Public Transit (ADAPT) was responsible for another civil disobedience campaign also in Denver that lasted seven years. They targeted the American Public Transport Association in protest of inaccessible public transportation; this campaign ended in 1990 when bus lifts for people using wheelchairs were required nationwide by the Americans with Disabilities Act.

Another significant protest related to disability rights was the Deaf President Now protest by the Gallaudet University students in Washington, D.C., in March 1988. The eight-day (March 6 – March 13) demonstration and occupation and lock-out of the school began when the Board of Trustees appointed a new hearing President, Elisabeth Zinser, over two Deaf candidates. The students' primary grievance was that the university, which was dedicated to the education of people who are Deaf, had never had a Deaf president, someone representative of them. Of the protesters' four demands, the main one was the resignation of the current president and the appointment of a Deaf one. The demonstration consisted of about 2,000 student and nonstudent participants. The protests took place on campus, in government buildings, and in the streets. In the end, all the students' demands were met and I. King Jordan was appointed the first Deaf President of the university.

In 1990, the Americans with Disabilities Act became law, and it provided comprehensive civil rights protection for people with disabilities. Closely modeled after the Civil Rights Act and Section 504, the law was the most sweeping disability rights legislation in American history. It mandated that local, state, and federal governments and programs be accessible, that employers with more than 15 employees make "reasonable accommodations" for workers with disabilities and not discriminate against otherwise qualified workers with disabilities, and that public accommodations such as restaurants and stores not discriminate against people with disabilities and that they make reasonable modifications to ensure access for disabled members of the public. The act also mandated access in public transportation, communication, and in other areas of public life.

The first Disability Pride March in the United States was held in Boston in 1990. A second Disability Pride March was held in Boston in 1991. There were no subsequent Disability Pride Marches/Parades for many years, until Chicago on Sunday, July 18, 2004. It was funded with $10,000 in seed money that Sarah Triano received in 2003 as part of the Paul G. Hearne Leadership award from the American Association of People with Disabilities. According to Triano, 1,500 people attended the parade. Yoshiko Dart was the parade marshal.

Exhibitions and collections

To mark the 10th anniversary of the Americans with Disabilities Act, the Smithsonian Institution National Museum of American History opened an exhibition that examined the history of activism by people with disabilities, their friends, and families to secure the civil rights guaranteed to all Americans. Objects on view included the pen President George H. W. Bush used to sign the Act and one of the first ultralight wheelchairs. The exhibition was designed for maximum accessibility. Web-based kiosks - prototypes for a version that will eventually be available to museums and other cultural institutions - provided alternate formats to experience the exhibition. The exhibition was open from July 6, 2000, to July 23, 2001.

Debates and approaches

A key debate in the disability rights movement is between affirmative action for persons with disabilities versus fighting for equitable treatment. According to a 1992 polling organization, many fear that integrating people with disabilities into the workplace may affect their company image, or it may result in decreased productivity. This coincides with the 1992 parliamentary review of the Employment Equity Act, which stated that employers should look to implement equity without having an official quota system. This remains an ongoing debate.

An additional debate is between institutionalizing persons with disabilities versus supporting them in their homes. In 1963 during John F. Kennedy's presidency, he transformed the national view of mental health by boosting funding for community-based programs and drafting legislation for mental health care. He also created the President's Panel on Mental Retardation, which created recommendations for new programs that governments can implement on a state level, therefore moving away from "custodial institutions". This shift away from institutionalization has generated a long-lasting stigma against mental health institutions, which is why in politics there is often not enough funding for this concept.

According to the US Supreme Court case Humphrey v. Cady, civil commitment laws and eligibility for intervention exist only in the instance when the person is ruled an immediate danger to themself or others. The difficulty of proving "immediate danger" has led to the unexpected outcome that it is harder to commit mentally ill patients to hospital and easier to send them to prison. According to the National Alliance on Mental Illness, about 15% male inmates and 30% female inmates have some kind of serious mental illness which remains untreated.

Another ongoing debate is how to cultivate self-determination for persons with disabilities. The common article 1 of the International Covenant on Civil and Political Rights and the International Covenant on Economic, Social and Cultural Rights asserts that "All peoples have the right to self-determination" with free will. Because this highlights the concept of free and autonomous choice, one argument is that any government interference deters self-determination, thus leaving it to persons with disabilities to seek out any help they need from charities and nonprofit organizations. Charitable organizations such as churches believe in helping persons with disabilities with nothing in return. On the other hand, another approach is a participatory, symbiotic relationship, which include methods like professional development and resource provisions. More specifically, one approach is to allow persons with disabilities to self-articulate their needs and generate their own solutions and analyses. Instead of passive participation, which is participation by being told what to do or what has been done, this approach proposes to allow this group to be self-sufficient and make their own decisions. Barriers to this include defining who is a self-sufficient individual with a disability, circling back to the concept of self-determination.

Global neurosurgery

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Global_neurosurgery

Global neurosurgery is a field at the intersection of public health and clinical neurosurgery. It aims to expand provision of improved and equitable neurosurgical care globally.

Definition and history

Global neurosurgery is "the clinical and public health practice of neurosurgery with the primary purpose of ensuring timely, safe, and affordable neurosurgical care to all who need it." The term global neurosurgery was first used in 1995 by Canadian neurosurgeon Dwight Parkinson to describe comprehensive clinical neurosurgery care in Manitoba; however, the field as defined today was born in the mid-2010s. The modern definition of global neurosurgery was born from a combination of global health and neurosurgery. Hence, global neurosurgery is conceived as a subspecialty of global health within global surgery.

Burden of diseases amenable to neurosurgery

Around 22.6 million people are affected by diseases amenable to neurosurgery each year, and 13.8 million require surgical intervention. The burden of diseases amenable to neurosurgery is disproportionately distributed globally, with low- and middle-income countries bearing more than 78.1% of cases. Low- and middle-income countries lack the workforce, infrastructure, funding, and data needed to address the disease burden. High-income country patients, especially in rural areas and from economically-disadvantaged backgrounds, face unique challenges in accessing safe, timely, and affordable neurosurgical care. For this reason, most global neurosurgery work has focused on access to care in low- and middle-incomce countries despite the global nature of disparities in accessing neurosurgical care.

Practice

Global neurosurgery practice involves advocacy, education, policy, research, and service delivery. The components of global neurosurgery practice are interdependent but global neurosurgeons tend to focus their practice on one or two of them. This trend has allowed for specialization within the field and greater collaboration between individuals and institutions.

Advocacy

Advocacy efforts happen at the international, regional, and local levels and in collaboration with health initiatives that share similar goals with global neurosurgery - universal health coverage and sustainable development. Internationally, global neurosurgery advocacy groups participate in high-level health policy events like the World Health Assembly and the United Nations General Assembly. Global neurosurgery advocates have contributed to numerous high-level decisions including folate fortification, detection and management of congenital malformations, and injury prevention. Locally, global neurosurgery advocacy groups are constituted of health workers and other patient advocates. These groups affect local decision making but they are equally active internationally. Many local advocacy groups are members of international advocacy groups like the G4 Alliance, People and Organisations United for Spina Bifida and Hydrocephalus (PUSH!) Global Alliance, and International Federation Spina Bifida and Hydrocephalus (IFSBH). Local global neurosurgery advocacy groups work within these international organizations to coordinate advocacy efforts regionally and globally.

Education

Global neurosurgery education focuses on two aspects. First, global neurosurgery educators train specialists to serve under-resourced regions. The training focuses primarily on safe and quality service delivery within underserved communities. These global neurosurgery education efforts can be divided into non-specialized and specialized training. Non-specialized training or education for task-sharing/-shifting targets non-specialized healthcare workers such as general surgeons, clinical officers, and general practitioners. Non-specialized training is especially important in increasing access to essential and emergency neurosurgical care rapidly. Non-specialized training, unlike specialized training, can be done in shorter periods, with larger cohorts, and with fewer resources. Specialized neurosurgery training can last anywhere from a few months to 8 years depending on the training level. Postgraduate medical fellowships in one of the neurosurgical subspecialties are open to graduate neurosurgery residents/registrars and can last between three and 24 months. On the other hand, neurosurgery residencies last between 4 and 8 years.

The other focus of global neurosurgery education is fellowships that introduce trainees to global and public health concepts. Global neurosurgery fellowships are relatively new but increasingly popular with institutions like Cambridge, Cornell, Duke, Harvard, and the University of Cape Town offering specialized training.

Policy

Global neurosurgeons contribute significantly to the design and implementation of health policies that improve access to safe, timely, and affordable neurosurgical care globally. Prime examples of global neurosurgery policy efforts include the comprehensive health policy guidelines for traumatic brain and spine injuries and for spina bifida and hydrocephalus. The comprehensive policy guidelines address challenges that affect the patient continuum of care and suggest solutions for every component of the healthcare system. These documents were designed for policymakers in areas with a large burden of diseases amenable to neurosurgery. Traumatic brain and spine injuries were chosen because they constitute more than 47.1% of the global neurosurgical disease burden while hydrocephalus and spina bifida were chosen for their deleterious impact on children.

Research

Research is an indispensable aspect of global neurosurgery practice called academic global neurosurgery. Academic global neurosurgery has a broad focus and uses concepts from epidemiology, health economics, health policy, health services, health systems, implementation & dissemination science, and patient safety & quality improvement research. Academic global neurosurgery's exponential growth since 2016 is the result of increased interest and support from the neurosurgical community characterized by the creation of an ad-hoc committee within the World Federation of Neurosurgical Societies, publication of special issues in reputable peer-reviewed journals, creation of a specialized journal, and the creation of global neurosurgery centers. Academic global neurosurgery identifies challenges to accessing neurosurgical care and proposes solutions that increase access to care. The evidence generated by academic global neurosurgery informs the other aspects of global neurosurgery practice.

Service delivery

Service delivery is the oldest component of global neurosurgery practice and can be traced back to the colonial era when surgeons would deliver care in colonies. Global neurosurgery aims to reduce barriers to essential and emergency neurosurgery procedures such as those needed for acute stroke, neural tube defects, traumatic brain injuries, and traumatic spine injuries.

Low- and middle-income country patients have worse outcomes than their high-income country counterparts because they regularly face barriers to accessing timely and safe neurosurgical care.

The workforce deficit in low- and middle-income countries constitutes a significant barrier to receiving care. Although former colonies have trained local neurosurgeons since their independence, the neurosurgical workforce density in many low- and middle-income countries remains below the World Federation of Neurosurgical Societies' recommendation of 1 neurosurgeon per 200,000 people. In addition, the majority of low- and middle income countries have geographical disparities in the neurosurgical workforce with most neurosurgeons working in urban areas whereas the majority of people in these countries are rural-dwellers. In addition, surgical non-governmental organizations from high-income countries help fill the service delivery gap in some low- and middle-income countries. Although most neurosurgical non-governmental organizations offer short-term service delivery in low- and middle-income countries, some like CURE International offer long-term care.

The neurosurgical workforce in low- and middle-income countries has increased gradually in the past decade thanks to targeted efforts from the global neurosurgery community. For example, the World Federation of Neurosurgical Societies supports the training of aspiring neurosurgeons from understaffed countries through scholarships at accredited centers in Africa, Asia, and South America.

Young neurosurgeons from under-resourced regions who have been trained in advanced neurosurgical techniques report their patients do not get safe and timely care because of inadequate infrastructure. Access to neurosurgical infrastructure can be assessed summarily using the World Federation of Neurosurgical Societies facility three-tier classification or using hospital assessment tools. The World Federation of Neurosurgical Societies facility three-tier classification groups facilities into level 1 (equipment for emergency neurosurgery procedures), level 2 (equipment to perform basic microneurosurgical procedures), and level 3 (equipment for complex and advanced neurosurgery).

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...