Search This Blog

Sunday, October 22, 2023

Thin-film solar cell

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Thin-film_solar_cell
 
Thin-film solar cells, a second generation of photovoltaic (PV) solar cells:

Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (µm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 µm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).

Solar cells are often classified into so-called generations based on the active (sunlight-absorbing) layers used to produce them, with the most well-established or first-generation solar cells being made of single- or multi-crystalline silicon. This is the dominant technology currently used in most solar PV systems. Most thin-film solar cells are classified as second generation, made using thin layers of well-studied materials like amorphous silicon (a-Si), cadmium telluride (CdTe), copper indium gallium selenide (CIGS), or gallium arsenide (GaAs). Solar cells made with newer, less established materials are classified as third-generation or emerging solar cells. This includes some innovative thin-film technologies, such as perovskite, dye-sensitized, quantum dot, organic, and CZTS thin-film solar cells.

Thin-film cells have several advantages over first-generation silicon solar cells, including being lighter and more flexible due to their thin construction. This makes them suitable for use in building-integrated photovoltaics and as semi-transparent, photovoltaic glazing material that can be laminated onto windows. Other commercial applications use rigid thin film solar panels (interleaved between two panes of glass) in some of the world's largest photovoltaic power stations. Additionally, the materials used in thin-film solar cells are typically produced using simple and scalable methods more cost-effective than first-generation cells, leading to lower environmental impacts like greenhouse gas (GHG) emissions in many cases. Thin-film cells also typically outperform renewable and non-renewable sources for electricity generation in terms of human toxicity and heavy-metal emissions.

Despite initial challenges with efficient light conversion, especially among third-generation PV materials, as of 2023 some thin-film solar cells have reached efficiencies of up to 29.1% for single-junction thin-film GaAs cells, exceeding the maximum of 26.1% efficiency for standard single-junction first-generation solar cells. Multi-junction concentrator cells incorporating thin-film technologies have reached efficiencies of up to 47.6% as of 2023.

Still, many thin-film technologies have been found to have shorter operational lifetimes and larger degradation rates than first-generation cells in accelerated life testing, which has contributed to their somewhat limited deployment. Globally, the PV marketshare of thin-film technologies remains around 5% as of 2023. However, thin-film technology has become considerably more popular in the United States, where CdTe cells alone accounted for nearly 30% of new utility-scale deployment in 2022.

History

Market-share of thin-film technologies in terms of annual production since 1980

Early research into thin-film solar cells began in the 1970s. In 1970, Zhores Alferov's team at Ioffe Institute created the first gallium arsenide (GaAs) solar cells, later winning the 2000 Nobel prize in Physics for this and other work. Two years later in 1972, Prof. Karl Böer founded the Institute of Energy Conversion (IEC) at the University of Delaware to further thin-film solar research. The institute first focused on copper sulfide/cadmium sulfide (Cu2S/CdS) cells and later expanded to zinc phosphide (Zn3P2) and amorphous silicon (a-Si) thin-films as well in 1975. In 1973, the IEC debuted a solar-powered house, Solar One, in the first example of residential building-integrated photovoltaics. In the next decade, interest in thin-film technology for commercial use and aerospace applications increased significantly, with several companies beginning development of amorphous silicon thin-film solar devices. Thin-film solar efficiencies rose to 10% for Cu2S/CdS in 1980, and in 1986 ARCO Solar launched the first commercially-available thin-film solar cell, the G-4000, made from amorphous silicon.

In the 1990s and 2000s, thin-film solar cells saw significant increases in maximum efficiencies and expansion of existing thin-film technologies into new sectors. In 1992, a thin-film solar cell with greater than 15% efficiency was developed at University of South Florida. Only seven years later in 1999, the U.S. National Renewable Energy Laboratory (NREL) and Spectrolab collaborated on a three-junction gallium arsenide solar cell that reached 32% efficiency. That same year, Kiss + Cathcart designed transparent thin-film solar cells for some of the windows in 4 Times Square, generating enough electricity to power 5-7 houses. In 2000, BP Solar introduced two new commercial solar cells based on thin-film technology. In 2001, the first organic thin-film solar cells were developed at the Johannes Kepler University of Linz. In 2005, GaAs solar cells got even thinner with the first free-standing (no substrate) cells introduced by researchers at Radboud University.

This was also a time of significant advances in the exploration of new third-generation solar materials–materials with the potential to overcome theoretical efficiency limits for traditional solid-state materials. In 1991, the first high-efficiency dye-sensitized solar cell was developed, replacing the ordinary solid semiconducting (active) layer of the cell with a liquid electrolyte mixture containing light-absorbing dye. In the early 2000s, development of quantum dot solar cells began, technology later certified by NREL in 2011. In 2009, researchers at the University of Tokyo reported a new type solar cell using perovskites as the active layer and achieving over 3% efficiency, building on Murase Chikao's 1999 work which created a perovskite layer capable of absorbing light.

In the 2010s and early 2020s, innovation in thin-film solar technology has included efforts to expand third-generation solar technology to new applications and to decrease production costs, as well as significant efficiency improvements for both second and third generation materials. In 2015, Kyung-In Synthetic released the first inkjet solar cells, flexible solar cells made with industrial printers. In 2016, Vladimir Bulović's Organic and Nanostructured Electronics (ONE) Lab at the Massachusetts Institute of Technology (MIT) created thin-film cells light enough to sit on top of soap bubbles. In 2022, the same group introduced flexible organic thin-film solar cells integrated into fabric.

Thin-film solar technology captured a peak global market share of 32% of the new photovoltaic deployment in 1988 before declining for several decades and reaching another, smaller peak of 17% again in 2009. Market share then steadily declined to 5% in 2021 globally, however thin-film technology captured approximately 19% of the total U.S. market share in the same year, including 30% of utility-scale production.

Theory of operation

In a typical solar cell, the photovoltaic effect is used to generate electricity from sunlight. The light-absorbing or "active layer" of the solar cell is typically a semiconducting material, meaning that there is a gap in its energy spectrum between the valence band of localized electrons around host ions and the conduction band of higher-energy electrons which are free to move throughout the material. For most semiconducting materials at room temperature, electrons which have not gained extra energy from another source will exist largely in the valence band, with few or no electrons in the conduction band. When a solar photon reaches the semiconducting active layer in a solar cell, electrons in the valence band can absorb the energy of the photon and be excited into the conduction band, allowing them to move freely throughout the material. When this happens, an empty electron state (or hole) is left behind in the valence band. Together, the conduction band electron and the valence band hole are called an electron-hole pair. Both the electron and the hole in the electron-hole pair can move freely throughout the material as electricity. However, if the electron-hole pair is not separated, the electron and hole can recombine into the lower-energy original state, releasing a photon of the corresponding energy. In thermodynamic equilibrium, the forward process (absorbing a photon to excite an electron-hole pair) and reverse process (emitting a photon to destroy an electron-hole pair) must occur at the same rate by the principle of detailed balance. Therefore, to construct a solar cell from a semiconducting material and extract current during the excitation process, the electron and hole of the electron-hole pair must be separated. This can be achieved in a variety of different ways, but the most common is with a p-n junction, where a positively doped (p-type) semiconducting layer and a negatively doped (n-type) semiconducting layer meet, creating a chemical potential difference which draws electrons one direction and holes the other, separating the electron-hole pair. This may instead be achieved using metal contacts with different work functions, as in a Schottky-junction cell.

In a thin-film solar cell, the process is largely the same but the active semiconducting layer is made much thinner. This may be made possible by some intrinsic property of the semiconducting material used that allows it to convert a particularly large number of photons per thickness. For example, some thin-film materials having a direct bandgap, meaning the conduction and valence band electron states are at the same momentum instead of different momenta as in the case of an indirect bandgap semiconductor like silicon. Having a direct bandgap eliminates the need for a source or sink of momentum (typically a lattice vibration, or phonon), simplifying the two-step process of absorbing a photon into a single-step process. Other thin-film materials may be able to absorb more photons per thickness simply due to having an energy bandgap that is well-matched to the peak energy of the solar spectrum, meaning there are many solar photons of the correct energy available to excite electron-hole pairs.

In other thin-film solar cells, the semiconducting layer may be replaced entirely with another light-absorbing material, for example an electrolyte solution and photo-active dye molecules in a dye-sensitized solar cell or by quantum dots in a quantum dot solar cell.

Materials

Cross-section of a TF cell

Thin-film technologies reduce the amount of active material in a cell. The active layer may be placed on a rigid substrate made from glass, plastic, or metal or the cell may be made with a flexible substrate like cloth. Thin-film solar cells tend to be cheaper than crystalline silicon cells and have a smaller ecological impact (determined from life cycle analysis). Their thin and flexible nature also makes them ideal for applications like building-integrated photovoltaics. The majority of film panels have 2-3 percentage points lower conversion efficiencies than crystalline silicon, though some thin-film materials outperform crystalline silicon panels in terms of efficiency. Cadmium telluride (CdTe), copper indium gallium selenide (CIGS) and amorphous silicon (a-Si) are three of the most prominent thin-film technologies.

Second-generation thin-film materials

Cadmium telluride

Cadmium telluride (CdTe) is a chalcogenide material that is the predominant thin film technology. With about 5 percent of worldwide PV production, it accounts for more than half of the thin film market. The cell's lab efficiency has also increased significantly in recent years and is on a par with CIGS thin film and close to the efficiency of multi-crystalline silicon as of 2013. Also, CdTe has the lowest energy payback time of all mass-produced PV technologies, and can be as short as eight months in favorable locations. CdTe also performs better than most other thin-film PV materials across many important environmental impact factors like global warming potential and heavy metal emissions. A prominent manufacturer is the US-company First Solar based in Tempe, Arizona, that produces CdTe-panels with an efficiency of about 18 percent.

Although the toxicity of cadmium may not be that much of an issue and environmental concerns completely resolved with the recycling of CdTe modules at the end of their life time, there are still uncertainties and the public opinion is skeptical towards this technology. The usage of rare materials may also become a limiting factor to the industrial scalability of CdTe thin film technology. The rarity of tellurium—of which telluride is the anionic form—is comparable to that of platinum in the earth's crust and contributes significantly to the module's cost.

Possible combinations of Group-(XI, XIII, XVI) elements in the periodic table that yield a compound showing the photovoltaic effect: Cu, Ag, AuAl, Ga, InS, Se, Te.

Copper indium gallium selenide

A copper indium gallium selenide solar cell or CIGS cell uses an absorber made of copper, indium, gallium, selenide (CIGS), while gallium-free variants of the semiconductor material are abbreviated CIS. Like CdTe, CIGS/CIS is a chalcogenide material. It is one of three mainstream thin-film technologies, the other two being cadmium telluride and amorphous silicon, with a lab-efficiency above 20 percent and a share of 0.8 percent in the overall PV market in 2021. A prominent manufacturer of cylindrical CIGS-panels was the now-bankrupt company Solyndra in Fremont, California. Traditional methods of fabrication involve vacuum processes including co-evaporation and sputtering. In 2008, IBM and Tokyo Ohka Kogyo Co., Ltd. (TOK) announced they had developed a new, non-vacuum, solution-based manufacturing process for CIGS cells and are aiming for efficiencies of 15% and beyond.

Hyperspectral imaging has been used to characterize these cells. Researchers from IRDEP (Institute of Research and Development in Photovoltaic Energy) in collaboration with Photon etc.¸ were able to determine the splitting of the quasi-Fermi level with photoluminescence mapping while the electroluminescence data were used to derive the external quantum efficiency (EQE). Also, through a light beam induced current (LBIC) cartography experiment, the EQE of a microcrystalline CIGS solar cell could be determined at any point in the field of view.

As of April 2019, current conversion efficiency record for a laboratory CIGS cell stands at 22.9%.

Silicon

Possible crystal structures of silicon.

There are three prominent silicon thin-film architectures:

  • Amorphous silicon cells
  • Amorphous / microcrystalline tandem cells (micromorph)
  • Thin-film polycrystalline silicon on glass.
Amorphous silicon

Amorphous silicon (a-Si) is a non-crystalline, allotropic form of silicon and the most well-developed thin film technology to-date. Thin-film silicon is an alternative to conventional wafer (or bulk) crystalline silicon. While chalcogenide-based CdTe and CIS thin films cells have been developed in the lab with great success, there is still industry interest in silicon-based thin film cells. Silicon-based devices exhibit fewer problems than their CdTe and CIS counterparts such as toxicity and humidity issues with CdTe cells and low manufacturing yields of CIS due to material complexity. Additionally, due to political resistance to the use non-"green" materials in solar energy production, there is no stigma in the use of standard silicon.

This type of thin-film cell is mostly fabricated by a technique called plasma-enhanced chemical vapor deposition. It uses a gaseous mixture of silane (SiH4) and hydrogen to deposit a very thin layer of only 1 micrometre (µm) of silicon on a substrate, such as glass, plastic or metal, that has already been coated with a layer of transparent conducting oxide. Other methods used to deposit amorphous silicon on a substrate include sputtering and hot wire chemical vapor deposition techniques.

a-Si is attractive as a solar cell material because it's an abundant, non-toxic material. It requires a low processing temperature and enables a scalable production upon a flexible, low-cost substrate with little silicon material required. Due to its bandgap of 1.7 eV, amorphous silicon also absorbs a very broad range of the light spectrum, that includes infrared and even some ultraviolet and performs very well at weak light. This allows the cell to generate power in the early morning, or late afternoon and on cloudy and rainy days, contrary to crystalline silicon cells, that are significantly less efficient when exposed at diffuse and indirect daylight.

However, the efficiency of an a-Si cell suffers a significant drop of about 10 to 30 percent during the first six months of operation. This is called the Staebler-Wronski effect (SWE) – a typical loss in electrical output due to changes in photoconductivity and dark conductivity caused by prolonged exposure to sunlight. Although this degradation is perfectly reversible upon annealing at or above 150 °C, conventional c-Si solar cells do not exhibit this effect in the first place.

Aerospace product with flexible thin-film solar PV from United Solar Ovonic

Its basic electronic structure is the p-i-n junction. The amorphous structure of a-Si implies high inherent disorder and dangling bonds, making it a bad conductor for charge carriers. These dangling bonds act as recombination centers that severely reduce carrier lifetime. A p-i-n structure is usually used, as opposed to an n-i-p structure. This is because the mobility of electrons in a-Si:H is roughly 1 or 2 orders of magnitude larger than that of holes, and thus the collection rate of electrons moving from the n- to p-type contact is better than holes moving from p- to n-type contact. Therefore, the p-type layer should be placed at the top where the light intensity is stronger, so that the majority of the charge carriers crossing the junction are electrons.

Tandem-cell using a-Si/μc-Si

A layer of amorphous silicon can be combined with layers of other allotropic forms of silicon to produce a multi-junction solar cell. When only two layers (two p-n junctions) are combined, it is called a tandem-cell. By stacking these layers on top of one other, a broader range of the light spectra is absorbed, improving the cell's overall efficiency.

In micromorphous silicon, a layer of microcrystalline silicon (μc-Si) is combined with amorphous silicon, creating a tandem cell. The top a-Si layer absorbs the visible light, leaving the infrared part to the bottom μc-Si layer. The micromorph stacked-cell concept was pioneered and patented at the Institute of Microtechnology (IMT) of the Neuchâtel University in Switzerland, and was licensed to TEL Solar. A new world record PV module based on the micromorph concept with 12.24% module efficiency was independently certified in July 2014.

Because all layers are made of silicon, they can be manufactured using PECVD. The band gap of a-Si is 1.7 eV and that of c-Si is 1.1 eV. The c-Si layer can absorb red and infrared light. The best efficiency can be achieved at transition between a-Si and c-Si. As nanocrystalline silicon (nc-Si) has about the same bandgap as c-Si, nc-Si can replace c-Si.

United Solar Ovonic roll-to-roll solar photovoltaic production line with 30 MW annual capacity
Tandem-cell using a-Si/pc-Si

Amorphous silicon can also be combined with protocrystalline silicon (pc-Si) into a tandem-cell. Protocrystalline silicon with a low volume fraction of nanocrystalline silicon is optimal for high open-circuit voltage. These types of silicon present dangling and twisted bonds, which results in deep defects (energy levels in the bandgap) as well as deformation of the valence and conduction bands (band tails).

Polycrystalline silicon on glass

A new attempt to fuse the advantages of bulk silicon with those of thin-film devices is thin film polycrystalline silicon on glass. These modules are produced by depositing an antireflection coating and doped silicon onto textured glass substrates using plasma-enhanced chemical vapor deposition (PECVD). The texture in the glass enhances the efficiency of the cell by approximately 3% by reducing the amount of incident light reflecting from the solar cell and trapping light inside the solar cell. The silicon film is crystallized by an annealing step, temperatures of 400–600 Celsius, resulting in polycrystalline silicon.

These new devices show energy conversion efficiencies of 8% and high manufacturing yields of >90%. Crystalline silicon on glass (CSG), where the polycrystalline silicon is 1–2 micrometres, is noted for its stability and durability; the use of thin film techniques also contributes to a cost savings over bulk photovoltaics. These modules do not require the presence of a transparent conducting oxide layer. This simplifies the production process twofold; not only can this step be skipped, but the absence of this layer makes the process of constructing a contact scheme much simpler. Both of these simplifications further reduce the cost of production. Despite the numerous advantages over alternative design, production cost estimations on a per unit area basis show that these devices are comparable in cost to single-junction amorphous thin film cells.

Gallium arsenide

Gallium arsenide (GaAs) is a III-V direct bandgap semiconductor and is a very common material used for single-crystalline thin-film solar cells. GaAs solar cells have continued to be one of the highest performing thin-film solar cells due to their exceptional heat resistant properties and high efficiencies. As of 2019, single-crystalline GaAs cells have shown the highest solar cell efficiency of any single-junction solar cell with an efficiency of 29.1%. This record-holding cell achieved this high efficiency by implementing a back mirror on the rear surface to increase photon absorption which allowed the cell to attain an impressive short-circuit current density and an open-circuit voltage value near the Shockley–Queisser limit. As a result, GaAs solar cells have nearly reached their maximum efficiency although improvements can still be made by employing light trapping strategies.

GaAs thin-films are most commonly fabricated using epitaxial growth of the semiconductor on a substrate material. The epitaxial lift-off (ELO) technique, first demonstrated in 1978, has proven to be the most promising and effective. In this method, the thin film layer is peeled off of the substrate by selectively etching a sacrificial layer that was placed between the epitaxial film and substrate. The GaAs film and the substrate remain minimally damaged through the separation process, allowing for the reuse of the host substrate. With reuse of the substrate the fabrication costs can be reduced, but not completely forgone, since the substrate can only be reused a limited number of times. This process is still relatively costly and research is still being done to find more cost-effective ways of growing the epitaxial film layer onto a substrate.

Despite the high performance of GaAs thin-film cells, the expensive material costs hinder their ability for wide-scale adoption in the solar cell industry. GaAs is more commonly used in multi-junction solar cells for solar panels on spacecraft, as the larger power to weight ratio lowers the launch costs in space-based solar power (InGaP/(In)GaAs/Ge cells). They are also used in concentrator photovoltaics, an emerging technology best suited for locations that receive much sunlight, using lenses to focus sunlight on a much smaller, thus less expensive GaAs concentrator solar cell.

An experimental silicon based solar cell developed at the Sandia National Laboratories

Third-generation (emerging) thin-film materials

The National Renewable Energy Laboratory classifies a number of thin-film technologies as emerging photovoltaics—most of them have not yet been commercially applied and are still in the research or development phase. Many use organic materials, often organometallic compounds as well as inorganic substances. Though many of these technologies have struggled with instability and low efficiencies in their early stages, some emerging materials like perovskites have been able to attain efficiencies comparable to mono crystalline silicon cells. Many of these technologies have the potential to beat the Shockley–Queisser limit for efficiency of a single-junction solid-state cell. Significant research has been invested into these technologies as they promise to achieve the goal of producing low-cost, high-efficiency solar cells with smaller environmental impacts.

Copper zinc tin sulfide (CZTS)

Copper zinc tin sulfide or Cu(Zn,Sn)(S,Se)2, commonly abbreviated CZTS, and its derivatives CZTSe and CZTSSe belong to a group chalcogenides (like CdTe and CIGS/CIS) sometimes called kesterites. Unlike CdTe and CIGS, CZTS is made from abundant and non-toxic raw materials. Additionally, the bandgap of CZTS can be tuned by changing the S/Se ratio, which is a desirable property for engineering of optimal solar cells. CZTS also has a high light absorption coefficient.

Other emerging chalcogenide PV materials include antimony-based compounds like Sb2(S,Se)3. Like CZTS, they have tunable bandgaps and good light absorption. Antimony-based compounds also have a quasi-1D structure which may be useful for device engineering. All of these emerging chalcogenide materials have the advantage of being a part of one of the most mature and efficient families of thin-film technology. As of 2022, CZTS cells have achieved a maximum efficiency of around 12.6% while antimony-based cells have reached 9.9%.

Dye-sensitized (DSPV)

Dye-sensitized cells, also known as Grätzel cells or DSPV, are innovative cells that perform a kind of artificial photosynthesis, removing the need for a bulk solid-state semiconductor or a p-n junction. Instead, they are constructed using a layer of photoactive dye mixed with semiconductor transition metal oxide nanoparticles on top of a liquid electrolyte solution, surrounded by electrical contacts made of platinum or sometimes graphene and encapsulated in glass. When photons enter the cell, they can be absorbed by the dye molecules, putting them into their sensitized state. In this state, the dye molecules can inject electrons into the semiconductor conduction band. The dye electrons are then replenished by the electrode, preventing recombination of the electron-hole pair. The electron in the semiconductor flows out as current through the electrical contacts.

Dye-sensitized solar cells are attractive because they allow for cheap and cost-efficient roll-based manufacturing. In practice, however, the inclusion of expensive materials like platinum and ruthenium keep these low costs from being achieved. Dye-sensitized cells also have issues with stability and degradation, particularly because of the liquid electrolyte. In high temperature environments, the electrolyte may leak from the cell while in low temperature environments the electrolyte may freeze. Some of these issues can be overcome using a quasi-solid state electrolyte.

As of 2023, the maximum realized efficiency of a dye-sensitized solar cell is around 13%.

Organic photovoltaics (OPV)

Organic solar cells use organic semiconducting polymers as the photoactive material. These organic polymers are cost-effective to produce and are tunable with high absorption coefficients. Organic solar cell manufacturing is also cost effective and can make use of efficient roll-to-roll production techniques. They also have some of the lowest environmental impact scores of all PV technologies across a wide range of impact factors including energy payback time global warming potential.

Organic cells and are naturally flexible, lending themselves well to many applications. Scientists at the Massachusetts Institute of Technology (MIT)'s Organic and Nanostructured Electronics Lab (ONE Lab) have integrated organic PV onto flexible fabric substrates that can be unrolled over 500 times without degradation.

However, organic solar cells are generally not very stable and tend to have low operational lifetimes. They also tend to be less efficient than other thin-film cells due to some intrinsic limits of the material like a large binding energy for electron-hole pairs. As of 2023, the maximum achieved efficiency for organic solar cells is 18.2%.

Perovskite solar cells

Perovskites are a group of materials with a shared crystal structure, named after their discoverer, minerologist Lev Perovski. The perovskites most often used for PV applications are organic-inorganic hybrid methylammonium lead halides, which host a number of advantageous properties including widely tunable bandgaps, high absorption coefficients, and good electronic transport properties for both electrons and holes. As of 2023, single-junction perovskite solar cells achieved a maximum efficiency of 25.7%, rivaling that of mono crystalline silicon. Perovskites are also commonly used in tandem and multi-junction cells with crystalline silicon, CIGS, and other PV technologies to achieve even higher efficiencies. They also offer a wide spectrum of low-cost applications.

However, perovskite cells tend to have short lifetimes, with 5 years being a typical lifetime as of 2016. This is mostly due to their chemical instability when exposed to light, moisture, UV radiation, and high temperatures which may even cause them to undergo a structural transition that impacts the operation of the device. Therefore, proper encapsulation is very important.

Quantum dot photovoltaics (QDPV)

Quantum dot photovoltaics (QDPV) replace the usual solid-state semiconducting active layer with semiconductor quantum dots. The bandgap of the photo-active layer can be tuned by changing the size of the quantum dots. QDPV has the potential to generate more than one electron-hole pair per photon in a process called multiple exciton generation (MEG) which could allow for a theoretical maximum conversion efficiency of 87%, though as of 2023 the maximum achieved efficiency of a QDPV cell is around 18.1%. QDPV cells also tend to use much less of the active layer material than other solar cell types leading to a low-cost manufacturing process. However, QDPV cells tend to have high environmental impacts compared to other thin-film PV materials, especially human toxicity and heavy metal emissions.

Applications

Transparent solar cells

In 2022, semitransparent solar cells that are as large as windows were reported, after team members of the study achieved record efficiency with high transparency in 2020. Also in 2022, other researchers reported the fabrication of solar cells with a record average visible transparency of 79%, being nearly invisible.

Building-integrated photovoltaics

Thin-film PV materials tend to be lightweight and flexible in nature, which lends itself naturally to building-integrated photovoltaics (BIPV). Common examples include the integration of semi-transparent modules can be integrated into window designs and the use of rigid thin-film panels to replace roofing material. BIPV can greatly reduce the lifetime environmental impacts (like greenhouse gas (GHG) emission) due to solar cell modules due to the avoided emissions associated with not utilizing the usual building materials.

Efficiencies

Despite initially lower efficiencies at the time of their introduction, many thin-film technologies have efficiencies comparable to conventional single-junction non-concentrator crystalline silicon solar cells which have a 26.1% maximum efficiency as of 2023. Im fact, both GaAs thin-film and GaAs single-crystal cells have larger maximum efficiencies of 29.1% and 27.4% respectively. The maximum efficiencies for single-junction non-concentrator thin-film cells of various prominent thin-film materials are shown in the chart.

Best Thin-Film Solar Cell Efficiency (updated 03/27/2023)
Solar Cell Type Best Efficiency (%)
GaAs thin-film
29.1
GaAs single crystal
27.8
Single-crystal silicon*
26.1
Perovskites
25.7
Multi-crystalline silicon*
24.4
CIGS
23.6
CdTe
22.1
Thin-film c-Si
21.7
Organic
18.2
Quantum dot
18.1
Amorphous silicon
14
Dye-sensitized
13
CZTSSe
13

*Not thin-film, included for comparison only. Data from NREL 2023 Best Research-Cell Efficiency dataset.

Commercial module efficiences

It's important to note that the maximum efficiencies achieved in a laboratory setting are generally higher than the efficiencies of manufactured cells, which often have efficiencies 20-50% lower. As of 2021, the maximum efficiency of manufactured solar cells was 24.4% for mono crystalline silicon, 20.4% for poly crystalline silicon, 12.3% for amorphous silicon, 19.2% for CIGS, and 19% for CdTe modules. The thin film cell prototype with the best efficiency yields 20.4% (First Solar), comparable to the best conventional solar cell prototype efficiency of 25.6% from Panasonic.

A previous record for thin film solar cell efficiency of 22.3% was achieved by Solar Frontier, the world's largest CIS (copper indium selenium) solar energy provider. In joint research with the New Energy and Industrial Technology Development Organization (NEDO) of Japan, Solar Frontier achieved 22.3% conversion efficiency on a 0.5 cm2 cell using its CIS technology. This was an increase of 0.6 percentage points over the industry's previous thin-film record of 21.7%.

Calculation of efficiency

Solar cell efficiencies of various cell technologies (including both single-crystal and thin film technologies) as tracked by NREL

The efficiency of a solar cell quantifies the percentage of incident light on the solar cell that is converted into usable electricity. There are many factors that affect the efficiency of a solar cell, so the efficiency may be further parametrized by additional numerical quantities including the short-circuit current, open-circuit voltage, maximum power point, fill factor, and quantum efficiency. The short-circuit current is the maximum current the cell can flow with no voltage load. Similarly, the open-circuit voltage is the voltage across the device with no current or, alternatively, the voltage required for no current to flow. On a current vs. voltage (IV) curve, the open-circuit voltage is the horizontal intercept of the curve with the voltage axis and the short-circuit current is the vertical intercept of the curve with the current axis. The maximum power point is the point along the curve where the maximum power output of the solar cell is achieved and the area of the rectangle with side lengths equal to the current and voltage coordinates of the maximum power point is called the fill factor. The fill factor is a measure of how much power the solar cell achieves at this maximum power point. Intuitively, IV curves with a more square shape and a flatter top and side will have a larger fill factor and therefore a higher efficiency. Whereas these parameters characterize the efficiency of the solar cell based mostly on its macroscopic electrical properties, the quantum efficiency measures either the ratio of the number of photons incident on the cell to the number of charge carriers extracted (external quantum efficiency) or the ratio of the number of photons absorbed by the cell to the number of charge carriers extracted (internal quantum efficiency). Either way, the quantum efficiency is a more direct probe of the microscopic structure of the solar cell.

Schematic of a solar cell I-V curve.

Increasing efficiency

Some third-generation solar cells boost efficiency through the integration of concentrator and/or multi-junction device geometry. This can lead to efficiencies larger than the Shockley–Queisser limit of approximately 42% efficiency for a single-junction semiconductor solar cell under one-sun illumination.

A multi-junction cell is one that incorporates multiple semiconducting active layers with different bandgaps. In a typical solar cell, a single absorber with a bandgap near the peak of the solar spectrum is used, and any photons with energy greater than or equal to the bandgap can excite valence-band electrons into the conduction band to create electron-hole pairs. However, any excess energy above the Fermi energy will be quickly dissipated due to thermalization, leading to voltage losses from the inability to efficiently extract the energy of high-energy photons. Mutli-junction cells are able to recoup some of this energy lost to thermalization by stacking multiple absorber layers on top of each other with the top layer absorbing the highest-energy photons and letting the lower energy photons pass through to the lower layers with smaller bandgaps, and so on. This not only allows the cells to capture energy from photons in a larger range of energies, but also extracts more energy per photon from the higher-energy photons.

Concentrator photovoltaics use an optical system of lenses that sit on top of the cell to focus light from a larger area onto the device, similar to a funnel for sunlight. In addition to creating more electron-hole pairs simply by increasing the number of photons available for absorption, having a higher concentration of charge carriers can increase the efficiency of the solar cell by increasing the conductivity. The addition of a concentrator to a solar cell can not only increase efficiency, but can also reduce the space, materials, and cost needed to produce the cell.

Both of these techniques are employed in the highest-efficiency solar cell as of 2023, which is a four-junction concentrator cell with 47.6% efficiency.

Multi-Junction and Concentrator Best Solar Cell Efficiency (updated 03/27/2023)
Solar Cell Type Best Efficiency (%)
4+ junction concentrator
47.6(GaInP/AlGaAs/GaInAsP/GaInAs)
3-junction concentrator
44.4(GaInP/GaAs/GaInAs)
3-junction non-concentrator
39.46(GaInP/mQW-GaAs/GaInAs)
4+ junction non-concentrator
39.2(AlGaInP/AlGaAs/GaAs/GaInAs)
2-junction concentrator
35.5(GaInAsP/GaInAs)
2-junction non-concentrator
32.9(GaInP/GaAs)
Perovskite/Si tandem
32.5
GaAs concentrator
30.8
Si single-crystal concentrator
27.6
Si HIT
26.81
Perovskite/CIGS tandem
24.2
CIGS concentrator
23.3
Organic tandem
14.2(PDTB-EF-T/IT-4F)

Data from the NREL 2023 Best Research-Cell Efficiency dataset.

Increasing absorption

Multiple techniques have been employed to increase the amount of light that enters the cell and reduce the amount that escapes without absorption. The most obvious technique is to minimize the top contact coverage of the cell surface, reducing the area that blocks light from reaching the cell.

The weakly absorbed long wavelength light can be obliquely coupled into silicon and traverses the film several times to enhance absorption.

Multiple methods have been developed to increase absorption by reducing the number of incident photons being reflected away from the cell surface. An additional anti-reflective coating can cause destructive interference within the cell by modulating the refractive index of the surface coating. Destructive interference eliminates the reflective wave, causing all incident light to enter the cell.

Surface texturing is another option for increasing absorption, but increases costs. By applying a texture to the active material's surface, the reflected light can be refracted into striking the surface again, thus reducing reflectance. For example, black silicon texturing by reactive ion etching (RIE) is an effective and economic approach to increase the absorption of thin-film silicon solar cells. A textured back reflector can prevent light from escaping through the rear of the cell. Instead of applying the texturing on the active materials, photonic micro-structured coatings applied on the cells' front contact can be an interesting alternative for light-trapping, as they allow both geometric anti-reflection and light scattering while avoiding the roughening of the photovoltaic layers (thereby preventing increase of recombination).

Besides surface texturing, the plasmonic light-trapping scheme attracted a lot of attention to aid photocurrent enhancement in thin film solar cells. This method makes use of collective oscillation of excited free electrons in noble metal nanoparticles, which are influenced by particle shape, size and dielectric properties of the surrounding medium. Applying noble-metal nanoparticles at the back of thin-film solar cells leads to the formation of plasmonic back reflectors, which allow broadband photocurrent enhancement. This is a result of both light scattering of the weakly-absorbed photons from the rear-located nanoparticles, plus improved light incoupling (geometric anti-reflection) caused by the hemispherical corrugations at the cells’ front surface formed from the conformal deposition of the cell materials over the particles.

In addition to minimizing reflective loss, the solar cell material itself can be optimized to have higher chance of absorbing a photon that reaches it. Thermal processing techniques can significantly enhance the crystal quality of silicon cells and thereby increase efficiency. Layering thin-film cells to create a multi-junction solar cell can also be done. Each layer's band gap can be designed to best absorb a different range of wavelengths, such that together they can absorb a greater spectrum of light.

Further advancement into geometric considerations can exploit nanomaterial dimensionality. Large, parallel nanowire arrays enable long absorption lengths along the length of the wire while maintaining short minority carrier diffusion lengths along the radial direction. Adding nanoparticles between the nanowires allows conduction. The natural geometry of these arrays forms a textured surface that traps more light.

Production, cost and market

Global PV market by technology in 2021.

  mono-Si (82.3%)
  multi-Si (12.7%)
  CdTe (4.1%)
  CIGS (0.8%)
  a-Si (0.1%)

U.S. utility-scale PV market by technology in 2021.

  c-Si (69%)
  CdTe (29%)
  Other (incl. CIGS and a-Si) (2%)

With the advances in conventional crystalline silicon (c-Si) technology in recent years, and the falling cost of the polysilicon feedstock, that followed after a period of severe global shortage, pressure increased on manufacturers of commercial thin-film technologies, including amorphous thin-film silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS), leading to the bankruptcy of several companies. As of 2013, thin-film manufacturers continue to face price competition from Chinese refiners of silicon and manufacturers of conventional c-Si solar panels. Some companies together with their patents were sold to Chinese firms below cost.

Market-share

In 2013 thin-film technologies accounted for about 9 percent of worldwide deployment, while 91 percent was held by crystalline silicon (mono-Si and multi-Si). With 5 percent of the overall market, CdTe holds more than half of the thin-film market, leaving 2 percent to each CIGS and amorphous silicon.

CIGS technology

Several prominent manufacturers couldn't stand the pressure caused by advances in conventional c-Si technology of recent years. The company Solyndra ceased all business activity and filed for Chapter 11 bankruptcy in 2011, and Nanosolar, also a CIGS manufacturer, closed its doors in 2013. Although both companies produced CIGS solar cells, it has been pointed out, that the failure was not due to the technology but rather because of the companies themselves, using a flawed architecture, such as, for example, Solyndra's cylindrical substrates. In 2014, Korean LG Electronics terminated research on CIGS restructuring its solar business, and Samsung SDI decided to cease CIGS-production, while Chinese PV manufacturer Hanergy is expected to ramp up production capacity of their 15.5% efficient, 650 mm×1650 mm CIGS-modules. One of the largest producers of CI(G)S photovoltaics is the Japanese company Solar Frontier with a manufacturing capacity in the gigawatt-scale. (Also see List of CIGS companies).

CdTe technology

The company First Solar, a leading manufacturer of CdTe, has been building several of the world's largest solar power stations, such as the Desert Sunlight Solar Farm and Topaz Solar Farm, both in the Californian desert with a 550 MW capacity each, as well as the 102-megawatt Nyngan Solar Plant in Australia, the largest PV power station in the Southern Hemisphere, commissioned in 2015.

In 2011, GE announced plans to spend $600 million on a new CdTe solar cell plant and enter this market, and in 2013, First Solar bought GE's CdTe thin-film intellectual property portfolio and formed a business partnership. In 2012 Abound Solar, a manufacturer of cadmium telluride modules, went bankrupt.

a-Si technology

In 2012, ECD solar, once one of the world's leading manufacturer of amorphous silicon (a-Si) technology, filed for bankruptcy in Michigan, United States. Swiss OC Oerlikon divested its solar division that produced a-Si/μc-Si tandem cells to Tokyo Electron Limited.

Other companies that left the amorphous silicon thin-film market include DuPont, BP, Flexcell, Inventux, Pramac, Schuco, Sencera, EPV Solar, NovaSolar (formerly OptiSolar) and Suntech Power that stopped manufacturing a-Si modules in 2010 to focus on conventional silicon solar panels. In 2013, Suntech filed for bankruptcy in China. In August 2013, the spot market price of thin-film a-Si and a-Si/µ-Si dropped to €0.36 and €0.46, respectively (about $0.50 and $0.60) per watt.

Thin film solar on metal roofs

Thin film solar running down standing seam metal roof

With the increasing efficiencies of thin film solar, installing them on standing seam metal roofs has become cost competitive with traditional Monocrystalline and Polycrystalline solar cells. The thin film panels are flexible and run down the standing seam metal roofs and stick to the metal roof with Adhesive, so no holes are needed to install. The connection wires run under the ridge cap at the top of the roof. Efficiency ranges from 10-18% but only costs about $2.00-$3.00 per watt of installed capacity, compared to Monocrystalline which is 17-22% efficient and costs $3.00-$3.50 per watt of installed capacity. Thin film solar is light weight at 7-10 ounces per square foot. Thin film solar panels last 10–20 years but have a quicker ROI than traditional solar panels, the metal roofs last 40–70 years before replacement compared to 12–20 years for an asphalt shingle roof.

Cost of Different Solar Roof Types
Type Cost per Watt Efficiency Average 6 kW System Cost
Polycrystalline $2.80-$3.00 13-17% $17,400
Monocrystalline $3.00-$3.50 17-22% $19,000
Thin film Panels $2.00-$3.00 10-18% $17,000

Cost

In 1998, scientists at the National Renewable Energy Laboratory (NREL) predicted that production of thin-film PV systems at a cost of $50 per m2 could someday be possible, which would make them extremely economically viable. At this price, thin-film PV systems would yield return on investment of 30% or greater.

To help achieve this goal, in 2022 NREL began administering the Cadmium Telluride Accelerator Consortium (CTAC) with the objective of enabling thin-film efficiencies above 24% with a cost below 20 cents per Watt by 2025, followed by efficiencies above 26% and cost below 15 cents per Watt by 2030.

Durability and lifetime

One of the significant drawbacks of thin-film solar cells as compared to mono crystalline modules is their shorter lifetime, though to extent to which this is an issue varies by material with the more established thin-film materials generally having longer lifetimes. The standard lifetime of mono crystalline silicon panels is typically taken to be 30 years with performance degradation rates of around 0.5% per year. Amorphous silicon thin-films tend to have comparable cell lifetimes with slightly higher performance degradation rates around 1% per year. Chalcogenide technologies like CIGS and CIS tend to have similar lifetimes of 20–30 years and performance degradation rates just over 1% per year. Emerging technologies tend to have lower lifetimes. Organic photovoltaics had a maximum reported lifetime of 7 years and an average of 5 years in 2016, but typical lifetimes have increased to the range of 15–20 years as of 2020. Similarly, dye-sensitized cells had a maximum reported lifetime of 10 years in 2007, but typical lifetimes have increased to 15–30 years as of 2020. Perovskite cells tend to have short lifetimes, with 5 years being a typical lifetime as of 2016. The lifetime of quantum dot solar cells is unclear due to their developing nature, with some predicting lifetimes to reach 25 years and others setting a realistic lifetime as somewhere between 1 and 10 years.

Some thin-film modules also have issues with degradation under various conditions. Nearly all solar cells experience performance decreases with increasing temperature over a reasonable range of operating temperatures. Established thin-film materials may experience smaller temperature-dependent performance decreases, with amorphous silicon being slightly more resistant than mono crystalline silicon, CIGS more resistant than amorphous silicon, and CdTe displaying the best resistance to performance degradation with temperature. Dye-sensitized solar cells are particularly sensitive to operating temperature, as high temperatures may cause the electrolyte solution to leak and low temperatures may cause it to freeze, leaving the cell inoperable. Perovskite cells also tend to be unstable at high temperatures and may even undergo structural changes that impact the operation of the devices. Beyond temperature-induced degradation, amorphous silicon panels additionally experience light-induced degradation, as do organic photovoltaic cells to an even larger extent. Quantum dot cells degrade when exposed to moisture or UV radiation. Similarly, perovskite cells are chemically unstable and degrade when exposed to high temperatures, light, moisture, or UV radiation. Organic cells are also generally considered somewhat unstable, though improvement has been made on the durability organic cells and as of 2022, flexible organic cells have been developed that can be unrolled 500 times without significant performance losses. Unlike other thin-film materials, CdTe tends to be fairly resilient to environmental conditions like temperature and moisture, but flexible CdTe panels may experience performance degradation under applied stresses or strains.

Environmental and health impact

In order to meet international renewable energy goals, the worldwide solar capacity must increase significantly. For example, to keep up with the International Energy Agency's goal of 4674 GW of solar capacity installed globally by 2050, significant expansion is required from the 1185 GW installed globally as of 2022. As thin-film solar cells have become more efficient and commercially-viable, it has become clear that they will play an important role in meeting these goals. As such, it's become increasingly important to understand their cumulative environmental impact, both to compare between existing technologies and to identify key areas for improvement in developing technologies. For instance, to evaluate the effect of relatively shorter device lifetimes as compared to established solar modules, and to see whether increasing efficiencies or increasing device lifetimes is has a large influence on the total environmental impact of the technologies. Beyond key factors like greenhouse gas (GHG) emissions, questions have been raised about the environmental and health impacts of potentially toxic materials like cadmium that are used in many solar cell technologies. Many scientists and environmentalists have used life cycle analysis as a way to address these questions.

Life cycle analysis

Life cycle analysis (LCA) is a family of approaches that attempt to assess the total environmental impact of a product or process in an objective way, from the gathering of raw materials and the manufacturing process all the way to the disposal of the outcome and any waste products. Though LCA approaches aim to be unbiased, the outcome of LCA studies can be sensitive to the particular approach and data used. It is therefore important that LCA findings clearly state the assumptions made any which processes are included and excluded. This will often be specified using the system boundary and life cycle inventory framework. Due to the emerging nature of new photovoltaic technologies, the disposal process may sometimes be left out of a life cycle analysis due to the high uncertainty. In this case, the assessment is referred to as "cradle-to-gate" rather than "cradle-to-grave," because the calculated impact does not cover the full life cycle of the product. However, such studies may miss important environmental impacts from the disposal process, both negative (as in the case of incineration of end-of-life cells and waste products) and positive (as in the case of recycling). It's also important to include the effect of balance of service (BOS) steps, which include transportation, installation, and maintenance as they may also be costly in terms of materials and electricity.

LCA studies can be used to quantify many potential environmental impacts, from land use to transportation-related emissions. Categories of environmental impacts may be grouped into so-called impact factors for standardized quantitative comparison. For solar cells, perhaps the most important impact factor is the total lifetime greenhouse gas (GHG) emission. This is often reported in terms of the global warming potential (GWP), which gives a more direct indication of the environmental impact.

Another important measure of environmental impact is the primary energy demand (PED) which measures the energy (usually electricity) required to produce a particular solar cell. A more useful measure may be the cumulative energy demand (CED), which quantifies the total amount of energy required to produce, use, and dispose of a particular product over its entire lifetime. Relatedly, the energy payback time (EPBT) measures the operational time needed for a solar cell to produce enough energy to account for its cumulative energy demand. Similarly, the carbon payback time (CPBT) measures the operational time needed for a solar cell to produce enough electricity that the avoided carbon emissions from the same amount of electricity generated with the usual energy mix is equal to the amount of carbon emissions the cell will generate over its lifetime. In other words, CPBT measures the time a solar cell needs to run in order to mitigate its own carbon emissions.

These quantities depends on many factors, including where the solar cell is manufactured and deployed, as the typical energy mix varies from place to place. Therefore, the electricity-related emissions from the production process as well as the avoided electricity-related emissions from the solar-generated electricity during operation of the cell can vary depending on the particular module and application. The emissions from a cell may also depend on how the module is deployed, not just because of the raw materials and energy costs associated with the production of mounting hardware, but also from any avoided emissions from replaced building materials, as in the case of building-integrated photovoltaics where solar panels may replace building materials like roof tiles.

Though energy-usage and emissions-related impacts are vital for evaluation of and comparison between technologies, they are not the only important quantities for evaluating the environmental impact of solar cells. Other important impact factors include toxic heavy metal emissions, metal depletion, human toxicity, various eco-toxicities (marine, freshwater, terrestrial), and acidification potential which measures the emission of sulfur and nitrogen oxides. Including a wide range of environmental impacts in a life cycle analysis is necessarily to minimize the chance of passing environmental impact from a prominent impact factor like greenhouse gas emission to a less prominent but still relevant impact factor like human toxicity.

Greenhouse gas emissions

Using established first-generation mono crystalline silicon solar cells as a benchmark, some thin-film solar cells tend to have lower environmental impacts across most impact factors, however low efficiencies and short lifetimes can increase the environmental impacts of emerging technologies above those of first-generation cells. A standardized measure of greenhouse gas emissions, is displayed in the chart in units of grams of CO2 equivalent emissions per kiloWatt-hour of electricity production for a variety of thin-film materials. Crystalline silicon is also included for comparison.

In terms of greenhouse gas emissions only, the two most ubiquitous thin-film technologies, amorphous silicon and CdTe, both have significantly lower global warming potential (GWP) than mono crystalline silicon solar cells, with amorphous silicon panels having GWP around 1/3 lower and CdTe nearly 1/2 lower. Organic photovoltaics have the smallest GWP of all thin-film PV technologies, with over 60% lower GWP than mono crystalline silicon.

However, this is not the case for all thin-film materials. For many emerging technologies, low efficiencies and short device lifetimes may cause significant increases in environmental impact. Both emerging chalcogenide technologies and established chalcogenide technologies like CIS and CIGS have higher Global warming potential than mono crystalline silicon, as do dye-sensitized and quantum dot solar cells. For antimony-based chalcogenide cells, favorable for their use of less-toxic materials in the manufacturing process, low efficiencies and therefore larger area requirements for solar cells are the driving factor in the increased environmental impact, and cells with modestly improved efficiencies have the potential to outperform mono crystalline silicon in all relevant environmental impact factors. Improving efficiencies for these and other emerging chalcogenide cells is therefore a priority. Low realized efficiencies are also the driving factor behind the relatively large GWP of quantum dot solar cells, despite the potential for these materials to exhibit multiple exciton generation (MEG) from a single photon. Higher efficiencies would also allow for the use of a thinner active layer, reducing both materials costs for the quantum dots themselves and saving on materials and emissions related to encapsulation material. Realizing this potential and thereby increasing efficiency is also a priority for reducing the environmental impact of these cells.

For organic photovoltaics, short lifetimes are instead the driving factor behind GWP. Despite overall impressive performance of OPV relative to other solar technologies, when considering cradle-to-gate rather than cradle-to-grave (i.e. looking only at the material extraction and production processes, discounting the useful lifetime of the solar cells) GWP, OPV constitute a 97% reduction in GHG emissions compared to mono crystalline silicon and 92% reduction relative to amorphous silicon thin-films. This is significantly better than the 60% reduction compared to mono crystalline silicon currently realized, and therefore improving OPV cell lifetimes is a priority for decreasing overall environmental impact. For Perovskite solar cells, with short lifetimes of only around 5 years, this effect may be even more significant. Perovskite solar cells (not included in the chart) typically have significantly larger global warming potential than other thin-film materials in cradle-to-grave LCA, around 5-8x worse than mono crystalline silicon at 150g CO2-eq /kWh. However, in grade-to-gate LCA, Perovskite cells perform 10-30% lower than mono-crystalline silicon, highlighting the importance of the increased environmental impact associated with the need to produce and dispose of multiple Perovskite panels to generate the same amount of electricity as a single mono crystalline silicon panel due to this short lifetime. Increasing the lifetime of Perovskite solar modules is therefore a top priority for decreasing their environmental impact. Other renewable energy sources like wind, nuclear, and hydropower may achieve smaller GWP than some PV technologies.

It's important to note that although emerging thin-film materials don't outperform mono crystalline silicon cells in terms of global warming potential, they still constitute far lower carbon emissions than non-renewable energy sources which have global warming potentials ranging from comparatively clean natural gas with 517g CO2-eq /kWh to the worst polluter lignite with over 1100g CO2-eq /kWh. Thin-film cells also significantly outperform the typical energy mix, which is often in the range of 400-800g CO2-eq /kWh.

Global warming potential by thin-film technology
PV Technology GWP (g CO2-eq/kWh)
DSPV
59.8
CZGeSe
53.3
CIS
43.4
Sb2Se3
40.7
Sb2S3
40.5
CZTS
36.6
CZTSe
34.9
QDPV
34.6
Zn3P2
30
CIGS
27.1
m-Si*
25.5
a-Si
15.7
CdTe
14.1
OPV
9.55

*Not thin-film, provided for comparison
When data from more than once source was available, the average of the points was used.

The largest contributor to most impact factors, including the global warming potential, is nearly always energy use during the manufacturing process, greatly outweighing other potential sources of environmental impact such as transportation cost and material sourcing. For CIGS cells, for example, this accounts for 98% of the global warming potential, most of which is due to the manufacturing of the absorber layer specifically. In general, for processes that include metal deposition, this is often a particularly significant environmental impact hotspot. For quantum dot photovoltaics, hazardous waste disposal for the solvents used during the manufacturing process also contributes significantly. The level of global warming potential associated with electricity use can vary significantly depending on the location manufacturing takes place, in particular the proportion of renewable to non-renewable energy sources used in the local energy mix.

Energy payback time

In general, thin-film panels take less energy to produce than mono crystalline silicon panels, especially as some emerging thin-film technologies have the potential for efficient and cheap roll-to-roll processing. As a result, thin-film technologies tend to fare better than mono crystalline silicon in terms of energy payback time, though amorphous silicon panels are an exception. Thin-film cells typically have lower efficiencies than mono crystalline solar cells, so this effect is largely due to the comparatively lower primary energy demand (PED) associated with producing the cells.

Energy payback time for thin-film solar
PV Technology EPBT (years)
a-Si
2.75
m-Si
2.39
CIS
1.88
Perovskite
1.25
OPV
1.21
DSPV
1.19
QDPV
0.99
CdTe
0.738

*Not thin-film, provided for comparison
When a range of EPBTs were provided, the midpoint of the range was reported.

The application in which the modules are used and the recycling process (if any) for the materials can also play a large role in the overall energy efficiency and greenhouse gas emissions over the lifetime of the cell. Integrating the modules into building design may lead to a large reduction in the environmental impact of the cells due to the avoided emissions related to producing the usual building materials, for example the avoided emissions from roof tile production for a building-integrated solar roof. This effect is especially important for thin-film solar cells, whose lightweight and flexible nature lends itself naturally to building-integrated photovoltaics. 70-90% lower emissions in portable charging applications. This effect holds for some other applications as well, for example organic photovoltaics have 55% lower emissions than crystalline silicon in solar panel applications but up to nearly Similarly, avoided emissions from recycling solar cell components rather than gathering and processing new materials can lead to significantly lower cumulative energy consumption and greenhouse gas emissions. Recycling processes are available for several components of mono crystalline solar cells as well as the glass substrate, CdTe, and CdS in CdTe solar cells. For panels without recycling processes, and particularly for panels with short lifetimes like organic photovoltaics, the disposal of panels may contribute significantly to the environmental impact, and there may be little difference in environmental impact factors if the panel is incinerated or sent to landfill.

Heavy-metal emission and human toxicity

Though material selection and extraction does not play a large role in global warming potential, where electricity usage in the manufacturing process is near universally the largest contributor, it often has a significant impact on other important environmental impact factors, including human toxicity, heavy-metal emissions, acidification potential, and metal and ozone depletion.

Human toxicity and heavy-metal emissions are particularly important impact factors for thin-film solar cell production, as the potential environmental and health effect of cadmium use has been a particular concern since the introduction of CdTe cells to the commercial market in the 1990s, when the hazards of cadmium-containing compounds were not well-understood. Public concern over CdTe solar cells has continues as they have become more common. Cadmium is a highly hazardous material that causes kidney, bone, and lung damage and is thought to increase the risk of developing cancer. Initially, all cadmium-containing compounds were classified as hazardous, although we now know that despite both Cd and Te being hazardous separately, the combination CdTe is very chemically stable with a low solubility and presents minimal risk to human health.

Feedstock Cd presents a larger risk, as do pre-cursor materials like CdS, and cadmium acetate, which are frequently used in other photovoltaic cells as well, and often contribute significantly to environmental impact factors such as human toxicity and heavy metal emission. These effects may be more pronounced for nanofabrication processes that produce Cd ions in solution, like the manufacture of quantum dots for QDPV. Due to these effects, CdTe solar cell production is actually seen to have lower heavy-metal emissions than other thin-film solar manufacturing. In fact, CdTe production has lower cadmium emission than ribbon silicon, multi-crystalline silicon, mono-crystalline silicon, or quantum dot PV manufacturing, as well as lower emission of nickel, mercury, arsenic, chromium, and lead. In terms of total heavy metal emissions, quantum dot PV has the highest emissions of PV materials with approximately 0.01 mg/kWh, but still has lower total heavy metal emission than any other renewable or non-renewable electricity source, as shown in the chart.

Total heavy metal emissions by electricity source
Energy source Total heavy metal emissions (mg/kWh)
Oil
3.9
Wind
0.61
Diesel
0.32
Coal
0.24
Lignite
0.22
Nuclear
0.13
Hydro
0.039
Natural gas
0.029
QDPV
0.010

The desire to alleviate safety concerns around cadmium and CdTe solar cells specifically has sparked the development of other chalcogenide PV materials that are non-toxic or less toxic, particularly antimony-based chalcogenides. In these emerging chalcogenide cells, the use of CdS is the largest contribution to impact factors like human toxicity and metal depletion, though stainless steel also contributes significantly to the impact of these and other PV materials. In CIGS cells, for example, stainless steel accounts for 80% of the total toxicity associated with cell production and also contributes significantly to ozone depletion.

Human toxicity of electricity production
Energy source HT (kg 1.4DBeq/kWh)
Lignite
1.9
Coal
0.24
CZGeSe
0.018
Perovskite
0.018
Sb2Se3
0.018
Sb2S3
0.018
CZTS
0.013
CZTSe
0.012
m-Si
0.0069
OPV-D
0.0021

Another potential impact factor of interest for PV manufacturing is the acidification potential, which quantifies the emission of sulfur and nitrogen oxides which contribute to the acidification of soil, freshwater, and the ocean and their negative environmental effects. In this respect, QDPV has the lowest emissions, with CdTe being a close second.

Black silicon

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Black_silicon

Black silicon is a semiconductor material, a surface modification of silicon with very low reflectivity and correspondingly high absorption of visible (and infrared) light.

The modification was discovered in the 1980s as an unwanted side effect of reactive ion etching (RIE). Other methods for forming a similar structure include electrochemical etching, stain etching, metal-assisted chemical etching, and laser treatment (which is developed in Eric Mazur's laboratory at Harvard University).

Black silicon has become a major asset to the solar photovoltaic industry as it enables greater light to electricity conversion efficiency of standard crystalline silicon solar cells, which significantly reduces their costs.

Properties

Scanning electron micrograph of black silicon, produced by RIE (ASE process)
SEM micrograph of black silicon formed by cryogenic RIE. Notice the smooth, sloped surfaces, unlike the undulated sidewalls obtained with the Bosch process RIE.

Black silicon is a needle-shaped surface structure where needles are made of single-crystal silicon and have a height above 10 µm and diameter less than 1 µm. Its main feature is an increased absorption of incident light—the high reflectivity of the silicon, which is usually 20–30% for quasi-normal incidence, is reduced to about 5%. This is due to the formation of a so-called effective medium by the needles. Within this medium, there is no sharp interface, but a continuous change of the refractive index that reduces Fresnel reflection. When the depth of the graded layer is roughly equal to the wavelength of light in silicon (about one-quarter the wavelength in vacuum) the reflection is reduced to 5%; deeper grades produce even blacker silicon. For low reflectivity, the nanoscale features producing the index graded layer must be smaller than the wavelength of the incident light to avoid scattering.

SEM photograph of black silicon with slanted nanocones, produced by oblique-angled RIE.

Applications

The unusual optical characteristics, combined with the semiconducting properties of silicon make this material interesting for sensor applications. Potential applications include:

  • Image sensors with increased sensitivity
  • Thermal imaging cameras
  • Photodetector with high-efficiency through increased absorption.
  • Mechanical contacts and interfaces
  • Terahertz applications.
  • Solar cells
  • Antibacterial surfaces that work by physically rupturing bacteria's cellular membranes.
  • Surface enhanced Raman spectroscopy
  • Ammonia Gas Sensors

Production

Reactive-ion etching

Scanning electron micrograph of a single "needle" of black silicon, produced by RIE (ASE process)

In semiconductor technology, reactive-ion etching (RIE) is a standard procedure for producing trenches and holes with a depth of up to several hundred micrometres and very high aspect ratios. In Bosch process RIE, this is achieved by repeatedly switching between an etching and passivation. With cryogenic RIE, the low temperature and oxygen gas achieve this sidewall passivation by forming SiO
2
, easily removed from the bottom by directional ions. Both RIE methods can produce black silicon, but the morphology of the resulting structure differs substantially. The switching between etching and passivation of the Bosch process creates undulated sidewalls, which are visible also on the black silicon formed this way.

During etching, however, small debris remain on the substrate; they mask the ion beam and produce structures that are not removed and in the following etching and passivation steps result in tall silicon pillars. The process can be set so that a million needles are formed on an area of one square millimeter.

Mazur's method

In 1999, a Harvard University group led by Eric Mazur developed a process in which black silicon was produced by irradiating silicon with femtosecond laser pulses. After irradiation in the presence of a gas containing sulfur hexafluoride and other dopants, the surface of silicon develops a self-organized microscopic structure of micrometer-sized cones. The resulting material has many remarkable properties, such as absorption that extends to the infrared range, below the band gap of silicon, including wavelengths for which ordinary silicon is transparent. sulfur atoms are forced to the silicon surface, creating a structure with a lower band gap and therefore the ability to absorb longer wavelengths.

Black silicon made without special gas ambient – laboratory LP3-CNRS

Similar surface modification can be achieved in vacuum using the same type of laser and laser processing conditions. In this case, the individual silicon cones lack sharp tips (see image). The reflectivity of such a micro-structured surface is very low, 3–14% in the spectral range 350–1150 nm. Such reduction in reflectivity is contributed by the cone geometry, which increases the light internal reflections between them. Hence, the possibility of light absorption is increased. The gain in absorption achieved by fs laser texturization was superior to that achieved by using an alkaline chemical etch method, which is a standard industrial approach for surface texturing of mono-crystalline silicon wafers in solar cell manufacturing. Such surface modification is independent of local crystalline orientation. A uniform texturing effect can be achieved across the surface of a multi-crystalline silicon wafer. The very steep angles lower the reflection to near zero and also increase the probability of recombination, keeping it from use in solar cells.

Nanopores

When a mix of copper nitrate, phosphorous acid, hydrogen fluoride and water are applied to a silicon wafer, the phosphorous acid reduction reduces the copper ions to copper nanoparticles. The nanoparticles attract electrons from the wafer's surface, oxidizing it and allowing the hydrogen fluoride to burn inverted pyramid-shaped nanopores into the silicon. The process produced pores as small as 590 nm that let through more than 99% of light.

Chemical Etching

Black silicon can also be produced by chemical etching using a process called Metal-Assisted Chemical Etching (MACE).

Function

When the material is biased by a small electric voltage, absorbed photons are able to excite dozens of electrons. The sensitivity of black silicon detectors is 100–500 times higher than that of untreated silicon (conventional silicon), in both the visible and infrared spectra.

A group at the National Renewable Energy Laboratory reported black silicon solar cells with 18.2% efficiency. This black silicon anti-reflective surface was formed by a metal-assisted etch process using nano particles of silver. In May 2015, researchers from Finland's Aalto University, working with researchers from Universitat Politècnica de Catalunya announced they had created black silicon solar cells with 22.1% efficiency by applying a thin passivating film on the nanostructures by Atomic Layer Deposition, and by integrating all metal contacts on the back side of the cell.

A team led by Elena Ivanova at Swinburne University of Technology in Melbourne discovered in 2012 that cicada wings were potent killers of Pseudomonas aeruginosa, an opportunist germ that also infects humans and is becoming resistant to antibiotics. The effect came from regularly-spaced "nanopillars" on which bacteria were sliced to shreds as they settled on the surface.

Both cicada wings and black silicon were put through their paces in a lab, and both were bactericidal. Smooth to human touch, the surfaces destroyed Gram-negative and Gram-positive bacteria, as well as bacterial spores.

The three targeted bacterial species were P. aeruginosa, Staphylococcus aureus and Bacillus subtilis, a wide-ranging soil germ that is a cousin of anthrax.

The killing rate was 450,000 bacteria per square centimetre per minute over the first three hours of exposure or 810 times the minimum dose needed to infect a person with S. aureus, and 77,400 times that of P. aeruginosa. However, it was later proven that the quantification protocol of Ivanova's team was not suitable for these kind of antibacterial surfaces.

Coevolution

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Coevolution

The pollinating wasp Dasyscolia ciliata in pseudocopulation with a flower of Ophrys speculum

In biology, coevolution occurs when two or more species reciprocally affect each other's evolution through the process of natural selection. The term sometimes is used for two traits in the same species affecting each other's evolution, as well as gene-culture coevolution.

Charles Darwin mentioned evolutionary interactions between flowering plants and insects in On the Origin of Species (1859). Although he did not use the word coevolution, he suggested how plants and insects could evolve through reciprocal evolutionary changes. Naturalists in the late 1800s studied other examples of how interactions among species could result in reciprocal evolutionary change. Beginning in the 1940s, plant pathologists developed breeding programs that were examples of human-induced coevolution. Development of new crop plant varieties that were resistant to some diseases favored rapid evolution in pathogen populations to overcome those plant defenses. That, in turn, required the development of yet new resistant crop plant varieties, producing an ongoing cycle of reciprocal evolution in crop plants and diseases that continues to this day.

Coevolution as a major topic for study in nature expanded rapidly from the 1960s, when Daniel H. Janzen showed coevolution between acacias and ants (see below) and Paul R. Ehrlich and Peter H. Raven suggested how coevolution between plants and butterflies may have contributed to the diversification of species in both groups. The theoretical underpinnings of coevolution are now well-developed (e.g., the geographic mosaic theory of coevolution), and demonstrate that coevolution can play an important role in driving major evolutionary transitions such as the evolution of sexual reproduction or shifts in ploidy. More recently, it has also been demonstrated that coevolution can influence the structure and function of ecological communities, the evolution of groups of mutualists such as plants and their pollinators, and the dynamics of infectious disease.

Each party in a coevolutionary relationship exerts selective pressures on the other, thereby affecting each other's evolution. Coevolution includes many forms of mutualism, host-parasite, and predator-prey relationships between species, as well as competition within or between species. In many cases, the selective pressures drive an evolutionary arms race between the species involved. Pairwise or specific coevolution, between exactly two species, is not the only possibility; in multi-species coevolution, which is sometimes called guild or diffuse coevolution, several to many species may evolve a trait or a group of traits in reciprocity with a set of traits in another species, as has happened between the flowering plants and pollinating insects such as bees, flies, and beetles. There are a suite of specific hypotheses on the mechanisms by which groups of species coevolve with each other.

Coevolution is primarily a biological concept, but researchers have applied it by analogy to fields such as computer science, sociology, and astronomy.

Mutualism

Coevolution is the evolution of two or more species which reciprocally affect each other, sometimes creating a mutualistic relationship between the species. Such relationships can be of many different types.

Flowering plants

Flowers appeared and diversified relatively suddenly in the fossil record, creating what Charles Darwin described as the "abominable mystery" of how they had evolved so quickly; he considered whether coevolution could be the explanation. He first mentioned coevolution as a possibility in On the Origin of Species, and developed the concept further in Fertilisation of Orchids (1862).

Insects and insect-pollinated flowers

Honey bee taking a reward of nectar and collecting pollen in its pollen baskets from white melilot flowers

Modern insect-pollinated (entomophilous) flowers are conspicuously coadapted with insects to ensure pollination and in return to reward the pollinators with nectar and pollen. The two groups have coevolved for over 100 million years, creating a complex network of interactions. Either they evolved together, or at some later stages they came together, likely with pre-adaptations, and became mutually adapted.

Several highly successful insect groups—especially the Hymenoptera (wasps, bees and ants) and Lepidoptera (butterflies and moths) as well as many types of Diptera (flies) and Coleoptera (beetles)—evolved in conjunction with flowering plants during the Cretaceous (145 to 66 million years ago). The earliest bees, important pollinators today, appeared in the early Cretaceous. A group of wasps sister to the bees evolved at the same time as flowering plants, as did the Lepidoptera. Further, all the major clades of bees first appeared between the middle and late Cretaceous, simultaneously with the adaptive radiation of the eudicots (three quarters of all angiosperms), and at the time when the angiosperms became the world's dominant plants on land.

At least three aspects of flowers appear to have coevolved between flowering plants and insects, because they involve communication between these organisms. Firstly, flowers communicate with their pollinators by scent; insects use this scent to determine how far away a flower is, to approach it, and to identify where to land and finally to feed. Secondly, flowers attract insects with patterns of stripes leading to the rewards of nectar and pollen, and colours such as blue and ultraviolet, to which their eyes are sensitive; in contrast, bird-pollinated flowers tend to be red or orange. Thirdly, flowers such as some orchids mimic females of particular insects, deceiving males into pseudocopulation.

The yucca, Yucca whipplei, is pollinated exclusively by Tegeticula maculata, a yucca moth that depends on the yucca for survival. The moth eats the seeds of the plant, while gathering pollen. The pollen has evolved to become very sticky, and remains on the mouth parts when the moth moves to the next flower. The yucca provides a place for the moth to lay its eggs, deep within the flower away from potential predators.

Birds and bird-pollinated flowers

Purple-throated carib feeding from and pollinating a flower

Hummingbirds and ornithophilous (bird-pollinated) flowers have evolved a mutualistic relationship. The flowers have nectar suited to the birds' diet, their color suits the birds' vision and their shape fits that of the birds' bills. The blooming times of the flowers have also been found to coincide with hummingbirds' breeding seasons. The floral characteristics of ornithophilous plants vary greatly among each other compared to closely related insect-pollinated species. These flowers also tend to be more ornate, complex, and showy than their insect pollinated counterparts. It is generally agreed that plants formed coevolutionary relationships with insects first, and ornithophilous species diverged at a later time. There is not much scientific support for instances of the reverse of this divergence: from ornithophily to insect pollination. The diversity in floral phenotype in ornithophilous species, and the relative consistency observed in bee-pollinated species can be attributed to the direction of the shift in pollinator preference.

Flowers have converged to take advantage of similar birds. Flowers compete for pollinators, and adaptations reduce unfavourable effects of this competition. The fact that birds can fly during inclement weather makes them more efficient pollinators where bees and other insects would be inactive. Ornithophily may have arisen for this reason in isolated environments with poor insect colonization or areas with plants which flower in the winter. Bird-pollinated flowers usually have higher volumes of nectar and higher sugar production than those pollinated by insects. This meets the birds' high energy requirements, the most important determinants of flower choice. In Mimulus, an increase in red pigment in petals and flower nectar volume noticeably reduces the proportion of pollination by bees as opposed to hummingbirds; while greater flower surface area increases bee pollination. Therefore, red pigments in the flowers of Mimulus cardinalis may function primarily to discourage bee visitation. In Penstemon, flower traits that discourage bee pollination may be more influential on the flowers' evolutionary change than 'pro-bird' adaptations, but adaptation 'towards' birds and 'away' from bees can happen simultaneously. However, some flowers such as Heliconia angusta appear not to be as specifically ornithophilous as had been supposed: the species is occasionally (151 visits in 120 hours of observation) visited by Trigona stingless bees. These bees are largely pollen robbers in this case, but may also serve as pollinators.

Following their respective breeding seasons, several species of hummingbirds occur at the same locations in North America, and several hummingbird flowers bloom simultaneously in these habitats. These flowers have converged to a common morphology and color because these are effective at attracting the birds. Different lengths and curvatures of the corolla tubes can affect the efficiency of extraction in hummingbird species in relation to differences in bill morphology. Tubular flowers force a bird to orient its bill in a particular way when probing the flower, especially when the bill and corolla are both curved. This allows the plant to place pollen on a certain part of the bird's body, permitting a variety of morphological co-adaptations.

Ornithophilous flowers need to be conspicuous to birds. Birds have their greatest spectral sensitivity and finest hue discrimination at the red end of the visual spectrum, so red is particularly conspicuous to them. Hummingbirds may also be able to see ultraviolet "colors". The prevalence of ultraviolet patterns and nectar guides in nectar-poor entomophilous (insect-pollinated) flowers warns the bird to avoid these flowers. Each of the two subfamilies of hummingbirds, the Phaethornithinae (hermits) and the Trochilinae, has evolved in conjunction with a particular set of flowers. Most Phaethornithinae species are associated with large monocotyledonous herbs, while the Trochilinae prefer dicotyledonous plant species.

Fig reproduction and fig wasps

A fig exposing its many tiny matured, seed-bearing gynoecia. These are pollinated by the fig wasp, Blastophaga psenes. In the cultivated fig, there are also asexual varieties.

The genus Ficus is composed of 800 species of vines, shrubs, and trees, including the cultivated fig, defined by their syconia, the fruit-like vessels that either hold female flowers or pollen on the inside. Each fig species has its own fig wasp which (in most cases) pollinates the fig, so a tight mutual dependence has evolved and persisted throughout the genus.

Pseudomyrmex ant on bull thorn acacia (Vachellia cornigera) with Beltian bodies that provide the ants with protein

Acacia ants and acacias

The acacia ant (Pseudomyrmex ferruginea) is an obligate plant ant that protects at least five species of "Acacia" (Vachellia) from preying insects and from other plants competing for sunlight, and the tree provides nourishment and shelter for the ant and its larvae. Such mutualism is not automatic: other ant species exploit trees without reciprocating, following different evolutionary strategies. These cheater ants impose important host costs via damage to tree reproductive organs, though their net effect on host fitness is not necessarily negative and, thus, becomes difficult to forecast.

Hosts and parasites

Parasites and sexually reproducing hosts

Host–parasite coevolution is the coevolution of a host and a parasite. A general characteristic of many viruses, as obligate parasites, is that they coevolved alongside their respective hosts. Correlated mutations between the two species enter them into an evolution arms race. Whichever organism, host or parasite, that cannot keep up with the other will be eliminated from their habitat, as the species with the higher average population fitness survives. This race is known as the Red Queen hypothesis. The Red Queen hypothesis predicts that sexual reproduction allows a host to stay just ahead of its parasite, similar to the Red Queen's race in Through the Looking-Glass: "it takes all the running you can do, to keep in the same place". The host reproduces sexually, producing some offspring with immunity over its parasite, which then evolves in response.

The parasite–host relationship probably drove the prevalence of sexual reproduction over the more efficient asexual reproduction. It seems that when a parasite infects a host, sexual reproduction affords a better chance of developing resistance (through variation in the next generation), giving sexual reproduction variability for fitness not seen in the asexual reproduction, which produces another generation of the organism susceptible to infection by the same parasite. Coevolution between host and parasite may accordingly be responsible for much of the genetic diversity seen in normal populations, including blood-plasma polymorphism, protein polymorphism, and histocompatibility systems.

Brood parasite: Eurasian reed warbler raising a common cuckoo

Brood parasites

Brood parasitism demonstrates close coevolution of host and parasite, for example in some cuckoos. These birds do not make their own nests, but lay their eggs in nests of other species, ejecting or killing the eggs and young of the host and thus having a strong negative impact on the host's reproductive fitness. Their eggs are camouflaged as eggs of their hosts, implying that hosts can distinguish their own eggs from those of intruders and are in an evolutionary arms race with the cuckoo between camouflage and recognition. Cuckoos are counter-adapted to host defences with features such as thickened eggshells, shorter incubation (so their young hatch first), and flat backs adapted to lift eggs out of the nest.

Antagonistic coevolution

Antagonistic coevolution is seen in the harvester ant species Pogonomyrmex barbatus and Pogonomyrmex rugosus, in a relationship both parasitic and mutualistic. The queens are unable to produce worker ants by mating with their own species. Only by crossbreeding can they produce workers. The winged females act as parasites for the males of the other species as their sperm will only produce sterile hybrids. But because the colonies are fully dependent on these hybrids to survive, it is also mutualistic. While there is no genetic exchange between the species, they are unable to evolve in a direction where they become too genetically different as this would make crossbreeding impossible.

Predators and prey

Predator and prey: a leopard killing a bushbuck

Predators and prey interact and coevolve: the predator to catch the prey more effectively, the prey to escape. The coevolution of the two mutually imposes selective pressures. These often lead to an evolutionary arms race between prey and predator, resulting in anti-predator adaptations.

The same applies to herbivores, animals that eat plants, and the plants that they eat. Paul R. Ehrlich and Peter H. Raven in 1964 proposed the theory of escape and radiate coevolution to describe the evolutionary diversification of plants and butterflies. In the Rocky Mountains, red squirrels and crossbills (seed-eating birds) compete for seeds of the lodgepole pine. The squirrels get at pine seeds by gnawing through the cone scales, whereas the crossbills get at the seeds by extracting them with their unusual crossed mandibles. In areas where there are squirrels, the lodgepole's cones are heavier, and have fewer seeds and thinner scales, making it more difficult for squirrels to get at the seeds. Conversely, where there are crossbills but no squirrels, the cones are lighter in construction, but have thicker scales, making it more difficult for crossbills to get at the seeds. The lodgepole's cones are in an evolutionary arms race with the two kinds of herbivore.

Sexual conflict has been studied in Drosophila melanogaster (shown mating, male on right).

Competition

Both intraspecific competition, with features such as sexual conflict and sexual selection, and interspecific competition, such as between predators, may be able to drive coevolution.

Intraspecific competition can result in sexual antagonistic coevolution, an evolutionary relationship analogous to an arms race, where the evolutionary fitness of the sexes is counteracted to achieve maximum reproductive success. For example, some insects reproduce using traumatic insemination, which is disadvantageous to the female's health. During mating, males try to maximise their fitness by inseminating as many females as possible, but the more times a female's abdomen is punctured, the less likely she is to survive, reducing her fitness.

Multispecies

Long-tongued bees and long-tubed flowers coevolved, whether pairwise or "diffusely" in groups known as guilds.

The types of coevolution listed so far have been described as if they operated pairwise (also called specific coevolution), in which traits of one species have evolved in direct response to traits of a second species, and vice versa. This is not always the case. Another evolutionary mode arises where evolution is reciprocal, but is among a group of species rather than exactly two. This is variously called guild or diffuse coevolution. For instance, a trait in several species of flowering plant, such as offering its nectar at the end of a long tube, can coevolve with a trait in one or several species of pollinating insects, such as a long proboscis. More generally, flowering plants are pollinated by insects from different families including bees, flies, and beetles, all of which form a broad guild of pollinators which respond to the nectar or pollen produced by flowers.

Geographic mosaic theory

Mosaic coevolution is a theory in which geographic location and community ecology shape differing coevolution between strongly interacting species in multiple populations. These populations may be separated by space and/or time. Depending on the ecological conditions, the interspecific interactions may be mutualistic or antagonistic. In mutualisms, both partners benefit from the interaction, whereas one partner generally experiences decreased fitness in antagonistic interactions. Arms races consist of two species adapting ways to "one up" the other. Several factors affect these relationships, including hot spots, cold spots, and trait mixing. Reciprocal selection occurs when a change in one partner puts pressure on the other partner to change in response. Hot spots are areas of strong reciprocal selection, while cold spots are areas with no reciprocal selection or where only one partner is present. The three constituents of geographic structure that contribute to this particular type of coevolution are: natural selection in the form of a geographic mosaic, hot spots often surrounded by cold spots, and trait remixing by means of genetic drift and gene flow. Mosaic, along with general coevolution, most commonly occurs at the population level and is driven by both the biotic and the abiotic environment. These environmental factors can constrain coevolution and affect how far it can escalate.

Outside biology

Coevolution is primarily a biological concept, but has been applied to other fields by analogy.

In algorithms

Coevolutionary algorithms are used for generating artificial life as well as for optimization, game learning and machine learning. Daniel Hillis added "co-evolving parasites" to prevent an optimization procedure from becoming stuck at local maxima. Karl Sims coevolved virtual creatures.

In architecture

The concept of coevolution was introduced in architecture by the Danish architect-urbanist Henrik Valeur as an antithesis to "star-architecture". As the curator of the Danish Pavilion at the 2006 Venice Biennale of Architecture, he created an exhibition-project on coevolution in urban development in China; it won the Golden Lion for Best National Pavilion.

At the School of Architecture, Planning and Landscape, Newcastle University, a coevolutionary approach to architecture has been defined as a design practice that engages students, volunteers and members of the local community in practical, experimental work aimed at "establishing dynamic processes of learning between users and designers."

In cosmology and astronomy

In his book The Self-organizing Universe, Erich Jantsch attributed the entire evolution of the cosmos to coevolution.

In astronomy, an emerging theory proposes that black holes and galaxies develop in an interdependent way analogous to biological coevolution.

In management and organization studies

Since year 2000, a growing number of management and organization studies discuss coevolution and coevolutionary processes. Even so, Abatecola el al. (2020) reveals a prevailing scarcity in explaining what processes substantially characterize coevolution in these fields, meaning that specific analyses about where this perspective on socio-economic change is, and where it could move toward in the future, are still missing.

In sociology

In Development Betrayed: The End of Progress and A Coevolutionary Revisioning of the Future (1994) Richard Norgaard proposes a coevolutionary cosmology to explain how social and environmental systems influence and reshape each other. In Coevolutionary Economics: The Economy, Society and the Environment (1994) John Gowdy suggests that: "The economy, society, and the environment are linked together in a coevolutionary relationship".

In technology

Computer software and hardware can be considered as two separate components but tied intrinsically by coevolution. Similarly, operating systems and computer applications, web browsers, and web applications. All these systems depend upon each other and advance through a kind of evolutionary process. Changes in hardware, an operating system or web browser may introduce new features that are then incorporated into the corresponding applications running alongside. The idea is closely related to the concept of "joint optimization" in sociotechnical systems analysis and design, where a system is understood to consist of both a "technical system" encompassing the tools and hardware used for production and maintenance, and a "social system" of relationships and procedures through which the technology is tied into the goals of the system and all the other human and organizational relationships within and outside the system. Such systems work best when the technical and social systems are deliberately developed together.

Flame

From Wikipedia, the free encyclopedia
Flames of charcoal

A flame (from Latin flamma) is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction taking place in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density they are then considered plasma.

Mechanism

Zones in a candle flame
The interior of the luminous zone can be much hotter, beyond 1500 °C.

Color and temperature of a flame are dependent on the type of fuel involved in the combustion, as, for example, when a lighter is held to a candle. The applied heat causes the fuel molecules in the candle wax to vaporize (if this process happens in inert atmosphere without oxidizer, it is called pyrolysis). In this state they can then readily react with oxygen in the air, which gives off enough heat in the subsequent exothermic reaction to vaporize yet more fuel, thus sustaining a consistent flame. The high temperature of the flame causes the vaporized fuel molecules to decompose, forming various incomplete combustion products and free radicals, and these products then react with each other and with the oxidizer involved in the reaction of the following flame (fire). One may investigate all the different parts of the flame from a candle with a cold metal spoon: Higher parts are water vapor, the result of combustion; yellow parts in the middle are soot; down just next to the candle wick is unburned wax. Goldsmiths use higher parts of a flame with a metallic blow-pipe for melting gold and silver. Sufficient energy in the flame will excite the electrons in some of the transient reaction intermediates such as the methylidyne radical (CH) and diatomic carbon (C2), which results in the emission of visible light as these substances release their excess energy (see spectrum below for an explanation of which specific radical species produce which specific colors). As the combustion temperature of a flame increases (if the flame contains small particles of unburnt carbon or other material), so does the average energy of the electromagnetic radiation given off by the flame (see Black body).

Other oxidizers besides oxygen can be used to produce a flame. Hydrogen burning in chlorine produces a flame and in the process emits gaseous hydrogen chloride (HCl) as the combustion product. Another of many possible chemical combinations is hydrazine and nitrogen tetroxide which is hypergolic and commonly used in rocket engines. Fluoropolymers can be used to supply fluorine as an oxidizer of metallic fuels, e.g. in the magnesium/teflon/viton composition.

The chemical kinetics occurring in the flame are very complex and typically involve a large number of chemical reactions and intermediate species, most of them radicals. For instance, a well-known chemical kinetics scheme, GRI-Mech, uses 53 species and 325 elementary reactions to describe combustion of biogas.

There are different methods of distributing the required components of combustion to a flame. In a diffusion flame, oxygen and fuel diffuse into each other; the flame occurs where they meet. In a premixed flame, the oxygen and fuel are premixed beforehand, which results in a different type of flame. Candle flames (a diffusion flame) operate through evaporation of the fuel which rises in a laminar flow of hot gas which then mixes with surrounding oxygen and combusts.

Color

Spectrum of the blue (premixed, i.e., complete combustion) flame from a butane torch showing molecular radical band emission and Swan bands. Note that virtually all the light produced is in the blue to green region of the spectrum below about 565 nanometers, accounting for the bluish color of sootless hydrocarbon flames.

Flame color depends on several factors, the most important typically being black-body radiation and spectral band emission, with both spectral line emission and spectral line absorption playing smaller roles. In the most common type of flame, hydrocarbon flames, the most important factor determining color is oxygen supply and the extent of fuel-oxygen pre-mixing, which determines the rate of combustion and thus the temperature and reaction paths, thereby producing different color hues.

Different flame types of a Bunsen burner depend on oxygen supply. On the left a rich fuel with no premixed oxygen produces a yellow sooty diffusion flame; on the right a lean fully oxygen premixed flame produces no soot and the flame color is produced by molecular radicals, especially CH and C2 band emission.

In a laboratory under normal gravity conditions and with a closed air inlet, a Bunsen burner burns with yellow flame (also called a safety flame) with a peak temperature of about 2,000 K (3,100 °F). The yellow arises from incandescence of very fine soot particles that are produced in the flame. Also, carbon monoxide is produced, and the flame tends to take oxygen from the surfaces it touches. When the air inlet is opened, less soot and carbon monoxide are produced. When enough air is supplied, no soot or carbon monoxide is produced and the flame becomes blue. (Most of this blue had previously been obscured by the bright yellow emissions.) The spectrum of a premixed (complete combustion) butane flame on the right shows that the blue color arises specifically due to emission of excited molecular radicals in the flame, which emit most of their light well below ≈565 nanometers in the blue and green regions of the visible spectrum.

The colder part of a diffusion (incomplete combustion) flame will be red, transitioning to orange, yellow, and white as the temperature increases as evidenced by changes in the black-body radiation spectrum. For a given flame's region, the closer to white on this scale, the hotter that section of the flame is. The transitions are often apparent in fires, in which the color emitted closest to the fuel is white, with an orange section above it, and reddish flames the highest of all. A blue-colored flame only emerges when the amount of soot decreases and the blue emissions from excited molecular radicals become dominant, though the blue can often be seen near the base of candles where airborne soot is less concentrated.

Specific colors can be imparted to the flame by introduction of excitable species with bright emission spectrum lines. In analytical chemistry, this effect is used in flame tests (or flame emission spectroscopy) to determine presence of some metal ions. In pyrotechnics, the pyrotechnic colorants are used to produce brightly colored fireworks.

Temperature

A flame test for sodium. Note that the yellow color in this gas flame does not arise from the black-body emission of soot particles (as the flame is clearly a blue premixed complete combustion flame) but instead comes from the spectral line emission of sodium atoms, specifically the very intense sodium D lines.

When looking at a flame's temperature there are many factors which can change or apply. An important one is that a flame's color does not necessarily determine a temperature comparison because black-body radiation is not the only thing that produces or determines the color seen; therefore it is only an estimation of temperature. Other factors that determine its temperature are:

  • Adiabatic flame; i.e., no loss of heat to the atmosphere (may differ in certain parts)
  • Atmospheric pressure
  • Percentage oxygen content of the atmosphere
  • The kind of fuel used (i.e., depends on how quickly the process occurs; how violent the combustion is)
  • Any oxidation of the fuel
  • Temperature of atmosphere links to adiabatic flame temperature (i.e., heat will transfer to a cooler atmosphere more quickly)
  • How stoichiometric the combustion process is (a 1:1 stoichiometricity) assuming no dissociation will have the highest flame temperature; excess air/oxygen will lower it as will lack of air/oxygen
  • The distance from the source of the flame (i.e., the further from the source of the flame the lower temperature)
  • In fires (particularly house fires), the cooler flames are often red and produce the most smoke. Here the red color compared to typical yellow color of the flames suggests that the temperature is lower. This is because there is a lack of oxygen in the room and therefore there is incomplete combustion and the flame temperature is low, often just 600 to 850 °C (1,112 to 1,562 °F). This means that a lot of carbon monoxide is formed (which is a flammable gas) which is when there is greatest risk of backdraft. When this occurs, combustible gases at or above the flash point of spontaneous combustion are exposed to oxygen, carbon monoxide and superheated hydrocarbons combust, and temporary temperatures of up to 2,000 °C (3,630 °F) occur.

Common flame temperatures

This is a rough guide to flame temperatures for various common substances (in 20 °C (68 °F) air at 1 atm. pressure):

Material burned Flame temperature
Butane ~300 °C (~600 °F) (a cool flame in low gravity)
Charcoal fire 750–1,200 °C (1,382–2,192 °F)
Methane (natural gas) 900–1,500 °C (1,652–2,732 °F)
Bunsen burner flame 900–1,600 °C (1,652–2,912 °F) [depending on the air valve, open or close.]
Candle flame ≈1,100 °C (≈2,012 °F) [majority]; hot spots may be 1,300–1,400 °C (2,372–2,552 °F)
Propane blowtorch 1,200–1,700 °C (2,192–3,092 °F)
Backdraft flame peak 1,700–1,950 °C (3,092–3,542 °F)
Magnesium 1,900–2,300 °C (3,452–4,172 °F)
Hydrogen torch Up to ≈2,000 °C (≈3,632 °F)
MAPP gas 2,020 °C (3,668 °F)
Acetylene blowlamp/blowtorch Up to ≈2,300 °C (≈4,172 °F)
Oxyacetylene Up to 3,300 °C (5,972 °F)

Material burned Max. flame temperature (in air, diffusion flame)
Animal fat 800–900 °C (1,472–1,652 °F)
Kerosene 990 °C (1,814 °F)
Gasoline 1,026 °C (1,878.8 °F)
Wood 1,027 °C (1,880.6 °F)
Methanol 1,200 °C (2,192 °F)
Charcoal (forced draft) 1,390 °C (2,534 °F)

Highest temperature

Dicyanoacetylene, a compound of carbon and nitrogen with chemical formula C4N2 burns in oxygen with a bright blue-white flame at a temperature of 5,260 K (4,990 °C; 9,010 °F), and at up to 6,000 K (5,730 °C; 10,340 °F) in ozone. This high flame temperature is partially due to the absence of hydrogen in the fuel (dicyanoacetylene is not a hydrocarbon) thus there is no water among the combustion products.

Cyanogen, with the formula (CN)2, produces the second-hottest-known natural flame with a temperature of over 4,525 °C (8,177 °F) when it burns in oxygen.

Cool flames

At temperatures as low as 120 °C (248 °F), fuel-air mixtures can react chemically and produce very weak flames called cool flames. The phenomenon was discovered by Humphry Davy in 1817. The process depends on a fine balance of temperature and concentration of the reacting mixture, and if conditions are right it can initiate without any external ignition source. Cyclical variations in the balance of chemicals, particularly of intermediate products in the reaction, give oscillations in the flame, with a typical temperature variation of about 100 °C (212 °F), or between "cool" and full ignition. Sometimes the variation can lead to an explosion.

In microgravity

In zero-G, convection does not carry the hot combustion products away from the fuel source, resulting in a spherical flame front.

In the year 2000, experiments by NASA confirmed that gravity plays an indirect role in flame formation and composition. The common distribution of a flame under normal gravity conditions depends on convection, as soot tends to rise to the top of a flame (such as in a candle in normal gravity conditions), making it yellow. In microgravity or zero gravity environment, such as in orbit, natural convection no longer occurs and the flame becomes spherical, with a tendency to become bluer and more efficient. There are several possible explanations for this difference, of which the most likely is the hypothesis that the temperature is sufficiently evenly distributed that soot is not formed and complete combustion occurs. Experiments by NASA reveal that diffusion flames in microgravity allow more soot to be completely oxidized after they are produced than do diffusion flames on Earth, because of a series of mechanisms that behave differently in microgravity when compared to normal gravity conditions. These discoveries have potential applications in applied science and private industry, especially concerning fuel efficiency.

Thermonuclear flames

Flames do not need to be driven only by chemical energy release. In stars, subsonic burning fronts driven by burning light nuclei (like carbon or helium) to heavy nuclei (up to iron group) propagate as flames. This is important in some models of Type Ia supernovae. In thermonuclear flames, thermal conduction dominates over species diffusion, so the flame speed and thickness is determined by the thermonuclear energy release and thermal conductivity (often in the form of degenerate electrons).

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...