Search This Blog

Wednesday, November 1, 2023

Intelligent agent

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Intelligent_agent

In artificial intelligence, an intelligent agent (IA) is an agent acting in an intelligent manner; It perceives its environment, takes actions autonomously in order to achieve goals, and may improve its performance with learning or acquiring knowledge. An intelligent agent may be simple or complex: A thermostat or other control system is considered an example of an intelligent agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome.

Simple reflex agent diagram

Leading AI textbooks define "artificial intelligence" as the "study and design of intelligent agents", a definition that considers goal-directed behavior to be the essence of intelligence. Goal-directed agents are also described using a term borrowed from economics, "rational agent".

An agent has an "objective function" that encapsulates all the IA's goals. Such an agent is designed to create and execute whatever plan will, upon completion, maximize the expected value of the objective function. For example, a reinforcement learning agent has a "reward function" that allows the programmers to shape the IA's desired behavior, and an evolutionary algorithm's behavior is shaped by a "fitness function".

Intelligent agents in artificial intelligence are closely related to agents in economics, and versions of the intelligent agent paradigm are studied in cognitive science, ethics, the philosophy of practical reason, as well as in many interdisciplinary socio-cognitive modeling and computer social simulations.

Intelligent agents are often described schematically as an abstract functional system similar to a computer program. Abstract descriptions of intelligent agents are called abstract intelligent agents (AIA) to distinguish them from their real-world implementations. An autonomous intelligent agent is designed to function in the absence of human intervention. Intelligent agents are also closely related to software agents (an autonomous computer program that carries out tasks on behalf of users).

As a definition of artificial intelligence

Artificial Intelligence: A Modern Approach defines an "agent" as

"Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators"

It defines a "rational agent" as:

"An agent that acts so as to maximize the expected value of a performance measure based on past experience and knowledge."

It also defines the field of "artificial intelligence research" as:

"The study and design of rational agents"

Padgham & Winikoff (2005) agree that an intelligent agent is situated in an environment and responds in a timely (though not necessarily real-time) manner to changes in the environment. However, intelligent agents must also proactively pursue goals in a flexible and robust way. Optional desiderata include that the agent be rational, and that the agent be capable of belief-desire-intention analysis.

Kaplan and Haenlein define artificial intelligence as "A system's ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation." This definition is closely related to that of an intelligent agent.

Advantages

Philosophically, this definition of artificial intelligence avoids several lines of criticism. Unlike the Turing test, it does not refer to human intelligence in any way. Thus, there is no need to discuss if it is "real" vs "simulated" intelligence (i.e., "synthetic" vs "artificial" intelligence) and does not indicate that such a machine has a mind, consciousness or true understanding (i.e., it does not imply John Searle's "strong AI hypothesis"). It also doesn't attempt to draw a sharp dividing line between behaviors that are "intelligent" and behaviors that are "unintelligent"—programs need only be measured in terms of their objective function.

More importantly, it has a number of practical advantages that have helped move AI research forward. It provides a reliable and scientific way to test programs; researchers can directly compare or even combine different approaches to isolated problems, by asking which agent is best at maximizing a given "goal function". It also gives them a common language to communicate with other fields—such as mathematical optimization (which is defined in terms of "goals") or economics (which uses the same definition of a "rational agent").

Objective function

An agent that is assigned an explicit "goal function" is considered more intelligent if it consistently takes actions that successfully maximize its programmed goal function. The goal can be simple ("1 if the IA wins a game of Go, 0 otherwise") or complex ("Perform actions mathematically similar to ones that succeeded in the past"). The "goal function" encapsulates all of the goals the agent is driven to act on; in the case of rational agents, the function also encapsulates the acceptable trade-offs between accomplishing conflicting goals. (Terminology varies; for example, some agents seek to maximize or minimize a "utility function", "objective function", or "loss function".)

Goals can be explicitly defined or induced. If the AI is programmed for "reinforcement learning", it has a "reward function" that encourages some types of behavior and punishes others. Alternatively, an evolutionary system can induce goals by using a "fitness function" to mutate and preferentially replicate high-scoring AI systems, similar to how animals evolved to innately desire certain goals such as finding food. Some AI systems, such as nearest-neighbor, instead of reason by analogy, these systems are not generally given goals, except to the degree that goals are implicit in their training data. Such systems can still be benchmarked if the non-goal system is framed as a system whose "goal" is to accomplish its narrow classification task.

Systems that are not traditionally considered agents, such as knowledge-representation systems, are sometimes subsumed into the paradigm by framing them as agents that have a goal of (for example) answering questions as accurately as possible; the concept of an "action" is here extended to encompass the "act" of giving an answer to a question. As an additional extension, mimicry-driven systems can be framed as agents who are optimizing a "goal function" based on how closely the IA succeeds in mimicking the desired behavior. In the generative adversarial networks of the 2010s, an "encoder"/"generator" component attempts to mimic and improvise human text composition. The generator is attempting to maximize a function encapsulating how well it can fool an antagonistic "predictor"/"discriminator" component.

While symbolic AI systems often accept an explicit goal function, the paradigm can also be applied to neural networks and to evolutionary computing. Reinforcement learning can generate intelligent agents that appear to act in ways intended to maximize a "reward function". Sometimes, rather than setting the reward function to be directly equal to the desired benchmark evaluation function, machine learning programmers will use reward shaping to initially give the machine rewards for incremental progress in learning. Yann LeCun stated in 2018 that "Most of the learning algorithms that people have come up with essentially consist of minimizing some objective function." AlphaZero chess had a simple objective function; each win counted as +1 point, and each loss counted as -1 point. An objective function for a self-driving car would have to be more complicated. Evolutionary computing can evolve intelligent agents that appear to act in ways intended to maximize a "fitness function" that influences how many descendants each agent is allowed to leave.

The theoretical and uncomputable AIXI design is a maximally intelligent agent in this paradigm; however, in the real world, the IA is constrained by finite time and hardware resources, and scientists compete to produce algorithms that can achieve progressively higher scores on benchmark tests with real-world hardware.

Classes of intelligent agents

Russel and Norvig's classification

Russell & Norvig (2003) group agents into five classes based on their degree of perceived intelligence and capability:

Simple reflex agents

Simple reflex agent

Simple reflex agents act only on the basis of the current percept, ignoring the rest of the percept history. The agent function is based on the condition-action rule: "if condition, then action".

This agent function only succeeds when the environment is fully observable. Some reflex agents can also contain information on their current state which allows them to disregard conditions whose actuators are already triggered.

Infinite loops are often unavoidable for simple reflex agents operating in partially observable environments. If the agent can randomize its actions, it may be possible to escape from infinite loops.

Model-based reflex agents

Model-based reflex agent

A model-based agent can handle partially observable environments. Its current state is stored inside the agent maintaining some kind of structure that describes the part of the world which cannot be seen. This knowledge about "how the world works" is called a model of the world, hence the name "model-based agent".

A model-based reflex agent should maintain some sort of internal model that depends on the percept history and thereby reflects at least some of the unobserved aspects of the current state. Percept history and impact of action on the environment can be determined by using the internal model. It then chooses an action in the same way as reflex agent.

An agent may also use models to describe and predict the behaviors of other agents in the environment.

Goal-based agents

Model-based, goal-based agent

Goal-based agents further expand on the capabilities of the model-based agents, by using "goal" information. Goal information describes situations that are desirable. This provides the agent a way to choose among multiple possibilities, selecting the one which reaches a goal state. Search and planning are the subfields of artificial intelligence devoted to finding action sequences that achieve the agent's goals.

Utility-based agents

Model-based, utility-based agent

Goal-based agents only distinguish between goal states and non-goal states. It is also possible to define a measure of how desirable a particular state is. This measure can be obtained through the use of a utility function which maps a state to a measure of the utility of the state. A more general performance measure should allow a comparison of different world states according to how well they satisfied the agent's goals. The term utility can be used to describe how "happy" the agent is.


A rational utility-based agent chooses the action that maximizes the expected utility of the action outcomes - that is, what the agent expects to derive, on average, given the probabilities and utilities of each outcome. A utility-based agent has to model and keep track of its environment, tasks that have involved a great deal of research on perception, representation, reasoning, and learning.

Learning agents

A general learning agent

Learning has the advantage that it allows the agents to initially operate in unknown environments and to become more competent than its initial knowledge alone might allow. The most important distinction is between the "learning element", which is responsible for making improvements, and the "performance element", which is responsible for selecting external actions.

The learning element uses feedback from the "critic" on how the agent is doing and determines how the performance element, or "actor", should be modified to do better in the future. The performance element is what we have previously considered to be the entire agent: it takes in percepts and decides on actions.

The last component of the learning agent is the "problem generator". It is responsible for suggesting actions that will lead to new and informative experiences.

Weiss's classification

Weiss (2013) defines four classes of agents:

  • Logic-based agents – in which the decision about what action to perform is made via logical deduction.
  • Reactive agents – in which decision making is implemented in some form of direct mapping from situation to action.
  • Belief-desire-intention agents – in which decision making depends upon the manipulation of data structures representing the beliefs, desires, and intentions of the agent; and finally,
  • Layered architectures – in which decision making is realized via various software layers, each of which is more or less explicitly reasoning about the environment at different levels of abstraction.

Other

In 2013, Alexander Wissner-Gross published a theory pertaining to Freedom and Intelligence for intelligent agents.

Hierarchies of agents

To actively perform their functions, Intelligent Agents today are normally gathered in a hierarchical structure containing many “sub-agents”. Intelligent sub-agents process and perform lower-level functions. Taken together, the intelligent agent and sub-agents create a complete system that can accomplish difficult tasks or goals with behaviors and responses that display a form of intelligence.

Generally, an agent can be constructed by separating the body into the sensors and actuators, and so that it operates with a complex perception system that takes the description of the world as input for a controller and outputs commands to the actuator. However, a hierarchy of controller layers is often necessary to balance the immediate reaction desired for low-level tasks and the slow reasoning about complex, high-level goals.

Agent function

A simple agent program can be defined mathematically as a function f (called the "agent function") which maps every possible percepts sequence to a possible action the agent can perform or to a coefficient, feedback element, function or constant that affects eventual actions:

Agent function is an abstract concept as it could incorporate various principles of decision making like calculation of utility of individual options, deduction over logic rules, fuzzy logic, etc.

The program agent, instead, maps every possible percept to an action.

We use the term percept to refer to the agent's perceptional inputs at any given instant. In the following figures, an agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.

Applications

Hallerbach et al. discussed the application of agent-based approaches for the development and validation of automated driving systems via a digital twin of the vehicle-under-test and microscopic traffic simulation based on independent agents. Waymo has created a multi-agent simulation environment Carcraft to test algorithms for self-driving cars. It simulates traffic interactions between human drivers, pedestrians and automated vehicles. People's behavior is imitated by artificial agents based on data of real human behavior. The basic idea of using agent-based modeling to understand self-driving cars was discussed as early as 2003.

Alternative definitions and uses

"Intelligent agent" is also often used as a vague marketing term, sometimes synonymous with "virtual personal assistant". Some 20th-century definitions characterize an agent as a program that aids a user or that acts on behalf of a user. These examples are known as software agents, and sometimes an "intelligent software agent" (that is, a software agent with intelligence) is referred to as an "intelligent agent".

According to Nikola Kasabov, IA systems should exhibit the following characteristics:

  • Accommodate new problem solving rules incrementally
  • Adapt online and in real time
  • Are able to analyze themselves in terms of behavior, error and success.
  • Learn and improve through interaction with the environment (embodiment)
  • Learn quickly from large amounts of data
  • Have memory-based exemplar storage and retrieval capacities
  • Have parameters to represent short- and long-term memory, age, forgetting, etc.

Machine translation

From Wikipedia, the free encyclopedia
A mobile phone app translating Spanish text into English

Machine translation is use of either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches to translation of text or speech from one language to another, including the contextual, idiomatic and pragmatic nuances of both languages.

History

Origins

The origins of machine translation can be traced back to the work of Al-Kindi, a ninth-century Arabic cryptographer who developed techniques for systemic language translation, including cryptanalysis, frequency analysis, and probability and statistics, which are used in modern machine translation. The idea of machine translation later appeared in the 17th century. In 1629, René Descartes proposed a universal language, with equivalent ideas in different tongues sharing one symbol.

The idea of using digital computers for translation of natural languages was proposed as early as 1947 by England's A. D. Booth and Warren Weaver at Rockefeller Foundation in the same year. "The memorandum written by Warren Weaver in 1949 is perhaps the single most influential publication in the earliest days of machine translation." Others followed. A demonstration was made in 1954 on the APEXC machine at Birkbeck College (University of London) of a rudimentary translation of English into French. Several papers on the topic were published at the time, and even articles in popular journals (for example an article by Cleave and Zacharov in the September 1955 issue of Wireless World). A similar application, also pioneered at Birkbeck College at the time, was reading and composing Braille texts by computer.

1950s

The first researcher in the field, Yehoshua Bar-Hillel, began his research at MIT (1951). A Georgetown University MT research team, led by Professor Michael Zarechnak, followed (1951) with a public demonstration of its Georgetown-IBM experiment system in 1954. MT research programs popped up in Japan and Russia (1955), and the first MT conference was held in London (1956).

David G. Hays "wrote about computer-assisted language processing as early as 1957" and "was project leader on computational linguistics at Rand from 1955 to 1968."

1960–1975

Researchers continued to join the field as the Association for Machine Translation and Computational Linguistics was formed in the U.S. (1962) and the National Academy of Sciences formed the Automatic Language Processing Advisory Committee (ALPAC) to study MT (1964). Real progress was much slower, however, and after the ALPAC report (1966), which found that the ten-year-long research had failed to fulfill expectations, funding was greatly reduced. According to a 1972 report by the Director of Defense Research and Engineering (DDR&E), the feasibility of large-scale MT was reestablished by the success of the Logos MT system in translating military manuals into Vietnamese during that conflict.

The French Textile Institute also used MT to translate abstracts from and into French, English, German and Spanish (1970); Brigham Young University started a project to translate Mormon texts by automated translation (1971).

1975 and beyond

SYSTRAN, which "pioneered the field under contracts from the U.S. government" in the 1960s, was used by Xerox to translate technical manuals (1978). Beginning in the late 1980s, as computational power increased and became less expensive, more interest was shown in statistical models for machine translation. MT became more popular after the advent of computers. SYSTRAN's first implementation system was implemented in 1988 by the online service of the French Postal Service called Minitel. Various computer based translation companies were also launched, including Trados (1984), which was the first to develop and market Translation Memory technology (1989), though this is not the same as MT. The first commercial MT system for Russian / English / German-Ukrainian was developed at Kharkov State University (1991).

By 1998, "for as little as $29.95" one could "buy a program for translating in one direction between English and a major European language of your choice" to run on a PC.

MT on the web started with SYSTRAN offering free translation of small texts (1996) and then providing this via AltaVista Babelfish, which racked up 500,000 requests a day (1997). The second free translation service on the web was Lernout & Hauspie's GlobaLink. Atlantic Magazine wrote in 1998 that "Systran's Babelfish and GlobaLink's Comprende" handled "Don't bank on it" with a "competent performance."

Franz Josef Och (the future head of Translation Development AT Google) won DARPA's speed MT competition (2003). More innovations during this time included MOSES, the open-source statistical MT engine (2007), a text/SMS translation service for mobiles in Japan (2008), and a mobile phone with built-in speech-to-speech translation functionality for English, Japanese and Chinese (2009). In 2012, Google announced that Google Translate translates roughly enough text to fill 1 million books in one day.

Approaches

Before the advent of deep learning methods, statistical methods required a lot of rules accompanied by morphological, syntactic, and semantic annotations.

Rule-based

The rule-based machine translation approach was used mostly in the creation of dictionaries and grammar programs. Its biggest downfall was that everything had to be made explicit: orthographical variation and erroneous input must be made part of the source language analyser in order to cope with it, and lexical selection rules must be written for all instances of ambiguity.

Transfer-based machine translation

Transfer-based machine translation was similar to interlingual machine translation in that it created a translation from an intermediate representation that simulated the meaning of the original sentence. Unlike interlingual MT, it depended partially on the language pair involved in the translation.

Interlingual

Interlingual machine translation was one instance of rule-based machine-translation approaches. In this approach, the source language, i.e. the text to be translated, was transformed into an interlingual language, i.e. a "language neutral" representation that is independent of any language. The target language was then generated out of the interlingua. The only interlingual machine translation system that was made operational at the commercial level was the KANT system (Nyberg and Mitamura, 1992), which was designed to translate Caterpillar Technical English (CTE) into other languages.

Dictionary-based

Machine translation used a method based on dictionary entries, which means that the words were translated as they are by a dictionary.

Statistical

Statistical machine translation tried to generate translations using statistical methods based on bilingual text corpora, such as the Canadian Hansard corpus, the English-French record of the Canadian parliament and EUROPARL, the record of the European Parliament. Where such corpora were available, good results were achieved translating similar texts, but such corpora were rare for many language pairs. The first statistical machine translation software was CANDIDE from IBM. In 2005, Google improved its internal translation capabilities by using approximately 200 billion words from United Nations materials to train their system; translation accuracy improved.

SMT's biggest downfall included it being dependent upon huge amounts of parallel texts, its problems with morphology-rich languages (especially with translating into such languages), and its inability to correct singleton errors.

Neural MT

A deep learning-based approach to MT, neural machine translation has made rapid progress in recent years. However, current consensus is that the so-called human parity achieved is not real, being based wholly on limited domains, language pairs, and certain test benchmarks i.e., it lacks statistical significance power.

Translations by neural MT tools like DeepL Translator, which is thought to usually deliver the best machine translation results as of 2022, typically still need post-editing by a human.

Prompt engineering is required in order to steer the GPT-3-generated translations.

Major issues

Machine translation could produce some non-understandable phrases, such as "鸡枞" (Macrolepiota albuminosa) being rendered as "Wikipedia".
Broken Chinese "沒有進入" from machine translation in Bali, Indonesia. The broken Chinese sentence sounds like "there does not exist an entry" or "have not entered yet".

Studies using human evaluation (e.g. by professional literary translators or human readers) have systematically identified various issues with the latest advanced MT outputs. Common issues include the translation of ambiguous parts whose correct translation requires common sense-like semantic language processing or context. There can also be errors in the source texts, missing high-quality training data and the severity of frequency of several types of problems may not get reduced with techniques used to date, requiring some level of human active participation.

Disambiguation

Word-sense disambiguation concerns finding a suitable translation when a word can have more than one meaning. The problem was first raised in the 1950s by Yehoshua Bar-Hillel. He pointed out that without a "universal encyclopedia", a machine would never be able to distinguish between the two meanings of a word. Today there are numerous approaches designed to overcome this problem. They can be approximately divided into "shallow" approaches and "deep" approaches.

Shallow approaches assume no knowledge of the text. They simply apply statistical methods to the words surrounding the ambiguous word. Deep approaches presume a comprehensive knowledge of the word. So far, shallow approaches have been more successful.

Claude Piron, a long-time translator for the United Nations and the World Health Organization, wrote that machine translation, at its best, automates the easier part of a translator's job; the harder and more time-consuming part usually involves doing extensive research to resolve ambiguities in the source text, which the grammatical and lexical exigencies of the target language require to be resolved:

Why does a translator need a whole workday to translate five pages, and not an hour or two? ..... About 90% of an average text corresponds to these simple conditions. But unfortunately, there's the other 10%. It's that part that requires six [more] hours of work. There are ambiguities one has to resolve. For instance, the author of the source text, an Australian physician, cited the example of an epidemic which was declared during World War II in a "Japanese prisoners of war camp". Was he talking about an American camp with Japanese prisoners or a Japanese camp with American prisoners? The English has two senses. It's necessary therefore to do research, maybe to the extent of a phone call to Australia.

The ideal deep approach would require the translation software to do all the research necessary for this kind of disambiguation on its own; but this would require a higher degree of AI than has yet been attained. A shallow approach which simply guessed at the sense of the ambiguous English phrase that Piron mentions (based, perhaps, on which kind of prisoner-of-war camp is more often mentioned in a given corpus) would have a reasonable chance of guessing wrong fairly often. A shallow approach that involves "ask the user about each ambiguity" would, by Piron's estimate, only automate about 25% of a professional translator's job, leaving the harder 75% still to be done by a human.

Non-standard speech

One of the major pitfalls of MT is its inability to translate non-standard language with the same accuracy as standard language. Heuristic or statistical based MT takes input from various sources in standard form of a language. Rule-based translation, by nature, does not include common non-standard usages. This causes errors in translation from a vernacular source or into colloquial language. Limitations on translation from casual speech present issues in the use of machine translation in mobile devices.

Named entities

In information extraction, named entities, in a narrow sense, refer to concrete or abstract entities in the real world such as people, organizations, companies, and places that have a proper name: George Washington, Chicago, Microsoft. It also refers to expressions of time, space and quantity such as 1 July 2011, $500.

In the sentence "Smith is the president of Fabrionix" both Smith and Fabrionix are named entities, and can be further qualified via first name or other information; "president" is not, since Smith could have earlier held another position at Fabrionix, e.g. Vice President. The term rigid designator is what defines these usages for analysis in statistical machine translation.

Named entities must first be identified in the text; if not, they may be erroneously translated as common nouns, which would most likely not affect the BLEU rating of the translation but would change the text's human readability. They may be omitted from the output translation, which would also have implications for the text's readability and message.

Transliteration includes finding the letters in the target language that most closely correspond to the name in the source language. This, however, has been cited as sometimes worsening the quality of translation. For "Southern California" the first word should be translated directly, while the second word should be transliterated. Machines often transliterate both because they treated them as one entity. Words like these are hard for machine translators, even those with a transliteration component, to process.

Use of a "do-not-translate" list, which has the same end goal – transliteration as opposed to translation. still relies on correct identification of named entities.

A third approach is a class-based model. Named entities are replaced with a token to represent their "class"; "Ted" and "Erica" would both be replaced with "person" class token. Then the statistical distribution and use of person names, in general, can be analyzed instead of looking at the distributions of "Ted" and "Erica" individually, so that the probability of a given name in a specific language will not affect the assigned probability of a translation. A study by Stanford on improving this area of translation gives the examples that different probabilities will be assigned to "David is going for a walk" and "Ankit is going for a walk" for English as a target language due to the different number of occurrences for each name in the training data. A frustrating outcome of the same study by Stanford (and other attempts to improve named recognition translation) is that many times, a decrease in the BLEU scores for translation will result from the inclusion of methods for named entity translation.

Somewhat related are the phrases "drinking tea with milk" vs. "drinking tea with Molly."

Translation from multiparallel sources

Some work has been done in the utilization of multiparallel corpora, that is a body of text that has been translated into 3 or more languages. Using these methods, a text that has been translated into 2 or more languages may be utilized in combination to provide a more accurate translation into a third language compared with if just one of those source languages were used alone.

Ontologies in MT

An ontology is a formal representation of knowledge that includes the concepts (such as objects, processes etc.) in a domain and some relations between them. If the stored information is of linguistic nature, one can speak of a lexicon. In NLP, ontologies can be used as a source of knowledge for machine translation systems. With access to a large knowledge base, systems can be enabled to resolve many (especially lexical) ambiguities on their own. In the following classic examples, as humans, we are able to interpret the prepositional phrase according to the context because we use our world knowledge, stored in our lexicons:

I saw a man/star/molecule with a microscope/telescope/binoculars.

A machine translation system initially would not be able to differentiate between the meanings because syntax does not change. With a large enough ontology as a source of knowledge however, the possible interpretations of ambiguous words in a specific context can be reduced. Other areas of usage for ontologies within NLP include information retrieval, information extraction and text summarization.

Building ontologies

The ontology generated for the PANGLOSS knowledge-based machine translation system in 1993 may serve as an example of how an ontology for NLP purposes can be compiled:

  • A large-scale ontology is necessary to help parsing in the active modules of the machine translation system.
  • In the PANGLOSS example, about 50,000 nodes were intended to be subsumed under the smaller, manually-built upper (abstract) region of the ontology. Because of its size, it had to be created automatically.
  • The goal was to merge the two resources LDOCE online and WordNet to combine the benefits of both: concise definitions from Longman, and semantic relations allowing for semi-automatic taxonomization to the ontology from WordNet.
    • A definition match algorithm was created to automatically merge the correct meanings of ambiguous words between the two online resources, based on the words that the definitions of those meanings have in common in LDOCE and WordNet. Using a similarity matrix, the algorithm delivered matches between meanings including a confidence factor. This algorithm alone, however, did not match all meanings correctly on its own.
    • A second hierarchy match algorithm was therefore created which uses the taxonomic hierarchies found in WordNet (deep hierarchies) and partially in LDOCE (flat hierarchies). This works by first matching unambiguous meanings, then limiting the search space to only the respective ancestors and descendants of those matched meanings. Thus, the algorithm matched locally unambiguous meanings (for instance, while the word seal as such is ambiguous, there is only one meaning of seal in the animal subhierarchy).
  • Both algorithms complemented each other and helped constructing a large-scale ontology for the machine translation system. The WordNet hierarchies, coupled with the matching definitions of LDOCE, were subordinated to the ontology's upper region. As a result, the PANGLOSS MT system was able to make use of this knowledge base, mainly in its generation element.

Applications

While no system provides the ideal of fully automatic high-quality machine translation of unrestricted text, many fully automated systems produce reasonable output. The quality of machine translation is substantially improved if the domain is restricted and controlled. This enables using machine translation as a tool to speed up and simplify translations, as well as producing flawed but useful low-cost or ad-hoc translations.

Travel

Machine translation applications have also been released for most mobile devices, including mobile telephones, pocket PCs, PDAs, etc. Due to their portability, such instruments have come to be designated as mobile translation tools enabling mobile business networking between partners speaking different languages, or facilitating both foreign language learning and unaccompanied traveling to foreign countries without the need of the intermediation of a human translator.

For example, the Google Translate app allows foreigners to quickly translate text in their surrounding via augmented reality using the smartphone camera that overlays the translated text onto the text. It can also recognize speech and then translate it.

Public administration

Despite their inherent limitations, MT programs are used around the world. Probably the largest institutional user is the European Commission. In the 2012, with an aim to replace a rule-based MT by newer, statistical-based MT@EC, The European Commission contributed 3.072 million euros (via its ISA programme).

Wikipedia

Machine translation has also been used for translating Wikipedia articles and could play a larger role in creating, updating, expanding, and generally improving articles in the future, especially as the MT capabilities may improve. There is a "content translation tool" which allows editors to more easily translate articles across several select languages. English-language articles are thought to usually be more comprehensive and less biased than their non-translated equivalents in other languages. As of 2022, English Wikipedia has over 6.5 million articles while the German and Swedish Wikipedias each only have over 2.5 million articles, each often far less comprehensive.

Surveillance and military

Following terrorist attacks in Western countries, including 9-11, the U.S. and its allies have been most interested in developing Arabic machine translation programs, but also in translating Pashto and Dari languages. Within these languages, the focus is on key phrases and quick communication between military members and civilians through the use of mobile phone apps. The Information Processing Technology Office in DARPA hosted programs like TIDES and Babylon translator. US Air Force has awarded a $1 million contract to develop a language translation technology.

Social media

The notable rise of social networking on the web in recent years has created yet another niche for the application of machine translation software – in utilities such as Facebook, or instant messaging clients such as Skype, GoogleTalk, MSN Messenger, etc. – allowing users speaking different languages to communicate with each other.

Online games

Lineage W gained popularity in Japan because of its machine translation features allowing players from different countries to communicate.

Medicine

Despite being labelled as an unworthy competitor to human translation in 1966 by the Automated Language Processing Advisory Committee put together by the United States government, the quality of machine translation has now been improved to such levels that its application in online collaboration and in the medical field are being investigated. The application of this technology in medical settings where human translators are absent is another topic of research, but difficulties arise due to the importance of accurate translations in medical diagnoses.

Ancient languages

The advancements in convolutional neural networks in recent years and in low resource machine translation (when only a very limited amout of data and examples are available for training) enabled machine translation for ancient languages, such as Akkadian and its dialects Babylonian and Assyrian.

Evaluation

There are many factors that affect how machine translation systems are evaluated. These factors include the intended use of the translation, the nature of the machine translation software, and the nature of the translation process.

Different programs may work well for different purposes. For example, statistical machine translation (SMT) typically outperforms example-based machine translation (EBMT), but researchers found that when evaluating English to French translation, EBMT performs better. The same concept applies for technical documents, which can be more easily translated by SMT because of their formal language.

In certain applications, however, e.g., product descriptions written in a controlled language, a dictionary-based machine-translation system has produced satisfactory translations that require no human intervention save for quality inspection.

There are various means for evaluating the output quality of machine translation systems. The oldest is the use of human judges to assess a translation's quality. Even though human evaluation is time-consuming, it is still the most reliable method to compare different systems such as rule-based and statistical systems. Automated means of evaluation include BLEU, NIST, METEOR, and LEPOR.

Relying exclusively on unedited machine translation ignores the fact that communication in human language is context-embedded and that it takes a person to comprehend the context of the original text with a reasonable degree of probability. It is certainly true that even purely human-generated translations are prone to error. Therefore, to ensure that a machine-generated translation will be useful to a human being and that publishable-quality translation is achieved, such translations must be reviewed and edited by a human. The late Claude Piron wrote that machine translation, at its best, automates the easier part of a translator's job; the harder and more time-consuming part usually involves doing extensive research to resolve ambiguities in the source text, which the grammatical and lexical exigencies of the target language require to be resolved. Such research is a necessary prelude to the pre-editing necessary in order to provide input for machine-translation software such that the output will not be meaningless.

In addition to disambiguation problems, decreased accuracy can occur due to varying levels of training data for machine translating programs. Both example-based and statistical machine translation rely on a vast array of real example sentences as a base for translation, and when too many or too few sentences are analyzed accuracy is jeopardized. Researchers found that when a program is trained on 203,529 sentence pairings, accuracy actually decreases. The optimal level of training data seems to be just over 100,000 sentences, possibly because as training data increases, the number of possible sentences increases, making it harder to find an exact translation match.

Flaws in machine translation have been noted for their entertainment value. Two videos uploaded to YouTube in April 2017 involve two Japanese hiragana characters えぐ (e and gu) being repeatedly pasted into Google Translate, with the resulting translations quickly degrading into nonsensical phrases such as "DECEARING EGG" and "Deep-sea squeeze trees", which are then read in increasingly absurd voices; the full-length version of the video currently has 6.9 million views as of March 2022.

Machine translation and signed languages

In the early 2000s, options for machine translation between spoken and signed languages were severely limited. It was a common belief that deaf individuals could use traditional translators. However, stress, intonation, pitch, and timing are conveyed much differently in spoken languages compared to signed languages. Therefore, a deaf individual may misinterpret or become confused about the meaning of written text that is based on a spoken language.

Researchers Zhao, et al. (2000), developed a prototype called TEAM (translation from English to ASL by machine) that completed English to American Sign Language (ASL) translations. The program would first analyze the syntactic, grammatical, and morphological aspects of the English text. Following this step, the program accessed a sign synthesizer, which acted as a dictionary for ASL. This synthesizer housed the process one must follow to complete ASL signs, as well as the meanings of these signs. Once the entire text is analyzed and the signs necessary to complete the translation are located in the synthesizer, a computer generated human appeared and would use ASL to sign the English text to the user.

Copyright

Only works that are original are subject to copyright protection, so some scholars claim that machine translation results are not entitled to copyright protection because MT does not involve creativity. The copyright at issue is for a derivative work; the author of the original work in the original language does not lose his rights when a work is translated: a translator must have permission to publish a translation.

AI-complete

From Wikipedia, the free encyclopedia

In the field of artificial intelligence, the most difficult problems are informally known as AI-complete or AI-hard, implying that the difficulty of these computational problems, assuming intelligence is computational, is equivalent to that of solving the central artificial intelligence problem—making computers as intelligent as people, or strong AI. To call a problem AI-complete reflects an attitude that it would not be solved by a simple specific algorithm.

AI-complete problems are hypothesised to include computer vision, natural language understanding, and dealing with unexpected circumstances while solving any real-world problem.

Currently, AI-complete problems cannot be solved with modern computer technology alone, but would also require human computation. This property could be useful, for example, to test for the presence of humans as CAPTCHAs aim to do, and for computer security to circumvent brute-force attacks.

History

The term was coined by Fanya Montalvo by analogy with NP-complete and NP-hard in complexity theory, which formally describes the most famous class of difficult problems. Early uses of the term are in Erik Mueller's 1987 PhD dissertation and in Eric Raymond's 1991 Jargon File.

AI-complete problems

AI-complete problems are hypothesized to include:

Machine translation

To translate accurately, a machine must be able to understand the text. It must be able to follow the author's argument, so it must have some ability to reason. It must have extensive world knowledge so that it knows what is being discussed — it must at least be familiar with all the same commonsense facts that the average human translator knows. Some of this knowledge is in the form of facts that can be explicitly represented, but some knowledge is unconscious and closely tied to the human body: for example, the machine may need to understand how an ocean makes one feel to accurately translate a specific metaphor in the text. It must also model the authors' goals, intentions, and emotional states to accurately reproduce them in a new language. In short, the machine is required to have wide variety of human intellectual skills, including reason, commonsense knowledge and the intuitions that underlie motion and manipulation, perception, and social intelligence. Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.

Software brittleness

Current AI systems can solve very simple and/or restricted versions of AI-complete problems, but never in their full generality. When AI researchers attempt to "scale up" their systems to handle more complicated, real-world situations, the programs tend to become excessively brittle without commonsense knowledge or a rudimentary understanding of the situation: they fail as unexpected circumstances outside of its original problem context begin to appear. When human beings are dealing with new situations in the world, they are helped immensely by the fact that they know what to expect: they know what all things around them are, why they are there, what they are likely to do and so on. They can recognize unusual situations and adjust accordingly. A machine without strong AI has no other skills to fall back on.

DeepMind published a work in May 2022 in which they trained a single model to do several things at the same time. The model, named Gato, can "play Atari, caption images, chat, stack blocks with a real robot arm and much more, deciding based on its context whether to output text, joint torques, button presses, or other tokens."

Formalization

Computational complexity theory deals with the relative computational difficulty of computable functions. By definition, it does not cover problems whose solution is unknown or has not been characterised formally. Since many AI problems have no formalisation yet, conventional complexity theory does not allow the definition of AI-completeness.

To address this problem, a complexity theory for AI has been proposed. It is based on a model of computation that splits the computational burden between a computer and a human: one part is solved by computer and the other part solved by human. This is formalised by a human-assisted Turing machine. The formalisation defines algorithm complexity, problem complexity and reducibility which in turn allows equivalence classes to be defined.

The complexity of executing an algorithm with a human-assisted Turing machine is given by a pair , where the first element represents the complexity of the human's part and the second element is the complexity of the machine's part.

Results

The complexity of solving the following problems with a human-assisted Turing machine is:

  • Optical character recognition for printed text:
  • Turing test:
    • for an -sentence conversation where the oracle remembers the conversation history (persistent oracle):
    • for an -sentence conversation where the conversation history must be retransmitted:
    • for an -sentence conversation where the conversation history must be retransmitted and the person takes linear time to read the query:
  • ESP game:
  • Image labelling (based on the Arthur–Merlin protocol):
  • Image classification: human only: , and with less reliance on the human: .

Position and momentum spaces

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Position_and_momentum_spaces In physics an...