Search This Blog

Sunday, December 10, 2023

Electron

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Electron
Electron
Hydrogen atomic orbitals at different energy levels. The more opaque areas are where one is most likely to find an electron at any given time.
Compositionelementary particle
Statisticsfermionic
Familylepton
Generationfirst
Interactionsweak, electromagnetic, gravity
Symbol
e
,
β
Antiparticlepositron
TheorizedRichard Laming (1838–1851),
G. Johnstone Stoney (1874) and others.
DiscoveredJ. J. Thomson (1897)
Mass9.1093837015(28)×10−31 kg
5.48579909065(16)×10−4 Da
[1822.888486209(53)]−1 Da
0.51099895000(15) MeV/c2
Mean lifetime> 6.6×1028 years (stable)
Electric charge−1 e
1.602176634×10−19 C
Magnetic moment−9.2847647043(28)×10−24 J⋅T−1
−1.00115965218128(18) µB
Spin 1 /2 ħ
Weak isospinLH: − 1 /2, RH: 0
Weak hyperchargeLH: −1, RH: −2

The electron (
e
or
β
) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, per the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.

Electrons play an essential role in numerous physical phenomena, such as electricity, magnetism, chemistry, and thermal conductivity; they also participate in gravitational, electromagnetic, and weak interactions. Since an electron has charge, it has a surrounding electric field; if that electron is moving relative to an observer, the observer will observe it to generate a magnetic field. Electromagnetic fields produced from other sources will affect the motion of an electron according to the Lorentz force law. Electrons radiate or absorb energy in the form of photons when they are accelerated.

Laboratory instruments are capable of trapping individual electrons as well as electron plasma by the use of electromagnetic fields. Special telescopes can detect electron plasma in outer space. Electrons are involved in many applications, such as tribology or frictional charging, electrolysis, electrochemistry, battery technologies, electronics, welding, cathode-ray tubes, photoelectricity, photovoltaic solar panels, electron microscopes, radiation therapy, lasers, gaseous ionization detectors, and particle accelerators.

Interactions involving electrons with other subatomic particles are of interest in fields such as chemistry and nuclear physics. The Coulomb force interaction between the positive protons within atomic nuclei and the negative electrons without allows the composition of the two known as atoms. Ionization or differences in the proportions of negative electrons versus positive nuclei changes the binding energy of an atomic system. The exchange or sharing of the electrons between two or more atoms is the main cause of chemical bonding.

In 1838, British natural philosopher Richard Laming first hypothesized the concept of an indivisible quantity of electric charge to explain the chemical properties of atoms. Irish physicist George Johnstone Stoney named this charge 'electron' in 1891, and J. J. Thomson and his team of British physicists identified it as a particle in 1897 during the cathode-ray tube experiment.

Electrons participate in nuclear reactions, such as nucleosynthesis in stars, where they are known as beta particles. Electrons can be created through beta decay of radioactive isotopes and in high-energy collisions, for instance, when cosmic rays enter the atmosphere. The antiparticle of the electron is called the positron; it is identical to the electron, except that it carries electrical charge of the opposite sign. When an electron collides with a positron, both particles can be annihilated, producing gamma ray photons.

History

Discovery of effect of electric force

The ancient Greeks noticed that amber attracted small objects when rubbed with fur. Along with lightning, this phenomenon is one of humanity's earliest recorded experiences with electricity. In his 1600 treatise De Magnete, the English scientist William Gilbert coined the Neo-Latin term electrica, to refer to those substances with property similar to that of amber which attract small objects after being rubbed. Both electric and electricity are derived from the Latin ēlectrum (also the root of the alloy of the same name), which came from the Greek word for amber, ἤλεκτρον (ēlektron).

Discovery of two kinds of charges

In the early 1700s, French chemist Charles François du Fay found that if a charged gold-leaf is repulsed by glass rubbed with silk, then the same charged gold-leaf is attracted by amber rubbed with wool. From this and other results of similar types of experiments, du Fay concluded that electricity consists of two electrical fluids, vitreous fluid from glass rubbed with silk and resinous fluid from amber rubbed with wool. These two fluids can neutralize each other when combined. American scientist Ebenezer Kinnersley later also independently reached the same conclusion. A decade later Benjamin Franklin proposed that electricity was not from different types of electrical fluid, but a single electrical fluid showing an excess (+) or deficit (−). He gave them the modern charge nomenclature of positive and negative respectively. Franklin thought of the charge carrier as being positive, but he did not correctly identify which situation was a surplus of the charge carrier, and which situation was a deficit.

Between 1838 and 1851, British natural philosopher Richard Laming developed the idea that an atom is composed of a core of matter surrounded by subatomic particles that had unit electric charges. Beginning in 1846, German physicist Wilhelm Eduard Weber theorized that electricity was composed of positively and negatively charged fluids, and their interaction was governed by the inverse square law. After studying the phenomenon of electrolysis in 1874, Irish physicist George Johnstone Stoney suggested that there existed a "single definite quantity of electricity", the charge of a monovalent ion. He was able to estimate the value of this elementary charge e by means of Faraday's laws of electrolysis. However, Stoney believed these charges were permanently attached to atoms and could not be removed. In 1881, German physicist Hermann von Helmholtz argued that both positive and negative charges were divided into elementary parts, each of which "behaves like atoms of electricity".

Stoney initially coined the term electrolion in 1881. Ten years later, he switched to electron to describe these elementary charges, writing in 1894: "... an estimate was made of the actual amount of this most remarkable fundamental unit of electricity, for which I have since ventured to suggest the name electron". A 1906 proposal to change to electrion failed because Hendrik Lorentz preferred to keep electron. The word electron is a combination of the words electric and ion. The suffix -on which is now used to designate other subatomic particles, such as a proton or neutron, is in turn derived from electron.

Discovery of free electrons outside matter

A round glass vacuum tube with a glowing circular beam inside
A beam of electrons deflected by a magnetic field into a circle

While studying electrical conductivity in rarefied gases in 1859, the German physicist Julius Plücker observed the radiation emitted from the cathode caused phosphorescent light to appear on the tube wall near the cathode; and the region of the phosphorescent light could be moved by application of a magnetic field. In 1869, Plücker's student Johann Wilhelm Hittorf found that a solid body placed in between the cathode and the phosphorescence would cast a shadow upon the phosphorescent region of the tube. Hittorf inferred that there are straight rays emitted from the cathode and that the phosphorescence was caused by the rays striking the tube walls. In 1876, the German physicist Eugen Goldstein showed that the rays were emitted perpendicular to the cathode surface, which distinguished between the rays that were emitted from the cathode and the incandescent light. Goldstein dubbed the rays cathode rays. Decades of experimental and theoretical research involving cathode rays were important in J. J. Thomson's eventual discovery of electrons.

During the 1870s, the English chemist and physicist Sir William Crookes developed the first cathode-ray tube to have a high vacuum inside. He then showed in 1874 that the cathode rays can turn a small paddle wheel when placed in their path. Therefore, he concluded that the rays carried momentum. Furthermore, by applying a magnetic field, he was able to deflect the rays, thereby demonstrating that the beam behaved as though it were negatively charged. In 1879, he proposed that these properties could be explained by regarding cathode rays as composed of negatively charged gaseous molecules in a fourth state of matter in which the mean free path of the particles is so long that collisions may be ignored.

The German-born British physicist Arthur Schuster expanded upon Crookes's experiments by placing metal plates parallel to the cathode rays and applying an electric potential between the plates. The field deflected the rays toward the positively charged plate, providing further evidence that the rays carried negative charge. By measuring the amount of deflection for a given electric and magnetic field, in 1890 Schuster was able to estimate the charge-to-mass ratio of the ray components. However, this produced a value that was more than a thousand times greater than what was expected, so little credence was given to his calculations at the time. This is because it was assumed that the charge carriers were much heavier hydrogen or nitrogen atoms. Schuster's estimates would subsequently turn out to be largely correct.

In 1892 Hendrik Lorentz suggested that the mass of these particles (electrons) could be a consequence of their electric charge.

J. J. Thomson

While studying naturally fluorescing minerals in 1896, the French physicist Henri Becquerel discovered that they emitted radiation without any exposure to an external energy source. These radioactive materials became the subject of much interest by scientists, including the New Zealand physicist Ernest Rutherford who discovered they emitted particles. He designated these particles alpha and beta, on the basis of their ability to penetrate matter. In 1900, Becquerel showed that the beta rays emitted by radium could be deflected by an electric field, and that their mass-to-charge ratio was the same as for cathode rays. This evidence strengthened the view that electrons existed as components of atoms.

In 1897, the British physicist J. J. Thomson, with his colleagues John S. Townsend and H. A. Wilson, performed experiments indicating that cathode rays really were unique particles, rather than waves, atoms or molecules as was believed earlier. Thomson made good estimates of both the charge e and the mass m, finding that cathode ray particles, which he called "corpuscles", had perhaps one thousandth of the mass of the least massive ion known: hydrogen. He showed that their charge-to-mass ratio, e/m, was independent of cathode material. He further showed that the negatively charged particles produced by radioactive materials, by heated materials and by illuminated materials were universal. The name electron was adopted for these particles by the scientific community, mainly due to the advocation by G. F. FitzGerald, J. Larmor, and H. A. Lorentz. In the same year Emil Wiechert and Walter Kaufmann also calculated the e/m ratio but they failed short of interpreting their results while J. J. Thomson would subsequently in 1899 give estimates for the electron charge and mass as well: e~6.8×10−10 esu and m~3×10−26 g

Robert Millikan

The electron's charge was more carefully measured by the American physicists Robert Millikan and Harvey Fletcher in their oil-drop experiment of 1909, the results of which were published in 1911. This experiment used an electric field to prevent a charged droplet of oil from falling as a result of gravity. This device could measure the electric charge from as few as 1–150 ions with an error margin of less than 0.3%. Comparable experiments had been done earlier by Thomson's team, using clouds of charged water droplets generated by electrolysis, and in 1911 by Abram Ioffe, who independently obtained the same result as Millikan using charged microparticles of metals, then published his results in 1913. However, oil drops were more stable than water drops because of their slower evaporation rate, and thus more suited to precise experimentation over longer periods of time.

Around the beginning of the twentieth century, it was found that under certain conditions a fast-moving charged particle caused a condensation of supersaturated water vapor along its path. In 1911, Charles Wilson used this principle to devise his cloud chamber so he could photograph the tracks of charged particles, such as fast-moving electrons.

Atomic theory

Three concentric circles about a nucleus, with an electron moving from the second to the first circle and releasing a photon
The Bohr model of the atom, showing states of an electron with energy quantized by the number n. An electron dropping to a lower orbit emits a photon equal to the energy difference between the orbits.

By 1914, experiments by physicists Ernest Rutherford, Henry Moseley, James Franck and Gustav Hertz had largely established the structure of an atom as a dense nucleus of positive charge surrounded by lower-mass electrons. In 1913, Danish physicist Niels Bohr postulated that electrons resided in quantized energy states, with their energies determined by the angular momentum of the electron's orbit about the nucleus. The electrons could move between those states, or orbits, by the emission or absorption of photons of specific frequencies. By means of these quantized orbits, he accurately explained the spectral lines of the hydrogen atom. However, Bohr's model failed to account for the relative intensities of the spectral lines and it was unsuccessful in explaining the spectra of more complex atoms.

Chemical bonds between atoms were explained by Gilbert Newton Lewis, who in 1916 proposed that a covalent bond between two atoms is maintained by a pair of electrons shared between them. Later, in 1927, Walter Heitler and Fritz London gave the full explanation of the electron-pair formation and chemical bonding in terms of quantum mechanics. In 1919, the American chemist Irving Langmuir elaborated on the Lewis's static model of the atom and suggested that all electrons were distributed in successive "concentric (nearly) spherical shells, all of equal thickness". In turn, he divided the shells into a number of cells each of which contained one pair of electrons. With this model Langmuir was able to qualitatively explain the chemical properties of all elements in the periodic table, which were known to largely repeat themselves according to the periodic law.

In 1924, Austrian physicist Wolfgang Pauli observed that the shell-like structure of the atom could be explained by a set of four parameters that defined every quantum energy state, as long as each state was occupied by no more than a single electron. This prohibition against more than one electron occupying the same quantum energy state became known as the Pauli exclusion principle. The physical mechanism to explain the fourth parameter, which had two distinct possible values, was provided by the Dutch physicists Samuel Goudsmit and George Uhlenbeck. In 1925, they suggested that an electron, in addition to the angular momentum of its orbit, possesses an intrinsic angular momentum and magnetic dipole moment. This is analogous to the rotation of the Earth on its axis as it orbits the Sun. The intrinsic angular momentum became known as spin, and explained the previously mysterious splitting of spectral lines observed with a high-resolution spectrograph; this phenomenon is known as fine structure splitting.

Quantum mechanics

In his 1924 dissertation Recherches sur la théorie des quanta (Research on Quantum Theory), French physicist Louis de Broglie hypothesized that all matter can be represented as a de Broglie wave in the manner of light. That is, under the appropriate conditions, electrons and other matter would show properties of either particles or waves. The corpuscular properties of a particle are demonstrated when it is shown to have a localized position in space along its trajectory at any given moment. The wave-like nature of light is displayed, for example, when a beam of light is passed through parallel slits thereby creating interference patterns. In 1927, George Paget Thomson and Alexander Reid discovered the interference effect was produced when a beam of electrons was passed through thin celluloid foils and later metal films, and by American physicists Clinton Davisson and Lester Germer by the reflection of electrons from a crystal of nickel. Alexander Reid, who was Thomson's graduate student, performed the first experiments but he died soon after in a motorcycle accident and is rarely mentioned.

A spherically symmetric blue cloud that decreases in intensity from the center outward
In quantum mechanics, the behavior of an electron in an atom is described by an orbital, which is a probability distribution rather than an orbit. In the figure, the shading indicates the relative probability to "find" the electron, having the energy corresponding to the given quantum numbers, at that point.

De Broglie's prediction of a wave nature for electrons led Erwin Schrödinger to postulate a wave equation for electrons moving under the influence of the nucleus in the atom. In 1926, this equation, the Schrödinger equation, successfully described how electron waves propagated. Rather than yielding a solution that determined the location of an electron over time, this wave equation also could be used to predict the probability of finding an electron near a position, especially a position near where the electron was bound in space, for which the electron wave equations did not change in time. This approach led to a second formulation of quantum mechanics (the first by Heisenberg in 1925), and solutions of Schrödinger's equation, like Heisenberg's, provided derivations of the energy states of an electron in a hydrogen atom that were equivalent to those that had been derived first by Bohr in 1913, and that were known to reproduce the hydrogen spectrum. Once spin and the interaction between multiple electrons were describable, quantum mechanics made it possible to predict the configuration of electrons in atoms with atomic numbers greater than hydrogen.

In 1928, building on Wolfgang Pauli's work, Paul Dirac produced a model of the electron – the Dirac equation, consistent with relativity theory, by applying relativistic and symmetry considerations to the hamiltonian formulation of the quantum mechanics of the electro-magnetic field. In order to resolve some problems within his relativistic equation, Dirac developed in 1930 a model of the vacuum as an infinite sea of particles with negative energy, later dubbed the Dirac sea. This led him to predict the existence of a positron, the antimatter counterpart of the electron. This particle was discovered in 1932 by Carl Anderson, who proposed calling standard electrons negatrons and using electron as a generic term to describe both the positively and negatively charged variants.

In 1947, Willis Lamb, working in collaboration with graduate student Robert Retherford, found that certain quantum states of the hydrogen atom, which should have the same energy, were shifted in relation to each other; the difference came to be called the Lamb shift. About the same time, Polykarp Kusch, working with Henry M. Foley, discovered the magnetic moment of the electron is slightly larger than predicted by Dirac's theory. This small difference was later called anomalous magnetic dipole moment of the electron. This difference was later explained by the theory of quantum electrodynamics, developed by Sin-Itiro Tomonaga, Julian Schwinger and Richard Feynman in the late 1940s.

Particle accelerators

With the development of the particle accelerator during the first half of the twentieth century, physicists began to delve deeper into the properties of subatomic particles. The first successful attempt to accelerate electrons using electromagnetic induction was made in 1942 by Donald Kerst. His initial betatron reached energies of 2.3 MeV, while subsequent betatrons achieved 300 MeV. In 1947, synchrotron radiation was discovered with a 70 MeV electron synchrotron at General Electric. This radiation was caused by the acceleration of electrons through a magnetic field as they moved near the speed of light.

With a beam energy of 1.5 GeV, the first high-energy particle collider was ADONE, which began operations in 1968. This device accelerated electrons and positrons in opposite directions, effectively doubling the energy of their collision when compared to striking a static target with an electron. The Large Electron–Positron Collider (LEP) at CERN, which was operational from 1989 to 2000, achieved collision energies of 209 GeV and made important measurements for the Standard Model of particle physics.

Confinement of individual electrons

Individual electrons can now be easily confined in ultra small (L = 20 nm, W = 20 nm) CMOS transistors operated at cryogenic temperature over a range of −269 °C (4 K) to about −258 °C (15 K). The electron wavefunction spreads in a semiconductor lattice and negligibly interacts with the valence band electrons, so it can be treated in the single particle formalism, by replacing its mass with the effective mass tensor.

Characteristics

Classification

A table with four rows and four columns, with each cell containing a particle identifier
Standard Model of elementary particles. The electron (symbol e) is on the left.

In the Standard Model of particle physics, electrons belong to the group of subatomic particles called leptons, which are believed to be fundamental or elementary particles. Electrons have the lowest mass of any charged lepton (or electrically charged particle of any type) and belong to the first-generation of fundamental particles. The second and third generation contain charged leptons, the muon and the tau, which are identical to the electron in charge, spin and interactions, but are more massive. Leptons differ from the other basic constituent of matter, the quarks, by their lack of strong interaction. All members of the lepton group are fermions because they all have half-odd integer spin; the electron has spin 1/2.

Fundamental properties

The invariant mass of an electron is approximately 9.109×10−31 kilograms, or 5.489×10−4 atomic mass units. Due to mass–energy equivalence, this corresponds to a rest energy of 0.511 MeV (8.19×10−14 J). The ratio between the mass of a proton and that of an electron is about 1836. Astronomical measurements show that the proton-to-electron mass ratio has held the same value, as is predicted by the Standard Model, for at least half the age of the universe.

Electrons have an electric charge of −1.602176634×10−19 coulombs, which is used as a standard unit of charge for subatomic particles, and is also called the elementary charge. Within the limits of experimental accuracy, the electron charge is identical to the charge of a proton, but with the opposite sign. The electron is commonly symbolized by
e
, and the positron is symbolized by
e+
.

The electron has an intrinsic angular momentum or spin of ħ/2. This property is usually stated by referring to the electron as a spin-1/2 particle. For such particles the spin magnitude is ħ/2, while the result of the measurement of a projection of the spin on any axis can only be ±ħ/2. In addition to spin, the electron has an intrinsic magnetic moment along its spin axis. It is approximately equal to one Bohr magneton, which is a physical constant equal to 9.27400915(23)×10−24 joules per tesla. The orientation of the spin with respect to the momentum of the electron defines the property of elementary particles known as helicity.

The electron has no known substructure. Nevertheless, in condensed matter physics, spin–charge separation can occur in some materials. In such cases, electrons 'split' into three independent particles, the spinon, the orbiton and the holon (or chargon). The electron can always be theoretically considered as a bound state of the three, with the spinon carrying the spin of the electron, the orbiton carrying the orbital degree of freedom and the chargon carrying the charge, but in certain conditions they can behave as independent quasiparticles.

The issue of the radius of the electron is a challenging problem of modern theoretical physics. The admission of the hypothesis of a finite radius of the electron is incompatible to the premises of the theory of relativity. On the other hand, a point-like electron (zero radius) generates serious mathematical difficulties due to the self-energy of the electron tending to infinity. Observation of a single electron in a Penning trap suggests the upper limit of the particle's radius to be 10−22 meters. The upper bound of the electron radius of 10−18 meters can be derived using the uncertainty relation in energy. There is also a physical constant called the "classical electron radius", with the much larger value of 2.8179×10−15 m, greater than the radius of the proton. However, the terminology comes from a simplistic calculation that ignores the effects of quantum mechanics; in reality, the so-called classical electron radius has little to do with the true fundamental structure of the electron.

There are elementary particles that spontaneously decay into less massive particles. An example is the muon, with a mean lifetime of 2.2×10−6 seconds, which decays into an electron, a muon neutrino and an electron antineutrino. The electron, on the other hand, is thought to be stable on theoretical grounds: the electron is the least massive particle with non-zero electric charge, so its decay would violate charge conservation. The experimental lower bound for the electron's mean lifetime is 6.6×1028 years, at a 90% confidence level.

Quantum properties

As with all particles, electrons can act as waves. This is called the wave–particle duality and can be demonstrated using the double-slit experiment.

The wave-like nature of the electron allows it to pass through two parallel slits simultaneously, rather than just one slit as would be the case for a classical particle. In quantum mechanics, the wave-like property of one particle can be described mathematically as a complex-valued function, the wave function, commonly denoted by the Greek letter psi (ψ). When the absolute value of this function is squared, it gives the probability that a particle will be observed near a location—a probability density.

A three dimensional projection of a two dimensional plot. There are symmetric hills along one axis and symmetric valleys along the other, roughly giving a saddle-shape
Example of an antisymmetric wave function for a quantum state of two identical fermions in a one-dimensional box, with each horizontal axis corresponding to the position of one particle. If the particles swap position, the wave function inverts its sign.

Electrons are identical particles because they cannot be distinguished from each other by their intrinsic physical properties. In quantum mechanics, this means that a pair of interacting electrons must be able to swap positions without an observable change to the state of the system. The wave function of fermions, including electrons, is antisymmetric, meaning that it changes sign when two electrons are swapped; that is, ψ(r1, r2) = −ψ(r2, r1), where the variables r1 and r2 correspond to the first and second electrons, respectively. Since the absolute value is not changed by a sign swap, this corresponds to equal probabilities. Bosons, such as the photon, have symmetric wave functions instead.

In the case of antisymmetry, solutions of the wave equation for interacting electrons result in a zero probability that each pair will occupy the same location or state. This is responsible for the Pauli exclusion principle, which precludes any two electrons from occupying the same quantum state. This principle explains many of the properties of electrons. For example, it causes groups of bound electrons to occupy different orbitals in an atom, rather than all overlapping each other in the same orbit.

Virtual particles

In a simplified picture, which often tends to give the wrong idea but may serve to illustrate some aspects, every photon spends some time as a combination of a virtual electron plus its antiparticle, the virtual positron, which rapidly annihilate each other shortly thereafter. The combination of the energy variation needed to create these particles, and the time during which they exist, fall under the threshold of detectability expressed by the Heisenberg uncertainty relation, ΔE · Δt ≥ ħ. In effect, the energy needed to create these virtual particles, ΔE, can be "borrowed" from the vacuum for a period of time, Δt, so that their product is no more than the reduced Planck constant, ħ6.6×10−16 eV·s. Thus, for a virtual electron, Δt is at most 1.3×10−21 s.

A sphere with a minus sign at lower left symbolizes the electron, while pairs of spheres with plus and minus signs show the virtual particles
A schematic depiction of virtual electron–positron pairs appearing at random near an electron (at lower left)

While an electron–positron virtual pair is in existence, the Coulomb force from the ambient electric field surrounding an electron causes a created positron to be attracted to the original electron, while a created electron experiences a repulsion. This causes what is called vacuum polarization. In effect, the vacuum behaves like a medium having a dielectric permittivity more than unity. Thus the effective charge of an electron is actually smaller than its true value, and the charge decreases with increasing distance from the electron. This polarization was confirmed experimentally in 1997 using the Japanese TRISTAN particle accelerator. Virtual particles cause a comparable shielding effect for the mass of the electron.

The interaction with virtual particles also explains the small (about 0.1%) deviation of the intrinsic magnetic moment of the electron from the Bohr magneton (the anomalous magnetic moment). The extraordinarily precise agreement of this predicted difference with the experimentally determined value is viewed as one of the great achievements of quantum electrodynamics.

The apparent paradox in classical physics of a point particle electron having intrinsic angular momentum and magnetic moment can be explained by the formation of virtual photons in the electric field generated by the electron. These photons can heuristically be thought of as causing the electron to shift about in a jittery fashion (known as zitterbewegung), which results in a net circular motion with precession. This motion produces both the spin and the magnetic moment of the electron. In atoms, this creation of virtual photons explains the Lamb shift observed in spectral lines. The Compton Wavelength shows that near elementary particles such as the electron, the uncertainty of the energy allows for the creation of virtual particles near the electron. This wavelength explains the "static" of virtual particles around elementary particles at a close distance.

Interaction

An electron generates an electric field that exerts an attractive force on a particle with a positive charge, such as the proton, and a repulsive force on a particle with a negative charge. The strength of this force in nonrelativistic approximation is determined by Coulomb's inverse square law. When an electron is in motion, it generates a magnetic field. The Ampère–Maxwell law relates the magnetic field to the mass motion of electrons (the current) with respect to an observer. This property of induction supplies the magnetic field that drives an electric motor. The electromagnetic field of an arbitrary moving charged particle is expressed by the Liénard–Wiechert potentials, which are valid even when the particle's speed is close to that of light (relativistic).

A graph with arcs showing the motion of charged particles
A particle with charge q (at left) is moving with velocity v through a magnetic field B that is oriented toward the viewer. For an electron, q is negative so it follows a curved trajectory toward the top.

When an electron is moving through a magnetic field, it is subject to the Lorentz force that acts perpendicularly to the plane defined by the magnetic field and the electron velocity. This centripetal force causes the electron to follow a helical trajectory through the field at a radius called the gyroradius. The acceleration from this curving motion induces the electron to radiate energy in the form of synchrotron radiation. The energy emission in turn causes a recoil of the electron, known as the Abraham–Lorentz–Dirac Force, which creates a friction that slows the electron. This force is caused by a back-reaction of the electron's own field upon itself.

A curve shows the motion of the electron, a red dot shows the nucleus, and a wiggly line the emitted photon
Here, Bremsstrahlung is produced by an electron e deflected by the electric field of an atomic nucleus. The energy change E2 − E1 determines the frequency f of the emitted photon.

Photons mediate electromagnetic interactions between particles in quantum electrodynamics. An isolated electron at a constant velocity cannot emit or absorb a real photon; doing so would violate conservation of energy and momentum. Instead, virtual photons can transfer momentum between two charged particles. This exchange of virtual photons, for example, generates the Coulomb force. Energy emission can occur when a moving electron is deflected by a charged particle, such as a proton. The deceleration of the electron results in the emission of Bremsstrahlung radiation.

An inelastic collision between a photon (light) and a solitary (free) electron is called Compton scattering. This collision results in a transfer of momentum and energy between the particles, which modifies the wavelength of the photon by an amount called the Compton shift. The maximum magnitude of this wavelength shift is h/mec, which is known as the Compton wavelength. For an electron, it has a value of 2.43×10−12 m. When the wavelength of the light is long (for instance, the wavelength of the visible light is 0.4–0.7 μm) the wavelength shift becomes negligible. Such interaction between the light and free electrons is called Thomson scattering or linear Thomson scattering.

The relative strength of the electromagnetic interaction between two charged particles, such as an electron and a proton, is given by the fine-structure constant. This value is a dimensionless quantity formed by the ratio of two energies: the electrostatic energy of attraction (or repulsion) at a separation of one Compton wavelength, and the rest energy of the charge. It is given by α ≈ 7.297353×10−3, which is approximately equal to 1/137.

When electrons and positrons collide, they annihilate each other, giving rise to two or more gamma ray photons. If the electron and positron have negligible momentum, a positronium atom can form before annihilation results in two or three gamma ray photons totalling 1.022 MeV. On the other hand, a high-energy photon can transform into an electron and a positron by a process called pair production, but only in the presence of a nearby charged particle, such as a nucleus.

In the theory of electroweak interaction, the left-handed component of electron's wavefunction forms a weak isospin doublet with the electron neutrino. This means that during weak interactions, electron neutrinos behave like electrons. Either member of this doublet can undergo a charged current interaction by emitting or absorbing a
W
and be converted into the other member. Charge is conserved during this reaction because the W boson also carries a charge, canceling out any net change during the transmutation. Charged current interactions are responsible for the phenomenon of beta decay in a radioactive atom. Both the electron and electron neutrino can undergo a neutral current interaction via a
Z0
exchange, and this is responsible for neutrino-electron elastic scattering.

Atoms and molecules

A table of five rows and five columns, with each cell portraying a color-coded probability density
Probability densities for the first few hydrogen atom orbitals, seen in cross-section. The energy level of a bound electron determines the orbital it occupies, and the color reflects the probability of finding the electron at a given position.

An electron can be bound to the nucleus of an atom by the attractive Coulomb force. A system of one or more electrons bound to a nucleus is called an atom. If the number of electrons is different from the nucleus's electrical charge, such an atom is called an ion. The wave-like behavior of a bound electron is described by a function called an atomic orbital. Each orbital has its own set of quantum numbers such as energy, angular momentum and projection of angular momentum, and only a discrete set of these orbitals exist around the nucleus. According to the Pauli exclusion principle each orbital can be occupied by up to two electrons, which must differ in their spin quantum number.

Electrons can transfer between different orbitals by the emission or absorption of photons with an energy that matches the difference in potential. Other methods of orbital transfer include collisions with particles, such as electrons, and the Auger effect. To escape the atom, the energy of the electron must be increased above its binding energy to the atom. This occurs, for example, with the photoelectric effect, where an incident photon exceeding the atom's ionization energy is absorbed by the electron.

The orbital angular momentum of electrons is quantized. Because the electron is charged, it produces an orbital magnetic moment that is proportional to the angular momentum. The net magnetic moment of an atom is equal to the vector sum of orbital and spin magnetic moments of all electrons and the nucleus. The magnetic moment of the nucleus is negligible compared with that of the electrons. The magnetic moments of the electrons that occupy the same orbital (so called, paired electrons) cancel each other out.

The chemical bond between atoms occurs as a result of electromagnetic interactions, as described by the laws of quantum mechanics. The strongest bonds are formed by the sharing or transfer of electrons between atoms, allowing the formation of molecules. Within a molecule, electrons move under the influence of several nuclei, and occupy molecular orbitals; much as they can occupy atomic orbitals in isolated atoms. A fundamental factor in these molecular structures is the existence of electron pairs. These are electrons with opposed spins, allowing them to occupy the same molecular orbital without violating the Pauli exclusion principle (much like in atoms). Different molecular orbitals have different spatial distribution of the electron density. For instance, in bonded pairs (i.e. in the pairs that actually bind atoms together) electrons can be found with the maximal probability in a relatively small volume between the nuclei. By contrast, in non-bonded pairs electrons are distributed in a large volume around nuclei.

Conductivity

Four bolts of lightning strike the ground
A lightning discharge consists primarily of a flow of electrons. The electric potential needed for lightning can be generated by a triboelectric effect.

If a body has more or fewer electrons than are required to balance the positive charge of the nuclei, then that object has a net electric charge. When there is an excess of electrons, the object is said to be negatively charged. When there are fewer electrons than the number of protons in nuclei, the object is said to be positively charged. When the number of electrons and the number of protons are equal, their charges cancel each other and the object is said to be electrically neutral. A macroscopic body can develop an electric charge through rubbing, by the triboelectric effect.

Independent electrons moving in vacuum are termed free electrons. Electrons in metals also behave as if they were free. In reality the particles that are commonly termed electrons in metals and other solids are quasi-electrons—quasiparticles, which have the same electrical charge, spin, and magnetic moment as real electrons but might have a different mass. When free electrons—both in vacuum and metals—move, they produce a net flow of charge called an electric current, which generates a magnetic field. Likewise a current can be created by a changing magnetic field. These interactions are described mathematically by Maxwell's equations.

At a given temperature, each material has an electrical conductivity that determines the value of electric current when an electric potential is applied. Examples of good conductors include metals such as copper and gold, whereas glass and Teflon are poor conductors. In any dielectric material, the electrons remain bound to their respective atoms and the material behaves as an insulator. Most semiconductors have a variable level of conductivity that lies between the extremes of conduction and insulation. On the other hand, metals have an electronic band structure containing partially filled electronic bands. The presence of such bands allows electrons in metals to behave as if they were free or delocalized electrons. These electrons are not associated with specific atoms, so when an electric field is applied, they are free to move like a gas (called Fermi gas) through the material much like free electrons.

Because of collisions between electrons and atoms, the drift velocity of electrons in a conductor is on the order of millimeters per second. However, the speed at which a change of current at one point in the material causes changes in currents in other parts of the material, the velocity of propagation, is typically about 75% of light speed. This occurs because electrical signals propagate as a wave, with the velocity dependent on the dielectric constant of the material.

Metals make relatively good conductors of heat, primarily because the delocalized electrons are free to transport thermal energy between atoms. However, unlike electrical conductivity, the thermal conductivity of a metal is nearly independent of temperature. This is expressed mathematically by the Wiedemann–Franz law, which states that the ratio of thermal conductivity to the electrical conductivity is proportional to the temperature. The thermal disorder in the metallic lattice increases the electrical resistivity of the material, producing a temperature dependence for electric current.

When cooled below a point called the critical temperature, materials can undergo a phase transition in which they lose all resistivity to electric current, in a process known as superconductivity. In BCS theory, pairs of electrons called Cooper pairs have their motion coupled to nearby matter via lattice vibrations called phonons, thereby avoiding the collisions with atoms that normally create electrical resistance. (Cooper pairs have a radius of roughly 100 nm, so they can overlap each other.) However, the mechanism by which higher temperature superconductors operate remains uncertain.

Electrons inside conducting solids, which are quasi-particles themselves, when tightly confined at temperatures close to absolute zero, behave as though they had split into three other quasiparticles: spinons, orbitons and holons. The former carries spin and magnetic moment, the next carries its orbital location while the latter electrical charge.

Motion and energy

According to Einstein's theory of special relativity, as an electron's speed approaches the speed of light, from an observer's point of view its relativistic mass increases, thereby making it more and more difficult to accelerate it from within the observer's frame of reference. The speed of an electron can approach, but never reach, the speed of light in vacuum, c. However, when relativistic electrons—that is, electrons moving at a speed close to c—are injected into a dielectric medium such as water, where the local speed of light is significantly less than c, the electrons temporarily travel faster than light in the medium. As they interact with the medium, they generate a faint light called Cherenkov radiation.

The plot starts at zero and curves sharply upward toward the right
Lorentz factor as a function of velocity. It starts at value 1 and goes to infinity as v approaches c.

The effects of special relativity are based on a quantity known as the Lorentz factor, defined as where v is the speed of the particle. The kinetic energy Ke of an electron moving with velocity v is:

where me is the mass of electron. For example, the Stanford linear accelerator can accelerate an electron to roughly 51 GeV. Since an electron behaves as a wave, at a given velocity it has a characteristic de Broglie wavelength. This is given by λe = h/p where h is the Planck constant and p is the momentum. For the 51 GeV electron above, the wavelength is about 2.4×10−17 m, small enough to explore structures well below the size of an atomic nucleus.

Formation

A photon approaches the nucleus from the left, with the resulting electron and positron moving off to the right
Pair production of an electron and positron, caused by the close approach of a photon with an atomic nucleus. The lightning symbol represents an exchange of a virtual photon, thus an electric force acts. The angle between the particles is very small.

The Big Bang theory is the most widely accepted scientific theory to explain the early stages in the evolution of the Universe. For the first millisecond of the Big Bang, the temperatures were over 10 billion kelvins and photons had mean energies over a million electronvolts. These photons were sufficiently energetic that they could react with each other to form pairs of electrons and positrons. Likewise, positron-electron pairs annihilated each other and emitted energetic photons:


γ
+
γ

e+
+
e

An equilibrium between electrons, positrons and photons was maintained during this phase of the evolution of the Universe. After 15 seconds had passed, however, the temperature of the universe dropped below the threshold where electron-positron formation could occur. Most of the surviving electrons and positrons annihilated each other, releasing gamma radiation that briefly reheated the universe.

For reasons that remain uncertain, during the annihilation process there was an excess in the number of particles over antiparticles. Hence, about one electron for every billion electron-positron pairs survived. This excess matched the excess of protons over antiprotons, in a condition known as baryon asymmetry, resulting in a net charge of zero for the universe. The surviving protons and neutrons began to participate in reactions with each other—in the process known as nucleosynthesis, forming isotopes of hydrogen and helium, with trace amounts of lithium. This process peaked after about five minutes. Any leftover neutrons underwent negative beta decay with a half-life of about a thousand seconds, releasing a proton and electron in the process,


n

p
+
e
+
ν
e

For about the next 300000400000 years, the excess electrons remained too energetic to bind with atomic nuclei. What followed is a period known as recombination, when neutral atoms were formed and the expanding universe became transparent to radiation.

Roughly one million years after the big bang, the first generation of stars began to form. Within a star, stellar nucleosynthesis results in the production of positrons from the fusion of atomic nuclei. These antimatter particles immediately annihilate with electrons, releasing gamma rays. The net result is a steady reduction in the number of electrons, and a matching increase in the number of neutrons. However, the process of stellar evolution can result in the synthesis of radioactive isotopes. Selected isotopes can subsequently undergo negative beta decay, emitting an electron and antineutrino from the nucleus. An example is the cobalt-60 (60Co) isotope, which decays to form nickel-60 (60
Ni
).

A branching tree representing the particle production
An extended air shower generated by an energetic cosmic ray striking the Earth's atmosphere

At the end of its lifetime, a star with more than about 20 solar masses can undergo gravitational collapse to form a black hole. According to classical physics, these massive stellar objects exert a gravitational attraction that is strong enough to prevent anything, even electromagnetic radiation, from escaping past the Schwarzschild radius. However, quantum mechanical effects are believed to potentially allow the emission of Hawking radiation at this distance. Electrons (and positrons) are thought to be created at the event horizon of these stellar remnants.

When a pair of virtual particles (such as an electron and positron) is created in the vicinity of the event horizon, random spatial positioning might result in one of them to appear on the exterior; this process is called quantum tunnelling. The gravitational potential of the black hole can then supply the energy that transforms this virtual particle into a real particle, allowing it to radiate away into space. In exchange, the other member of the pair is given negative energy, which results in a net loss of mass-energy by the black hole. The rate of Hawking radiation increases with decreasing mass, eventually causing the black hole to evaporate away until, finally, it explodes.

Cosmic rays are particles traveling through space with high energies. Energy events as high as 3.0×1020 eV have been recorded. When these particles collide with nucleons in the Earth's atmosphere, a shower of particles is generated, including pions. More than half of the cosmic radiation observed from the Earth's surface consists of muons. The particle called a muon is a lepton produced in the upper atmosphere by the decay of a pion.


π

μ
+
ν
μ

A muon, in turn, can decay to form an electron or positron.


μ

e
+
ν
e
+
ν
μ

Observation

A swirling green glow in the night sky above snow-covered ground
Aurorae are mostly caused by energetic electrons precipitating into the atmosphere.

Remote observation of electrons requires detection of their radiated energy. For example, in high-energy environments such as the corona of a star, free electrons form a plasma that radiates energy due to Bremsstrahlung radiation. Electron gas can undergo plasma oscillation, which is waves caused by synchronized variations in electron density, and these produce energy emissions that can be detected by using radio telescopes.

The frequency of a photon is proportional to its energy. As a bound electron transitions between different energy levels of an atom, it absorbs or emits photons at characteristic frequencies. For instance, when atoms are irradiated by a source with a broad spectrum, distinct dark lines appear in the spectrum of transmitted radiation in places where the corresponding frequency is absorbed by the atom's electrons. Each element or molecule displays a characteristic set of spectral lines, such as the hydrogen spectral series. When detected, spectroscopic measurements of the strength and width of these lines allow the composition and physical properties of a substance to be determined.

In laboratory conditions, the interactions of individual electrons can be observed by means of particle detectors, which allow measurement of specific properties such as energy, spin and charge. The development of the Paul trap and Penning trap allows charged particles to be contained within a small region for long durations. This enables precise measurements of the particle properties. For example, in one instance a Penning trap was used to contain a single electron for a period of 10 months. The magnetic moment of the electron was measured to a precision of eleven digits, which, in 1980, was a greater accuracy than for any other physical constant.

The first video images of an electron's energy distribution were captured by a team at Lund University in Sweden, February 2008. The scientists used extremely short flashes of light, called attosecond pulses, which allowed an electron's motion to be observed for the first time.

The distribution of the electrons in solid materials can be visualized by angle-resolved photoemission spectroscopy (ARPES). This technique employs the photoelectric effect to measure the reciprocal space—a mathematical representation of periodic structures that is used to infer the original structure. ARPES can be used to determine the direction, speed and scattering of electrons within the material.

Plasma applications

Particle beams

A violet beam from above produces a blue glow about a Space shuttle model
During a NASA wind tunnel test, a model of the Space Shuttle is targeted by a beam of electrons, simulating the effect of ionizing gases during re-entry.

Electron beams are used in welding. They allow energy densities up to 107 W·cm−2 across a narrow focus diameter of 0.1–1.3 mm and usually require no filler material. This welding technique must be performed in a vacuum to prevent the electrons from interacting with the gas before reaching their target, and it can be used to join conductive materials that would otherwise be considered unsuitable for welding.

Electron-beam lithography (EBL) is a method of etching semiconductors at resolutions smaller than a micrometer. This technique is limited by high costs, slow performance, the need to operate the beam in the vacuum and the tendency of the electrons to scatter in solids. The last problem limits the resolution to about 10 nm. For this reason, EBL is primarily used for the production of small numbers of specialized integrated circuits.

Electron beam processing is used to irradiate materials in order to change their physical properties or sterilize medical and food products. Electron beams fluidise or quasi-melt glasses without significant increase of temperature on intensive irradiation: e.g. intensive electron radiation causes a many orders of magnitude decrease of viscosity and stepwise decrease of its activation energy.

Linear particle accelerators generate electron beams for treatment of superficial tumors in radiation therapy. Electron therapy can treat such skin lesions as basal-cell carcinomas because an electron beam only penetrates to a limited depth before being absorbed, typically up to 5 cm for electron energies in the range 5–20 MeV. An electron beam can be used to supplement the treatment of areas that have been irradiated by X-rays.

Particle accelerators use electric fields to propel electrons and their antiparticles to high energies. These particles emit synchrotron radiation as they pass through magnetic fields. The dependency of the intensity of this radiation upon spin polarizes the electron beam—a process known as the Sokolov–Ternov effect. Polarized electron beams can be useful for various experiments. Synchrotron radiation can also cool the electron beams to reduce the momentum spread of the particles. Electron and positron beams are collided upon the particles' accelerating to the required energies; particle detectors observe the resulting energy emissions, which particle physics studies .

Imaging

Low-energy electron diffraction (LEED) is a method of bombarding a crystalline material with a collimated beam of electrons and then observing the resulting diffraction patterns to determine the structure of the material. The required energy of the electrons is typically in the range 20–200 eV. The reflection high-energy electron diffraction (RHEED) technique uses the reflection of a beam of electrons fired at various low angles to characterize the surface of crystalline materials. The beam energy is typically in the range 8–20 keV and the angle of incidence is 1–4°.

The electron microscope directs a focused beam of electrons at a specimen. Some electrons change their properties, such as movement direction, angle, and relative phase and energy as the beam interacts with the material. Microscopists can record these changes in the electron beam to produce atomically resolved images of the material. In blue light, conventional optical microscopes have a diffraction-limited resolution of about 200 nm. By comparison, electron microscopes are limited by the de Broglie wavelength of the electron. This wavelength, for example, is equal to 0.0037 nm for electrons accelerated across a 100,000-volt potential. The Transmission Electron Aberration-Corrected Microscope is capable of sub-0.05 nm resolution, which is more than enough to resolve individual atoms. This capability makes the electron microscope a useful laboratory instrument for high resolution imaging. However, electron microscopes are expensive instruments that are costly to maintain.

Two main types of electron microscopes exist: transmission and scanning. Transmission electron microscopes function like overhead projectors, with a beam of electrons passing through a slice of material then being projected by lenses on a photographic slide or a charge-coupled device. Scanning electron microscopes rasteri a finely focused electron beam, as in a TV set, across the studied sample to produce the image. Magnifications range from 100× to 1,000,000× or higher for both microscope types. The scanning tunneling microscope uses quantum tunneling of electrons from a sharp metal tip into the studied material and can produce atomically resolved images of its surface.

Other applications

In the free-electron laser (FEL), a relativistic electron beam passes through a pair of undulators that contain arrays of dipole magnets whose fields point in alternating directions. The electrons emit synchrotron radiation that coherently interacts with the same electrons to strongly amplify the radiation field at the resonance frequency. FEL can emit a coherent high-brilliance electromagnetic radiation with a wide range of frequencies, from microwaves to soft X-rays. These devices are used in manufacturing, communication, and in medical applications, such as soft tissue surgery.

Electrons are important in cathode-ray tubes, which have been extensively used as display devices in laboratory instruments, computer monitors and television sets. In a photomultiplier tube, every photon striking the photocathode initiates an avalanche of electrons that produces a detectable current pulse. Vacuum tubes use the flow of electrons to manipulate electrical signals, and they played a critical role in the development of electronics technology. However, they have been largely supplanted by solid-state devices such as the transistor.

HTTPS

From Wikipedia, the free encyclopedia
 
Hypertext Transfer Protocol Secure (HTTPS) is an extension of the Hypertext Transfer Protocol (HTTP). It uses encryption for secure communication over a computer network, and is widely used on the Internet. In HTTPS, the communication protocol is encrypted using Transport Layer Security (TLS) or, formerly, Secure Sockets Layer (SSL). The protocol is therefore also referred to as HTTP over TLS, or HTTP over SSL.

The principal motivations for HTTPS are authentication of the accessed website and protection of the privacy and integrity of the exchanged data while it is in transit. It protects against man-in-the-middle attacks, and the bidirectional block cipher encryption of communications between a client and server protects the communications against eavesdropping and tampering. The authentication aspect of HTTPS requires a trusted third party to sign server-side digital certificates. This was historically an expensive operation, which meant fully authenticated HTTPS connections were usually found only on secured payment transaction services and other secured corporate information systems on the World Wide Web. In 2016, a campaign by the Electronic Frontier Foundation with the support of web browser developers led to the protocol becoming more prevalent. HTTPS is now used more often by web users than the original, non-secure HTTP, primarily to protect page authenticity on all types of websites, secure accounts, and keep user communications, identity, and web browsing private.

Overview

URL beginning with the HTTPS scheme and the WWW domain name label

The Uniform Resource Identifier (URI) scheme HTTPS has identical usage syntax to the HTTP scheme. However, HTTPS signals the browser to use an added encryption layer of SSL/TLS to protect the traffic. SSL/TLS is especially suited for HTTP, since it can provide some protection even if only one side of the communication is authenticated. This is the case with HTTP transactions over the Internet, where typically only the server is authenticated (by the client examining the server's certificate).

HTTPS creates a secure channel over an insecure network. This ensures reasonable protection from eavesdroppers and man-in-the-middle attacks, provided that adequate cipher suites are used and that the server certificate is verified and trusted.

Because HTTPS piggybacks HTTP entirely on top of TLS, the entirety of the underlying HTTP protocol can be encrypted. This includes the request's URL, query parameters, headers, and cookies (which often contain identifying information about the user). However, because website addresses and port numbers are necessarily part of the underlying TCP/IP protocols, HTTPS cannot protect their disclosure. In practice this means that even on a correctly configured web server, eavesdroppers can infer the IP address and port number of the web server, and sometimes even the domain name (e.g. www.example.org, but not the rest of the URL) that a user is communicating with, along with the amount of data transferred and the duration of the communication, though not the content of the communication.

Web browsers know how to trust HTTPS websites based on certificate authorities that come pre-installed in their software. Certificate authorities are in this way being trusted by web browser creators to provide valid certificates. Therefore, a user should trust an HTTPS connection to a website if and only if all of the following are true:

  • The user trusts that their device, hosting the browser and the method to get the browser itself, is not compromised (i.e. there is no supply chain attack).
  • The user trusts that the browser software correctly implements HTTPS with correctly pre-installed certificate authorities.
  • The user trusts the certificate authority to vouch only for legitimate websites (i.e. the certificate authority is not compromised and there is no mis-issuance of certificates).
  • The website provides a valid certificate, which means it was signed by a trusted authority.
  • The certificate correctly identifies the website (e.g., when the browser visits "https://example.com", the received certificate is properly for "example.com" and not some other entity).
  • The user trusts that the protocol's encryption layer (SSL/TLS) is sufficiently secure against eavesdroppers.

HTTPS is especially important over insecure networks and networks that may be subject to tampering. Insecure networks, such as public Wi-Fi access points, allow anyone on the same local network to packet-sniff and discover sensitive information not protected by HTTPS. Additionally, some free-to-use and paid WLAN networks have been observed tampering with webpages by engaging in packet injection in order to serve their own ads on other websites. This practice can be exploited maliciously in many ways, such as by injecting malware onto webpages and stealing users' private information.

HTTPS is also important for connections over the Tor network, as malicious Tor nodes could otherwise damage or alter the contents passing through them in an insecure fashion and inject malware into the connection. This is one reason why the Electronic Frontier Foundation and the Tor Project started the development of HTTPS Everywhere, which is included in Tor Browser.

As more information is revealed about global mass surveillance and criminals stealing personal information, the use of HTTPS security on all websites is becoming increasingly important regardless of the type of Internet connection being used. Even though metadata about individual pages that a user visits might not be considered sensitive, when aggregated it can reveal a lot about the user and compromise the user's privacy.

Deploying HTTPS also allows the use of HTTP/2 and HTTP/3 (and their predecessors SPDY and QUIC), which are new HTTP versions designed to reduce page load times, size, and latency.

It is recommended to use HTTP Strict Transport Security (HSTS) with HTTPS to protect users from man-in-the-middle attacks, especially SSL stripping. TTPS should not be confused with the seldom-used Secure HTTP (S-HTTP) specified in RFC 2660.

Usage in websites

As of April 2018, 33.2% of Alexa top 1,000,000 websites use HTTPS as default and 70% of page loads (measured by Firefox Telemetry) use HTTPS. As of December 2022, 58.4% of the Internet's 135,422 most popular websites have a secure implementation of HTTPS, However despite TLS 1.3’s release in 2018, adoption has been slow, with many still remain on the older TLS 1.2 protocol.

Browser integration

Most browsers display a warning if they receive an invalid certificate. Older browsers, when connecting to a site with an invalid certificate, would present the user with a dialog box asking whether they wanted to continue. Newer browsers display a warning across the entire window. Newer browsers also prominently display the site's security information in the address bar. Extended validation certificates show the legal entity on the certificate information. Most browsers also display a warning to the user when visiting a site that contains a mixture of encrypted and unencrypted content. Additionally, many web filters return a security warning when visiting prohibited websites.

The Electronic Frontier Foundation, opining that "In an ideal world, every web request could be defaulted to HTTPS", has provided an add-on called HTTPS Everywhere for Mozilla Firefox, Google Chrome, Chromium, and Android, which enables HTTPS by default for hundreds of frequently used websites.

Forcing a web browser to load only HTTPS content has been supported in Firefox starting in version 83. Starting in version 94, Google Chrome is able to "always use secure connections" if toggled in the browser's settings.

Security

The security of HTTPS is that of the underlying TLS, which typically uses long-term public and private keys to generate a short-term session key, which is then used to encrypt the data flow between the client and the server. X.509 certificates are used to authenticate the server (and sometimes the client as well). As a consequence, certificate authorities and public key certificates are necessary to verify the relation between the certificate and its owner, as well as to generate, sign, and administer the validity of certificates. While this can be more beneficial than verifying the identities via a web of trust, the 2013 mass surveillance disclosures drew attention to certificate authorities as a potential weak point allowing man-in-the-middle attacks. An important property in this context is forward secrecy, which ensures that encrypted communications recorded in the past cannot be retrieved and decrypted should long-term secret keys or passwords be compromised in the future. Not all web servers provide forward secrecy.

For HTTPS to be effective, a site must be completely hosted over HTTPS. If some of the site's contents are loaded over HTTP (scripts or images, for example), or if only a certain page that contains sensitive information, such as a log-in page, is loaded over HTTPS while the rest of the site is loaded over plain HTTP, the user will be vulnerable to attacks and surveillance. Additionally, cookies on a site served through HTTPS must have the secure attribute enabled. On a site that has sensitive information on it, the user and the session will get exposed every time that site is accessed with HTTP instead of HTTPS.

Technical

Difference from HTTP

HTTPS URLs begin with "https://" and use port 443 by default, whereas, HTTP URLs begin with "http://" and use port 80 by default.

HTTP is not encrypted and thus is vulnerable to man-in-the-middle and eavesdropping attacks, which can let attackers gain access to website accounts and sensitive information, and modify webpages to inject malware or advertisements. HTTPS is designed to withstand such attacks and is considered secure against them (with the exception of HTTPS implementations that use deprecated versions of SSL).

Network layers

HTTP operates at the highest layer of the TCP/IP model—the application layer; as does the TLS security protocol (operating as a lower sublayer of the same layer), which encrypts an HTTP message prior to transmission and decrypts a message upon arrival. Strictly speaking, HTTPS is not a separate protocol, but refers to the use of ordinary HTTP over an encrypted SSL/TLS connection.

HTTPS encrypts all message contents, including the HTTP headers and the request/response data. With the exception of the possible CCA cryptographic attack described in the limitations section below, an attacker should at most be able to discover that a connection is taking place between two parties, along with their domain names and IP addresses.

Server setup

To prepare a web server to accept HTTPS connections, the administrator must create a public key certificate for the web server. This certificate must be signed by a trusted certificate authority for the web browser to accept it without warning. The authority certifies that the certificate holder is the operator of the web server that presents it. Web browsers are generally distributed with a list of signing certificates of major certificate authorities so that they can verify certificates signed by them.

Acquiring certificates

A number of commercial certificate authorities exist, offering paid-for SSL/TLS certificates of a number of types, including Extended Validation Certificates.

Let's Encrypt, launched in April 2016, provides free and automated service that delivers basic SSL/TLS certificates to websites. According to the Electronic Frontier Foundation, Let's Encrypt will make switching from HTTP to HTTPS "as easy as issuing one command, or clicking one button." The majority of web hosts and cloud providers now leverage Let's Encrypt, providing free certificates to their customers.

Use as access control

The system can also be used for client authentication in order to limit access to a web server to authorized users. To do this, the site administrator typically creates a certificate for each user, which the user loads into their browser. Normally, the certificate contains the name and e-mail address of the authorized user and is automatically checked by the server on each connection to verify the user's identity, potentially without even requiring a password.

In case of compromised secret (private) key

An important property in this context is perfect forward secrecy (PFS). Possessing one of the long-term asymmetric secret keys used to establish an HTTPS session should not make it easier to derive the short-term session key to then decrypt the conversation, even at a later time. Diffie–Hellman key exchange (DHE) and Elliptic curve Diffie–Hellman key exchange (ECDHE) are in 2013 the only schemes known to have that property. In 2013, only 30% of Firefox, Opera, and Chromium Browser sessions used it, and nearly 0% of Apple's Safari and Microsoft Internet Explorer sessions. TLS 1.3, published in August 2018, dropped support for ciphers without forward secrecy. As of February 2019, 96.6% of web servers surveyed support some form of forward secrecy, and 52.1% will use forward secrecy with most browsers. As of July 2023, 99.6% of web servers surveyed support some form of forward secrecy, and 75.2% will use forward secrecy with most browsers.

Certificate revocation

A certificate may be revoked before it expires, for example because the secrecy of the private key has been compromised. Newer versions of popular browsers such as Firefox, Opera, and Internet Explorer on Windows Vista implement the Online Certificate Status Protocol (OCSP) to verify that this is not the case. The browser sends the certificate's serial number to the certificate authority or its delegate via OCSP (Online Certificate Status Protocol) and the authority responds, telling the browser whether the certificate is still valid or not. The CA may also issue a CRL to tell people that these certificates are revoked. CRLs are no longer required by the CA/Browser forum, nevertheless, they are still widely used by the CAs. Most revocation statuses on the Internet disappear soon after the expiration of the certificates.

Limitations

SSL (Secure Sockets Layer) and TLS (Transport Layer Security) encryption can be configured in two modes: simple and mutual. In simple mode, authentication is only performed by the server. The mutual version requires the user to install a personal client certificate in the web browser for user authentication. In either case, the level of protection depends on the correctness of the implementation of the software and the cryptographic algorithms in use.

SSL/TLS does not prevent the indexing of the site by a web crawler, and in some cases the URI of the encrypted resource can be inferred by knowing only the intercepted request/response size. This allows an attacker to have access to the plaintext (the publicly available static content), and the encrypted text (the encrypted version of the static content), permitting a cryptographic attack.

Because TLS operates at a protocol level below that of HTTP and has no knowledge of the higher-level protocols, TLS servers can only strictly present one certificate for a particular address and port combination. In the past, this meant that it was not feasible to use name-based virtual hosting with HTTPS. A solution called Server Name Indication (SNI) exists, which sends the hostname to the server before encrypting the connection, although many old browsers do not support this extension. Support for SNI is available since Firefox 2, Opera 8, Apple Safari 2.1, Google Chrome 6, and Internet Explorer 7 on Windows Vista.

From an architectural point of view:

  • An SSL/TLS connection is managed by the first front machine that initiates the TLS connection. If, for any reasons (routing, traffic optimization, etc.), this front machine is not the application server and it has to decipher data, solutions have to be found to propagate user authentication information or certificate to the application server, which needs to know who is going to be connected.
  • For SSL/TLS with mutual authentication, the SSL/TLS session is managed by the first server that initiates the connection. In situations where encryption has to be propagated along chained servers, session timeout management becomes extremely tricky to implement.
  • Security is maximal with mutual SSL/TLS, but on the client-side there is no way to properly end the SSL/TLS connection and disconnect the user except by waiting for the server session to expire or by closing all related client applications.

A sophisticated type of man-in-the-middle attack called SSL stripping was presented at the 2009 Blackhat Conference. This type of attack defeats the security provided by HTTPS by changing the https: link into an http: link, taking advantage of the fact that few Internet users actually type "https" into their browser interface: they get to a secure site by clicking on a link, and thus are fooled into thinking that they are using HTTPS when in fact they are using HTTP. The attacker then communicates in clear with the client. This prompted the development of a countermeasure in HTTP called HTTP Strict Transport Security.

HTTPS has been shown to be vulnerable to a range of traffic analysis attacks. Traffic analysis attacks are a type of side-channel attack that relies on variations in the timing and size of traffic in order to infer properties about the encrypted traffic itself. Traffic analysis is possible because SSL/TLS encryption changes the contents of traffic, but has minimal impact on the size and timing of traffic. In May 2010, a research paper by researchers from Microsoft Research and Indiana University discovered that detailed sensitive user data can be inferred from side channels such as packet sizes. The researchers found that, despite HTTPS protection in several high-profile, top-of-the-line web applications in healthcare, taxation, investment, and web search, an eavesdropper could infer the illnesses/medications/surgeries of the user, his/her family income, and investment secrets. Although this work demonstrated the vulnerability of HTTPS to traffic analysis, the approach presented by the authors required manual analysis and focused specifically on web applications protected by HTTPS.

The fact that most modern websites, including Google, Yahoo!, and Amazon, use HTTPS causes problems for many users trying to access public Wi-Fi hot spots, because a Wi-Fi hot spot login page fails to load if the user tries to open an HTTPS resource. Several websites, such as neverssl.com, guarantee that they will always remain accessible by HTTP.

History

Netscape Communications created HTTPS in 1994 for its Netscape Navigator web browser. Originally, HTTPS was used with the SSL protocol. As SSL evolved into Transport Layer Security (TLS), HTTPS was formally specified by RFC 2818 in May 2000. Google announced in February 2018 that its Chrome browser would mark HTTP sites as "Not Secure" after July 2018. This move was to encourage website owners to implement HTTPS, as an effort to make the World Wide Web more secure.

Compatibilism

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Compatibilism

Compatibilism is the belief that free will and determinism are mutually compatible and that it is possible to believe in both without being logically inconsistent.

Compatibilists believe that freedom can be present or absent in situations for reasons that have nothing to do with metaphysics. In other words, that causal determinism does not exclude the truth of possible future outcomes. Because free will is seen as a necessary prerequisite for moral responsibility, compatibilism is often used to support compatibility between moral responsibility and determinism.

Similarly, political liberty is a non-metaphysical concept. Statements of political liberty, such as the United States Bill of Rights, assume moral liberty: the ability to choose to do otherwise than what one does.

History

Compatibilism was mentioned and championed by the ancient Stoics and some medieval scholastics. More specifically, scholastics like Thomas Aquinas and later Thomists (such as Domingo Báñez) are often interpreted as holding that human action can be free, even though an agent in some strong sense could not do otherwise than what they did. Whereas Aquinas is often interpreted to maintain rational compatibilism (i.e., an action can be determined by rational cognition and yet free), later Thomists, such as Báñez, develop a sophisticated theory of theological determinism, according to which actions of free agents, despite being free, are, on a higher level, determined by infallible divine decrees manifested in the form of "physical premotion" (praemotio physica), a deterministic intervention of God into the will of a free agent required to reduce the will from potency to act. A strong incompatibilist view of freedom was, on the other hand, developed in the Franciscan tradition, especially by Duns Scotus, and later upheld and further developed by Jesuits, especially Luis de Molina and Francisco Suárez. In the early modern era, compatibilism was maintained by Enlightenment philosophers (such as David Hume and Thomas Hobbes).

During the 20th century, compatibilists presented novel arguments that differed from the classical arguments of Hume, Hobbes, and John Stuart Mill. Importantly, Harry Frankfurt popularized what are now known as Frankfurt counterexamples to argue against incompatibilism, and developed a positive account of compatibilist free will based on higher-order volitions. Other "new compatibilists" include Gary Watson, Susan R. Wolf, P. F. Strawson, and R. Jay Wallace. Contemporary compatibilists range from the philosopher and cognitive scientist Daniel Dennett, particularly in his works Elbow Room (1984) and Freedom Evolves (2003), to the existentialist philosopher Frithjof Bergmann. Perhaps the most renowned contemporary defender of compatibilism is John Martin Fischer.

A 2020 survey found that 59% of philosophers accept compatibilism.

Defining free will

Arthur Schopenhauer

Compatibilists often define an instance of "free will" as one in which the agent had the freedom to act according to their own motivation. That is, the agent was not coerced or restrained. Arthur Schopenhauer famously said: "Man can do what he wills but he cannot will what he wills." In other words, although an agent may often be free to act according to a motive, the nature of that motive is determined. This definition of free will does not rely on the truth or falsity of causal determinism. This view also makes free will close to autonomy, the ability to live according to one's own rules, as opposed to being submitted to external domination.

Alternatives as imaginary

Saying "there may be a person behind that door" merely expresses ignorance about the one, determined reality.

Some compatibilists hold both causal determinism (all effects have causes) and logical determinism (the future is already determined) to be true. Thus statements about the future (e.g., "it will rain tomorrow") are either true or false when spoken today. This compatibilist free will should not be understood as the ability to choose differently in an identical situation. A compatibilist may believe that a person can decide between several choices, but the choice is always determined by external factors. If the compatibilist says "I may visit tomorrow, or I may not", he is saying that he does not know what he will choose—whether he will choose to follow the subconscious urge to go or not.

Non-naturalism

Alternatives to strictly naturalist physics, such as mind–body dualism positing a mind or soul existing apart from one's body while perceiving, thinking, choosing freely, and as a result acting independently on the body, include both traditional religious metaphysics and less common newer compatibilist concepts. Also consistent with both autonomy and Darwinism, they allow for free personal agency based on practical reasons within the laws of physics. While less popular among 21st-century philosophers, non-naturalist compatibilism is present in most if not almost all religions.

Criticism

Compatibilism has much in common with "hard determinism", including moral systems and a belief in determinism itself.

A prominent criticism of compatibilism is Peter van Inwagen's consequence argument.

Critics of compatibilism often focus on the definitions of free will: incompatibilists may agree that the compatibilists are showing something to be compatible with determinism, but they think that this something ought not to be called "free will". Incompatibilists might accept the "freedom to act" as a necessary criterion for free will, but doubt that it is sufficient. The incompatibilists believe that free will refers to genuine (i.e., absolute, ultimate, physical) alternate possibilities for beliefs, desires, or actions, rather than merely counterfactual ones.

The direct predecessor to compatibilism was soft determinism (a term coined by William James, which used pejoratively. Soft determinism is the view that we (ordinary humans) have free will and determinism is true. (Compatibilists, by contrast, take no stand on the truth-value of determinism.) James accused the soft determinists of creating a "quagmire of evasion" by stealing the name of freedom to mask their underlying determinism. Immanuel Kant called it a "wretched subterfuge" and "word jugglery". Kant's argument turns on the view that, while all empirical phenomena must result from determining causes, human thought introduces something seemingly not found elsewhere in nature—the ability to conceive of the world in terms of how it ought to be, or how it might otherwise be. For Kant, subjective reasoning is necessarily distinct from how the world is empirically. Because of its capacity to distinguish is from ought, reasoning can "spontaneously" originate new events without being itself determined by what already exists. It is on this basis that Kant argues against a version of compatibilism in which, for instance, the actions of the criminal are comprehended as a blend of determining forces and free choice, which Kant regards as misusing the word free. Kant proposes that taking the compatibilist view involves denying the distinctly subjective capacity to re-think an intended course of action in terms of what ought to happen

Incompatibilism

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Incompatibilism
Classical incompatibilists agreed that determinism leaves no room for free will.

The term incompatibilism was coined in the 1960s, most likely by philosopher Keith Lehrer, to name the view that the thesis of determinism is logically incompatible with the classical thesis of free will. The term compatibilism was coined (also by Lehrer) to name the view that the classical free will thesis is logically compatible with determinism, i.e. it is possible for an ordinary human to exercise free will (the freedom-relevant ability to do otherwise) even in a universe at which determinism is true. These terms were originally coined for use within a research paradigm that was dominant among academics during the so-called "classical period" from the 1960s to 1980s, or what has been called the "classical analytic paradigm". Within the classical analytic paradigm, the problem of free will and determinism was understood as a Compatibility Question: "Is it possible for an ordinary human to exercise free will (classically defined as an ability to otherwise) when determinism is true?" Those working in the classical analytic paradigm who answered "no" were incompatibilists in the original, classical-analytic sense of the term, now commonly called classical incompatibilists; they proposed that determinism precludes free will because it precludes our ability to do otherwise. Those who answered "yes" were compatibilists in the original sense of the term, now commonly called classical compatibilists. Given that classical free will theorists (i.e. those working in the classical analytic paradigm) agreed that it is at least metaphysically possible for an ordinary human to exercise free will, all classical compatibilists accepted a compossibilist account of free will (i.e. a compossibilist interpretation of the ability to do otherwise) and all classical incompatibilists accepted a libertarian (a.k.a. libertarianist) account of free will (i.e. a libertarian/libertarianist interpretation of the ability to do otherwise).

The classical analytic paradigm has fallen out of favor over the last few decades, largely because philosophers no longer agree that free will is equivalent to some kind of ability to do otherwise; many hold that it is, instead, a type of sourcehood that does not require an ability to do otherwise. The number of philosophers who reject the classical assumption of anthropocentric possibilism, i.e. the view that it is at least metaphysically possible for a human to exercise free will, has also risen in recent years. As philosophers adjusted Lehrer's original (classical) definitions of the terms 'incompatibilism' and 'compatibilism' to reflect their own perspectives on the location of the purported "fundamental divide" among free will theorists, the terms 'incompatibilism' and 'compatibilism' have been given a variety of new meanings. At present, then, there is no standard meaning of the term 'incompatibilism' (or its complement 'compatibilism').

On one recent taxonomy, there are now at least three substantively different, non-classical uses of the term 'incompatibilism', or (if one prefers) three different types of incompatibilism, namely: neo-classical incompatibilism, post-classical incompatibilism (a.k.a. incompossibilism), and anti-classical incompatibilism; correspondingly, there are neo-classical, post-classical (compossibilist), and anti-classical versions of compatibilism as well. Neo-classical incompatibilism is a two-tenet view: (1) incompossibilism is true (i.e. it is metaphysically impossible for an ordinary human to act freely when determinism is true), and (2) determinism-related causal/nomological factors preclude free will (which explains why incompossibilism is true). Correspondingly, neo-classical compatibilism is the two-tenet view that (1) the negative, non-explanatory tenet of neo-classical incompatibilism is false (i.e. compossibilism is true), and (2) the positive, explanatory tenet of neo-classical incompatibilism is false. Anti-classical incompatibilism is the explanatory thesis of neo-classical incompatibilism; anti-classical incompatibilism is neutral on the truth-value of incompossibilism. Correspondingly, anti-classical compatibilism is the negation of neo-classical incompatibilism's positive tenet, i.e. anti-classical compatibilism is the contradictory of anti-classical incompatibilism. Post-classical incompatibilism is just the negative, non-explanatory thesis of neo-classical incompatibilism; this view is neutral on whether the positive, explanatory thesis of neo-classical incompatibilism is truIe. (Put another way, on the post-classical redefinition of 'incompatibilism', it is just an alternative name for incompossibilism, a view which is completely silent on whether determinism-related causal factors are relevant to free will or are a total red herring in discussions of free will.) Correspondingly, post-classical compatibilism is identical to compossibilism (i.e. on the post-classical redefinition of 'compatibilism', it denotes mere compossibilism).

The ambiguity of 'incompatibilism' can be a source of confusion because arguments with very different (even inconsistent) conclusions are currently lumped together under the umbrella phrase "arguments for incompatibilism." For example, it is easy for the casual reader to overlook that some arguments for post-classical incompatibilism (a.k.a. incompossibilism) are not arguments for neo-classical incompatibilism on the grounds that the argument does not aim to support the latter's explanatory tenet (a.k.a. anti-classical incompatibilism). Other arguments support post-classical incompatibilism (a.k.a. incompossibilism) but conclude that neo-classical incompatibilism is false on the grounds that its explanatory tenet (a.k.a. anti-classical incompatibilism) is false. Arguments in the last category conclude that people lack free will when determinism is true but not at all because determinism is true (i.e. not at all because certain causal/nomological factors obtain); most propose that the real threat to free will is that people lack adequate control over their own constitutive properties, or what is often called their "constitutive luck" (as opposed to causal luck).

Libertarianism

Free-will libertarianism is the view that the free-will thesis (that we, ordinary humans, have free will) is true and that determinism is false; in first-order language, it is the view that we (ordinary humans) have free will and the world does not behave in the way described by determinism. Libertarianism is one of the popular solutions to the problem of free will, roughly the problem of settling the question of whether we have free will and the logically prior question of what free will amounts to. The main rivals to libertarianism are soft determinism and hard determinism.

Libertarian Robert Kane (editor of the Oxford Handbook of Free Will) is a leading incompatibilist philosopher in favour of free will. Kane seeks to hold persons morally responsible for decisions that involved indeterminism in their process. Critics maintain that Kane fails to overcome the greatest challenge to such an endeavor: "the argument from luck". Namely, if a critical moral choice is a matter of luck (indeterminate quantum fluctuationIs), then on what grounds can we hold a person responsible for their final action? Moreover, even if we imagine that a person can make an act of will ahead of time, to make the moral action more probable in the upcoming critical moment, this act of 'willing' was itself a matter of luck. Kane objects to the validity of the argument from luck because the latter misrepresents the chance as if it is external to the act of choosing. The free will theorem of John H. Conway and Simon B. Kochen further establishes that if we have free will, then quantum particles also possess free will. This means that starting from the assumption that humans have free will, it is possible to pinpoint the origin of their free will in the quantum particles that constitute their brain.

Such philosophical stance risks an infinite regress, however; if any such mind is real, an objection can be raised that free will would be impossible if the choosing is shaped merely by luck or chance.

Libertarianism in the philosophy of mind is unrelated to the like-named political philosophy. It suggests that we actually do have free will, that it is incompatible with determinism, and that therefore the future is not determined. For example, at this moment, one could either continue reading this article if one wanted, or cease. Under this assertion, being that one could do either, the fact of how the history of the world will continue to unfold is not currently determined one way or the other.

One famous proponent of this view was Lucretius, who asserted that the free will arises out of the random, chaotic movements of atoms, called "clinamen". One major objection to this view is that science has gradually shown that more and more of the physical world obeys completely deterministic laws, and seems to suggest that our minds are just as much part of the physical world as anything else. If these assumptions are correct, incompatibilist libertarianism can only be maintained as the claim that free will is a supernatural phenomenon, which does not obey the laws of nature (as, for instance, maintained by some religious traditions).

However, many libertarian view points now rely upon an indeterministic view of the physical universe, under the assumption that the idea of a deterministic, clockwork universe has become outdated since the advent of quantum mechanics. By assuming an indeterministic universe, libertarian philosophical constructs can be proposed under the assumption of physicalism.

There are libertarian view points based upon indeterminism and physicalism, which is closely related to naturalism. A major problem for naturalistic libertarianism is to explain how indeterminism can be compatible with rationality and with appropriate connections between an individual's beliefs, desires, general character and actions. A variety of naturalistic libertarianism is promoted by Robert Kane, who emphasizes that if our character is formed indeterministically (in "self-forming actions"), then our actions can still flow from our character, and yet still be incompatibilistically free.

Alternatively, libertarian view points based upon indeterminism have been proposed without the assumption of naturalism. At the time C. S. Lewis wrote Miracles, quantum mechanics (and physical indeterminism) was only in the initial stages of acceptance, but still Lewis stated the logical possibility that, if the physical world was proved to be indeterministic, this would provide an entry (interaction) point into the traditionally viewed closed system, where a scientifically described physically probable/improbable event could be philosophically described as an action of a non-physical entity on physical reality (noting that, under a physicalist point of view, the non-physical entity must be independent of the self-identity or mental processing of the sentient being). Lewis mentions this only in passing, making clear that his thesis does not depend on it in any way.

Others may use some form of Donald Davidson's anomalous monism to suggest that although the mind is in fact part of the physical world, it involves a different level of description of the same facts, so that although there are deterministic laws under the physical description, there are no such laws under the mental description, and thus our actions are free and not determined.

Hard determinism

Schopenhauer said "Man is free to do what he wills, but he cannot will what he wills." The Hard Determinist says that obviously, then, there is no 'free will."

Those who reject free will and accept determinism are variously known as "hard determinists", hard incompatibilists, free will skeptics, illusionists, or impossibilists. They believe that there is no 'free will' and that any sense of the contrary is an illusion. Of course, hard determinists do not deny that one has desires, but say that these desires are causally determined by an unbroken chain of prior occurrences. According to this philosophy, no wholly random, spontaneous, mysterious, or miraculous events occur. Determinists sometimes assert that it is stubborn to resist scientifically motivated determinism on purely intuitive grounds about one's own sense of freedom. They reason that the history of the development of science suggests that determinism is the logical method in which reality works.

William James said that philosophers (and scientists) have an "antipathy to chance." Absolute chance, a possible implication of quantum mechanics and the indeterminacy principle, supports the existence of indefinite causal structures.

Moral implications

Since many believe that free will is necessary for moral responsibility, hard determinism may imply disastrous consequences for their theory of ethics, resulting in a domino theory of moral nonresponsibility.

As something of a solution to this predicament, one might embrace the so-called "illusion" of free will. This thesis argues in favor of maintaining the prevailing belief in free will for the sake of preserving moral responsibility and the concept of ethics. However, critics argue that this move renders morality merely another "illusion", or else that this move is simply hypocritical.

The determinist will add that, even if denying free will does mean morality is incoherent, such an unfortunate result has no effect on the truth. Note, however, that hard determinists often have some sort of 'moral system' that relies explicitly on determinism. A determinist's moral system simply bears in mind that every person's actions in a given situation are, in theory, predicted by the interplay of environment and upbringing. For instance, the determinist may still punish undesirable behaviours for reasons of behaviour modification or deterrence.

Hard incompatibilism

Hard incompatibilism, like hard determinism, is a type of skepticism about free will. 'Hard incompatibilism' is a term coined by Derk Pereboom to designate the view that both determinism and indeterminism are incompatible with having free will and moral responsibility. Like the hard determinist, the hard incompatibilist holds that if determinism were true, our having free will would be ruled out. But Pereboom argues in addition that if our decisions were indeterministic events, free will would also be precluded. In his view, free will is the control in action required for the desert aspect of moral responsibility—for our deserving to be blamed or punished for immoral actions, and to be praised or rewarded for morally exemplary actions. He contends that if our decisions were indeterministic events, their occurrence would not be in the control of the agent in the way required for such attributions of desert. The possibility for free will that remains is libertarian agent causation, according to which agents as substances (thus not merely as having a role in events) can cause actions without being causally determined to do so. Pereboom argues that for empirical reasons it is unlikely that we are agent causes of this sort, and that as a result, it is likely that we lack free will.

Experimental research

In recent years researchers in the field of experimental philosophy have been working on determining whether ordinary people, who are not experts in this field, naturally have compatibilist or incompatibilist intuitions about determinism and moral responsibility. Some experimental work has even conducted cross-cultural studies. The debate about whether people naturally have compatibilist or incompatibilist intuitions has not come out overwhelmingly in favor of one view or the other. Still, there has been some evidence that people can naturally hold both views. For instance, when people are presented with abstract cases which ask if a person could be morally responsible for an immoral act when they could not have done otherwise, people tend to say no, or give incompatibilist answers, but when presented with a specific immoral act that a specific person committed, people tend to say that that person is morally responsible for their actions, even if they were determined (that is, people also give compatibilist answers).

Equality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Equality_...