Search This Blog

Tuesday, August 27, 2024

Trans fat

From Wikipedia, the free encyclopedia
Margarine, which can contain trans fat.

Trans fat, also called trans-unsaturated fatty acids, or trans fatty acids, is a type of unsaturated fat that occurs in foods. Trace concentrations of trans fats occur naturally, but large amounts are found in some processed foods. Since consumption of trans fats is unhealthy, artificial trans fats are highly regulated or banned in many nations. However, they are still widely consumed in developing nations, resulting in hundreds of thousands of deaths each year. The World Health Organization (WHO) had set a goal to make the world free from industrially produced trans fat by the end of 2023. The goal was not met, and the WHO announced another goal "for accelerated action till 2025 to complete this effort" along with associated support on 1 February 2024.

Occurrence

Some trans fats arise naturally, and some are the result of human actions.

Naturally-occurring trans fats

Vaccenic acid, a naturally occurring trans fatty acid, comprises 0.4–4% of the total fatty acid content in dairy milk.

Trans fats occur in meat and dairy products from ruminants. For example, butter contains about 3% trans fat. These naturally occurring trans fats include conjugated linoleic acid (CLA) and vaccenic acid. They arise from the action of bacteria in the rumen. In contrast to industrially produced trans fats, the bacterial produced versions exist only as a few isomers. Polyunsaturated fats are toxic to the rumen-based bacteria, which induces the latter to detoxify the fats by changing some cis-double bonds to trans. As industrial sources of trans fats are eliminated, increased attention focuses on ruminant derived trans fats.

The trans fatty acid vaccenic acid has health benefits. Small amounts occur in meat and milk fat.

Hydrogenation

Trans fat can be an unintentional byproduct of the industrial processing of oils. Unlike naturally derived trans fats, the trans fats that result from hydrogenation consist of many isomers. In food production, liquid cis-unsaturated fats such as vegetable oils are hydrogenated to produce more saturated fats, which have desirable properties:

  • The shelf life of fats correlates with the degree of saturation: polyunsaturated fats are prone to autoxidation whereas saturated fats, being virtually inert in air, have very long shelf lives.
  • Saturated fats tend to be more solid at room temperature. This property is important for margarine, one of the original uses for fat hydrogenation.

However, an isomerization side reaction during fat hydrogenation can convert remaining unsaturated fats to the thermodynamically-favored trans isomer.

The desirable (left) and undesirable pathways for partial hydrogenation of an unsaturated fat.

A number of old and new ingredients are available to replace partially-hydrogenated oil containing significant levels of trans fat. These include partially-hydrogenated oil made with improved processes, plant oils rich in monounsaturated fats and saturated fats, and a mix of fats combined with interesterification. The technology has improved such that a 2021 review indicates that trans fat from hydrogenated fats is no longer a problem in modern countries.

Thermal isomerization

When heated (cooked), some unsaturated fats change from their normal geometry to trans. The rate of isomerization is accelerated by free radicals.

History

Cover of original Crisco cookbook, 1912

The German chemist Wilhelm Normann showed that liquid oils could be hydrogenated. He patented the process in 1902. During the years 1905–1910, Normann built a fat-hardening facility in the Herford company. At the same time, the invention was extended to a large-scale plant in Warrington, England, at Joseph Crosfield & Sons, Limited. It took only two years until the hardened fat could be successfully produced in the plant in Warrington, commencing production in the autumn of 1909. The initial year's production totalled nearly 3,000 tonnes. In 1909, Procter & Gamble acquired the United States rights to the Normann patent; in 1911, they began marketing the first hydrogenated shortening, Crisco (composed largely of partially hydrogenated cottonseed oil). Further success came from the marketing technique of giving away free cookbooks in which every recipe called for Crisco.

Normann's hydrogenation process made it possible to stabilize affordable whale oil or fish oil for human consumption, a practice kept secret to avoid consumer distaste.

Before 1910, dietary fats in industrialized nations consisted mostly of butterfat, beef tallow, and lard. During Napoleon's reign in France in the early 19th century, a type of margarine was invented to feed troops using tallow and buttermilk. Soybeans began to be imported into the U.S. as a source of protein in the early 20th century, resulting in an abundance of soybean oil as a by-product that could be turned into a solid fat, thereby addressing a shortage of butterfat. Furthermore, with the advent of refrigeration, margarines based on hydrogenated fats presented the advantage that, unlike butter, they could be taken out of a refrigerator and immediately spread on bread. Some minor changes to the chemical composition of hydrogenated fats yielded superior baking properties compared to lard. As a result of these factors, margarine made from partially hydrogenated soybean oil began to replace butterfat. Partially hydrogenated fat such as Crisco and Spry, sold in England, began to replace butter and lard in baking bread, pies, cookies, and cakes in 1920.

Production of partially hydrogenated fats increased steadily in the 20th century as processed vegetable fats replaced animal fats in the U.S. and other Western countries. At first, the argument was a financial one due to the lower costs of margarines and shortenings compared to lard and butter, particularly for restaurants and manufacturers. However, during the 1980s regulators, physicians, nutritionists, popular health media, educational curricula and cookbooks began to promote diets low in saturated fats for health reasons. Advocacy groups in the U.S. responded by demanding the replacement of saturated animal and tropical fats with vegetable alternatives. The Center for Science in the Public Interest (CSPI) campaigned vigorously against the use of saturated fats by corporations, including fast-food restaurants, endorsing trans fats as a healthier alternative. The National Heart Savers Association took out full page ads in major newspapers, attacking the use of beef tallow in McDonald's French fries. They urged multinational fast-food restaurants and food manufacturers to switch to vegetable oils, and almost all targeted firms responded by replacing saturated fats with trans fats.

Although this shift to trans fats was rooted in health concerns, there were suggestions in the scientific literature as early as 1956 that trans fats themselves could actually be a cause of a large increase in coronary artery disease. Studies in the early 1990s brought renewed scrutiny and confirmation of the negative health impact of trans fats. In 1994, it was estimated that trans fats caused at least 20,000 deaths annually in the U.S. from heart disease. In the 1990s, activists such as CSPI that had promoted trans fat safety began arguing that trans fats should be disclosed on product labels and menus. Several lawsuits were launched against high-visibility restaurants and food manufacturers with the objective of supporting a broader phase-out of trans fats.

Mandatory food labeling was introduced in several countries and Denmark was first to mandate limits on industrially-produced trans fats in 2004. In January 2007, faced with the prospect of an outright ban on the sale of their product, Crisco was reformulated to meet the U.S. Food and Drug Administration (FDA) definition of "zero grams trans fats per serving" (that is less than one gram per tablespoon, or up to 7% by weight; or less than 0.5 grams per serving size) by boosting the saturation and then diluting the resulting solid fat with unsaturated vegetable oils. Noting that elimination of industrially produced trans fat is feasible and achievable, the World Health Organization (WHO) has set a goal to make the world free from industrially produced trans fat by the end of 2023. By the end of 2021, the WHO announced that 40 countries had implemented industrial trans fat elimination policies that "are protecting 1.4 billion people from this deadly food compound" but that 10 of the 15 countries suffering the highest health impacts from trans fats had not yet adopted a policy.

Structure

A fatty acid is characterized as either saturated or unsaturated based on the respective absence or presence of C=C double bonds in its backbone. If the molecule contains no double C=C bonds, it is said to be saturated; otherwise, it is unsaturated to some degree.

The C=C double bond is rotationally rigid. If the hydrogen bonded to each of the carbons in this double bond are on the same side, this is called cis, and leads to a bent molecular chain. If the two hydrogens are on opposite sides, this is called trans, and leads to a straight chain.

Trans unsaturated (Elaidic acid) Cis unsaturated (Oleic acid) Saturated (Stearic acid)
Elaidic acid is the main trans unsaturated fatty acid often found in partially hydrogenated vegetable oils. Oleic acid is a cis unsaturated fatty acid making up 55–80% of olive oil. Stearic acid is a saturated fatty acid found in animal fats and is the intended product in full hydrogenation. Stearic acid is neither unsaturated nor trans because it has no carbon-carbon double bonds.
These fatty acids are geometric isomers (structurally identical except for the arrangement of the double bond). This fatty acid contains no carbon-carbon double bonds and is not isomeric with the prior two.

Because trans fats are more linear, they crystallize more easily, allowing them to be solid (rather than liquid) at room temperatures. This has several processing and storage advantages.

In nature, unsaturated fatty acids generally have cis configurations as opposed to trans configurations. Saturated fatty acids (those without any carbon-carbon double bonds) are abundant (see tallow), but they also can be generated from unsaturated fats by the process of fat hydrogenation. In the course of hydrogenation, some cis double bonds convert into trans double bonds. Chemists call this conversion an isomerization reaction.

Wilhelm Normann patented the hydrogenation of liquid oils in 1902

Hydrogenation of an unsaturated fatty acid is intended to convert unsaturated fatty acids (and unsaturated fats) to saturated derivatives. The hydrogenation process however can cause cis C=C bonds to become trans. Typical commercial hydrogenation is partial to obtain a malleable mixture of fats that is solid at room temperature, but melts during baking, or consumption.

The same molecule, containing the same number of atoms, with a double bond in the same location, can be either a trans or a cis fatty acid depending on the configuration of the double bond. For example, oleic acid and elaidic acid are both unsaturated fatty acids with the chemical formula C9H17C9H17O2. They both have a double bond located midway along the carbon chain. It is the configuration of this bond that sets them apart. The configuration has implications for the physical-chemical properties of the molecule. The trans configuration is straighter, while the cis configuration is noticeably kinked as can be seen from the three-dimensional representation shown above. Cis- and trans fatty acids (and their derivatives) have distinct chemical (and metabolic) properties, For example, the melting point of elaidic acid is 45 °C higher than that of oleic acid. This notably means that it is a solid at human body temperatures.

In the sense of food production, however, the goal is not necessarily to simply change the configuration of double bonds while maintaining the same ratios of hydrogen to carbon; rather, the goal is to decrease the number of double bonds (when a fatty acid molecule contains more than one double bond it is classified as "polyunsaturated") by increasing the amount of hydrogen (and, thus, single bonds) in the fatty acid. This subsequent lesser degree of unsaturation (and, simultaneously, greater degree of saturation) thereby changes the consistency of the fatty acid by way of allowing its molecules to more greatly compress and congeal and in turn thereby makes it less prone to rancidity (in which free radicals attack double bonds). In this second sense of the goal being to simply reduce the degree of unsaturation in an unsaturated fatty acid, the production of trans fatty acids is thus an undesirable side effect of partial hydrogenation.

Catalytic partial hydrogenation produces some trans-fats. The standard 140 kPa (20 psi) process of hydrogenation produces a product of about 40% trans fatty acid by weight, compared to about 17% using higher pressures of hydrogen. Blended with unhydrogenated liquid soybean oil, the high-pressure-processed oil produced margarine containing 5 to 6% trans fat. Based on current U.S. labeling requirements (see below), the manufacturer could claim the product was free of trans fat. The level of trans fat may also be altered by modification of the temperature and the length of time during hydrogenation.

The trans fat levels can be quantified using various forms of chromatography.

Presence in food

Trans fat contents in various foods, ranked in g per 100 g
Food type Trans fat content
shortenings 10–33
margarine, stick 6.2–16.8
butter 2–7
whole milk 0.07–0.1
breads/cake products 0.1–10
cookies and crackers 1–8
tortilla chips 5.8
cake frostings, sweets 0.1–7
animal fat 0–5
ground beef 1

A type of trans fat occurs naturally in the milk and body fat of ruminants (such as cattle and sheep) at a level of 2–5% of total fat. Natural trans fats, which include conjugated linoleic acid (CLA) and vaccenic acid, originate in the rumen of these animals. CLA has two double bonds, one in the cis configuration and one in trans, which makes it simultaneously a cis- and a trans-fatty acid.

Animal-based fats were once the only trans fats consumed, but by far the largest amount of trans fat consumed today is created by the processed food industry as a side effect of partially hydrogenating unsaturated plant fats (generally vegetable oils). These partially hydrogenated fats have displaced natural solid fats and liquid oils in many areas, the most notable ones being in the fast food, snack food, fried food, and baked goods industries.

Partially hydrogenated oils have been used in food for many reasons. Hydrogenation increases product shelf life and decreases refrigeration requirements. Many baked foods require semi-solid fats to suspend solids at room temperature; partially hydrogenated oils have the right consistency to replace animal fats such as butter and lard at lower cost. They are also an inexpensive alternative to other semi-solid oils such as palm oil.

Reaction scheme: Trans fat is created as a side effect of partially catalytic hydrogenation of unsaturated plant fats (generally vegetable oils) with cis carbon-carbon double bonds.

Up to 45% of the total fat in those foods containing human-made trans fats formed by partially hydrogenating plant fats may be trans fat. Baking shortenings, unless reformulated, contain around 30% trans fats compared to their total fats. High-fat dairy products such as butter contain about 4%. Margarines not reformulated to reduce trans fats may contain up to 15% trans fat by weight, but some reformulated ones are less than 1% trans fat.

It has been established that trans fats in human breast milk fluctuate with maternal consumption of trans fat, and that the amount of trans fats in the bloodstream of breastfed infants fluctuates with the amounts found in their milk. In 1999, reported percentages of trans fats (compared to total fats) in human milk ranged from 1% in Spain, 2% in France, 4% in Germany, and 7% in Canada and the U.S.

Trans fats are used in shortenings for deep-frying in restaurants, as they can be used for longer than most conventional oils before becoming rancid. In the early 21st century, non-hydrogenated vegetable oils that have lifespans exceeding that of the frying shortenings became available. As fast-food chains routinely use different fats in different locations, trans fat levels in fast food can have large variations. For example, an analysis of samples of McDonald's French fries collected in 2004 and 2005 found that fries served in New York City contained twice as much trans fat as in Hungary, and 28 times as much as in Denmark, where trans fats are restricted. At KFC, the pattern was reversed, with Hungary's product containing twice the trans fat of the New York product. Even within the U.S. there was variation, with fries in New York containing 30% more trans fat than those from Atlanta.

Nutritional guidelines

The National Academy of Sciences (NAS) advises the U.S. and Canadian governments on nutritional science for use in public policy and product labeling programs. Their 2002 Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids contains their findings and recommendations regarding consumption of trans fat (summary).

Their recommendations are based on two key facts. First, "trans fatty acids are not essential and provide no known benefit to human health", whether of animal or plant origin. Second, while both saturated and trans fats increase levels of low-density lipoprotein (LDL), trans fats also lower levels of high-density lipoprotein (HDL), thus increasing the risk of coronary artery disease. The NAS is concerned "that dietary trans fatty acids are more deleterious with respect to coronary artery disease than saturated fatty acids". This analysis is supported by a 2006 New England Journal of Medicine scientific review that states "from a nutritional standpoint, the consumption of trans fatty acids results in considerable potential harm but no apparent benefit."

Because of these facts and concerns, the NAS has concluded there is no safe level of trans fat consumption. There is no adequate level, recommended daily amount or tolerable upper limit for trans fats. This is because any incremental increase in trans fat intake increases the risk of coronary artery disease.

Despite this concern, the NAS dietary recommendations have not included eliminating trans fat from the diet. This is because trans fat is naturally present in many animal foods in trace quantities, and thus its removal from ordinary diets might introduce undesirable side effects and nutritional imbalances if proper nutritional planning is not undertaken. The NAS has, thus, "recommended that trans fatty acid consumption be as low as possible while consuming a nutritionally adequate diet". Like the NAS, the World Health Organization has tried to balance public health goals with a practical level of trans fat consumption, recommending in 2003 that trans fats be limited to less than 1% of overall energy intake.

The US National Dairy Council has asserted that the trans fats present in foods of animal origin are of a different type than those in partially hydrogenated oils, and do not appear to exhibit the same negative effects. A scientific review agrees with the conclusion (stating that "the sum of the current evidence suggests that the Public health implications of consuming trans fats from ruminant products are relatively limited") but cautions that this may be due to the low consumption of trans fats from animal sources compared to artificial ones.

A meta-analysis showed that all trans fats, regardless of natural or artificial origin equally raise LDL and lower HDL levels. Other studies though have shown different results when it comes to animal based trans fats like conjugated linoleic acid (CLA). Although CLA is known for its anticancer properties, researchers have also found that the cis-9, trans-11 form of CLA can reduce the risk for cardiovascular disease and help fight inflammation.

Health risks

Partially hydrogenated vegetable oils were an increasingly significant part of the human diet for about 100 years, especially after 1950 as processed food rose in popularity. The deleterious effects of trans fat consumption are scientifically accepted.

Intake of dietary trans fat disrupts the body's ability to metabolize essential fatty acids (EFAs, including Omega-3) leading to changes in the phospholipid fatty acid composition of the arterial walls, thereby raising risk of coronary artery disease.

While the mechanisms through which trans fatty acids contribute to coronary artery disease are understood, the mechanism for their effects on diabetes is still under investigation. They may impair the metabolism of long-chain polyunsaturated fatty acids (LCPUFAs), but maternal pregnancy trans fatty acid intake has been inversely associated with LCPUFAs levels in infants at birth thought to underlie the positive association between breastfeeding and intelligence.

Consumption of industrial trans fat in the form of partially hydrogenated oil causes many health problems. They were abundant in fast food restaurants. They are consumed in greater quantities by people who lack access to a diet consisting of fewer partially-hydrogenated fats, or who often consume fast food. A diet high in trans fats can contribute to obesity, high blood pressure, and higher risk for heart disease. Trans fat is also implicated in Type 2 diabetes.

Coronary artery disease

The most important health risk identified for trans fat consumption is an elevated risk of coronary artery disease (CAD). A 1994 study estimated that over 30,000 cardiac deaths per year in the U.S. are attributable to the consumption of trans fats. By 2006 upper estimates of 100,000 deaths were suggested. A comprehensive review of studies of trans fats published in 2006 in the New England Journal of Medicine reports a strong and reliable connection between trans fat consumption and CAD, concluding that "On a per-calorie basis, trans fats appear to increase the risk of CAD more than any other macronutrient, conferring a substantially increased risk at low levels of consumption (1 to 3% of total energy intake)".

The major evidence for the effect of trans fat on CAD comes from the Nurses' Health Study – a cohort study that has been following 120,000 female nurses since its inception in 1976. In this study, Hu and colleagues analyzed data from 900 coronary events from the study's population during 14 years of followup. He determined that a nurse's CAD risk roughly doubled (relative risk of 1.93, CI: 1.43 to 2.61) for each 2% increase in trans fat calories consumed (instead of carbohydrate calories). By contrast, for each 5% increase in saturated fat calories (instead of carbohydrate calories) there was a 17% increase in risk (relative risk of 1.17, CI: 0.97 to 1.41). "The replacement of saturated fat or trans unsaturated fat by cis (unhydrogenated) unsaturated fats was associated with larger reductions in risk than an isocaloric replacement by carbohydrates." Hu also reports on the benefits of reducing trans fat consumption. Replacing 2% of food energy from trans fat with non-trans unsaturated fats more than halves the risk of CAD (53%). By comparison, replacing a larger 5% of food energy from saturated fat with non-trans unsaturated fats reduces the risk of CAD by 43%.

Another study considered deaths due to CAD, with consumption of trans fats being linked to an increase in mortality, and consumption of polyunsaturated fats being linked to a decrease in mortality.

There are two accepted tests that measure an individual's risk for coronary artery disease, both blood tests. The first considers ratios of two types of cholesterol, the other the amount of a cell-signalling cytokine called C-reactive protein. The ratio test is more accepted, while the cytokine test may be more powerful but is still being studied. The effect of trans fat consumption has been documented on each as follows:

  • Cholesterol ratio: This ratio compares the levels of LDL to HDL. Trans fat behaves like saturated fat by raising the level of LDL, but, unlike saturated fat, it has the additional effect of decreasing levels of HDL. The net increase in LDL/HDL ratio with trans fat is approximately double that due to saturated fat. (Higher ratios are worse.) One randomized crossover study published in 2003 comparing the effect of eating a meal on blood lipids of (relatively) cis and trans fat rich meals showed that cholesteryl ester transfer (CET) was 28% higher after the trans meal than after the cis meal and that lipoprotein concentrations were enriched in apolipoprotein(a) after the trans meals.
  • C-reactive protein (CRP): A study of over 700 nurses showed that those in the highest quartile of trans fat consumption had blood levels of CRP that were 73% higher than those in the lowest quartile.

Other health risks

Scientific studies have examined other negative effects of industrial trans fat beyond cardiovascular disease, with the next most studied area being type-2 diabetes.

  • Alzheimer's disease: A study published in Archives of Neurology in February 2003 suggested that the intake of both trans fats and saturated fats promote the development of Alzheimer disease, although not confirmed in an animal model. It has been found that trans fats impaired memory and learning in middle-age rats. The trans-fat eating rats' brains had fewer proteins critical to healthy neurological function and inflammation in and around the hippocampus, the part of the brain responsible for learning and memory. These are the exact types of changes normally seen at the onset of Alzheimer's, but seen after six weeks, even though the rats were still young. A systematic review of five articles based on four prospective cohort studies of individuals did not find a robust association between their intake of trans fatty acids and development of Alzheimer's disease (or several other forms of dementia). The review based this conclusion on finding that 4 of the 5 reports appeared biased and therefore recommended more well-designed prospective studies to clarify this issue.
  • Cancer: In 2007 the American Cancer Society stated that a relationship between trans fats and cancer "has not been determined." One study has found a positive connection between trans fat and prostate cancer. However, a larger study found a correlation between trans fats and a significant decrease in high-grade prostate cancer. An increased intake of trans fatty acids may raise the risk of breast cancer by 75%, suggest the results from the French part of the European Prospective Investigation into Cancer and Nutrition.
  • Diabetes: There is a growing concern that the risk of type 2 diabetes increases with trans fat consumption. However, consensus has not been reached. For example, one study found that risk is higher for those in the highest quartile of trans fat consumption. Another study has found no diabetes risk once other factors such as total fat intake and BMI were accounted for.
  • Obesity: Research indicates that trans fat may increase weight gain and abdominal fat, despite a similar caloric intake. A 6-year experiment revealed that monkeys fed a trans fat diet gained 7.2% of their body weight, as compared to 1.8% for monkeys on a mono-unsaturated fat diet. Although obesity is frequently linked to trans fat in the popular media, this is generally in the context of eating too many calories; there is not a strong scientific consensus connecting trans fat and obesity, although the 6-year experiment did find such a link, concluding that "under controlled feeding conditions, long-term TFA consumption was an independent factor in weight gain. TFAs enhanced intra-abdominal deposition of fat, even in the absence of caloric excess, and were associated with insulin resistance, with evidence that there is impaired post-insulin receptor binding signal transduction."
  • Liver dysfunction: Trans fats are metabolized differently by the liver than other fats and interfere with delta 6 desaturase. Delta 6 desaturase is an enzyme involved in converting essential fatty acids to arachidonic acid and prostaglandins, both of which are important to the functioning of cells.
  • Infertility in women: One 2007 study found, "Each 2% increase in the intake of energy from trans unsaturated fats, as opposed to that from carbohydrates, was associated with a 73% greater risk of ovulatory infertility...".
  • Major depressive disorder: Spanish researchers analysed the diets of 12,059 people over six years and found that those who ate the most trans fats had a 48 per cent higher risk of depression than those who did not eat trans fats. One mechanism may be trans-fats' substitution for docosahexaenoic acid (DHA) levels in the orbitofrontal cortex (OFC). Very high intake of trans-fatty acids (43% of total fat) in mice from 2 to 16 months of age was associated with lowered DHA levels in the brain (p=0.001). When the brains of 15 major depressive subjects who had committed suicide were examined post-mortem and compared against 27 age-matched controls, the suicidal brains were found to have 16% less (male average) to 32% less (female average) DHA in the OFC. The OFC controls reward, reward expectation, and empathy (all of which are reduced in depressive mood disorders) and regulates the limbic system.
  • Behavioral irritability and aggression: a 2012 observational analysis of subjects of an earlier study found a strong relation between dietary trans fat acids and self-reported behavioral aggression and irritability, suggesting but not establishing causality.
  • Diminished memory: In a 2015 article, researchers re-analyzing results from the 1999-2005 UCSD Statin Study argue that "greater dietary trans fatty acid consumption is linked to worse word memory in adults during years of high productivity."
  • Acne: According to a 2015 study, trans fats are one of several components of Western pattern diets which promote acne, along with carbohydrates with high glycemic load such as refined sugars or refined starches, milk and dairy products, and saturated fats, while omega-3 fatty acids, which reduce acne, are deficient in Western pattern diets.

Public response and regulation

International

The international trade in food is standardized in the Codex Alimentarius. Hydrogenated oils and fats come under the scope of Codex Stan 19. Non-dairy fat spreads are covered by Codex Stan 256-2007. In the Codex Alimentarius, trans fat to be labelled as such is defined as the geometrical isomers of monounsaturated and polyunsaturated fatty acids having non-conjugated [interrupted by at least one methylene group (−CH2−)] carbon-carbon double bonds in the trans configuration. This definition excludes specifically the trans fats (vaccenic acid and conjugated linoleic acid) that are present especially in human milk, dairy products, and beef.

In 2018 the World Health Organization launched a plan to eliminate trans fat from the global food supply. They estimate that trans fat leads to more than 500,000 deaths from cardiovascular disease yearly.

Argentina

Trans fat content labeling is required starting in August 2006. Since 2010, vegetable oils and fats sold to consumers directly must contain only 2% of trans fat over total fat, and other food must contain less than 5% of their total fat.[109] Starting on 10 December 2014, Argentina has on effect a total ban on food with trans fat, a regulation the government estimated could save them more than US$100 million a year on healthcare.[110]

Australia

The former federal assistant health minister, Christopher Pyne, asked fast food outlets to reduce their trans fat use. A draft plan was proposed, with a September 2007 timetable, to reduce reliance on trans fats and saturated fats.

As of 2018, Australia's food labeling laws do not require trans fats to be shown separately from the total fat content. However, margarine in Australia has been mostly free of trans fat since 1996.

Austria

Trans fat content is limited to 4% of total fat, or 2% on products that contain more than 20% fat.[113]

Belgium

The Conseil Supérieur de la Santé published in 2012 a science-policy advisory report on industrially produced trans fatty acids that focuses on the general population. Its recommendation to the legislature was to prohibit more than 2 g of trans fatty acids per 100 g of fat in food products.

Brazil

Resolution 360, dated December 23, 2003, by the Brazilian ministry of health required the amount of trans fat to be specified in labels of food products. On 31 July 2006, such labeling of trans fat contents became mandatory. In 2019 Anvisa published a new legislation to reduce the total amount of trans fat in any industrialized food sold in Brazil to a maximum of 2% by the end of 2023.

Since January 1, 2023, the use, production and import of hydrogenated vegetable oils in food for consumption has been completely banned by Anvisa.

Canada

In a process that began in 2004, Health Canada finally banned partially hydrogenated oils (PHOs), the primary source of industrially produced trans fats in foods, in September 2018.

On 15 September 2017, Health Canada announced that trans fat would be completely banned effective on 15 September 2018. The ban came into effect in September 2018, banning partially hydrogenated oils (the largest source of industrially produced trans fats in foods). It is now illegal for manufacturers to add partially hydrogenated oils to foods sold in or imported into Canada.

Public perception

A cross-sectional study was conducted in Regina, Saskatchewan in February 2009 at 3 different grocery stores located in 3 different regions that had the same median income before taxes of around $30,000. Of the 211 respondents to the study, most were women who purchased most of the food for their household. When asked how they decide what food to buy, the most important factors were price, nutritional value, and need. When looking at the nutritional facts, however, they indicated that they looked at the ingredients, and neglected to pay attention to the amount of trans fat. This means that trans fat is not on their minds unless they are specifically told of it. When asked if they ever heard about trans fat, 98% said, "Yes." However, only 27% said that it was unhealthy. Also, 79% said that they only knew a little about trans fats, and could have been more educated.

Respondents aged 41–60 were more likely to view trans fat as a major health concern, compared to ages 18–40. When asked if they would stop buying their favorite snacks if they knew it contained trans fat, most said they would continue purchasing it, especially the younger respondents. Also, of the respondents that called trans fat a major concern, 56% of them still would not change their diet to non-trans fat snacks. This is because taste and food gratification take precedence over perceived risk to health. "The consumption of trans fats and the associated increased risk of CHD is a public health concern regardless of age and socioeconomic status".

Denmark

Denmark became the first country to introduce laws strictly regulating the sale of many foods containing trans fats in March 2003, a move that effectively bans partially hydrogenated oils. The limit is 2% of fats and oils destined for human consumption. This restriction is on the ingredients rather than the final products. This regulatory approach has made Denmark the first country in which it is possible to eat "far less" than 1 g of industrially produced trans fats daily, even with a diet including prepared foods. It is hypothesized that the Danish government's efforts to decrease trans fat intake from 6 g to 1 g per day over 20 years is related to a 50% decrease in deaths from ischemic heart disease.

European Union

In 2004, the European Food Safety Authority produced a scientific opinion on trans fatty acids, surmising that "higher intakes of TFA may increase risk for coronary heart disease".

From 2 April 2021 foods in the EU intended for consumers are required to contain less than 2g of industrial trans fat per 100g of fat.

Greece

Law in Greece limits content of trans fats sold in school canteens to 0.1% (Ministerial Decision Υ1γ/ΓΠ/οικ 81025/ΦΕΚ 2135/τ.Β'/29-08-2013 as modified by Ministerial Decision Υ1γ/ Γ.Π/οικ 96605/ΦΕΚ 2800 τ.Β/4-11-201).

Iceland

Total trans fat content was limited in 2010 to 2% of total fat content.

Israel

Since 2014, it is obligatory to mark food products with more than 2% (by weight) fat. The nutritional facts must contain the amount of trans fats.

Pakistan

Ministry of National Health Services Regulations and Coordination, Government of Pakistan with the support of WHO has taken the initiative to eliminate trans fat from food chain in Pakistan. Vanaspati Ghee (partially hydrogenated fat) and margarine have been identified as major dietary vectors for trans fat. PSQCA (Pakistan Standard and Quality Control Authority) has set the deadline for the reduction of trans fat level as per recommendations of WHO by June 2023.

Philippines

The Department of Health has reminded food companies to reformulate and remove industrially produced trans fatty acids (TFA) from their products by June 18, 2023. It said that non-communicable diseases (NCDs) such as cardiovascular disease have been one of the leading causes of death in the country. All product formulations and labels of prepackaged processed food with industrially-produced TFA must comply with the guidelines stated in the DOH Administrative Order No. 2021-0039 and the FDA Circular No. 2021- 0028. Violation of any of the provisions of the administrative order and the FDA circular would be grounds for the disapproval, suspension, or cancellation of the certificate of product registration of concerned food manufacturers.

Saudi Arabia

The Saudi Food and Drug Authority (SFDA) requires importers and manufacturers to write trans fats amounts in the nutritional facts labels of food products according to the requirements of Saudi Standard Specifications/Gulf Specifications. Starting in 2020, Saudi Minister of Health announced the ban of trans fat in all food products due to their health risks.

Singapore

The Ministry of Health announced on 6 March 2019 that partially-hydrogenated oils (PHOs) will be banned. A target is set to ban PHOs by June 2021, aiming to encourage healthy eating habits.

Sweden

The parliament gave the government a mandate in 2011 to submit without delay a law prohibiting the use of industrially produced trans fats in foods, as of 2017 the law has not yet been implemented.

Switzerland

Switzerland followed Denmark's trans fats ban, and implemented its own starting in April 2008.

United Kingdom

In October 2005, the Food Standards Agency (FSA) asked for better labelling in the UK. In the edition of 29 July 2006 of the British Medical Journal, an editorial also called for better labelling. In January 2007, the British Retail Consortium announced that major UK retailers, including Asda, Boots, Co-op Food, Iceland, Marks and Spencer, Sainsbury's, Tesco and Waitrose intended to cease adding trans fatty acids to their own products by the end of 2007.

Sainsbury's became the first UK major retailer to ban all trans fat from all their own store brand foods.

On 13 December 2007, the Food Standards Agency issued news releases stating that voluntary measures to reduce trans fats in food had already resulted in safe levels of consumer intake.

On 15 April 2010, a British Medical Journal editorial called for trans fats to be "virtually eliminated in the United Kingdom by next year".

The June 2010 National Institute for Health and Clinical Excellence (NICE) report Prevention of cardiovascular disease declared that 40,000 cardiovascular disease deaths in 2006 were "mostly preventable". To achieve this, NICE offered 24 recommendations including product labelling, public education, protecting under–16s from marketing of unhealthy foods, promoting exercise and physically active travel, and even reforming the Common Agricultural Policy to reduce production of unhealthy foods. Fast-food outlets were mentioned as a risk factor, with (in 2007) 170 g of McDonald's fries and 160 g nuggets containing 6 to 8 g of trans fats, conferring a substantially increased risk of coronary artery disease death. NICE made three specific recommendation for diet: (1) reduction of dietary salt to 3 g per day by 2025; (2) halving consumption of saturated fats; and (3) eliminating the use of industrially produced trans fatty acids in food. However, the recommendations were greeted unhappily by the food industry, which stated that it was already voluntarily dropping the trans fat levels to below the WHO recommendations of a maximum of 2%.

Rejecting an outright ban, the Health Secretary Andrew Lansley launched on 15 March 2012 a voluntary pledge to remove artificial trans fats by the end of the year. Asda, Pizza Hut, Burger King, Tesco, Unilever and United Biscuits are some of 73 businesses who have agreed to do so. Lansley and his special Adviser Bill Morgan formerly worked for firms with interests in the food industry and some journalists have alleged that this results in a conflict of interest. Many health professionals are not happy with the voluntary nature of the deal. Simon Capewell, Professor of Clinical Epidemiology at the University of Liverpool, felt that justifying intake on the basis of average figures was unsuitable since some members of the community could considerably exceed this.

United States

Before 1 January 2006, consumers in the U.S. could not always determine the presence, or quantity, of trans fats from partially hydrogenated oils in food products, because this information was not required on the ingredient list before that date. In 2010, according to the FDA, the average American consumed 5.8 grams of trans fat per day (2.6% of energy intake). Monoglycerides and diglycerides are not considered fats by the FDA, despite their nearly equal calorie per weight contribution during ingestion.

On 11 July 2003, the FDA issued a regulation requiring manufacturers to list trans fat on the Nutrition Facts panel of foods and some dietary supplements. The new labeling rule became mandatory across the board on 1 January 2006, even for companies that petitioned for extensions. However, unlike in many other countries, trans fat levels of less than 0.5 grams per serving can be listed as 0 grams trans fat on the food label. According to a study published in the Journal of Public Policy & Marketing, without an interpretive footnote or further information on recommended daily value, many consumers do not know how to interpret the meaning of trans fat content on the Nutrition Facts panel. Without specific prior knowledge about trans fat and its negative health effects, consumers, including those at risk for heart disease, may misinterpret nutrient information provided on the panel. The FDA did not approve nutrient content claims such as "trans fat free" or "low trans fat", as they could not determine a "recommended daily value". In July 2023, the agency published notice of plans for a consumer study to evaluate the consumer understanding of such claims and perhaps consider regulation allowing their use on packaged foods. However, there is no requirement to list trans fats on institutional food packaging; thus bulk purchasers such as schools, hospitals, jails and cafeterias are unable to evaluate the trans fat content of commercial food items.

An example of trans fat provided by the FDA.

Critics of the plan, including FDA advisor Dr. Carlos Camargo, have expressed concern that the 0.5 gram per serving threshold is too high to refer to a food as free of trans fat. This is because a person eating many servings of a product, or eating multiple products over the course of the day may still consume a significant amount of trans fat.

The American Medical Association supports any state and federal efforts to ban the use of artificial trans fats in U.S. restaurants and bakeries.

The American Public Health Association adopted a new policy statement regarding trans fats in 2007. These new guidelines, entitled Restricting Trans Fatty Acids in the Food Supply, recommend that the government require nutrition facts labeling of trans fats on all commercial food products. They also urge federal, state, and local governments to ban and monitor use of trans fats in restaurants. Furthermore, the APHA recommends barring the sales and availability of foods containing significant amounts of trans fat in public facilities including universities, prisons, and day care facilities etc.

2015–2019 phaseout

In 2009, at the age of 94, University of Illinois professor Fred Kummerow, a trans fat researcher who had campaigned for decades for a federal ban on the substance, filed a petition with the FDA seeking elimination of artificial trans fats from the U.S. food supply. The FDA did not act on his petition for four years, and in 2013 Kummerow filed a lawsuit against the FDA and the U.S. Department of Health and Human Services, seeking to compel the FDA to respond to his petition and "to ban partially hydrogenated oils unless a complete administrative review finds new evidence for their safety." Kummerow's petition stated that "Artificial trans fat is a poisonous and deleterious substance, and the FDA has acknowledged the danger."

Three months after the suit was filed, on 7 November 2013, the FDA issued a preliminary determination that trans fats are not "generally recognized as safe", which was widely seen as a precursor to reclassifying trans fats as a "food additive," meaning they could not be used in foods without specific regulatory authorization. This would have the effect of virtually eliminating trans fats from the US food supply. The ruling was formally enacted on 16 June 2015, requiring that within three years no food prepared in the U.S. is allowed to include trans fats, unless approved by the FDA. The FDA specifically ruled that trans fat was not generally recognized as safe and "could no longer be added to food after 18 June 2018, unless a manufacturer could present convincing scientific evidence that a particular use was safe." Kummerow stated: "Science won out."

The ban is believed to prevent about 90,000 premature deaths annually. The FDA estimates the ban will cost the food industry $6.2 billion over 20 years as the industry reformulates products and substitutes new ingredients for trans fat. The benefits are estimated at $140 billion over 20 years mainly from lower health care spending.

The FDA agreed in May 2018 to give companies one more year to find other ingredients for enhancing product flavors or greasing industrial baking pans, effectively banning trans fats in the U.S. from May 2019 onwards. Also, while new products can no longer be made with trans fats, foods already on the shelves are given some time to cycle out of the market.

Food industry response

Manufacturer response

Palm oil, a natural oil extracted from the fruit of oil palm trees that is semi-solid at room temperature (15–25 degrees Celsius), can potentially serve as a substitute for partially hydrogenated fats in baking and processed food applications, although there is disagreement about whether replacing partially hydrogenated fats with palm oil confers any health benefits. A 2006 study supported by the National Institutes of Health and the USDA Agricultural Research Service concluded that palm oil is not a safe substitute for partially hydrogenated fats (trans fats) in the food industry, because palm oil results in adverse changes in the blood concentrations of LDL and apolipoprotein B just as trans fat does.

In May 2003, BanTransFats.com Inc., a U.S. non-profit corporation, filed a lawsuit against the food manufacturer Kraft Foods in an attempt to force Kraft to remove trans fats from the Oreo cookie. The lawsuit was withdrawn when Kraft agreed to work on ways to find a substitute for the trans fat in the Oreo.

The J.M. Smucker Company, then the American manufacturer of Crisco (the original partially hydrogenated vegetable shortening), in 2004 released a new formulation made from solid saturated palm oil cut with soybean oil and sunflower oil. This blend yielded an equivalent shortening much like the prior partially hydrogenated Crisco, and was labelled zero grams of trans fat per 1 tablespoon serving (as compared with 1.5 grams per tablespoon of original Crisco). As of 24 January 2007, Smucker claimed that all Crisco shortening products in the US have been reformulated to contain less than one gram of trans fat per serving while keeping saturated fat content less than butter. The separately marketed trans fat free version introduced in 2004 was discontinued.

On 22 May 2004, Unilever, the corporate descendant of Joseph Crosfield & Sons (the original producer of Wilhelm Normann's hydrogenation hardened oils) announced that they have eliminated trans fats from all their margarine products in Canada, including their flagship Becel brand.

Agribusiness giant Bunge Limited, through their Bunge Oils division, are now producing and marketing an NT product line of non-hydrogenated oils, margarines and shortenings, made from corn, canola, and soy oils.

Since 2003, Loders Croklaan, a wholly owned subsidiary of Malaysia's IOI Group has been providing trans fat free bakery and confectionery fats, made from palm oil, for giant food companies in the U.S. to make margarine.

Major users' response

Beginning around 2000, as the scientific evidence and public concern about trans fat increased, major American users of trans fat began to switch to safer alternatives. The process received a large boost in 2003 when the FDA announced it would require trans fat labeling on packaged food starting in 2006. Packaged food companies then faced the choice of either eliminating trans fat from their products, or having to declare the trans fat on their nutrition label. Lawsuits in the U.S. against trans fat users also encouraged its removal.

Major American fast food chains including McDonald's, Burger King, KFC and Wendy's reduced and then removed partially hydrogenated oils (containing artificial trans fats) by 2009. This was a major step toward trans fat removal, as french fries were one of the largest sources of trans fat in the American diet, with a large fries typically having about 6 grams of trans fat until around 2007.

Two other events were important in the removal of trans fat. First, in 2013 the FDA announced it planned to completely ban artificial trans fat in the form of partially hydrogenated oil. Second, soon after this, Walmart informed its suppliers they needed to remove trans fat by 2015 if they wanted to continue to sell their products at its stores. As Walmart is the largest brick-and-mortar retailer in the U.S., mainstream food brands had little choice but to comply.

These reformulations can be partly attributed to 2006 Center for Science in the Public Interest class action complaints, and to New York's restaurant trans fat ban, with companies such as McDonald's stating they would not be selling a unique product just for New York customers but would implement a nationwide or worldwide change.

Adaptation

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Adaptation

In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection.

Historically, adaptation has been described from the time of the ancient Greek philosophers such as Empedocles and Aristotle. In 18th and 19th century natural theology, adaptation was taken as evidence for the existence of a deity. Charles Darwin proposed instead that it was explained by natural selection.

Adaptation is related to biological fitness, which governs the rate of evolution as measured by change in allele frequencies. Often, two or more species co-adapt and co-evolve as they develop adaptations that interlock with those of the other species, such as with flowering plants and pollinating insects. In mimicry, species evolve to resemble other species; in mimicry this is a mutually beneficial co-evolution as each of a group of strongly defended species (such as wasps able to sting) come to advertise their defenses in the same way. Features evolved for one purpose may be co-opted for a different one, as when the insulating feathers of dinosaurs were co-opted for bird flight.

Adaptation is a major topic in the philosophy of biology, as it concerns function and purpose (teleology). Some biologists try to avoid terms which imply purpose in adaptation, not least because it suggests a deity's intentions, but others note that adaptation is necessarily purposeful.

History

Adaptation is an observable fact of life accepted by philosophers and natural historians from ancient times, independently of their views on evolution, but their explanations differed. Empedocles did not believe that adaptation required a final cause (a purpose), but thought that it "came about naturally, since such things survived." Aristotle did believe in final causes, but assumed that species were fixed.

The second of Jean-Baptiste Lamarck's two factors (the first being a complexifying force) was an adaptive force that causes animals with a given body plan to adapt to circumstances by inheritance of acquired characteristics, creating a diversity of species and genera.

In natural theology, adaptation was interpreted as the work of a deity and as evidence for the existence of God.[2] William Paley believed that organisms were perfectly adapted to the lives they led, an argument that shadowed Gottfried Wilhelm Leibniz, who had argued that God had brought about "the best of all possible worlds." Voltaire's satire Dr. Pangloss is a parody of this optimistic idea, and David Hume also argued against design. Charles Darwin broke with the tradition by emphasising the flaws and limitations which occurred in the animal and plant worlds.

Jean-Baptiste Lamarck proposed a tendency for organisms to become more complex, moving up a ladder of progress, plus "the influence of circumstances", usually expressed as use and disuse. This second, subsidiary element of his theory is what is now called Lamarckism, a proto-evolutionary hypothesis of the inheritance of acquired characteristics, intended to explain adaptations by natural means.

Other natural historians, such as Buffon, accepted adaptation, and some also accepted evolution, without voicing their opinions as to the mechanism. This illustrates the real merit of Darwin and Alfred Russel Wallace, and secondary figures such as Henry Walter Bates, for putting forward a mechanism whose significance had only been glimpsed previously. A century later, experimental field studies and breeding experiments by people such as E. B. Ford and Theodosius Dobzhansky produced evidence that natural selection was not only the 'engine' behind adaptation, but was a much stronger force than had previously been thought.

General principles

The significance of an adaptation can only be understood in relation to the total biology of the species.

What adaptation is

Adaptation is primarily a process rather than a physical form or part of a body. An internal parasite (such as a liver fluke) can illustrate the distinction: such a parasite may have a very simple bodily structure, but nevertheless the organism is highly adapted to its specific environment. From this we see that adaptation is not just a matter of visible traits: in such parasites critical adaptations take place in the life cycle, which is often quite complex. However, as a practical term, "adaptation" often refers to a product: those features of a species which result from the process. Many aspects of an animal or plant can be correctly called adaptations, though there are always some features whose function remains in doubt. By using the term adaptation for the evolutionary process, and adaptive trait for the bodily part or function (the product), one may distinguish the two different senses of the word.

Adaptation is one of the two main processes that explain the observed diversity of species, such as the different species of Darwin's finches. The other process is speciation, in which new species arise, typically through reproductive isolation. An example widely used today to study the interplay of adaptation and speciation is the evolution of cichlid fish in African lakes, where the question of reproductive isolation is complex.

Adaptation is not always a simple matter where the ideal phenotype evolves for a given environment. An organism must be viable at all stages of its development and at all stages of its evolution. This places constraints on the evolution of development, behaviour, and structure of organisms. The main constraint, over which there has been much debate, is the requirement that each genetic and phenotypic change during evolution should be relatively small, because developmental systems are so complex and interlinked. However, it is not clear what "relatively small" should mean, for example polyploidy in plants is a reasonably common large genetic change. The origin of eukaryotic endosymbiosis is a more dramatic example.

All adaptations help organisms survive in their ecological niches. The adaptive traits may be structural, behavioural or physiological. Structural adaptations are physical features of an organism, such as shape, body covering, armament, and internal organization. Behavioural adaptations are inherited systems of behaviour, whether inherited in detail as instincts, or as a neuropsychological capacity for learning. Examples include searching for food, mating, and vocalizations. Physiological adaptations permit the organism to perform special functions such as making venom, secreting slime, and phototropism, but also involve more general functions such as growth and development, temperature regulation, ionic balance and other aspects of homeostasis. Adaptation affects all aspects of the life of an organism.

The following definitions are given by the evolutionary biologist Theodosius Dobzhansky:

1. Adaptation is the evolutionary process whereby an organism becomes better able to live in its habitat or habitats.
2. Adaptedness is the state of being adapted: the degree to which an organism is able to live and reproduce in a given set of habitats.
3. An adaptive trait is an aspect of the developmental pattern of the organism which enables or enhances the probability of that organism surviving and reproducing.

What adaptation is not

The common kestrel has adapted successfully to urban areas

Adaptation differs from flexibility, acclimatization, and learning, all of which are changes during life which are not inherited. Flexibility deals with the relative capacity of an organism to maintain itself in different habitats: its degree of specialization. Acclimatization describes automatic physiological adjustments during life; learning means improvement in behavioural performance during life.

Flexibility stems from phenotypic plasticity, the ability of an organism with a given genotype (genetic type) to change its phenotype (observable characteristics) in response to changes in its habitat, or to move to a different habitat. The degree of flexibility is inherited, and varies between individuals. A highly specialized animal or plant lives only in a well-defined habitat, eats a specific type of food, and cannot survive if its needs are not met. Many herbivores are like this; extreme examples are koalas which depend on Eucalyptus, and giant pandas which require bamboo. A generalist, on the other hand, eats a range of food, and can survive in many different conditions. Examples are humans, rats, crabs and many carnivores. The tendency to behave in a specialized or exploratory manner is inherited—it is an adaptation. Rather different is developmental flexibility: "An animal or plant is developmentally flexible if when it is raised in or transferred to new conditions, it changes in structure so that it is better fitted to survive in the new environment," writes the evolutionary biologist John Maynard Smith.

If humans move to a higher altitude, respiration and physical exertion become a problem, but after spending time in high altitude conditions they acclimatize to the reduced partial pressure of oxygen, such as by producing more red blood cells. The ability to acclimatize is an adaptation, but the acclimatization itself is not. The reproductive rate declines, but deaths from some tropical diseases also go down. Over a longer period of time, some people are better able to reproduce at high altitudes than others. They contribute more heavily to later generations, and gradually by natural selection the whole population becomes adapted to the new conditions. This has demonstrably occurred, as the observed performance of long-term communities at higher altitude is significantly better than the performance of new arrivals, even when the new arrivals have had time to acclimatize.

Adaptedness and fitness

There is a relationship between adaptedness and the concept of fitness used in population genetics. Differences in fitness between genotypes predict the rate of evolution by natural selection. Natural selection changes the relative frequencies of alternative phenotypes, insofar as they are heritable. However, a phenotype with high adaptedness may not have high fitness. Dobzhansky mentioned the example of the Californian redwood, which is highly adapted, but a relict species in danger of extinction. Elliott Sober commented that adaptation was a retrospective concept since it implied something about the history of a trait, whereas fitness predicts a trait's future.

1. Relative fitness. The average contribution to the next generation by a genotype or a class of genotypes, relative to the contributions of other genotypes in the population. This is also known as Darwinian fitness, selection coefficient, and other terms.
2. Absolute fitness. The absolute contribution to the next generation by a genotype or a class of genotypes. Also known as the Malthusian parameter when applied to the population as a whole.
3. Adaptedness. The extent to which a phenotype fits its local ecological niche. Researchers can sometimes test this through a reciprocal transplant.
In this sketch of a fitness landscape, a population can evolve by following the arrows to the adaptive peak at point B, and the points A and C are local optima where a population could become trapped.

Sewall Wright proposed that populations occupy adaptive peaks on a fitness landscape. To evolve to another, higher peak, a population would first have to pass through a valley of maladaptive intermediate stages, and might be "trapped" on a peak that is not optimally adapted.

Types

Adaptation is the heart and soul of evolution.

— Niles Eldredge, Reinventing Darwin: The Great Debate at the High Table of Evolutionary Theory

Changes in habitat

Before Darwin, adaptation was seen as a fixed relationship between an organism and its habitat. It was not appreciated that as the climate changed, so did the habitat; and as the habitat changed, so did the biota. Also, habitats are subject to changes in their biota: for example, invasions of species from other areas. The relative numbers of species in a given habitat are always changing. Change is the rule, though much depends on the speed and degree of the change. When the habitat changes, three main things may happen to a resident population: habitat tracking, genetic change or extinction. In fact, all three things may occur in sequence. Of these three effects only genetic change brings about adaptation. When a habitat changes, the resident population typically moves to more suitable places; this is the typical response of flying insects or oceanic organisms, which have wide (though not unlimited) opportunity for movement. This common response is called habitat tracking. It is one explanation put forward for the periods of apparent stasis in the fossil record (the punctuated equilibrium theory).

Genetic change

Without mutation, the ultimate source of all genetic variation, there would be no genetic changes and no subsequent adaptation through evolution by natural selection. Genetic change occurs in a population when mutation increases or decreases in its initial frequency followed by random genetic drift, migration, recombination or natural selection act on this genetic variation. One example is that the first pathways of enzyme-based metabolism at the very origin of life on Earth may have been co-opted components of the already-existing purine nucleotide metabolism, a metabolic pathway that evolved in an ancient RNA world. The co-option requires new mutations and through natural selection, the population then adapts genetically to its present circumstances. Genetic changes may result in entirely new or gradual change to visible structures, or they may adjust physiological activity in a way that suits the habitat. The varying shapes of the beaks of Darwin's finches, for example, are driven by adaptive mutations in the ALX1 gene. The coat color of different wild mouse species matches their environments, whether black lava or light sand, owing to adaptive mutations in the melanocortin 1 receptor and other melanin pathway genes. Physiological resistance to the heart poisons (cardiac glycosides) that monarch butterflies store in their bodies to protect themselves from predators are driven by adaptive mutations in the target of the poison, the sodium pump, resulting in target site insensitivity. These same adaptive mutations and similar changes at the same amino acid sites were found to evolve in a parallel manner in distantly related insects that feed on the same plants, and even in a bird that feeds on monarchs through convergent evolution, a hallmark of adaptation. Convergence at the gene-level across distantly related species can arise because of evolutionary constraint.

Habitats and biota do frequently change over time and space. Therefore, it follows that the process of adaptation is never fully complete. Over time, it may happen that the environment changes little, and the species comes to fit its surroundings better and better, resulting in stabilizing selection. On the other hand, it may happen that changes in the environment occur suddenly, and then the species becomes less and less well adapted. The only way for it to climb back up that fitness peak is via the introduction of new genetic variation for natural selection to act upon. Seen like this, adaptation is a genetic tracking process, which goes on all the time to some extent, but especially when the population cannot or does not move to another, less hostile area. Given enough genetic change, as well as specific demographic conditions, an adaptation may be enough to bring a population back from the brink of extinction in a process called evolutionary rescue. Adaptation does affect, to some extent, every species in a particular ecosystem.

Leigh Van Valen thought that even in a stable environment, because of antagonistic species interactions and limited resources, a species must constantly had to adapt to maintain its relative standing. This became known as the Red Queen hypothesis, as seen in host-parasite interactions.

Existing genetic variation and mutation were the traditional sources of material on which natural selection could act. In addition, horizontal gene transfer is possible between organisms in different species, using mechanisms as varied as gene cassettes, plasmids, transposons and viruses such as bacteriophages.

Co-adaptation

Pollinating insects are co-adapted with flowering plants.

In coevolution, where the existence of one species is tightly bound up with the life of another species, new or 'improved' adaptations which occur in one species are often followed by the appearance and spread of corresponding features in the other species. In other words, each species triggers reciprocal natural selection in the other. These co-adaptational relationships are intrinsically dynamic, and may continue on a trajectory for millions of years, as has occurred in the relationship between flowering plants and pollinating insects.

Mimicry

Images A and B show real wasps; the others show Batesian mimics: three hoverflies and one beetle.

Bates' work on Amazonian butterflies led him to develop the first scientific account of mimicry, especially the kind of mimicry which bears his name: Batesian mimicry. This is the mimicry by a palatable species of an unpalatable or noxious species (the model), gaining a selective advantage as predators avoid the model and therefore also the mimic. Mimicry is thus an anti-predator adaptation. A common example seen in temperate gardens is the hoverfly (Syrphidae), many of which—though bearing no sting—mimic the warning coloration of aculeate Hymenoptera (wasps and bees). Such mimicry does not need to be perfect to improve the survival of the palatable species.

Bates, Wallace and Fritz Müller believed that Batesian and Müllerian mimicry provided evidence for the action of natural selection, a view which is now standard amongst biologists.

Trade-offs

All adaptations have a downside: horse legs are great for running on grass, but they cannot scratch their backs; mammals' hair helps temperature, but offers a niche for ectoparasites; the only flying penguins do is under water. Adaptations serving different functions may be mutually destructive. Compromise and makeshift occur widely, not perfection. Selection pressures pull in different directions, and the adaptation that results is some kind of compromise.

It is a profound truth that Nature does not know best; that genetical evolution... is a story of waste, makeshift, compromise and blunder.

— Peter Medawar, The Future of Man

Since the phenotype as a whole is the target of selection, it is impossible to improve simultaneously all aspects of the phenotype to the same degree.

Examples

Consider the antlers of the Irish elk, (often supposed to be far too large; in deer antler size has an allometric relationship to body size). Antlers serve positively for defence against predators, and to score victories in the annual rut. But they are costly in terms of resources. Their size during the last glacial period presumably depended on the relative gain and loss of reproductive capacity in the population of elks during that time. As another example, camouflage to avoid detection is destroyed when vivid coloration is displayed at mating time. Here the risk to life is counterbalanced by the necessity for reproduction.

Stream-dwelling salamanders, such as Caucasian salamander or Gold-striped salamander have very slender, long bodies, perfectly adapted to life at the banks of fast small rivers and mountain brooks. Elongated body protects their larvae from being washed out by current. However, elongated body increases risk of desiccation and decreases dispersal ability of the salamanders; it also negatively affects their fecundity. As a result, fire salamander, less perfectly adapted to the mountain brook habitats, is in general more successful, have a higher fecundity and broader geographic range.

An Indian peacock's train in full display

The peacock's ornamental train (grown anew in time for each mating season) is a famous adaptation. It must reduce his maneuverability and flight, and is hugely conspicuous; also, its growth costs food resources. Darwin's explanation of its advantage was in terms of sexual selection: "This depends on the advantage which certain individuals have over other individuals of the same sex and species, in exclusive relation to reproduction." The kind of sexual selection represented by the peacock is called 'mate choice,' with an implication that the process selects the more fit over the less fit, and so has survival value. The recognition of sexual selection was for a long time in abeyance, but has been rehabilitated.

The conflict between the size of the human foetal brain at birth, (which cannot be larger than about 400 cm3, else it will not get through the mother's pelvis) and the size needed for an adult brain (about 1400 cm3), means the brain of a newborn child is quite immature. The most vital things in human life (locomotion, speech) just have to wait while the brain grows and matures. That is the result of the birth compromise. Much of the problem comes from our upright bipedal stance, without which our pelvis could be shaped more suitably for birth. Neanderthals had a similar problem.

As another example, the long neck of a giraffe brings benefits but at a cost. The neck of a giraffe can be up to 2 m (6 ft 7 in) in length. The benefits are that it can be used for inter-species competition or for foraging on tall trees where shorter herbivores cannot reach. The cost is that a long neck is heavy and adds to the animal's body mass, requiring additional energy to build the neck and to carry its weight around.

Shifts in function

Adaptation and function are two aspects of one problem.

— Julian Huxley, Evolution: The Modern Synthesis

Pre-adaptation

Pre-adaptation occurs when a population has characteristics which by chance are suited for a set of conditions not previously experienced. For example, the polyploid cordgrass Spartina townsendii is better adapted than either of its parent species to their own habitat of saline marsh and mud-flats. Among domestic animals, the White Leghorn chicken is markedly more resistant to vitamin B1 deficiency than other breeds; on a plentiful diet this makes no difference, but on a restricted diet this preadaptation could be decisive.

Pre-adaptation may arise because a natural population carries a huge quantity of genetic variability. In diploid eukaryotes, this is a consequence of the system of sexual reproduction, where mutant alleles get partially shielded, for example, by genetic dominance. Microorganisms, with their huge populations, also carry a great deal of genetic variability. The first experimental evidence of the pre-adaptive nature of genetic variants in microorganisms was provided by Salvador Luria and Max Delbrück who developed the Fluctuation Test, a method to show the random fluctuation of pre-existing genetic changes that conferred resistance to bacteriophages in Escherichia coli. The word is controversial because it is teleological and the entire concept of natural selection depends on the presence of genetic variation, regardless of the population size of a species in question.

Co-option of existing traits: exaptation

The feathers of Sinosauropteryx, a dinosaur with feathers, were used for insulation or display, making them an exaptation for flight.

Features that now appear as adaptations sometimes arose by co-option of existing traits, evolved for some other purpose. The classic example is the ear ossicles of mammals, which we know from paleontological and embryological evidence originated in the upper and lower jaws and the hyoid bone of their synapsid ancestors, and further back still were part of the gill arches of early fish. The word exaptation was coined to cover these common evolutionary shifts in function. The flight feathers of birds evolved from the much earlier feathers of dinosaurs, which might have been used for insulation or for display.

Niche construction

Animals including earthworms, beavers and humans use some of their adaptations to modify their surroundings, so as to maximize their chances of surviving and reproducing. Beavers create dams and lodges, changing the ecosystems of the valleys around them. Earthworms, as Darwin noted, improve the topsoil in which they live by incorporating organic matter. Humans have constructed extensive civilizations with cities in environments as varied as the Arctic and hot deserts. In all three cases, the construction and maintenance of ecological niches helps drive the continued selection of the genes of these animals, in an environment that the animals have modified.

Non-adaptive traits

Some traits do not appear to be adaptive as they have a neutral or deleterious effect on fitness in the current environment. Because genes often have pleiotropic effects, not all traits may be functional: they may be what Stephen Jay Gould and Richard Lewontin called spandrels, features brought about by neighbouring adaptations, on the analogy with the often highly decorated triangular areas between pairs of arches in architecture, which began as functionless features.

Another possibility is that a trait may have been adaptive at some point in an organism's evolutionary history, but a change in habitats caused what used to be an adaptation to become unnecessary or even maladapted. Such adaptations are termed vestigial. Many organisms have vestigial organs, which are the remnants of fully functional structures in their ancestors. As a result of changes in lifestyle the organs became redundant, and are either not functional or reduced in functionality. Since any structure represents some kind of cost to the general economy of the body, an advantage may accrue from their elimination once they are not functional. Examples: wisdom teeth in humans; the loss of pigment and functional eyes in cave fauna; the loss of structure in endoparasites.

Extinction and coextinction

If a population cannot move or change sufficiently to preserve its long-term viability, then it will become extinct, at least in that locale. The species may or may not survive in other locales. Species extinction occurs when the death rate over the entire species exceeds the birth rate for a long enough period for the species to disappear. It was an observation of Van Valen that groups of species tend to have a characteristic and fairly regular rate of extinction.

Just as there is co-adaptation, there is also coextinction, the loss of a species due to the extinction of another with which it is coadapted, as with the extinction of a parasitic insect following the loss of its host, or when a flowering plant loses its pollinator, or when a food chain is disrupted.

Origin of adaptive capacities

The first stage in the evolution of life on earth is often hypothesized to be the RNA world in which short self-replicating RNA molecules proliferated before the evolution of DNA and proteins. By this hypothesis, life started when RNA chains began to self-replicate, initiating the three mechanisms of Darwinian selection: heritability, variation of type, and competition for resources. The fitness of an RNA replicator (its per capita rate of increase) would likely have been a function of its intrinsic adaptive capacities, determined by its nucleotide sequence, and the availability of resources. The three primary adaptive capacities may have been: (1) replication with moderate fidelity, giving rise to heritability while allowing variation of type, (2) resistance to decay, and (3) acquisition of resources. These adaptive capacities would have been determined by the folded configurations of the RNA replicators resulting from their nucleotide sequences.

Philosophical issues

"Behaviour with a purpose": a young springbok stotting. A biologist might argue that this has the function of signalling to predators, helping the springbok to survive and allowing it to reproduce.
Adaptation raises philosophical issues concerning how biologists speak of function and purpose, as this carries implications of evolutionary history – that a feature evolved by natural selection for a specific reason – and potentially of supernatural intervention – that features and organisms exist because of a deity's conscious intentions. In his biology, Aristotle introduced teleology to describe the adaptedness of organisms, but without accepting the supernatural intention built into Plato's thinking, which Aristotle rejected. Modern biologists continue to face the same difficulty. On the one hand, adaptation is purposeful: natural selection chooses what works and eliminates what does not. On the other hand, biologists by and large reject conscious purpose in evolution. The dilemma gave rise to a famous joke by the evolutionary biologist Haldane: "Teleology is like a mistress to a biologist: he cannot live without her but he's unwilling to be seen with her in public.'" David Hull commented that Haldane's mistress "has become a lawfully wedded wife. Biologists no longer feel obligated to apologize for their use of teleological language; they flaunt it." Ernst Mayr stated that "adaptedness... is a posteriori result rather than an a priori goal-seeking", meaning that the question of whether something is an adaptation can only be determined after the event.

Limbic system

From Wikipedia, the free encyclopedia
Limbic system
Cross section of the human brain showing parts of the limbic system from below.
Traité d'Anatomie et de Physiologie (1786)

The limbic system largely consists of what was previously known as the limbic lobe.
 
Identifiers
Latinsystema limbicum
MeSHD008032
NeuroNames2055
FMA242000

The limbic system, also known as the paleomammalian cortex, is a set of brain structures located on both sides of the thalamus, immediately beneath the medial temporal lobe of the cerebrum primarily in the forebrain.

Its various components support a variety of functions including emotion, behavior, long-term memory, and olfaction.

The limbic system is involved in lower order emotional processing of input from sensory systems and consists of the amygdala, mammillary bodies, stria medullaris, central gray and dorsal and ventral nuclei of Gudden. This processed information is often relayed to a collection of structures from the telencephalon, diencephalon, and mesencephalon, including the prefrontal cortex, cingulate gyrus, limbic thalamus, hippocampus including the parahippocampal gyrus and subiculum, nucleus accumbens (limbic striatum), anterior hypothalamus, ventral tegmental area, midbrain raphe nuclei, habenular commissure, entorhinal cortex, and olfactory bulbs.

Structure

Anatomical components of the limbic system

The limbic system was originally defined by Paul Broca as a series of cortical structures surrounding the boundary between the cerebral hemispheres and the brainstem. The name "limbic" comes from the Latin word for the border, limbus, and these structures were known together as the limbic lobe. Further studies began to associate these areas with emotional and motivational processes and linked them to subcortical components that were then grouped into the limbic system.

In recent years, multiple additional limbic fiber connectivity has been revealed using difusion-weighted imaging MRI techniques. The equivalent fiber connectivity of all these pathways has been documented by dissection studies in primates. Some of these fiber tracts include the amygdalofugal tract, amygdalothalamic tract, stria terminalis, dorsal thalamo-hypothalamic tract, cerebellohypothalamic tracts, and the parieto-occipito-hypothalamic tract.

Currently, it is not considered an isolated entity responsible for the neurological regulation of emotion, but rather one of the many parts of the brain that regulate visceral autonomic processes. Therefore, the set of anatomical structures considered part of the limbic system is controversial. The following structures are, or have been considered, part of the limbic system:

Function

The structures and interacting areas of the limbic system are involved in motivation, emotion, learning, and memory. The limbic system is where the subcortical structures meet the cerebral cortex. The limbic system operates by influencing the endocrine system and the autonomic nervous system. It is highly interconnected with the nucleus accumbens, which plays a role in sexual arousal and the "high" derived from certain recreational drugs. These responses are heavily modulated by dopaminergic projections from the limbic system. In 1954, Olds and Milner found that rats with metal electrodes implanted into their nucleus accumbens, as well as their septal nuclei, repeatedly pressed a lever activating this region.

The limbic system also interacts with the basal ganglia. The basal ganglia are a set of subcortical structures that direct intentional movements. The basal ganglia are located near the thalamus and hypothalamus. They receive input from the cerebral cortex, which sends outputs to the motor centers in the brain stem. A part of the basal ganglia called the striatum controls posture and movement. Recent studies indicate that if there is an inadequate supply of dopamine in the striatum, this can lead to the symptoms of Parkinson's disease.

The limbic system is also tightly connected to the prefrontal cortex. Some scientists contend that this connection is related to the pleasure obtained from solving problems. To cure severe emotional disorders, this connection was sometimes surgically severed, a procedure of psychosurgery, called a prefrontal lobotomy (this is actually a misnomer). Patients having undergone this procedure often became passive and lacked all motivation.

The limbic system is often incorrectly classified as a cerebral structure, but simply interacts heavily with the cerebral cortex. These interactions are closely linked to olfaction, emotions, drives, autonomic regulation, memory, and pathologically to encephalopathy, epilepsy, psychotic symptoms, cognitive defects. The functional relevance of the limbic system has proven to serve many different functions such as affects/emotions, memory, sensory processing, time perception, attention, consciousness, instincts, autonomic/vegetative control, and actions/motor behavior. Some of the disorders associated with the limbic system and its interacting components are epilepsy and schizophrenia.

Hippocampus

Location and basic anatomy of the hippocampus, as a coronal section

The hippocampus is involved with various processes relating to cognition and is one of the best understood and heavily involved limbic interacting structure.

Spatial memory

The first and most widely researched area concerns memory, particularly spatial memory. Spatial memory was found to have many sub-regions in the hippocampus, such as the dentate gyrus (DG) in the dorsal hippocampus, the left hippocampus, and the parahippocampal region. The dorsal hippocampus was found to be an important component for the generation of new neurons, called adult-born granules (GC), in adolescence and adulthood. These new neurons contribute to pattern separation in spatial memory, increasing the firing in cell networks, and overall causing stronger memory formations. This is thought to integrate spatial and episodic memories with the limbic system via a feedback loop that provides emotional context of a particular sensory input.

While the dorsal hippocampus is involved in spatial memory formation, the left hippocampus is a participant in the recall of these spatial memories. Eichenbaum and his team found, when studying the hippocampal lesions in rats, that the left hippocampus is "critical for effectively combining the 'what', 'when', and 'where' qualities of each experience to compose the retrieved memory". This makes the left hippocampus a key component in the retrieval of spatial memory. However, Spreng found that the left hippocampus is a general concentrated region for binding together bits and pieces of memory composed not only by the hippocampus, but also by other areas of the brain to be recalled at a later time. Eichenbaum's research in 2007 also demonstrates that the parahippocampal area of the hippocampus is another specialized region for the retrieval of memories just like the left hippocampus.

Learning

The hippocampus, over the decades, has also been found to have a huge impact in learning. Curlik and Shors examined the effects of neurogenesis in the hippocampus and its effects on learning. This researcher and his team employed many different types of mental and physical training on their subjects, and found that the hippocampus is highly responsive to these latter tasks. Thus, they discovered an upsurge of new neurons and neural circuits in the hippocampus as a result of the training, causing an overall improvement in the learning of the task. This neurogenesis contributes to the creation of adult-born granules cells (GC), cells also described by Eichenbaum in his own research on neurogenesis and its contributions to learning. The creation of these cells exhibited "enhanced excitability" in the dentate gyrus (DG) of the dorsal hippocampus, impacting the hippocampus and its contribution to the learning process.

Hippocampus damage

Damage related to the hippocampal region of the brain has reported vast effects on overall cognitive functioning, particularly memory such as spatial memory. As previously mentioned, spatial memory is a cognitive function greatly intertwined with the hippocampus. While damage to the hippocampus may be a result of a brain injury or other injuries of that sort, researchers particularly investigated the effects that high emotional arousal and certain types of drugs had on the recall ability in this specific memory type. In particular, in a study performed by Parkard, rats were given the task of correctly making their way through a maze. In the first condition, rats were stressed by shock or restraint which caused a high emotional arousal. When completing the maze task, these rats had an impaired effect on their hippocampal-dependent memory when compared to the control group. Then, in a second condition, a group of rats were injected with anxiogenic drugs. Like the former these results reported similar outcomes, in that hippocampal-memory was also impaired. Studies such as these reinforce the impact that the hippocampus has on memory processing, in particular the recall function of spatial memory. Furthermore, impairment to the hippocampus can occur from prolonged exposure to stress hormones such as glucocorticoids (GCs), which target the hippocampus and cause disruption in explicit memory.

In an attempt to curtail life-threatening epileptic seizures, 27-year-old Henry Gustav Molaison underwent bilateral removal of almost all of his hippocampus in 1953. Over the course of fifty years he participated in thousands of tests and research projects that provided specific information on exactly what he had lost. Semantic and episodic events faded within minutes, having never reached his long-term memory, yet emotions, unconnected from the details of causation, were often retained. Dr. Suzanne Corkin, who worked with him for 46 years until his death, described the contribution of this tragic "experiment" in her 2013 book.

Amygdala

Episodic-autobiographical memory (EAM) networks

Another integrative part of the limbic system, the amygdala, which is the deepest part of the limbic system, is involved in many cognitive processes and is largely considered the most primordial and vital part of the limbic system. Like the hippocampus, processes in the amygdala seem to impact memory; however, it is not spatial memory as in the hippocampus but the semantic division of episodic-autobiographical memory (EAM) networks. Markowitsch's amygdala research shows it encodes, stores, and retrieves EAM memories. To delve deeper into these types of processes by the amygdala, Markowitsch and his team provided extensive evidence through investigations that the "amygdala's main function is to charge cues so that mnemonic events of a specific emotional significance can be successfully searched within the appropriate neural nets and re-activated." These cues for emotional events created by the amygdala encompass the EAM networks previously mentioned.

Attentional and emotional processes

Besides memory, the amygdala also seems to be an important brain region involved in attentional and emotional processes. First, to define attention in cognitive terms, attention is the ability to focus on some stimuli while ignoring others. Thus, the amygdala seems to be an important structure in this ability.

Foremost, however, this structure was historically thought to be linked to fear, allowing the individual to take action in response to that fear. However, as time has gone by, researchers such as Pessoa, generalized this concept with help from evidence of EEG recordings, and concluded that the amygdala helps an organism to define a stimulus and therefore respond accordingly. However, when the amygdala was initially thought to be linked to fear, this gave way for research in the amygdala for emotional processes. Kheirbek demonstrated research that the amygdala is involved in emotional processes, in particular the ventral hippocampus. He described the ventral hippocampus as having a role in neurogenesis and the creation of adult-born granule cells (GC). These cells not only were a crucial part of neurogenesis and the strengthening of spatial memory and learning in the hippocampus but also appear to be an essential component to the function of the amygdala. A deficit of these cells, as Pessoa (2009) predicted in his studies, would result in low emotional functioning, leading to high retention rate of mental diseases, such as anxiety disorders.

Social processing

Social processing, specifically the evaluation of faces in social processing, is an area of cognition specific to the amygdala. In a study done by Todorov, fMRI tasks were performed with participants to evaluate whether the amygdala was involved in the general evaluation of faces. After the study, Todorov concluded from his fMRI results that the amygdala did indeed play a key role in the general evaluation of faces. However, in a study performed by researchers Koscik and his team, the trait of trustworthiness was particularly examined in the evaluation of faces. Koscik and his team demonstrated that the amygdala was involved in evaluating the trustworthiness of an individual. They investigated how brain damage to the amygdala played a role in trustworthiness, and found that individuals with damaged amygdalas tended to confuse trust and betrayal, and thus placed trust in those having done them wrong. Furthermore, Rule, along with his colleagues, expanded on the idea of the amygdala in its critique of trustworthiness in others by performing a study in 2009 in which he examined the amygdala's role in evaluating general first impressions and relating them to real-world outcomes. Their study involved first impressions of CEOs. Rule demonstrated that while the amygdala did play a role in the evaluation of trustworthiness, as observed by Koscik in his own research two years later in 2011, the amygdala also played a generalized role in the overall evaluation of first impression of faces. This latter conclusion, along with Todorov's study on the amygdala's role in general evaluations of faces and Koscik's research on trustworthiness and the amygdala, further solidified evidence that the amygdala plays a role in overall social processing.

Klüver–Bucy syndrome

Based on experiments done on monkeys, the destruction of the temporal cortex almost always led to damage of the amygdala. This damage done to the amygdala led the physiologists Kluver and Bucy to pinpoint major changes in the behavior of the monkeys. The monkeys demonstrated the following changes:

  1. The monkeys were not afraid of anything.
  2. The monkeys had extreme curiosity about everything.
  3. The monkeys forgot rapidly.
  4. The monkeys had a tendency to place everything in its mouth.
  5. The monkeys often had a sexual drive so strong that they attempted to copulate with immature animals, animals of the same sex, or even animals of a different species.

This set of behavioral change came to be known as the Klüver–Bucy syndrome.

Evolutionary claims

Paul D. MacLean, as part of his triune brain theory (which is now considered outdated), hypothesized that the limbic system is older than other parts of the forebrain, and that it developed to manage circuitry attributed to the fight or flight first identified by Hans Selye in his report of the General Adaptation Syndrome in 1936. It may be considered a part of survival adaptation in reptiles as well as mammals (including humans). MacLean postulated that the human brain has evolved three components, that evolved successively, with more recent components developing at the top/front. These components are, respectively:

  1. The archipallium or primitive ("reptilian") brain, comprising the structures of the brain stem – medulla, pons, cerebellum, mesencephalon, the oldest basal nuclei – the globus pallidus and the olfactory bulbs.
  2. The paleopallium or intermediate ("old mammalian") brain, comprising the structures of the limbic system.
  3. The neopallium, also known as the superior or rational ("new mammalian") brain, comprises almost the whole of the hemispheres (made up of a more recent type of cortex, called neocortex) and some subcortical neuronal groups. It corresponds to the brain of the superior mammals, thus including the primates and, as a consequence, the human species. Similar development of the neocortex in mammalian species not closely related to humans and primates has also occurred, for example in cetaceans and elephants; thus the designation of "superior mammals" is not an evolutionary one, as it has occurred independently in different species. The evolution of higher degrees of intelligence is an example of convergent evolution, and is also seen in non-mammals such as birds.

According to Maclean, each of the components, although connected with the others, retained "their peculiar types of intelligence, subjectivity, sense of time and space, memory, mobility and other less specific functions".

However, while the categorization into structures is reasonable, the recent studies of the limbic system of tetrapods, both living and extinct, have challenged several aspects of this hypothesis, notably the accuracy of the terms "reptilian" and "old mammalian". The common ancestors of reptiles and mammals had a well-developed limbic system in which the basic subdivisions and connections of the amygdalar nuclei were established. Further, birds, which evolved from the dinosaurs, which in turn evolved separately but around the same time as the mammals, have a well-developed limbic system. While the anatomic structures of the limbic system are different in birds and mammals, there are functional equivalents.

History

Etymology and history

The term limbic comes from the Latin limbus, for "border" or "edge", or, particularly in medical terminology, a border of an anatomical component. Paul Broca coined the term based on its physical location in the brain, sandwiched between two functionally different components.

The limbic system is a term that was introduced in 1949 by the American physician and neuroscientist, Paul D. MacLean. The French physician Paul Broca first called this part of the brain le grand lobe limbique in 1878. He examined the differentiation between deeply recessed cortical tissue and underlying, subcortical nuclei. However, most of its putative role in emotion was developed only in 1937 when the American physician James Papez described his anatomical model of emotion, the Papez circuit.

The first evidence that the limbic system was responsible for the cortical representation of emotions was discovered in 1939, by Heinrich Kluver and Paul Bucy. Kluver and Bucy, after much research, demonstrated that the bilateral removal of the temporal lobes in monkeys created an extreme behavioral syndrome. After performing a temporal lobectomy, the monkeys showed a decrease in aggression. The animals revealed a reduced threshold to visual stimuli, and were thus unable to recognize objects that were once familiar. MacLean expanded these ideas to include additional structures in a more dispersed "limbic system", more on the lines of the system described above. MacLean developed the theory of the "triune brain" to explain its evolution and to try to reconcile rational human behavior with its more "primal" and "violent" side. He became interested in the brain's control of emotion and behavior. After initial studies of brain activity in epileptic patients, he turned to cats, monkeys, and other models, using electrodes to stimulate different parts of the brain in conscious animals recording their responses.

In the 1950s, he began to trace individual behaviors like aggression and sexual arousal to their physiological sources. He postulated the limbic system as the brain's center of emotions, including the hippocampus and amygdala. Developing observations made by Papez, he hypothesized that the limbic system had evolved in early mammals to control fight-or-flight responses and react to both emotionally pleasurable and painful sensations. The concept is now broadly accepted in neuroscience. Additionally, MacLean said that the idea of the limbic system leads to a recognition that its presence "represents the history of the evolution of mammals and their distinctive family way of life."

In the 1960s, Dr. MacLean enlarged his theory to address the human brain's overall structure and divided its evolution into three parts, an idea that he termed the triune brain. In addition to identifying the limbic system, he hypothesized a supposedly more primitive brain called the R-complex, related to reptiles, which controls basic functions like muscle movement and breathing. According to him, the third part, the neocortex, controls speech and reasoning and is the most recent evolutionary arrival. The concept of the limbic system has since been further expanded and developed by Walle Nauta, Lennart Heimer, and others.

Academic dispute

There is controversy over the use of the term limbic system, with scientists such as Joseph E. LeDoux and Edmund Rolls arguing that the term be considered obsolete and abandoned. Originally, the limbic system was believed to be the emotional center of the brain, with cognition being the business of the neocortex. However, cognition depends on acquisition and retention of memories, in which the hippocampus, a primary limbic interacting structure, is involved: hippocampus damage causes severe cognitive (memory) deficits. More important, the "boundaries" of the limbic system have been repeatedly redefined because of advances in neuroscience. Therefore, while it is true that limbic interacting structures are more closely related to emotion, the limbic system itself is best thought of as a component of a larger emotional processing plant.

Entropy (information theory)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(information_theory) In info...