Search This Blog

Friday, August 30, 2024

Brain injury

From Wikipedia, the free encyclopedia

Brain injury
Other namesBrain damage, neurotrauma
A CT of the head years after a traumatic brain injury showing an empty space where the damage occurred, marked by the arrow
SpecialtyNeurology
SymptomsDepending on brain area injured
TypesAcquired brain injury (ABI), traumatic brain injury (TBI), focal or diffuse, primary and secondary

Brain injury (BI) is the destruction or degeneration of brain cells. Brain injuries occur due to a wide range of internal and external factors. In general, brain damage refers to significant, undiscriminating trauma-induced damage.

A common category with the greatest number of injuries is traumatic brain injury (TBI) following physical trauma or head injury from an outside source, and the term acquired brain injury (ABI) is used in appropriate circles to differentiate brain injuries occurring after birth from injury, from a genetic disorder (GBI), or from a congenital disorder (CBI). Primary and secondary brain injuries identify the processes involved, while focal and diffuse brain injury describe the severity and localization.

Impaired function of affected areas can be compensated through neuroplasticity by forming new neural connections.

Signs and symptoms

Symptoms of brain injuries vary based on the severity of the injury or how much of the brain is affected. The four categories used for classifying the severity of brain injuries are mild, moderate, or severe. 

Severity of injuries

Mild brain injuries

Symptoms of a mild brain injury include headaches, confusions, tinnitus, fatigue, changes in sleep patterns, mood or behavior. Other symptoms include trouble with memory, concentration, attention or thinking. Mental fatigue is a common debilitating experience and may not be linked by the patient to the original (minor) incident.

Moderate/severe brain injuries

Cognitive symptoms include confusion, aggressiveness, abnormal behavior, slurred speech, and coma or other disorders of consciousness. Physical symptoms include headaches that worsen or do not go away, vomiting or nausea, convulsions, brain pulsation, abnormal dilation of the eyes, inability to awaken from sleep, weakness in extremities, and loss of coordination.

Symptoms in children

Symptoms observed in children include changes in eating habits, persistent irritability or sadness, changes in attention, or disrupted sleeping habits.

Location of brain damage predicts symptoms

Symptoms of brain injuries can also be influenced by the location of the injury and as a result impairments are specific to the part of the brain affected. Lesion size is correlated with severity, recovery, and comprehension. Brain injuries often create impairment or disability that can vary greatly in severity.

In cases of severe brain injuries, the likelihood of areas with permanent disability is great, including neurocognitive deficits, delusions (often, to be specific, monothematic delusions), speech or movement problems, and intellectual disability. There may also be personality changes. The most severe cases result in coma or even persistent vegetative state. Even a mild incident can have long-term effects or cause symptoms to appear years later.

Studies show there is a correlation between brain lesion and language, speech, and category-specific disorders. Wernicke's aphasia is associated with anomia, unknowingly making up words (neologisms), and problems with comprehension. The symptoms of Wernicke's aphasia are caused by damage to the posterior section of the superior temporal gyrus.

Damage to the Broca's area typically produces symptoms like omitting functional words (agrammatism), sound production changes, dyslexia, dysgraphia, and problems with comprehension and production. Broca's aphasia is indicative of damage to the posterior inferior frontal gyrus of the brain.

An impairment following damage to a region of the brain does not necessarily imply that the damaged area is wholly responsible for the cognitive process which is impaired, however. For example, in pure alexia, the ability to read is destroyed by a lesion damaging both the left visual field and the connection between the right visual field and the language areas (Broca's area and Wernicke's area). However, this does not mean one with pure alexia is incapable of comprehending speech—merely that there is no connection between their working visual cortex and language areas—as is demonstrated by the fact that people with pure alexia can still write, speak, and even transcribe letters without understanding their meaning.

Lesions to the fusiform gyrus often result in prosopagnosia, the inability to distinguish faces and other complex objects from each other. Lesions in the amygdala would eliminate the enhanced activation seen in occipital and fusiform visual areas in response to fear with the area intact. Amygdala lesions change the functional pattern of activation to emotional stimuli in regions that are distant from the amygdala.

Other lesions to the visual cortex have different effects depending on the location of the damage. Lesions to V1, for example, can cause blindsight in different areas of the brain depending on the size of the lesion and location relative to the calcarine fissure. Lesions to V4 can cause color-blindness, and bilateral lesions to MT/V5 can cause the loss of the ability to perceive motion. Lesions to the parietal lobes may result in agnosia, an inability to recognize complex objects, smells, or shapes, or amorphosynthesis, a loss of perception on the opposite side of the body.

Non-localizing features

Brain injuries have far-reaching and varied consequences due to the nature of the brain as the main source of bodily control. Brain-injured people commonly experience issues with memory. This can be issues with either long or short-term memories depending on the location and severity of the injury. Sometimes memory can be improved through rehabilitation, although it can be permanent. Behavioral and personality changes are also commonly observed due to changes of the brain structure in areas controlling hormones or major emotions.

Headaches and pain can occur as a result of a brain injury, either directly from the damage or due to neurological conditions stemming from the injury. Due to the changes in the brain as well as the issues associated with the change in physical and mental capacity, depression and low self-esteem are common side effects that can be treated with psychological help. Antidepressants must be used with caution in brain injury people due to the potential for undesired effects because of the already altered brain chemistry.

Long term psychological and physiological effects

There are multiple responses of the body to brain injury, occurring at different times after the initial occurrence of damage, as the functions of the neurons, nerve tracts, or sections of the brain can be affected by damage. The immediate response can take many forms. Initially, there may be symptoms such as swelling, pain, bruising, or loss of consciousness. Post-traumatic amnesia is also common with brain damage, as is temporary aphasia, or impairment of language.

As time progresses, and the severity of injury becomes clear, there are further responses that may become apparent. Due to loss of blood flow or damaged tissue, sustained during the injury, amnesia and aphasia may become permanent, and apraxia has been documented in patients. Amnesia is a condition in which a person is unable to remember things. Aphasia is the loss or impairment of word comprehension or use. Apraxia is a motor disorder caused by damage to the brain, and may be more common in those who have been left brain damaged, with loss of mechanical knowledge critical. Headaches, occasional dizziness, and fatigue—all temporary symptoms of brain trauma—may become permanent, or may not disappear for a long time.

There are documented cases of lasting psychological effects as well, such as emotional changes often caused by damage to the various parts of the brain that control human emotions and behavior. Individuals who have experienced emotional changes related to brain damage may have emotions that come very quickly and are very intense, but have very little lasting effect. Emotional changes may not be triggered by a specific event, and can be a cause of stress to the injured party and their family and friends. Often, counseling is suggested for those who experience this effect after their injury, and may be available as an individual or group session.

The long term psychological and physiological effects will vary by person and injury. For example, perinatal brain damage has been implicated in cases of neurodevelopmental impairments and psychiatric illnesses. If any concerning symptoms, signs, or changes to behaviors are occurring, a healthcare provider should be consulted.

Causes

A coup injury occurs under the site of impact with an object, and a contrecoup injury occurs on the side opposite the area that was hit.

Brain injuries can result from a number of conditions, including:

Chemotherapy

Chemotherapy can cause brain damage to the neural stem cells and oligodendrocyte cells that produce myelin. Radiation and chemotherapy can lead to brain tissue damage by disrupting or stopping blood flow to the affected areas of the brain. This damage can cause long term effects such as but not limited to; memory loss, confusion, and loss of cognitive function. The brain damage caused by radiation depends on where the brain tumor is located, the amount of radiation used, and the duration of the treatment. Radiosurgery can also lead to tissue damage that results in about 1 in 20 patients requiring a second operation to remove the damaged tissue.

Wernicke–Korsakoff syndrome

Wernicke–Korsakoff syndrome can cause brain damage and results from a Vitamin B deficiency (specifically vitamin B1, thiamine). This syndrome presents with two conditions, Wernicke's encephalopathy and Korsakoff psychosis. Typically Wernicke's encephalopathy precedes symptoms of Korsakoff psychosis. Wernicke's encephalopathy results from focal accumulation of lactic acid, causing problems with vision, coordination, and balance.

Korsakoff psychosis typically follows after the symptoms of Wernicke's decrease. Wernicke-Korsakoff syndrome is typically caused by conditions causing thiamine deficiency, such as chronic heavy alcohol use or by conditions that affect nutritional absorption, including colon cancer, eating disorders and gastric bypass.

Iatrogenic

Brain lesions are sometimes intentionally inflicted during neurosurgery, such as the carefully placed brain lesion used to treat epilepsy and other brain disorders. These lesions are induced by excision or by electric shocks (electrolytic lesions) to the exposed brain or commonly by infusion of excitotoxins to specific areas.

Diffuse axonal

Diffuse axonal injury is caused by shearing forces on the brain leading to lesions in the white matter tracts of the brain. These shearing forces are seen in cases where the brain had a sharp rotational acceleration, and is caused by the difference in density between white matter and grey matter.

Body's response to brain injury

Unlike some of the more obvious responses to brain damage, the body also has invisible physical responses which can be difficult to notice. These will generally be identified by a healthcare provider, especially as they are normal physical responses to brain damage. Cytokines are known to be induced in response to brain injury. These have diverse actions that can cause, exacerbate, mediate and/or inhibit cellular injury and repair. TGFβ seems to exert primarily neuroprotective actions, whereas TNFα might contribute to neuronal injury and exert protective effects. IL-1 mediates ischaemic, excitotoxic, and traumatic brain injury, probably through multiple actions on glia, neurons, and the vasculature. Cytokines may be useful in order to discover novel therapeutic strategies. At the current time, they are already in clinical trials.

Diagnosis

Glasgow Coma Scale (GCS) is the most widely used scoring system used to assess the level of severity of a brain injury. This method is based on the objective observations of specific traits to determine the severity of a brain injury. It is based on three traits: eye opening, verbal response, and motor response, gauged as described below. Based on the Glasgow Coma Scale severity is classified as follows, severe brain injuries score 3–8, moderate brain injuries score 9–12 and mild score 13–15.

There are several imaging techniques that can aid in diagnosing and assessing the extent of brain damage, such as computed tomography (CT) scan, magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and single-photon emission tomography (SPECT). CT scans and MRI are the two techniques widely used and are most effective. CT scans can show brain bleeds, fractures of the skull, fluid build up in the brain that will lead to increased cranial pressure.

MRI is able to better to detect smaller injuries, detect damage within the brain, diffuse axonal injury, injuries to the brainstem, posterior fossa, and subtemporal and subfrontal regions. However, patients with pacemakers, metallic implants, or other metal within their bodies are unable to have an MRI done. Typically the other imaging techniques are not used in a clinical setting because of the cost, lack of availability.

Management

Acute

The treatment for emergency traumatic brain injuries focuses on assuring the person has enough oxygen from the brain's blood supply, and on maintaining normal blood pressure to avoid further injuries of the head or neck. The person may need surgery to remove clotted blood or repair skull fractures, for which cutting a hole in the skull may be necessary. Medicines used for traumatic injuries are diuretics, anti-seizure or coma-inducing drugs. Diuretics reduce the fluid in tissues lowering the pressure on the brain. In the first week after a traumatic brain injury, a person may have a risk of seizures, which anti-seizure drugs help prevent. Coma-inducing drugs may be used during surgery to reduce impairments and restore blood flow. Mouse NGF has been licensed in China since 2003 and is used to promote neurological recovery in a range of brain injuries, including intracerebral hemorrhage.

In the case of brain damage from traumatic brain injury, dexamethasone and/or Mannitol may be used. 

Chronic

Various professions may be involved in the medical care and rehabilitation of someone with an impairment after a brain injury. Neurologists, neurosurgeons, and physiatrists are physicians specialising in treating brain injury. Neuropsychologists (especially clinical neuropsychologists) are psychologists specialising in understanding the effects of brain injury and may be involved in assessing the severity or creating rehabilitation strategies. Occupational therapists may be involved in running rehabilitation programs to help restore lost function or help re-learn essential skills. Registered nurses, such as those working in hospital intensive care units, are able to maintain the health of the severely brain-injured with constant administration of medication and neurological monitoring, including the use of the Glasgow Coma Scale used by other health professionals to quantify extent of orientation.

Physiotherapists also play a significant role in rehabilitation after a brain injury. In the case of a traumatic brain injury (TBI), physiotherapy treatment during the post-acute phase may include sensory stimulation, serial casting and splinting, fitness and aerobic training, and functional training. Sensory stimulation refers to regaining sensory perception through the use of modalities. There is no evidence to support the efficacy of this intervention. Serial casting and splinting are often used to reduce soft tissue contractures and muscle tone. Evidence based research reveals that serial casting can be used to increase passive range of motion (PROM) and decrease spasticity.

Functional training may also be used to treat patients with TBIs. To date, no studies supports the efficacy of sit to stand training, arm ability training and body weight support systems (BWS). Overall, studies suggest that patients with TBIs who participate in more intense rehabilitation programs will see greater benefits in functional skills. More research is required to better understand the efficacy of the treatments mentioned above.

Other treatments for brain injury can include medication, psychotherapy, neuropsychological rehabilitation, and/or surgery.

Prognosis

Prognosis, or the likely progress of a disorder, depends on the nature, location, and cause of the brain damage (see Traumatic brain injury, Focal and diffuse brain injury, Primary and secondary brain injury).

In general, neuroregeneration can occur in the peripheral nervous system but is much rarer and more difficult to assist in the central nervous system (brain or spinal cord). However, in neural development in humans, areas of the brain can learn to compensate for other damaged areas, and may increase in size and complexity and even change function, just as someone who loses a sense may gain increased acuity in another sense—a process termed neuroplasticity.

There are many misconceptions that revolve around brain injuries and brain damage. One misconception is that if someone has brain damage then they cannot fully recover. Recovery depends a variety of factors; such as severity and location. Testing is done to note severity and location. Not everyone fully heals from brain damage, but it is possible to have a full recovery. Brain injuries are very hard to predict in outcome. Many tests and specialists are needed to determine the likelihood of the prognosis. People with minor brain damage can have debilitating side effects; not just severe brain damage has debilitating effects.

The side-effects of a brain injury depend on location and the body's response to injury. Even a mild concussion can have long term effects that may not resolve. Another misconception is that children heal better from brain damage. Children are at greater risk for injury due to lack of maturity. It makes future development hard to predict. This is because different cortical areas mature at different stages, with some major cell populations and their corresponding cognitive faculties remaining unrefined until early adulthood. In the case of a child with frontal brain injury, for example, the impact of the damage may be undetectable until that child fails to develop normal executive functions in his or her late teens and early twenties.

History

The foundation for understanding human behavior and brain injury can be attributed to the case of Phineas Gage and the famous case studies by Paul Broca. The first case study on Phineas Gage's head injury is one of the most astonishing brain injuries in history. In 1848, Phineas Gage was paving way for a new railroad line when he encountered an accidental explosion of a tamping iron straight through his frontal lobe. Gage observed to be intellectually unaffected but was claimed by some to have exemplified post-injury behavioral deficits.

Ten years later, Paul Broca examined two patients exhibiting impaired speech due to frontal lobe injuries. Broca's first patient lacked productive speech. He saw this as an opportunity to address language localization. It was not until Leborgne, informally known as "tan", died when Broca confirmed the frontal lobe lesion from an autopsy. The second patient had similar speech impairments, supporting his findings on language localization. The results of both cases became a vital verification of the relationship between speech and the left cerebral hemisphere. The affected areas are known today as Broca's area and Broca's Aphasia.

A few years later, a German neuroscientist, Carl Wernicke, consulted on a stroke patient. The patient experienced neither speech nor hearing impairments, but had a few brain deficits. These deficits included: lacking the ability to comprehend what was spoken to him and the words written down. After his death, Wernicke examined his autopsy that found a lesion located in the left temporal region. This area became known as Wernicke's area. Wernicke later hypothesized the relationship between Wernicke's area and Broca's area, which was proven fact.

Mild cognitive impairment

From Wikipedia, the free encyclopedia
Mild cognitive impairment
Other namesIncipient dementia, isolated memory impairment
SpecialtyNeurology
SymptomsCan include memory impairments (amnestic) or cognitive problems like impaired decision making, language, or visuospatial skills (non-amnestic)
Usual onsetTypically appears in adults 65 or older
TypesAmnestic, non-amnestic
Risk factorsAge, family history, cardiovascular disease
Diagnostic methodBased on symptoms assessed by a clinical neuropsychologist through observations, neuroimaging, and blood tests

Mild cognitive impairment (MCI) is a neurocognitive disorder which involves cognitive impairments beyond those expected based on an individual's age and education but which are not significant enough to interfere with instrumental activities of daily living. MCI may occur as a transitional stage between normal aging and dementia, especially Alzheimer's disease. It includes both memory and non-memory impairments. The cause of the disorder remains unclear, as well as both its prevention and treatment, with some 50 percent of people diagnosed with it going on to develop Alzheimer's disease within five years. The diagnosis can also serve as an early indicator for other types of dementia, although MCI may remain stable or even remit.

Mild cognitive impairment has been relisted as mild neurocognitive disorder in DSM-5, and in ICD-11, the latter effective on 1 January 2022.

Classification

MCI can present with a variety of symptoms, but is divided generally into two types.

Amnestic MCI (aMCI) is mild cognitive impairment with memory loss as the predominant symptom; aMCI is frequently seen as a prodromal stage of Alzheimer's disease. Studies suggest that these individuals tend to progress to probable Alzheimer's disease at a rate of approximately 10% to 15% per year. It is possible that being diagnosed with cognitive decline may serve as an indicator of MCI.

Nonamnestic MCI (naMCI) is mild cognitive impairment in which impairments in domains other than memory (for example, language, visuospatial, executive) are more prominent. It may be further divided as nonamnestic single- or multiple-domain MCI, and these individuals are believed to be more likely to convert to other dementias (for example, dementia with Lewy bodies).

The International Classification of Diseases classifies MCI as a "mental and behavioural disorder."

Causes

Mild cognitive impairment (MCI) may be caused due to alteration in the brain triggered during early stages of Alzheimer's disease or other forms of dementia. Exact causes of MCI are unknown. It is controversial whether MCI even should be identified as a disorder.

Risk factors of both dementia and MCI are considered to be the same: these are aging, genetic (heredity) cause of Alzheimer's or other dementia, and cardiovascular disease.

Individuals with MCI have increased oxidative damage in their nuclear and mitochondrial brain DNA.

Brain damage, brain injury, delirium and prolonged substance abuse can cause MCI.

Diagnosis

The diagnosis of MCI requires considerable clinical judgement, and as such a comprehensive clinical assessment including clinical observation, neuroimaging, blood tests and neuropsychological testing are best in order to rule out an alternate diagnosis. MCI is diagnosed when there is:

  1. Evidence of memory impairment
  2. Preservation of general cognitive and functional abilities
  3. Absence of diagnosed dementia

Neuropathology

Although amnestic MCI patients may not meet criteria for Alzheimer's disease, patients may be in a transitional stage of evolving Alzheimer's disease.

Magnetic resonance imaging can observe deterioration, including progressive loss of gray matter in the brain, from mild cognitive impairment to full-blown Alzheimer disease. A technique known as PiB PET imaging is used to show the sites and shapes of beta amyloid deposits in living subjects using a 11C tracer that binds selectively to such deposits.

Treatment

As of January 2018, there are no USFDA-approved medications for the treatment of mild cognitive impairment. Moreover, as of January 2018, there is no high-quality evidence that supports the efficacy of any pharmaceutical drugs or dietary supplements for improving cognitive symptoms in individuals with mild cognitive impairment. A moderate amount of high-quality evidence supports the efficacy of regular physical exercise for improving cognitive symptoms in individuals with MCI. The clinical trials that established the efficacy of exercise therapy for MCI involved twice weekly exercise over a period of six months. A small amount of high-quality evidence supports the efficacy of cognitive training for improving some measures of cognitive function in individuals with mild cognitive impairment. Due to the heterogeneity among studies which assessed the effect of cognitive training in individuals with MCI, there are no particular cognitive training interventions that have been found to provide greater symptomatic benefits for MCI relative to other forms of cognitive training.

The American Academy of Neurology's (AAN) clinical practice guideline on mild cognitive impairment from January 2018 stated that clinicians should identify modifiable risk factors in individuals with MCI, assess functional impairments, provide treatment for any behavioral or neuropsychiatric symptoms, and monitor the individual's cognitive status over time. It also stated that medications which cause cognitive impairment should be discontinued or avoided if possible. Due to the lack of evidence supporting the efficacy of cholinesterase inhibitors in individuals with MCI, the AAN guideline stated that clinicians who choose to prescribe them for the treatment of MCI must inform patients about the lack of evidence supporting this therapy. The guideline also indicated that clinicians should recommend that individuals with MCI engage in regular physical exercise for cognitive symptomatic benefits; clinicians may also recommend cognitive training, which appears to provide some symptomatic benefit in certain cognitive measures.

According to research conducted in England, people with MCI often do not receive adequate care and support in healthcare settings. This leaves them and their families in a limbo with uncertainty regarding their futures and the fear of possibly developing dementia. The lack of services also fails to point them to effective ways to prevent dementia such as exercise and social contact. Successful dementia prevention services would have to be tailored to people's preferences and backgrounds.

As MCI may represent a prodromal state to clinical Alzheimer's disease, treatments proposed for Alzheimer's disease, such as antioxidants and cholinesterase inhibitors, could potentially be useful; however, as of January 2018, there is no evidence to support the efficacy of cholinesterase inhibitors for the treatment of mild cognitive impairment. Two drugs used to treat Alzheimer's disease have been assessed for their ability to treat MCI or prevent progression to full Alzheimer's disease. Rivastigmine failed to stop or slow progression to Alzheimer's disease or to improve cognitive function for individuals with mild cognitive impairment; donepezil showed only minor, short-term benefits and was associated with significant side effects.

Intervention

Current evidence suggests that cognition-based interventions do improve mental performance (i.e. memory, executive function, attention, and speed) in older adults and people with mild cognitive impairment. Especially, immediate and delayed verbal recall resulted in higher performance gains from memory training.

Nutrition

There is currently limited evidence to form a strong conclusion to recommend the use of any form of carbohydrate in preventing or reducing cognitive decline in older adults with normal cognition or mild cognitive impairment. So, more large and higher quality evidence is needed to evaluate memory improvement and find nutritional issues due to carbohydrates.

Outlook

MCI does not usually interfere with daily life, but around 50 percent of people diagnosed with it go on to develop Alzheimer's disease within five years (mainly for people diagnosed with memory impairments). This diagnosis can also serve as an early indicator for other types of dementia, although MCI may remain stable or even remit.

Prevalence

The prevalence of MCI varies by age. The prevalence of MCI among different age groups is as follows: 6.7% for ages 60–64; 8.4% for ages 65–69, 10.1% for ages 70–74, 14.8% for ages 75–79, and 25.2% for ages 80–84. After a two-year follow-up, the cumulative incidence of dementia among individuals who are over 65 years old and were diagnosed with MCI was found to be 14.9%.

Due to the emphasis shifting to the earlier diagnosis of dementia, more people are assessed who report memory problems. In turn this also leads diagnosing more people who might have MCI which is a risk factor for dementia. Globally, approximately 16% of the population over the age of 70 experiences some type of mild cognitive impairment.

Mutation accumulation theory

Older man from Faridabad, Haryana, India

The mutation accumulation theory of aging was first proposed by Peter Medawar in 1952 as an evolutionary explanation for biological aging and the associated decline in fitness that accompanies it. Medawar used the term 'senescence' to refer to this process. The theory explains that, in the case where harmful mutations are only expressed later in life, when reproduction has ceased and future survival is increasingly unlikely, then these mutations are likely to be unknowingly passed on to future generations. In this situation the force of natural selection will be weak, and so insufficient to consistently eliminate these mutations. Medawar posited that over time these mutations would accumulate due to genetic drift and lead to the evolution of what is now referred to as aging.

Background and history

Despite Charles Darwin's completion of his theory of biological evolution in the 19th century, the modern logical framework for evolutionary theories of aging wouldn't emerge until almost a century later. Though August Weismann did propose his theory of programmed death, it was met with criticism and never gained mainstream attention. It wasn't until 1930 that Ronald Fisher first noted the conceptual insight which prompted the development of modern aging theories. This concept, namely that the force of natural selection on an individual decreases with age, was analysed further by J. B. S. Haldane, who suggested it as an explanation for the relatively high prevalence of Huntington's disease despite the autosomal dominant nature of the mutation. Specifically, as Huntington's only presents after the age of 30, the force of natural selection against it would have been relatively low in pre-modern societies. It was based on the ideas of Fisher and Haldane that Peter Medawar was able to work out the first complete model explaining why aging occurs, which he presented in a lecture in 1951 and then published in 1952.

Mechanism of action

(a) The survival rate within a population decreases with age, while the reproduction rate remains constant. (b) The reproduction probability peaks early in life, at sexual maturity, and then steadily decreases as an individual ages, with the remaining share of the population decreasing with age as they enter the selection shadow.

Amongst almost all populations, the likelihood that an individual will reproduce is related directly to their age. Starting at 0 at birth, the probability increases to its maximum in young adulthood once sexual maturity has been reached, before gradually decreasing with age. This decrease is caused by the increasing likelihood of death due to external pressures such as predation or illness, as well as the internal pressures inherent to organisms that experience senescence. In such cases deleterious mutations which are expressed early on are strongly selected against due to their major impact on the number of offspring produced by that individual. Mutations that present later in life, by contrast, are relatively unaffected by selective pressure, as their carriers have already passed on their genes, assuming they survive long enough for the mutation to be expressed at all. The result, as predicted by Medawar, is that deleterious late-life mutations will accumulate and result in the evolution of aging as it is known colloquially. This concept is portrayed graphically by Medawar through the concept of a "selection shadow". The shaded region represents the 'shadow' of time during which selective pressure has no effect. Mutations that are expressed within this selection shadow will remain as long as reproductive probability within that age range remains low.

Evidence supporting the mutation accumulation theory

Predation and Delayed Senescence

In populations where extrinsic mortality is low, the drop in reproductive probability after maturity is less severe than in other cases. The mutation accumulation theory therefore predicts that such populations would evolve delayed senescence. One such example of this scenario can be seen when comparing birds to organisms of equivalent size. It has been suggested that their ability to fly, and therefore lower relative risk of predation, is the cause of their longer than expected life span. The implication that flight, and therefore lower predation, increases lifespan is further born out by the fact that bats live on average 3 times longer than similarly sized mammals with comparable metabolic rates. Providing further evidence, insect populations are known to experience very high rates of extrinsic mortality, and as such would be expected to experience rapid senescence and short life spans. The exception to this rule, however, is found in the longevity of eusocial insect queens. As expected when applying the mutation accumulation theory, established queens are at almost no risk of predation or other forms of extrinsic mortality, and consequently age far more slowly than others of their species.

Age-specific reproductive success of Drosophila Melanogaster

In the interest of finding specific evidence for the mutation accumulation theory, separate from that which also supports the similar antagonistic pleiotropy hypothesis, an experiment was conducted involving the breeding of successive generations of Drosophila Melanogaster. Genetic models predict that, in the case of mutation accumulation, elements of fitness, such as reproductive success and survival, will show age-related increases in dominance, homozygous genetic variance and additive variance. Inbreeding depression will also increase with age. This is because these variables are proportional to the equilibrium frequencies of deleterious alleles, which are expected to increase with age under mutation accumulation but not under the antagonistic pleiotropy hypothesis. This was tested experimentally by measuring age specific reproductive success in 100 different genotypes of Drosophila Melanogaster, with findings ultimately supporting the mutation accumulation theory of aging.

Criticisms of the mutation accumulation theory

Under most assumptions, the mutation accumulation theory predicts that mortality rates will reach close to 100% shortly after reaching post-reproductive age. Experimental populations of Drosophila Melanogaster, and other organisms, however, exhibit age-specific mortality rates that plateau well before reaching 100%, making mutation accumulation alone an insufficient explanation. It is suggested instead that mutation accumulation is only one factor among many, which together form the cause of aging. In particular, the mutation accumulation theory, the antagonistic pleiotropy hypothesis and the disposable soma theory of aging are all believed to contribute in some way to senescence.

Antagonistic pleiotropy hypothesis

Strength of natural selection plot as a function of age

The antagonistic pleiotropy hypothesis was first proposed in a 1952 paper on the evolutionary theory of ageing by Peter Medawar and developed further in a landmark paper by George C. Williams in 1957. Their original hypotheses have since spurred a huge and fruitful literature on the evolutionary explanation for senescence. Pleiotropy is the phenomenon where a single gene influences more than one phenotypic trait in an organism. It is one of the most commonly observed attributes of genes. A gene is considered to exhibit antagonistic pleiotropy if it controls more than one phenotypic trait, where at least one of these traits is beneficial to the organism's fitness and at least one is detrimental to fitness.

This line of genetic research began as an attempt to answer the following question: if survival and reproduction should always be favoured by natural selection, why should ageing – which in evolutionary terms can be described as the age-related decline in survival rate and reproduction – be nearly ubiquitous in the natural world?" The antagonistic pleiotropy hypothesis provides a partial answer to this question. As an evolutionary explanation for ageing, the hypothesis relies on the fact that reproductive capacity declines with age in many species and, therefore, the strength of natural selection also declines with age (because there can be no natural selection without reproduction). Since the strength of selection declines over the life cycles of human and most other organisms, natural selection in these species tends to favor "alleles that have early beneficial effects, but later deleterious effects".

Antagonistic pleiotropy also provides a framework for understanding why many genetic disorders, even those causing life threatening health impacts (e.g. sickle cell anaemia), are found to be relatively prevalent in populations. Seen through the lens of simple evolutionary processes, these genetic disorders should be observed at very low frequencies due to the force of natural selection. Genetic models of populations show that antagonistic pleiotropy allows genetic disorders to be maintained at reasonably high frequencies "even if the fitness benefits are subtle". In this sense, antagonistic pleiotropy forms the basis of a "genetic trade-off between different fitness components."

Trade-offs

In the theory of evolution, the concept of fitness has two components: mortality and reproduction. Antagonistic pleiotropy gets fixed in genomes by creating viable trade-offs between or within these two components. The existence of these trade-offs has been clearly demonstrated in human, botanical and insect species. For example, an analysis of global gene expression in the fruit fly, Drosophila melanogaster, revealed 34 genes whose expression coincided with the genetic trade-off between larval survival and adult size. The joint expression of these candidate 'trade-off' genes explained 86.3% of the trade-off. These tradeoffs can result from selection at the level of the organism or, more subtly, via mechanisms for the allocation of scarce resources in cellular metabolism.

Another example is found in a study of the yellow monkey flower, an annual plant. The study documents a trade-off between days-to-flower and reproductive capacity. This genetic balancing act determines how many individuals survive to flower in a short growing season (viability) while also influencing the seed set of survivors (fecundity). The authors find that tradeoffs between plant viability and fecundity can engender a stable polymorphism under surprisingly general conditions. Thus, for this annual flower, they reveal a tradeoff between mortality and fecundity and, according to the authors, this tradeoff is also relevant for other annual, flowering plants.

Role in fecundity and senescence

Senescence refers to the process of physiological change in individual members of a species as they age. An antagonistically pleiotropic gene can be selected for if it has beneficial effects in early life while manifesting its negative effects in later life because genes tend to have larger impacts on fitness in an organism's prime than in their old age. Williams's 1957 article has motivated many follow-up studies on the evolutionary causes of ageing. These studies show clear trade-offs involving early increases in fecundity and later increases in mortality.

One such study tests the hypothesis that death due to cardiovascular disease in humans is linked to an antagonistic pleiotropy operating through inflammation. Because the human immune system evolved in an ancestral environment characterized by abundant pathogens, protective, pro-inflammatory responses were undoubtedly selected for in these environments. However, in terms of cardiovascular risk, these same inflammatory responses can be harmful – especially, more recently, in affluent countries where life expectancy is much longer than in the ancestral environment. The study looks at mortality, over a period of 3 to 5 years, in a group of 311 85-year old Dutch women. Information on their reproductive history as well results of blood tests, genetic tests and physical examinations was recorded. The study found that individuals with a higher pro-inflammatory ratio TNFα/IL-10 had a significantly higher incidence of death due to cardiovascular disease in old age. This finding supports the hypothesis that this genotype was prevalent because higher ratios of TNFα/IL-10 allow individuals to more effectively combat infection during reproductive years.

Role in disease

The survival of many serious genetic disorders in human evolutionary history has led researchers to reassess the role of antagonistic pleiotropy in disease. If genetic disorders are caused by mutations to a single deleterious allele, then natural selection, acting over evolutionary time, should result in a lower frequency of mutations than are currently observed. In a 2011 review article, Carter and Nguyen discuss several genetic disorders, arguing that, far from being a rare phenomenon, antagonistic pleiotropy might be a fundamental mechanism by which "alleles with severe deleterious health effects can be maintained at medically relevant frequencies with only minor beneficial pleiotropic effects."

An example of this is sickle cell anaemia, which results in an abnormality in the oxygen-carrying protein haemoglobin found in red blood cells. Possessors of the deleterious allele have much lower life expectancies, with homozygotes rarely reaching 50 years of age. However, this allele also enhances resistance to malaria. Thus, in regions where malaria exerts or has exerted a strong selective pressure, sickle cell anemia has been selected for its conferred partial resistance to the disease. While homozygotes will have either no protection from malaria or a dramatic propensity to sickle cell anemia, heterozygotes have fewer physiological effects and a partial resistance to malaria. Thus, the gene that is responsible for sickle cell disease has fixed itself with relatively high frequencies in populations threatened by malaria by engendering a viable tradeoff between death from this non-communicable disease and death from malaria.

In another study of genetic diseases, 99 individuals with Laron syndrome (a rare form of dwarfism) were monitored alongside their non-dwarf kin for a period of ten years. Patients with Laron syndrome possess one of three genotypes for the growth hormone receptor gene (GHR). Most patients have an A->G splice site mutation in position 180 in exon 6. Some others possess a nonsense mutation (R43X), while the rest are heterozygous for the two mutations. Laron syndrome patients experienced a lower incidence of cancer mortality and diabetes compared to their non-dwarf kin. This suggests a role for antagonistic pleiotropy, whereby a deleterious mutation is preserved in a population because it still confers some survival benefit.

Another instance of antagonistic pleiotropy is manifested in Huntington's disease, a rare neurodegenerative disorder characterized by a high number of CAG repeats within the Huntingtin gene. The onset of Huntington's is usually observed post-reproductive age and generally involves involuntary muscle spasms, cognitive difficulties and psychiatric problems. The high number of CAG repeats is associated with increased activity of p53, a tumor suppressing protein that participates in apoptosis. It has been hypothesized that this explains the lower rates of cancer among Huntington's patients. Huntington's disease is also correlated with high fecundity.

Other pleiotropic diseases identified in the review article include: beta-thalassemia (also protects against malaria in the heterozygous state); cystic fibrosis (increased fertility); and osteoporosis in old age (reduced risk of osteoporosis in youth).

Role in sexual selection

It is generally accepted that the evolution of secondary sexual characteristics persists until the relative costs of survival outweigh the benefits of reproductive success. At the level of genes, this means a trade-off between variation and expression of selected traits. Strong, persistent sexual selection should result in decreased genetic variation for these traits. However, higher levels of variation have been reported in sexually-selected traits compared to non-sexually selected traits. This phenomenon is especially clear in lek species, where males' courtship behavior confers no immediate advantage to the female. Female choice presumably depends on correlating male displays (secondary sexual characteristics) with overall genetic quality. If such directional sexual selection depletes variation in males, why would female choice continue to exist? Rowe and Houle answer this question (the lek paradox) using the notion of genetic capture, which couples the sexually-selected traits with the overall condition of the organism. They posit that the genes for secondary sexual characteristics must be pleiotropically linked to condition, a measure of the organism's fitness. In other words, the genetic variation in secondary sexual characteristics is maintained due to variation in the organism's condition.

Ubiquity in population genetics

Advances in genome mappings have greatly facilitated research into antagonistic pleiotropy. Such research is now often carried out in laboratories, but also in wild populations. The latter context for testing has the advantage of introducing the full complexity of the selection experience – competitors, predators, and parasites – though it has the disadvantage of introducing idiosyncratic factors that are specific to given locations. In order to be able to assert with confidence that a given pleiotropy is, indeed, an antagonistic pleiotropy and not due to some other competing cause (e.g. the mutation accumulation hypothesis), one must have knowledge of the precise gene that is pleiotropic. This is now increasingly possible with organisms that have detailed genomic mappings (e.g. mice, fruit flies and humans). A 2018 review of this research finds that "antagonistic pleiotropy is somewhere between very common or ubiquitous in the animal world .... and potentially all living domains... ".

Stem cell theory of aging

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Stem_cell_theory_of_aging

The stem cell theory of aging postulates that the aging process is the result of the inability of various types of stem cells to continue to replenish the tissues of an organism with functional differentiated cells capable of maintaining that tissue's (or organ's) original function. Damage and error accumulation in genetic material is always a problem for systems regardless of the age. The number of stem cells in young people is very much higher than older people and thus creates a better and more efficient replacement mechanism in the young contrary to the old. In other words, aging is not a matter of the increase in damage, but a matter of failure to replace it due to a decreased number of stem cells. Stem cells decrease in number and tend to lose the ability to differentiate into progenies or lymphoid lineages and myeloid lineages.

Maintaining the dynamic balance of stem cell pools requires several conditions. Balancing proliferation and quiescence along with homing (See niche) and self-renewal of hematopoietic stem cells are favoring elements of stem cell pool maintenance while differentiation, mobilization and senescence are detrimental elements. These detrimental effects will eventually cause apoptosis.

There are also several challenges when it comes to therapeutic use of stem cells and their ability to replenish organs and tissues. First, different cells may have different lifespans even though they originate from the same stem cells (See T-cells and erythrocytes), meaning that aging can occur differently in cells that have longer lifespans as opposed to the ones with shorter lifespans. Also, continual effort to replace the somatic cells may cause exhaustion of stem cells.

Research

Some of the proponents of this theory have been Norman E. Sharpless, Ronald A. DePinho, Huber Warner, Alessandro Testori and others. Warner came to this conclusion after analyzing human case of Hutchinson's Gilford syndrome and mouse models of accelerated aging.

Stem cells will turn into certain cells as the body needs them. Stem cells divide more than non stem cells so the tendency of accumulating damage is greater. Although they have protective mechanisms, they still age and lose function. Matthew R. Wallenfang, Renuka Nayak and Stephen DiNardo showed this in their study. According to their findings, it is possible to track male GSCs labeled with lacZ gene in Drosophila model by inducing recombination with heat shock and observe the decrease in GSC number with aging. In order to mark GSCs with lacZ gene, flip recombinase (Flp)-mediated recombination is used to combine a ubiquitously active tubulin promoter followed by an FRT (flip recombinase target) site with a promotorless lacZ ORF (open reading frame) preceded by an FRT site. Heat shock is used to induce Flp recombinase marker gene expression is activated in dividing cells due to recombination. Consequently, all clone of cells derived from GSC are marked with a functional lacZ gene. By tracking the marked cells, they were able to show that GSCs do age.

Another study in a mouse model shows that stem cells do age and their aging can lead to heart failure. Findings of the study indicate that diabetes leads to premature myocyte senescence and death and together they result in the development of cardiomyopathy due to decreased muscle mass.

Recent work has suggested that, although adult tissue stem cells may the key cell type in the aging process, they may contribute via reducing their differentiation rates, rather than via becoming exhausted. Under this model, when stem cells divide but do not differentiate, they produce an excess of daughter stem cells. This phenotype will be selected for, at the cellular level, if it is caused by heritable epigenetic changes or genetic mutations, and has the potential to overwhelm homeostatic regulation of cell numbers when organismal integrity is under reduced selection in later life.

Behrens et al. have reviewed evidence that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment is responsible, at least in part, for stem cell dysfunction with aging.

Hematopoietic stem cell aging

Hematopoietic stem cells (HSCs) regenerate the blood system throughout life and maintain homeostasis. DNA strand breaks accumulate in long term HSCs during aging. This accumulation is associated with a broad attenuation of DNA repair and response pathways that depends on HSC quiescence. DNA ligase 4 (Lig4) has a highly specific role in the repair of double-strand breaks by non-homologous end joining (NHEJ). Lig4 deficiency in the mouse causes a progressive loss of HSCs during aging. These findings suggest that NHEJ is a key determinant of the ability of HSCs to maintain themselves over time.

Hematopoietic stem cell diversity aging

A study showed that the clonal diversity of stem cells that produce blood cells gets drastically reduced around age 70 to a faster-growing few, substantiating a novel theory of ageing which could enable healthy aging.

Hematopoietic mosaic loss of chromosome Y

A 2022 study showed that blood cells' loss of the Y chromosome in a subset of cells, called 'mosaic loss of chromosome Y' (mLOY) and reportedly affecting at least 40% of 70 years-old men to some degree, contributes to fibrosis, heart risks, and mortality in a causal way.

Hair follicle stem cell aging

A key aspect of hair loss with age is the aging of the hair follicle. Ordinarily, hair follicle renewal is maintained by the stem cells associated with each follicle. Aging of the hair follicle appears to be primed by a sustained cellular response to the DNA damage that accumulates in renewing stem cells during aging. This damage response involves the proteolysis of type XVII collagen by neutrophil elastase in response to the DNA damage in the hair follicle stem cells. Proteolysis of collagen leads to elimination of the damaged cells and then to terminal hair follicle miniaturization.

Evidence against the theory

Diseases such as Alzheimer's disease, end-stage renal failure and heart disease are caused by different mechanisms that are not related to stem cells. Also, some diseases related to hematopoietic system, such as aplastic anemia and complete bone marrow failure, are not especially age-dependent. Aplastic Anemia is often an adverse effect of certain medications  but as such it cannot really be considered as evidence against the stem cell theory of aging. The cellularity of the bone marrow does decrease with age and can be usually calculated by the formula 100-age, and this seems consistent with a stem cell theory of aging. A dog study published by Zaucha J.M, Yu C. and Mathioudakis G., et al. also shows evidence against the stem cell theory. Experimental comparison of the engraftment properties of young and old marrow in a mammal model, the dog, failed to show any decrement in stem cell function with age.

Other theories of aging

The aging process can be explained with different theories. These are evolutionary theories, molecular theories, system theories and cellular theories. The evolutionary theory of ageing was first proposed in the late 1940s and can be explained briefly by the accumulation of mutations (evolution of ageing), disposable soma and antagonistic pleiotropy hypothesis. The molecular theories of ageing include phenomena such as gene regulation (gene expression), codon restriction, error catastrophe, somatic mutation, accumulation of genetic material (DNA) damage (DNA damage theory of aging) and dysdifferentiation. The system theories include the immunologic approach to ageing, rate-of-living and the alterations in neuroendocrinal control mechanisms. (See homeostasis). Cellular theory of ageing can be categorized as telomere theory, free radical theory (free-radical theory of aging) and apoptosis. The stem cell theory of aging is also a sub-category of cellular theories.

Historical materialism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Dialectic Historical materialism is Karl M...