Search This Blog

Monday, October 14, 2024

Epigenetics

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Epigenetics
Epigenetic mechanisms

In biology, epigenetics is the study of heritable traits, or a stable change of cell function, that happen without changes to the DNA sequence. The Greek prefix epi- (ἐπι- "over, outside of, around") in epigenetics implies features that are "on top of" or "in addition to" the traditional (DNA sequence based) genetic mechanism of inheritance. Epigenetics usually involves a change that is not erased by cell division, and affects the regulation of gene expression. Such effects on cellular and physiological phenotypic traits may result from environmental factors, or be part of normal development. Epigenetic factors can also lead to cancer.

The term also refers to the mechanism of changes: functionally relevant alterations to the genome that do not involve mutation of the nucleotide sequence. Examples of mechanisms that produce such changes are DNA methylation and histone modification, each of which alters how genes are expressed without altering the underlying DNA sequence. Further, non-coding RNA sequences have been shown to play a key role in the regulation of gene expression. Gene expression can be controlled through the action of repressor proteins that attach to silencer regions of the DNA. These epigenetic changes may last through cell divisions for the duration of the cell's life, and may also last for multiple generations, even though they do not involve changes in the underlying DNA sequence of the organism; instead, non-genetic factors cause the organism's genes to behave (or "express themselves") differently.

One example of an epigenetic change in eukaryotic biology is the process of cellular differentiation. During morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. In other words, as a single fertilized egg cell – the zygote – continues to divide, the resulting daughter cells change into all the different cell types in an organism, including neurons, muscle cells, epithelium, endothelium of blood vessels, etc., by activating some genes while inhibiting the expression of others.

Definitions

The term epigenesis has a generic meaning of "extra growth" that has been used in English since the 17th century. In scientific publications, the term epigenetics started to appear in the 1930s (see Fig. on the right). However, its contemporary meaning emerged only in the 1990s.

Number of patent families and non-patent documents with the term "epigenetic*" by publication year

A definition of the concept of epigenetic trait as a "stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence" was formulated at a Cold Spring Harbor meeting in 2008, although alternate definitions that include non-heritable traits are still being used widely.

Waddington's canalisation, 1940s

The hypothesis of epigenetic changes affecting the expression of chromosomes was put forth by the Russian biologist Nikolai Koltsov. From the generic meaning, and the associated adjective epigenetic, British embryologist C. H. Waddington coined the term epigenetics in 1942 as pertaining to epigenesis, in parallel to Valentin Haecker's 'phenogenetics' (Phänogenetik). Epigenesis in the context of the biology of that period referred to the differentiation of cells from their initial totipotent state during embryonic development.

When Waddington coined the term, the physical nature of genes and their role in heredity was not known. He used it instead as a conceptual model of how genetic components might interact with their surroundings to produce a phenotype; he used the phrase "epigenetic landscape" as a metaphor for biological development. Waddington held that cell fates were established during development in a process he called canalisation much as a marble rolls down to the point of lowest local elevation. Waddington suggested visualising increasing irreversibility of cell type differentiation as ridges rising between the valleys where the marbles (analogous to cells) are travelling.

In recent times, Waddington's notion of the epigenetic landscape has been rigorously formalized in the context of the systems dynamics state approach to the study of cell-fate. Cell-fate determination is predicted to exhibit certain dynamics, such as attractor-convergence (the attractor can be an equilibrium point, limit cycle or strange attractor) or oscillatory.

Contemporary

Robin Holliday defined in 1990 epigenetics as "the study of the mechanisms of temporal and spatial control of gene activity during the development of complex organisms."

More recent usage of the word in biology follows stricter definitions. As defined by Arthur Riggs and colleagues, it is "the study of mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence."

The term has also been used, however, to describe processes which have not been demonstrated to be heritable, such as some forms of histone modification. Consequently, there are attempts to redefine "epigenetics" in broader terms that would avoid the constraints of requiring heritability. For example, Adrian Bird defined epigenetics as "the structural adaptation of chromosomal regions so as to register, signal or perpetuate altered activity states." This definition would be inclusive of transient modifications associated with DNA repair or cell-cycle phases as well as stable changes maintained across multiple cell generations, but exclude others such as templating of membrane architecture and prions unless they impinge on chromosome function. Such redefinitions however are not universally accepted and are still subject to debate. The NIH "Roadmap Epigenomics Project", which ran from 2008 to 2017, uses the following definition: "For purposes of this program, epigenetics refers to both heritable changes in gene activity and expression (in the progeny of cells or of individuals) and also stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable." In 2008, a consensus definition of the epigenetic trait, a "stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence," was made at a Cold Spring Harbor meeting.

The similarity of the word to "genetics" has generated many parallel usages. The "epigenome" is a parallel to the word "genome", referring to the overall epigenetic state of a cell, and epigenomics refers to global analyses of epigenetic changes across the entire genome. The phrase "genetic code" has also been adapted – the "epigenetic code" has been used to describe the set of epigenetic features that create different phenotypes in different cells from the same underlying DNA sequence. Taken to its extreme, the "epigenetic code" could represent the total state of the cell, with the position of each molecule accounted for in an epigenomic map, a diagrammatic representation of the gene expression, DNA methylation and histone modification status of a particular genomic region. More typically, the term is used in reference to systematic efforts to measure specific, relevant forms of epigenetic information such as the histone code or DNA methylation patterns.

Mechanisms

Covalent modification of either DNA (e.g. cytosine methylation and hydroxymethylation) or of histone proteins (e.g. lysine acetylation, lysine and arginine methylation, serine and threonine phosphorylation, and lysine ubiquitination and sumoylation) play central roles in many types of epigenetic inheritance. Therefore, the word "epigenetics" is sometimes used as a synonym for these processes. However, this can be misleading. Chromatin remodeling is not always inherited, and not all epigenetic inheritance involves chromatin remodeling. In 2019, a further lysine modification appeared in the scientific literature linking epigenetics modification to cell metabolism, i.e. lactylation.

DNA associates with histone proteins to form chromatin.

Because the phenotype of a cell or individual is affected by which of its genes are transcribed, heritable transcription states can give rise to epigenetic effects. There are several layers of regulation of gene expression. One way that genes are regulated is through the remodeling of chromatin. Chromatin is the complex of DNA and the histone proteins with which it associates. If the way that DNA is wrapped around the histones changes, gene expression can change as well. Chromatin remodeling is accomplished through two main mechanisms:

  1. The first way is post translational modification of the amino acids that make up histone proteins. Histone proteins are made up of long chains of amino acids. If the amino acids that are in the chain are changed, the shape of the histone might be modified. DNA is not completely unwound during replication. It is possible, then, that the modified histones may be carried into each new copy of the DNA. Once there, these histones may act as templates, initiating the surrounding new histones to be shaped in the new manner. By altering the shape of the histones around them, these modified histones would ensure that a lineage-specific transcription program is maintained after cell division.
  2. The second way is the addition of methyl groups to the DNA, mostly at CpG sites, to convert cytosine to 5-methylcytosine. 5-Methylcytosine performs much like a regular cytosine, pairing with a guanine in double-stranded DNA. However, when methylated cytosines are present in CpG sites in the promoter and enhancer regions of genes, the genes are often repressed. When methylated cytosines are present in CpG sites in the gene body (in the coding region excluding the transcription start site) expression of the gene is often enhanced. Transcription of a gene usually depends on a transcription factor binding to a (10 base or less) recognition sequence at the enhancer that interacts with the promoter region of that gene (Gene expression#Enhancers, transcription factors, mediator complex and DNA loops in mammalian transcription). About 22% of transcription factors are inhibited from binding when the recognition sequence has a methylated cytosine. In addition, presence of methylated cytosines at a promoter region can attract methyl-CpG-binding domain (MBD) proteins. All MBDs interact with nucleosome remodeling and histone deacetylase complexes, which leads to gene silencing. In addition, another covalent modification involving methylated cytosine is its demethylation by TET enzymes. Hundreds of such demethylations occur, for instance, during learning and memory forming events in neurons.

There is frequently a reciprocal relationship between DNA methylation and histone lysine methylation. For instance, the methyl binding domain protein MBD1, attracted to and associating with methylated cytosine in a DNA CpG site, can also associate with H3K9 methyltransferase activity to methylate histone 3 at lysine 9. On the other hand, DNA maintenance methylation by DNMT1 appears to partly rely on recognition of histone methylation on the nucleosome present at the DNA site to carry out cytosine methylation on newly synthesized DNA. There is further crosstalk between DNA methylation carried out by DNMT3A and DNMT3B and histone methylation so that there is a correlation between the genome-wide distribution of DNA methylation and histone methylation.

Mechanisms of heritability of histone state are not well understood; however, much is known about the mechanism of heritability of DNA methylation state during cell division and differentiation. Heritability of methylation state depends on certain enzymes (such as DNMT1) that have a higher affinity for 5-methylcytosine than for cytosine. If this enzyme reaches a "hemimethylated" portion of DNA (where 5-methylcytosine is in only one of the two DNA strands) the enzyme will methylate the other half. However, it is now known that DNMT1 physically interacts with the protein UHRF1. UHRF1 has been recently recognized as essential for DNMT1-mediated maintenance of DNA methylation. UHRF1 is the protein that specifically recognizes hemi-methylated DNA, therefore bringing DNMT1 to its substrate to maintain DNA methylation.

Some acetylations and some methylations of lysines (symbol K) are activation signals for transcription when present on a nucleosome, as shown in the top figure. Some methylations on lysines or arginine (R) are repression signals for transcription when present on a nucleosome, as shown in the bottom figure. Nucleosomes consist of four pairs of histone proteins in a tightly assembled core region plus up to 30% of each histone remaining in a loosely organized tail (only one tail of each pair is shown). DNA is wrapped around the histone core proteins in chromatin. The lysines (K) are designated with a number showing their position as, for instance (K4), indicating lysine as the 4th amino acid from the amino (N) end of the tail in the histone protein. Methylations [Me], and acetylations [Ac] are common post-translational modifications on the lysines of the histone tails.

Although histone modifications occur throughout the entire sequence, the unstructured N-termini of histones (called histone tails) are particularly highly modified. These modifications include acetylation, methylation, ubiquitylation, phosphorylation, sumoylation, ribosylation and citrullination. Acetylation is the most highly studied of these modifications. For example, acetylation of the K14 and K9 lysines of the tail of histone H3 by histone acetyltransferase enzymes (HATs) is generally related to transcriptional competence (see Figure).

One mode of thinking is that this tendency of acetylation to be associated with "active" transcription is biophysical in nature. Because it normally has a positively charged nitrogen at its end, lysine can bind the negatively charged phosphates of the DNA backbone. The acetylation event converts the positively charged amine group on the side chain into a neutral amide linkage. This removes the positive charge, thus loosening the DNA from the histone. When this occurs, complexes like SWI/SNF and other transcriptional factors can bind to the DNA and allow transcription to occur. This is the "cis" model of the epigenetic function. In other words, changes to the histone tails have a direct effect on the DNA itself.

Another model of epigenetic function is the "trans" model. In this model, changes to the histone tails act indirectly on the DNA. For example, lysine acetylation may create a binding site for chromatin-modifying enzymes (or transcription machinery as well). This chromatin remodeler can then cause changes to the state of the chromatin. Indeed, a bromodomain – a protein domain that specifically binds acetyl-lysine – is found in many enzymes that help activate transcription, including the SWI/SNF complex. It may be that acetylation acts in this and the previous way to aid in transcriptional activation.

The idea that modifications act as docking modules for related factors is borne out by histone methylation as well. Methylation of lysine 9 of histone H3 has long been associated with constitutively transcriptionally silent chromatin (constitutive heterochromatin) (see bottom Figure). It has been determined that a chromodomain (a domain that specifically binds methyl-lysine) in the transcriptionally repressive protein HP1 recruits HP1 to K9 methylated regions. One example that seems to refute this biophysical model for methylation is that tri-methylation of histone H3 at lysine 4 is strongly associated with (and required for full) transcriptional activation (see top Figure). Tri-methylation, in this case, would introduce a fixed positive charge on the tail.

It has been shown that the histone lysine methyltransferase (KMT) is responsible for this methylation activity in the pattern of histones H3 & H4. This enzyme utilizes a catalytically active site called the SET domain (Suppressor of variegation, Enhancer of Zeste, Trithorax). The SET domain is a 130-amino acid sequence involved in modulating gene activities. This domain has been demonstrated to bind to the histone tail and causes the methylation of the histone.

Differing histone modifications are likely to function in differing ways; acetylation at one position is likely to function differently from acetylation at another position. Also, multiple modifications may occur at the same time, and these modifications may work together to change the behavior of the nucleosome. The idea that multiple dynamic modifications regulate gene transcription in a systematic and reproducible way is called the histone code, although the idea that histone state can be read linearly as a digital information carrier has been largely debunked. One of the best-understood systems that orchestrate chromatin-based silencing is the SIR protein based silencing of the yeast hidden mating-type loci HML and HMR.

DNA methylation

DNA methylation frequently occurs in repeated sequences, and helps to suppress the expression and mobility of 'transposable elements': Because 5-methylcytosine can be spontaneously deaminated (replacing nitrogen by oxygen) to thymidine, CpG sites are frequently mutated and become rare in the genome, except at CpG islands where they remain unmethylated. Epigenetic changes of this type thus have the potential to direct increased frequencies of permanent genetic mutation. DNA methylation patterns are known to be established and modified in response to environmental factors by a complex interplay of at least three independent DNA methyltransferases, DNMT1, DNMT3A, and DNMT3B, the loss of any of which is lethal in mice. DNMT1 is the most abundant methyltransferase in somatic cells, localizes to replication foci, has a 10–40-fold preference for hemimethylated DNA and interacts with the proliferating cell nuclear antigen (PCNA).

By preferentially modifying hemimethylated DNA, DNMT1 transfers patterns of methylation to a newly synthesized strand after DNA replication, and therefore is often referred to as the 'maintenance' methyltransferase. DNMT1 is essential for proper embryonic development, imprinting and X-inactivation. To emphasize the difference of this molecular mechanism of inheritance from the canonical Watson-Crick base-pairing mechanism of transmission of genetic information, the term 'Epigenetic templating' was introduced. Furthermore, in addition to the maintenance and transmission of methylated DNA states, the same principle could work in the maintenance and transmission of histone modifications and even cytoplasmic (structural) heritable states.

RNA methylation

RNA methylation of N6-methyladenosine (m6A) as the most abundant eukaryotic RNA modification has recently been recognized as an important gene regulatory mechanism.

Histone modifications

Histones H3 and H4 can also be manipulated through demethylation using histone lysine demethylase (KDM). This recently identified enzyme has a catalytically active site called the Jumonji domain (JmjC). The demethylation occurs when JmjC utilizes multiple cofactors to hydroxylate the methyl group, thereby removing it. JmjC is capable of demethylating mono-, di-, and tri-methylated substrates.

Chromosomal regions can adopt stable and heritable alternative states resulting in bistable gene expression without changes to the DNA sequence. Epigenetic control is often associated with alternative covalent modifications of histones. The stability and heritability of states of larger chromosomal regions are suggested to involve positive feedback where modified nucleosomes recruit enzymes that similarly modify nearby nucleosomes. A simplified stochastic model for this type of epigenetics is found here.

It has been suggested that chromatin-based transcriptional regulation could be mediated by the effect of small RNAs. Small interfering RNAs can modulate transcriptional gene expression via epigenetic modulation of targeted promoters.

RNA transcripts

Sometimes a gene, after being turned on, transcribes a product that (directly or indirectly) maintains the activity of that gene. For example, Hnf4 and MyoD enhance the transcription of many liver-specific and muscle-specific genes, respectively, including their own, through the transcription factor activity of the proteins they encode. RNA signalling includes differential recruitment of a hierarchy of generic chromatin modifying complexes and DNA methyltransferases to specific loci by RNAs during differentiation and development. Other epigenetic changes are mediated by the production of different splice forms of RNA, or by formation of double-stranded RNA (RNAi). Descendants of the cell in which the gene was turned on will inherit this activity, even if the original stimulus for gene-activation is no longer present. These genes are often turned on or off by signal transduction, although in some systems where syncytia or gap junctions are important, RNA may spread directly to other cells or nuclei by diffusion. A large amount of RNA and protein is contributed to the zygote by the mother during oogenesis or via nurse cells, resulting in maternal effect phenotypes. A smaller quantity of sperm RNA is transmitted from the father, but there is recent evidence that this epigenetic information can lead to visible changes in several generations of offspring.

MicroRNAs

MicroRNAs (miRNAs) are members of non-coding RNAs that range in size from 17 to 25 nucleotides. miRNAs regulate a large variety of biological functions in plants and animals. So far, in 2013, about 2000 miRNAs have been discovered in humans and these can be found online in a miRNA database. Each miRNA expressed in a cell may target about 100 to 200 messenger RNAs(mRNAs) that it downregulates. Most of the downregulation of mRNAs occurs by causing the decay of the targeted mRNA, while some downregulation occurs at the level of translation into protein.

It appears that about 60% of human protein coding genes are regulated by miRNAs. Many miRNAs are epigenetically regulated. About 50% of miRNA genes are associated with CpG islands, that may be repressed by epigenetic methylation. Transcription from methylated CpG islands is strongly and heritably repressed. Other miRNAs are epigenetically regulated by either histone modifications or by combined DNA methylation and histone modification.

mRNA

In 2011, it was demonstrated that the methylation of mRNA plays a critical role in human energy homeostasis. The obesity-associated FTO gene is shown to be able to demethylate N6-methyladenosine in RNA.

sRNAs

sRNAs are small (50–250 nucleotides), highly structured, non-coding RNA fragments found in bacteria. They control gene expression including virulence genes in pathogens and are viewed as new targets in the fight against drug-resistant bacteria. They play an important role in many biological processes, binding to mRNA and protein targets in prokaryotes. Their phylogenetic analyses, for example through sRNA–mRNA target interactions or protein binding properties, are used to build comprehensive databases. sRNA-gene maps based on their targets in microbial genomes are also constructed.

Long non-coding RNAs

Numerous investigations have demonstrated the pivotal involvement of long non-coding RNAs (lncRNAs) in the regulation of gene expression and chromosomal modifications, thereby exerting significant control over cellular differentiation. These long non-coding RNAs also contribute to genomic imprinting and the inactivation of the X chromosome. In invertebrates such as social insects of honey bees, long non-coding RNAs are detected as a possible epigenetic mechanism via allele-specific genes underlying aggression via reciprocal crosses.

Prions

Prions are infectious forms of proteins. In general, proteins fold into discrete units that perform distinct cellular functions, but some proteins are also capable of forming an infectious conformational state known as a prion. Although often viewed in the context of infectious disease, prions are more loosely defined by their ability to catalytically convert other native state versions of the same protein to an infectious conformational state. It is in this latter sense that they can be viewed as epigenetic agents capable of inducing a phenotypic change without a modification of the genome.

Fungal prions are considered by some to be epigenetic because the infectious phenotype caused by the prion can be inherited without modification of the genome. PSI+ and URE3, discovered in yeast in 1965 and 1971, are the two best studied of this type of prion. Prions can have a phenotypic effect through the sequestration of protein in aggregates, thereby reducing that protein's activity. In PSI+ cells, the loss of the Sup35 protein (which is involved in termination of translation) causes ribosomes to have a higher rate of read-through of stop codons, an effect that results in suppression of nonsense mutations in other genes. The ability of Sup35 to form prions may be a conserved trait. It could confer an adaptive advantage by giving cells the ability to switch into a PSI+ state and express dormant genetic features normally terminated by stop codon mutations.[

Prion-based epigenetics has also been observed in Saccharomyces cerevisiae.

Molecular basis

Epigenetic changes modify the activation of certain genes, but not the genetic code sequence of DNA. The microstructure (not code) of DNA itself or the associated chromatin proteins may be modified, causing activation or silencing. This mechanism enables differentiated cells in a multicellular organism to express only the genes that are necessary for their own activity. Epigenetic changes are preserved when cells divide. Most epigenetic changes only occur within the course of one individual organism's lifetime; however, these epigenetic changes can be transmitted to the organism's offspring through a process called transgenerational epigenetic inheritance. Moreover, if gene inactivation occurs in a sperm or egg cell that results in fertilization, this epigenetic modification may also be transferred to the next generation.

Specific epigenetic processes include paramutation, bookmarking, imprinting, gene silencing, X chromosome inactivation, position effect, DNA methylation reprogramming, transvection, maternal effects, the progress of carcinogenesis, many effects of teratogens, regulation of histone modifications and heterochromatin, and technical limitations affecting parthenogenesis and cloning.

DNA damage

DNA damage can also cause epigenetic changes. DNA damage is very frequent, occurring on average about 60,000 times a day per cell of the human body (see DNA damage (naturally occurring)). These damages are largely repaired, however, epigenetic changes can still remain at the site of DNA repair. In particular, a double strand break in DNA can initiate unprogrammed epigenetic gene silencing both by causing DNA methylation as well as by promoting silencing types of histone modifications (chromatin remodeling - see next section). In addition, the enzyme Parp1 (poly(ADP)-ribose polymerase) and its product poly(ADP)-ribose (PAR) accumulate at sites of DNA damage as part of the repair process. This accumulation, in turn, directs recruitment and activation of the chromatin remodeling protein, ALC1, that can cause nucleosome remodeling. Nucleosome remodeling has been found to cause, for instance, epigenetic silencing of DNA repair gene MLH1. DNA damaging chemicals, such as benzene, hydroquinone, styrene, carbon tetrachloride and trichloroethylene, cause considerable hypomethylation of DNA, some through the activation of oxidative stress pathways.

Foods are known to alter the epigenetics of rats on different diets. Some food components epigenetically increase the levels of DNA repair enzymes such as MGMT and MLH1 and p53. Other food components can reduce DNA damage, such as soy isoflavones. In one study, markers for oxidative stress, such as modified nucleotides that can result from DNA damage, were decreased by a 3-week diet supplemented with soy. A decrease in oxidative DNA damage was also observed 2 h after consumption of anthocyanin-rich bilberry (Vaccinium myrtillius L.) pomace extract.

DNA repair

Damage to DNA is very common and is constantly being repaired. Epigenetic alterations can accompany DNA repair of oxidative damage or double-strand breaks. In human cells, oxidative DNA damage occurs about 10,000 times a day and DNA double-strand breaks occur about 10 to 50 times a cell cycle in somatic replicating cells (see DNA damage (naturally occurring)). The selective advantage of DNA repair is to allow the cell to survive in the face of DNA damage. The selective advantage of epigenetic alterations that occur with DNA repair is not clear.

Repair of oxidative DNA damage can alter epigenetic markers

In the steady state (with endogenous damages occurring and being repaired), there are about 2,400 oxidatively damaged guanines that form 8-oxo-2'-deoxyguanosine (8-OHdG) in the average mammalian cell DNA. 8-OHdG constitutes about 5% of the oxidative damages commonly present in DNA. The oxidized guanines do not occur randomly among all guanines in DNA. There is a sequence preference for the guanine at a methylated CpG site (a cytosine followed by guanine along its 5' → 3' direction and where the cytosine is methylated (5-mCpG)). A 5-mCpG site has the lowest ionization potential for guanine oxidation.

Initiation of DNA demethylation at a CpG site. In adult somatic cells DNA methylation typically occurs in the context of CpG dinucleotides (CpG sites), forming 5-methylcytosine-pG, or 5mCpG. Reactive oxygen species (ROS) may attack guanine at the dinucleotide site, forming 8-hydroxy-2'-deoxyguanosine (8-OHdG), and resulting in a 5mCp-8-OHdG dinucleotide site. The base excision repair enzyme OGG1 targets 8-OHdG and binds to the lesion without immediate excision. OGG1, present at a 5mCp-8-OHdG site recruits TET1 and TET1 oxidizes the 5mC adjacent to the 8-OHdG. This initiates demethylation of 5mC.

Oxidized guanine has mispairing potential and is mutagenic. Oxoguanine glycosylase (OGG1) is the primary enzyme responsible for the excision of the oxidized guanine during DNA repair. OGG1 finds and binds to an 8-OHdG within a few seconds. However, OGG1 does not immediately excise 8-OHdG. In HeLa cells half maximum removal of 8-OHdG occurs in 30 minutes, and in irradiated mice, the 8-OHdGs induced in the mouse liver are removed with a half-life of 11 minutes.

When OGG1 is present at an oxidized guanine within a methylated CpG site it recruits TET1 to the 8-OHdG lesion (see Figure). This allows TET1 to demethylate an adjacent methylated cytosine. Demethylation of cytosine is an epigenetic alteration.

As an example, when human mammary epithelial cells were treated with H2O2 for six hours, 8-OHdG increased about 3.5-fold in DNA and this caused about 80% demethylation of the 5-methylcytosines in the genome. Demethylation of CpGs in a gene promoter by TET enzyme activity increases transcription of the gene into messenger RNA. In cells treated with H2O2, one particular gene was examined, BACE1. The methylation level of the BACE1 CpG island was reduced (an epigenetic alteration) and this allowed about 6.5 fold increase of expression of BACE1 messenger RNA.

While six-hour incubation with H2O2 causes considerable demethylation of 5-mCpG sites, shorter times of H2O2 incubation appear to promote other epigenetic alterations. Treatment of cells with H2O2 for 30 minutes causes the mismatch repair protein heterodimer MSH2-MSH6 to recruit DNA methyltransferase 1 (DNMT1) to sites of some kinds of oxidative DNA damage. This could cause increased methylation of cytosines (epigenetic alterations) at these locations.

Jiang et al. treated HEK 293 cells with agents causing oxidative DNA damage, (potassium bromate (KBrO3) or potassium chromate (K2CrO4)). Base excision repair (BER) of oxidative damage occurred with the DNA repair enzyme polymerase beta localizing to oxidized guanines. Polymerase beta is the main human polymerase in short-patch BER of oxidative DNA damage. Jiang et al. also found that polymerase beta recruited the DNA methyltransferase protein DNMT3b to BER repair sites. They then evaluated the methylation pattern at the single nucleotide level in a small region of DNA including the promoter region and the early transcription region of the BRCA1 gene. Oxidative DNA damage from bromate modulated the DNA methylation pattern (caused epigenetic alterations) at CpG sites within the region of DNA studied. In untreated cells, CpGs located at −189, −134, −29, −19, +16, and +19 of the BRCA1 gene had methylated cytosines (where numbering is from the messenger RNA transcription start site, and negative numbers indicate nucleotides in the upstream promoter region). Bromate treatment-induced oxidation resulted in the loss of cytosine methylation at −189, −134, +16 and +19 while also leading to the formation of new methylation at the CpGs located at −80, −55, −21 and +8 after DNA repair was allowed.

Homologous recombinational repair alters epigenetic markers

At least four articles report the recruitment of DNA methyltransferase 1 (DNMT1) to sites of DNA double-strand breaks. During homologous recombinational repair (HR) of the double-strand break, the involvement of DNMT1 causes the two repaired strands of DNA to have different levels of methylated cytosines. One strand becomes frequently methylated at about 21 CpG sites downstream of the repaired double-strand break. The other DNA strand loses methylation at about six CpG sites that were previously methylated downstream of the double-strand break, as well as losing methylation at about five CpG sites that were previously methylated upstream of the double-strand break. When the chromosome is replicated, this gives rise to one daughter chromosome that is heavily methylated downstream of the previous break site and one that is unmethylated in the region both upstream and downstream of the previous break site. With respect to the gene that was broken by the double-strand break, half of the progeny cells express that gene at a high level and in the other half of the progeny cells expression of that gene is repressed. When clones of these cells were maintained for three years, the new methylation patterns were maintained over that time period.

In mice with a CRISPR-mediated homology-directed recombination insertion in their genome there were a large number of increased methylations of CpG sites within the double-strand break-associated insertion.

Non-homologous end joining can cause some epigenetic marker alterations

Non-homologous end joining (NHEJ) repair of a double-strand break can cause a small number of demethylations of pre-existing cytosine DNA methylations downstream of the repaired double-strand break. Further work by Allen et al. showed that NHEJ of a DNA double-strand break in a cell could give rise to some progeny cells having repressed expression of the gene harboring the initial double-strand break and some progeny having high expression of that gene due to epigenetic alterations associated with NHEJ repair. The frequency of epigenetic alterations causing repression of a gene after an NHEJ repair of a DNA double-strand break in that gene may be about 0.9%.

Techniques used to study epigenetics

Epigenetic research uses a wide range of molecular biological techniques to further understanding of epigenetic phenomena. These techniques include chromatin immunoprecipitation (together with its large-scale variants ChIP-on-chip and ChIP-Seq), fluorescent in situ hybridization, methylation-sensitive restriction enzymes, DNA adenine methyltransferase identification (DamID) and bisulfite sequencing. Furthermore, the use of bioinformatics methods has a role in computational epigenetics.

Chromatin Immunoprecipitation

Chromatin Immunoprecipitation (ChIP) has helped bridge the gap between DNA and epigenetic interactions. With the use of ChIP, researchers are able to make findings in regards to gene regulation, transcription mechanisms, and chromatin structure.

Fluorescent in situ hybridization

Fluorescent in situ hybridization (FISH) is very important to understand epigenetic mechanisms. FISH can be used to find the location of genes on chromosomes, as well as finding noncoding RNAs. FISH is predominantly used for detecting chromosomal abnormalities in humans.

Methylation-sensitive restriction enzymes

Methylation sensitive restriction enzymes paired with PCR is a way to evaluate methylation in DNA - specifically the CpG sites. If DNA is methylated, the restriction enzymes will not cleave the strand. Contrarily, if the DNA is not methylated, the enzymes will cleave the strand and it will be amplified by PCR.

Bisulfite sequencing

Bisulfite sequencing is another way to evaluate DNA methylation. Cytosine will be changed to uracil from being treated with sodium bisulfite, whereas methylated cytosines will not be affected.

Nanopore sequencing

Certain sequencing methods, such as nanopore sequencing, allow sequencing of native DNA. Native (=unamplified) DNA retains the epigenetic modifications which would otherwise be lost during the amplification step. Nanopore basecaller models can distinguish between the signals obtained for epigenetically modified bases and unaltered based and provide an epigenetic profile in addition to the sequencing result.

Structural inheritance

In ciliates such as Tetrahymena and Paramecium, genetically identical cells show heritable differences in the patterns of ciliary rows on their cell surface. Experimentally altered patterns can be transmitted to daughter cells. It seems existing structures act as templates for new structures. The mechanisms of such inheritance are unclear, but reasons exist to assume that multicellular organisms also use existing cell structures to assemble new ones.

Nucleosome positioning

Eukaryotic genomes have numerous nucleosomes. Nucleosome position is not random, and determine the accessibility of DNA to regulatory proteins. Promoters active in different tissues have been shown to have different nucleosome positioning features. This determines differences in gene expression and cell differentiation. It has been shown that at least some nucleosomes are retained in sperm cells (where most but not all histones are replaced by protamines). Thus nucleosome positioning is to some degree inheritable. Recent studies have uncovered connections between nucleosome positioning and other epigenetic factors, such as DNA methylation and hydroxymethylation.

Histone variants

Different histone variants are incorporated into specific regions of the genome non-randomly. Their differential biochemical characteristics can affect genome functions via their roles in gene regulation, and maintenance of chromosome structures.

Genomic architecture

The three-dimensional configuration of the genome (the 3D genome) is complex, dynamic and crucial for regulating genomic function and nuclear processes such as DNA replication, transcription and DNA-damage repair.

Functions and consequences

In the brain

Memory

Memory formation and maintenance are due to epigenetic alterations that cause the required dynamic changes in gene transcription that create and renew memory in neurons.

An event can set off a chain of reactions that result in altered methylations of a large set of genes in neurons, which give a representation of the event, a memory.

including medial prefrontal cortex (mPFC)

Areas of the brain important in the formation of memories include the hippocampus, medial prefrontal cortex (mPFC), anterior cingulate cortex and amygdala, as shown in the diagram of the human brain in this section.

When a strong memory is created, as in a rat subjected to contextual fear conditioning (CFC), one of the earliest events to occur is that more than 100 DNA double-strand breaks are formed by topoisomerase IIB in neurons of the hippocampus and the medial prefrontal cortex (mPFC). These double-strand breaks are at specific locations that allow activation of transcription of immediate early genes (IEGs) that are important in memory formation, allowing their expression in mRNA, with peak mRNA transcription at seven to ten minutes after CFC.

Two important IEGs in memory formation are EGR1 and the alternative promoter variant of DNMT3A, DNMT3A2. EGR1 protein binds to DNA at its binding motifs, 5′-GCGTGGGCG-3′ or 5′-GCGGGGGCGG-3', and there are about 12,000 genome locations at which EGR1 protein can bind. EGR1 protein binds to DNA in gene promoter and enhancer regions. EGR1 recruits the demethylating enzyme TET1 to an association, and brings TET1 to about 600 locations on the genome where TET1 can then demethylate and activate the associated genes.

Cytosine and 5-methylcytosine

The DNA methyltransferases DNMT3A1, DNMT3A2 and DNMT3B can all methylate cytosines (see image this section) at CpG sites in or near the promoters of genes. As shown by Manzo et al., these three DNA methyltransferases differ in their genomic binding locations and DNA methylation activity at different regulatory sites. Manzo et al. located 3,970 genome regions exclusively enriched for DNMT3A1, 3,838 regions for DNMT3A2 and 3,432 regions for DNMT3B. When DNMT3A2 is newly induced as an IEG (when neurons are activated), many new cytosine methylations occur, presumably in the target regions of DNMT3A2. Oliviera et al. found that the neuronal activity-inducible IEG levels of Dnmt3a2 in the hippocampus determined the ability to form long-term memories.

Rats form long-term associative memories after contextual fear conditioning (CFC). Duke et al. found that 24 hours after CFC in rats, in hippocampus neurons, 2,097 genes (9.17% of the genes in the rat genome) had altered methylation. When newly methylated cytosines are present in CpG sites in the promoter regions of genes, the genes are often repressed, and when newly demethylated cytosines are present the genes may be activated. After CFC, there were 1,048 genes with reduced mRNA expression and 564 genes with upregulated mRNA expression. Similarly, when mice undergo CFC, one hour later in the hippocampus region of the mouse brain there are 675 demethylated genes and 613 hypermethylated genes. However, memories do not remain in the hippocampus, but after four or five weeks the memories are stored in the anterior cingulate cortex. In the studies on mice after CFC, Halder et al. showed that four weeks after CFC there were at least 1,000 differentially methylated genes and more than 1,000 differentially expressed genes in the anterior cingulate cortex, while at the same time the altered methylations in the hippocampus were reversed.

The epigenetic alteration of methylation after a new memory is established creates a different pool of nuclear mRNAs. As reviewed by Bernstein, the epigenetically determined new mix of nuclear mRNAs are often packaged into neuronal granules, or messenger RNP, consisting of mRNA, small and large ribosomal subunits, translation initiation factors and RNA-binding proteins that regulate mRNA function. These neuronal granules are transported from the neuron nucleus and are directed, according to 3′ untranslated regions of the mRNA in the granules (their "zip codes"), to neuronal dendrites. Roughly 2,500 mRNAs may be localized to the dendrites of hippocampal pyramidal neurons and perhaps 450 transcripts are in excitatory presynaptic nerve terminals (dendritic spines). The altered assortments of transcripts (dependent on epigenetic alterations in the neuron nucleus) have different sensitivities in response to signals, which is the basis of altered synaptic plasticity. Altered synaptic plasticity is often considered the neurochemical foundation of learning and memory.

Aging

Epigenetics play a major role in brain aging and age-related cognitive decline, with relevance to life extension.

Other and general

In adulthood, changes in the epigenome are important for various higher cognitive functions. Dysregulation of epigenetic mechanisms is implicated in neurodegenerative disorders and diseases. Epigenetic modifications in neurons are dynamic and reversible. Epigenetic regulation impacts neuronal action, affecting learning, memory, and other cognitive processes.

Early events, including during embryonic development, can influence development, cognition, and health outcomes through epigenetic mechanisms.

Epigenetic mechanisms have been proposed as "a potential molecular mechanism for effects of endogenous hormones on the organization of developing brain circuits".

Nutrients could interact with the epigenome to "protect or boost cognitive processes across the lifespan".

A review suggests neurobiological effects of physical exercise via epigenetics seem "central to building an 'epigenetic memory' to influence long-term brain function and behavior" and may even be heritable.

With the axo-ciliary synapse, there is communication between serotonergic axons and antenna-like primary cilia of CA1 pyramidal neurons that alters the neuron's epigenetic state in the nucleus via the signalling distinct from that at the plasma membrane (and longer-term).

Epigenetics also play a major role in the brain evolution in and to humans.

Development

Developmental epigenetics can be divided into predetermined and probabilistic epigenesis. Predetermined epigenesis is a unidirectional movement from structural development in DNA to the functional maturation of the protein. "Predetermined" here means that development is scripted and predictable. Probabilistic epigenesis on the other hand is a bidirectional structure-function development with experiences and external molding development.

Somatic epigenetic inheritance, particularly through DNA and histone covalent modifications and nucleosome repositioning, is very important in the development of multicellular eukaryotic organisms. The genome sequence is static (with some notable exceptions), but cells differentiate into many different types, which perform different functions, and respond differently to the environment and intercellular signaling. Thus, as individuals develop, morphogens activate or silence genes in an epigenetically heritable fashion, giving cells a memory. In mammals, most cells terminally differentiate, with only stem cells retaining the ability to differentiate into several cell types ("totipotency" and "multipotency"). In mammals, some stem cells continue producing newly differentiated cells throughout life, such as in neurogenesis, but mammals are not able to respond to loss of some tissues, for example, the inability to regenerate limbs, which some other animals are capable of. Epigenetic modifications regulate the transition from neural stem cells to glial progenitor cells (for example, differentiation into oligodendrocytes is regulated by the deacetylation and methylation of histones). Unlike animals, plant cells do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. While plants do utilize many of the same epigenetic mechanisms as animals, such as chromatin remodeling, it has been hypothesized that some kinds of plant cells do not use or require "cellular memories", resetting their gene expression patterns using positional information from the environment and surrounding cells to determine their fate.

Epigenetic changes can occur in response to environmental exposure – for example, maternal dietary supplementation with genistein (250 mg/kg) have epigenetic changes affecting expression of the agouti gene, which affects their fur color, weight, and propensity to develop cancer. Ongoing research is focused on exploring the impact of other known teratogens, such as diabetic embryopathy, on methylation signatures.

Controversial results from one study suggested that traumatic experiences might produce an epigenetic signal that is capable of being passed to future generations. Mice were trained, using foot shocks, to fear a cherry blossom odor. The investigators reported that the mouse offspring had an increased aversion to this specific odor. They suggested epigenetic changes that increase gene expression, rather than in DNA itself, in a gene, M71, that governs the functioning of an odor receptor in the nose that responds specifically to this cherry blossom smell. There were physical changes that correlated with olfactory (smell) function in the brains of the trained mice and their descendants. Several criticisms were reported, including the study's low statistical power as evidence of some irregularity such as bias in reporting results. Due to limits of sample size, there is a probability that an effect will not be demonstrated to within statistical significance even if it exists. The criticism suggested that the probability that all the experiments reported would show positive results if an identical protocol was followed, assuming the claimed effects exist, is merely 0.4%. The authors also did not indicate which mice were siblings, and treated all of the mice as statistically independent. The original researchers pointed out negative results in the paper's appendix that the criticism omitted in its calculations, and undertook to track which mice were siblings in the future.

Transgenerational

Epigenetic mechanisms were a necessary part of the evolutionary origin of cell differentiation. Although epigenetics in multicellular organisms is generally thought to be a mechanism involved in differentiation, with epigenetic patterns "reset" when organisms reproduce, there have been some observations of transgenerational epigenetic inheritance (e.g., the phenomenon of paramutation observed in maize). Although most of these multigenerational epigenetic traits are gradually lost over several generations, the possibility remains that multigenerational epigenetics could be another aspect to evolution and adaptation. As mentioned above, some define epigenetics as heritable.

A sequestered germ line or Weismann barrier is specific to animals, and epigenetic inheritance is more common in plants and microbes. Eva Jablonka, Marion J. Lamb and Étienne Danchin have argued that these effects may require enhancements to the standard conceptual framework of the modern synthesis and have called for an extended evolutionary synthesis. Other evolutionary biologists, such as John Maynard Smith, have incorporated epigenetic inheritance into population-genetics models or are openly skeptical of the extended evolutionary synthesis (Michael Lynch). Thomas Dickins and Qazi Rahman state that epigenetic mechanisms such as DNA methylation and histone modification are genetically inherited under the control of natural selection and therefore fit under the earlier "modern synthesis".

Two important ways in which epigenetic inheritance can differ from traditional genetic inheritance, with important consequences for evolution, are:

  • rates of epimutation can be much faster than rates of mutation
  • the epimutations are more easily reversible

In plants, heritable DNA methylation mutations are 100,000 times more likely to occur compared to DNA mutations. An epigenetically inherited element such as the PSI+ system can act as a "stop-gap", good enough for short-term adaptation that allows the lineage to survive for long enough for mutation and/or recombination to genetically assimilate the adaptive phenotypic change. The existence of this possibility increases the evolvability of a species.

More than 100 cases of transgenerational epigenetic inheritance phenomena have been reported in a wide range of organisms, including prokaryotes, plants, and animals. For instance, mourning-cloak butterflies will change color through hormone changes in response to experimentation of varying temperatures.

The filamentous fungus Neurospora crassa is a prominent model system for understanding the control and function of cytosine methylation. In this organism, DNA methylation is associated with relics of a genome-defense system called RIP (repeat-induced point mutation) and silences gene expression by inhibiting transcription elongation.

The yeast prion PSI is generated by a conformational change of a translation termination factor, which is then inherited by daughter cells. This can provide a survival advantage under adverse conditions, exemplifying epigenetic regulation which enables unicellular organisms to respond rapidly to environmental stress. Prions can be viewed as epigenetic agents capable of inducing a phenotypic change without modification of the genome.

Direct detection of epigenetic marks in microorganisms is possible with single molecule real time sequencing, in which polymerase sensitivity allows for measuring methylation and other modifications as a DNA molecule is being sequenced. Several projects have demonstrated the ability to collect genome-wide epigenetic data in bacteria.

Epigenetics in bacteria

Escherichia coli bacteria

While epigenetics is of fundamental importance in eukaryotes, especially metazoans, it plays a different role in bacteria. Most importantly, eukaryotes use epigenetic mechanisms primarily to regulate gene expression which bacteria rarely do. However, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Bacteria also use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation is important in bacteria virulence in organisms such as Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage, transposase activity and regulation of gene expression. There exists a genetic switch controlling Streptococcus pneumoniae (the pneumococcus) that allows the bacterium to randomly change its characteristics into six alternative states that could pave the way to improved vaccines. Each form is randomly generated by a phase variable methylation system. The ability of the pneumococcus to cause deadly infections is different in each of these six states. Similar systems exist in other bacterial genera. In Bacillota such as Clostridioides difficile, adenine methylation regulates sporulation, biofilm formation and host-adaptation.

Medicine

Epigenetics has many and varied potential medical applications.

Twins

Direct comparisons of identical twins constitute an optimal model for interrogating environmental epigenetics. In the case of humans with different environmental exposures, monozygotic (identical) twins were epigenetically indistinguishable during their early years, while older twins had remarkable differences in the overall content and genomic distribution of 5-methylcytosine DNA and histone acetylation. The twin pairs who had spent less of their lifetime together and/or had greater differences in their medical histories were those who showed the largest differences in their levels of 5-methylcytosine DNA and acetylation of histones H3 and H4.

Dizygotic (fraternal) and monozygotic (identical) twins show evidence of epigenetic influence in humans. DNA sequence differences that would be abundant in a singleton-based study do not interfere with the analysis. Environmental differences can produce long-term epigenetic effects, and different developmental monozygotic twin subtypes may be different with respect to their susceptibility to be discordant from an epigenetic point of view.

A high-throughput study, which denotes technology that looks at extensive genetic markers, focused on epigenetic differences between monozygotic twins to compare global and locus-specific changes in DNA methylation and histone modifications in a sample of 40 monozygotic twin pairs. In this case, only healthy twin pairs were studied, but a wide range of ages was represented, between 3 and 74 years. One of the major conclusions from this study was that there is an age-dependent accumulation of epigenetic differences between the two siblings of twin pairs. This accumulation suggests the existence of epigenetic "drift". Epigenetic drift is the term given to epigenetic modifications as they occur as a direct function with age. While age is a known risk factor for many diseases, age-related methylation has been found to occur differentially at specific sites along the genome. Over time, this can result in measurable differences between biological and chronological age. Epigenetic changes have been found to be reflective of lifestyle and may act as functional biomarkers of disease before clinical threshold is reached.

A more recent study, where 114 monozygotic twins and 80 dizygotic twins were analyzed for the DNA methylation status of around 6000 unique genomic regions, concluded that epigenetic similarity at the time of blastocyst splitting may also contribute to phenotypic similarities in monozygotic co-twins. This supports the notion that microenvironment at early stages of embryonic development can be quite important for the establishment of epigenetic marks. Congenital genetic disease is well understood and it is clear that epigenetics can play a role, for example, in the case of Angelman syndrome and Prader–Willi syndrome. These are normal genetic diseases caused by gene deletions or inactivation of the genes but are unusually common because individuals are essentially hemizygous because of genomic imprinting, and therefore a single gene knock out is sufficient to cause the disease, where most cases would require both copies to be knocked out.

Genomic imprinting

Some human disorders are associated with genomic imprinting, a phenomenon in mammals where the father and mother contribute different epigenetic patterns for specific genomic loci in their germ cells. The best-known case of imprinting in human disorders is that of Angelman syndrome and Prader–Willi syndrome – both can be produced by the same genetic mutation, chromosome 15q partial deletion, and the particular syndrome that will develop depends on whether the mutation is inherited from the child's mother or from their father.

In the Överkalix study, paternal (but not maternal) grandsons of Swedish men who were exposed during preadolescence to famine in the 19th century were less likely to die of cardiovascular disease. If food was plentiful, then diabetes mortality in the grandchildren increased, suggesting that this was a transgenerational epigenetic inheritance. The opposite effect was observed for females – the paternal (but not maternal) granddaughters of women who experienced famine while in the womb (and therefore while their eggs were being formed) lived shorter lives on average.

Examples of drugs altering gene expression from epigenetic events

The use of beta-lactam antibiotics can alter glutamate receptor activity and the action of cyclosporine on multiple transcription factors. Additionally, lithium can impact autophagy of aberrant proteins, and opioid drugs via chronic use can increase the expression of genes associated with addictive phenotypes.

Parental nutrition, in utero exposure to stress or endocrine disrupting chemicals, male-induced maternal effects such as the attraction of differential mate quality, and maternal as well as paternal age, and offspring gender could all possibly influence whether a germline epimutation is ultimately expressed in offspring and the degree to which intergenerational inheritance remains stable throughout posterity. However, whether and to what extent epigenetic effects can be transmitted across generations remains unclear, particularly in humans.

Addiction

Addiction is a disorder of the brain's reward system which arises through transcriptional and neuroepigenetic mechanisms and occurs over time from chronically high levels of exposure to an addictive stimulus (e.g., morphine, cocaine, sexual intercourse, gambling).Transgenerational epigenetic inheritance of addictive phenotypes has been noted to occur in preclinical studies. However, robust evidence in support of the persistence of epigenetic effects across multiple generations has yet to be established in humans; for example, an epigenetic effect of prenatal exposure to smoking that is observed in great-grandchildren who had not been exposed.

Research

The two forms of heritable information, namely genetic and epigenetic, are collectively called dual inheritance. Members of the APOBEC/AID family of cytosine deaminases may concurrently influence genetic and epigenetic inheritance using similar molecular mechanisms, and may be a point of crosstalk between these conceptually compartmentalized processes.

Fluoroquinolone antibiotics induce epigenetic changes in mammalian cells through iron chelation. This leads to epigenetic effects through inhibition of α-ketoglutarate-dependent dioxygenases that require iron as a co-factor.

Various pharmacological agents are applied for the production of induced pluripotent stem cells (iPSC) or maintain the embryonic stem cell (ESC) phenotypic via epigenetic approach. Adult stem cells like bone marrow stem cells have also shown a potential to differentiate into cardiac competent cells when treated with G9a histone methyltransferase inhibitor BIX01294.

Cell plasticity, which is the adaptation of cells to stimuli without changes in their genetic code, requires epigenetic changes. These have been observed in cell plasticity in cancer cells during epithelial-to-mesenchymal transition and also in immune cells, such as macrophages. Interestingly, metabolic changes underly these adaptations, since various metabolites play crucial roles in the chemistry of epigenetic marks. This includes for instance alpha-ketoglutarate, which is required for histone demethylation, and acetyl-Coenzyme A, which is required for histone acetylation.

Epigenome editing

Epigenetic regulation of gene expression that could be altered or used in epigenome editing are or include mRNA/lncRNA modification, DNA methylation modification and histone modification.

CpG sites, SNPs and biological traits

Methylation is a widely characterized mechanism of genetic regulation that can determine biological traits. However, strong experimental evidences correlate methylation patterns in SNPs as an important additional feature for the classical activation/inhibition epigenetic dogma. Molecular interaction data, supported by colocalization analyses, identify multiple nuclear regulatory pathways, linking sequence variation to disturbances in DNA methylation and molecular and phenotypic variation.

UBASH3B locus

UBASH3B encodes a protein with tyrosine phosphatase activity, which has been previously linked to advanced neoplasia. SNP rs7115089 was identified as influencing DNA methylation and expression of this locus, as well as and Body Mass Index (BMI). In fact, SNP rs7115089 is strongly associated with BMI and with genetic variants linked to other cardiovascular and metabolic traits in GWASs. New studies suggesting UBASH3B as a potential mediator of adiposity and cardiometabolic disease. In addition, animal models demonstrated that UBASH3B expression is an indicator of caloric restriction that may drive programmed susceptibility to obesity and it is associated with other measures of adiposity in human peripherical blood.

NFKBIE locus

SNP rs730775 is located in the first intron of NFKBIE and is a cis eQTL for NFKBIE in whole blood. Nuclear factor (NF)-κB inhibitor ε (NFKBIE) directly inhibits NF-κB1 activity and is significantly co-expressed with NF-κB1, also, it is associated with rheumatoid arthritis. Colocalization analysis supports that variants for the majority of the CpG sites in SNP rs730775 cause genetic variation at the NFKBIE locus which is suggestible linked to rheumatoid arthritis through trans acting regulation of DNA methylation by NF-κB.

FADS1 locus

Fatty acid desaturase 1 (FADS1) is a key enzyme in the metabolism of fatty acids. Moreover, rs174548 in the FADS1 gene shows increased correlation with DNA methylation in people with high abundance of CD8+ T cells. SNP rs174548 is strongly associated with concentrations of arachidonic acid and other metabolites in fatty acid metabolism, blood eosinophil counts. and inflammatory diseases such as asthma. Interaction results indicated a correlation between rs174548 and asthma, providing new insights about fatty acid metabolism in CD8+ T cells with immune phenotypes.

Pseudoscience

As epigenetics is in the early stages of development as a science and is surrounded by sensationalism in the public media, David Gorski and geneticist Adam Rutherford have advised caution against the proliferation of false and pseudoscientific conclusions by new age authors making unfounded suggestions that a person's genes and health can be manipulated by mind control. Misuse of the scientific term by quack authors has produced misinformation among the general public.

Evolutionary developmental psychology

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Evolutionary_developmental_psychology

Evolutionary developmental psychology
(EDP) is a research paradigm that applies the basic principles of evolution by natural selection, to understand the development of human behavior and cognition. It involves the study of both the genetic and environmental mechanisms that underlie the development of social and cognitive competencies, as well as the epigenetic (gene-environment interactions) processes that adapt these competencies to local conditions.

EDP considers both the reliably developing, species-typical features of ontogeny (developmental adaptations), as well as individual differences in behavior, from an evolutionary perspective. While evolutionary views tend to regard most individual differences as the result of either random genetic noise (evolutionary byproducts) and/or idiosyncrasies (for example, peer groups, education, neighborhoods, and chance encounters) rather than products of natural selection, EDP asserts that natural selection can favor the emergence of individual differences via "adaptive developmental plasticity." From this perspective, human development follows alternative life-history strategies in response to environmental variability, rather than following one species-typical pattern of development.

EDP is closely linked to the theoretical framework of evolutionary psychology (EP), but is also distinct from EP in several domains, including: research emphasis (EDP focuses on adaptations of ontogeny, as opposed to adaptations of adulthood); consideration of proximate ontogenetic; environmental factors (i.e., how development happens) in addition to more ultimate factors (i.e., why development happens). These things of which are the focus of mainstream evolutionary psychology.

History

Development and evolution

Like mainstream evolutionary psychology, EDP is rooted in Charles Darwin's theory of natural selection. Darwin himself emphasized development, using the process of embryology as evidence to support his theory. From The Descent of Man:

"Man is developed from an ovule...which differs in no respect from the ovules of other animals. The embryo itself at a very early period can hardly be distinguished from that of other members of the vertebrate kingdom."

Darwin also published his observations of the development of one of his own sons in 1877, noting the child's emotional, moral, and linguistic development.

Despite this early emphasis on developmental processes, theories of evolution and theories of development have long been viewed as separate, or even opposed to one another (for additional background, see nature versus nurture). Since the advent of the modern evolutionary synthesis, evolutionary theory has been primarily "gene-centric", and developmental processes have often been seen as incidental. Evolutionary biologist Richard Dawkins's appraisal of development in 1973 illustrates this shift: "The details of embryological developmental processes, interesting as they may be, are irrelevant to evolutionary considerations." Similarly, sociobiologist E. O. Wilson regarded ontogenetic variation as "developmental noise".

As a consequence of this shift in perspective, many biologists interested in topics such as embryology and developmental systems subsequently branched off into evolutionary developmental biology.

Evolutionary perspectives in developmental psychology

Despite the minimization of development in evolutionary theory, early developmental psychology was influenced by evolution. Both Darwin's theory of evolution and Karl Ernst von Baer's developmental principles of ontogeny shaped early thought in developmental psychology. Wilhelm T. Preyer, a pioneer of child psychology, was heavily inspired by Darwin's work and approached the mental development of children from an evolutionary perspective.

However, evolutionary theory has had a limited impact on developmental psychology as a whole, and some authors argue that even its early influence was minimal. Developmental psychology, as with the social sciences in general, has long been resistant to evolutionary theories of development (with some notable exceptions, such as John Bowlby's work on attachment theory). Evolutionary approaches to human behavior were, and to some extent continue to be, considered a form of genetic determinism and dismissive of the role of culture and experience in shaping human behavior (see Standard social science model).

One group of developmental psychologists who have embraced evolutionary perspectives are nativists, who argue than infants possess innate cognitive mechanisms (or modules) which allow them to acquire crucial information, such as language (for a prominent example, see universal grammar).

Evolutionary developmental psychology

Evolutionary developmental psychology can be viewed as a more focused theoretical framework derived from the larger field of evolutionary psychology (EP). Mainstream evolutionary psychology grew out of earlier movements which applied the principles of evolutionary biology to understand the mind and behavior such as sociobiology, ethology, and behavioral ecology, differing from these earlier approaches by focusing on identifying psychological adaptations rather than adaptive behavior. While EDP theory generally aligns with that of mainstream EP, it is distinguished by a conscious effort to reconcile theories of both evolution and development. EDP theory diverges from mainstream evolutionary psychology in both the degree of importance placed on the environment in influencing behavior, and in how evolution has shaped the development of human psychology.

Advocates of EDP assert that evolutionary psychologists, while acknowledging the role of the environment in shaping behavior and making claims as to its effects, rarely develop explicit models (i.e., predictions of how the environment might shape behavior) to support their claims . EDP seeks to distinguish itself from mainstream evolutionary psychology in this way by embracing a developmental systems approach, and emphasizing that function at one level of organization (e.g., the genetic level) effects organization at adjacent levels of an organization. Developmental systems theorists such as Robert Lickliter point out that the products of development are both genetic and epigenetic, and have questioned the strictly gene-centric view of evolution. However, some authors have rebutted the claim that mainstream evolutionary psychologists do not integrate developmental theory into their theoretical programs, and have further questioned the value of developmental systems theory (see Criticism).

Additionally, evolutionary developmental psychologists emphasize research on psychological development and behaviors across the lifespan. Pioneers of EDP contrast their work with that of mainstream evolutionary psychologists, who they argue focus primarily on adults, especially on behaviors related to socializing and mating.

Evolutionary developmental psychologists have worked to integrate evolutionary and developmental theories, attempting to synthesize the two without discarding the theoretical foundations of either. This effort is evident in the types of questions which researchers working in the EDP paradigm ask; in reference to Nikolaas Tinbergen's four categories of questions, EP typically focuses on evolutionary ("Why") questions, while EDP explicitly integrates proximate questions ("How"), with the assumption that a greater understanding of the former category will yield insights into the latter. See the following table for an overview of Tinbergen's questions.


Sequential vs. Static Perspective
Historical/Developmental

Explanation of current form in terms of a historical sequence

Current Form

Explanation of the current form of species

How vs. Why Questions Proximate

How an individual organism's structures function

Ontogeny

Developmental explanations for changes in individuals, from DNA to their current form

Mechanism

Mechanistic explanations for how an organism's structures work

Evolutionary

Why a species evolved the structures (adaptations) it has

Phylogeny

The history of the evolution of sequential changes in a species over many generations

Adaptation

A species trait that evolved to solve a reproductive or survival problem in the ancestral environment

Basic assumptions

The following list summarizes the broad theoretical assumptions of EDP. From "Evolutionary Developmental Psychology," in The Handbook of Evolutionary Psychology:

  1. All evolutionarily-influenced characteristics in the phenotype of adults develop, and this requires examining not only the functioning of these characteristics in adults but also their ontogeny.
  2. All evolved characteristics develop via continuous and bidirectional gene-environment interactions that emerge dynamically over time.
  3. Infants and children are prepared by natural selection to process some information more readily than others.
  4. Development is constrained by genetic, environmental, and cultural factors.
  5. Infants and children show a high degree of developmental plasticity and adaptive sensitivity to context.
  6. An extended childhood is needed in which to learn the complexities of human social communities.
  7. Many aspects of childhood serve as preparations for adulthood and were selected over the course of evolution (deferred adaptations).
  8. Some characteristics of infants and children were selected to serve an adaptive function at specific times in development and not as preparations for adulthood (ontogenetic adaptations).

Developmental adaptations

EDP assumes that natural selection creates adaptations for specific stages of development, rather than only specifying adult states. Frequently, EDP researchers seek to identify such adaptations, which have been subdivided into deferred adaptations, ontogenetic adaptations, and conditional adaptations.

Deferred adaptations

Some behaviors or traits exhibited during childhood or adolescence may have been selected to serve as preparations for adult life, a type of adaptation that evolutionary developmental psychologists have named "deferred adaptations". Sex differences in children's play may be an example of this type of adaptation: higher frequencies of "rough-and-tumble" play among boys, as well as content differences in fantasy play (cross-culturally, girls engage in more "parenting" play than boys), seem to serve as early preparation for the roles that men and women play in many extant contemporary societies, and, presumably, played over human evolutionary history.

Ontogenetic adaptations

In contrast to deferred adaptations, which function to prepare individuals for future environments (i.e., adulthood), ontogenetic adaptations adapt individuals to their current environment. These adaptations serve a specific function during a particular period of development, after which they are discarded. Ontogenetic adaptations can be physiological (for example, when fetal mammals deriving nutrition and oxygen from the placenta before birth, but no longer utilize the placenta after birth) and psychological. David F. Bjorklund has argued that the imitation of facial gestures by infants, which has a predictable developmental window and seemingly different functions at different ages, shows evidence of being an ontogenetic adaptation.

Conditional adaptations

EDP emphasizes that children display considerable developmental plasticity, and proposes a special type of adaptation to facilitate adaptive developmental plasticity, called a conditional adaptation. Conditional adaptations detect and respond to relevant environmental cues, altering developmental pathways in ways which better adapt an individual to their particular environment. These adaptations allow organisms to implement alternative and contingent life history strategies, depending on environmental factors.

Social learning and the evolution of childhood

The social brain (or Machiavellian) hypothesis posits that the emergence of a complex social environment (e.g., larger group sizes) served as a key selection pressure in the evolution of human intelligence. Among primates, larger brains result in an extension of the juvenile period, and some authors argue that humans evolved (and/or expanded) novel developmental stages, childhood and adolescence, in response to increasing social complexity and sophisticated social learning.

While many species exhibit social learning to some degree and seemingly possess behavioral traditions (i.e., culture), humans can transmit cultural information across many generations with very high fidelity. High fidelity cultural learning is what many have argued is necessary for cumulative cultural evolution, and has only been definitively observed in humans, although arguments have been made for chimpanzees, orangutans, and New Caledonian crows. Developmentally-oriented researchers have proposed that over-imitation of behavioral models facilitates cultural learning, a phenomenon which emerges in children by age three and is seemingly absent in chimpanzees.

Cooperation and prosociality

Behaviors that benefit other members of one's social group, particularly those which appear costly to the prosocial or "altruistic" individual, have received considerable attention from disciplines interested in the evolution of behavior. Michael Tomasello has argued that cooperation and prosociality are evolved characteristics of human behavior, citing the emergence of "helping" behavior early in development (observed among 18-24 month old infants) as one piece of evidence. Researchers investigating the ontogeny and evolution of human cooperation design experiments intended to reveal the prosociality of infants and young children, then compare children's performance with that of other animals, typically chimpanzees. While some of the helping behaviors exhibited by infants and young children has also been observed in chimpanzees, preschool-age children tend to display greater prosociality than both human-raised and semi-free-ranging adult chimps.

Life history strategies and developmental plasticity

EDP researchers emphasize that evolved strategies are context dependent, in the sense that a strategy which is optimal in one environment will often be sub-optimal in another environment. They argue that this will result in natural selection favoring "adaptive developmental plasticity," allowing an organism to alter its developmental trajectory in response to environmental cues.

Related to this is the idea of a life history strategy, which can be conceptualized as a chain of resource-allocation decisions (e.g., allocating resources towards growth or towards reproduction) that an organism makes. Biologists have used life history theory to characterize between-species variation in resource-allocation in terms of a fast-slow continuum (see r/K selection theory), and, more recently, some anthropologists and psychologists have applied this continuum to understand within-species variation in trade-offs between reproductive and somatic effort.

Some authors argue that childhood environment and early life experiences are highly influential in determining an individual's life history strategy. Factors such as exposure to violence, harsh child-rearing, and environmental unpredictability (e.g., frequent moving, unstable family composition) have been shown to correlate with the proposed behavioral indicators of "fast" life history strategies (e.g., early sexual maturation, unstable couple relationships, impulsivity, and reduced cooperation), where current reproduction is prioritized over future reproduction.

Criticism

John Tooby, Leda Cosmides, and H. Clark Barrett have refuted claims that mainstream evolutionary psychology neglects development, arguing that their discipline is, in reality, exceptionally interested in and highly considerate of development. In particular, they cite cross-cultural studies as a sort of natural developmental "experiment," which can reveal the influence of culture in shaping developmental outcomes. The authors assert that the arguments of developmental systems theorists consists largely of truisms, of which evolutionary psychologists are well aware, and that developmental systems theory has no scientific value because it fails to generate any predictions.

Debra Lieberman similarly objected to the characterization of evolutionary psychology as ignorant of developmental principles. Lieberman argued that both developmental systems theorists and evolutionary psychologists share a common goal of uncovering species-typical cognitive architecture, as well as the ontogeny of that architecture.

Sociobiology

From Wikipedia, the free encyclopedia

Sociobiology investigates social behaviors such as mating patterns, territorial fights, pack hunting, and the hive society of social insects. It argues that just as selection pressure led to animals evolving useful ways of interacting with the natural environment, so also it led to the genetic evolution of advantageous social behavior.

While the term "sociobiology" originated at least as early as the 1940s; the concept did not gain major recognition until the publication of E. O. Wilson's book Sociobiology: The New Synthesis in 1975. The new field quickly became the subject of controversy. Critics, led by Richard Lewontin and Stephen Jay Gould, argued that genes played a role in human behavior, but that traits such as aggressiveness could be explained by social environment rather than by biology. Sociobiologists responded by pointing to the complex relationship between nature and nurture. Among sociobiologists, the controversy between laying weight to different levels of selection was settled between D.S. Wilson and E.O. Wilson in 2007.

Definition

E. O. Wilson defined sociobiology as "the extension of population biology and evolutionary theory to social organization".

Sociobiology is based on the premise that some behaviors (social and individual) are at least partly inherited and can be affected by natural selection. It begins with the idea that behaviors have evolved over time, similar to the way that physical traits are thought to have evolved. It predicts that animals will act in ways that have proven to be evolutionarily successful over time. This can, among other things, result in the formation of complex social processes conducive to evolutionary fitness.

The discipline seeks to explain behavior as a product of natural selection. Behavior is therefore seen as an effort to preserve one's genes in the population. Inherent in sociobiological reasoning is the idea that certain genes or gene combinations that influence particular behavioral traits can be inherited from generation to generation.

For example, newly dominant male lions often kill cubs in the pride that they did not sire. This behavior is adaptive because killing the cubs eliminates competition for their own offspring and causes the nursing females to come into heat faster, thus allowing more of his genes to enter into the population. Sociobiologists would view this instinctual cub-killing behavior as being inherited through the genes of successfully reproducing male lions, whereas non-killing behavior may have died out as those lions were less successful in reproducing.

History

E. O. Wilson, a central figure in the history of sociobiology, from the publication in 1975 of his book Sociobiology: The New Synthesis

The philosopher of biology Daniel Dennett suggested that the political philosopher Thomas Hobbes was the first proto-sociobiologist, arguing that in his 1651 book Leviathan Hobbes had explained the origins of morals in human society from an amoral sociobiological perspective.

The geneticist of animal behavior John Paul Scott coined the word sociobiology at a 1948 conference on genetics and social behavior, which called for a conjoint development of field and laboratory studies in animal behavior research. With John Paul Scott's organizational efforts, a "Section of Animal Behavior and Sociobiology" of the Ecological Society of America was created in 1956, which became a Division of Animal Behavior of the American Society of Zoology in 1958. In 1956, E. O. Wilson came in contact with this emerging sociobiology through his PhD student Stuart A. Altmann, who had been in close relation with the participants to the 1948 conference. Altmann developed his own brand of sociobiology to study the social behavior of rhesus macaques, using statistics, and was hired as a "sociobiologist" at the Yerkes Regional Primate Research Center in 1965. Wilson's sociobiology is different from John Paul Scott's or Altmann's, insofar as he drew on mathematical models of social behavior centered on the maximization of the genetic fitness by W. D. Hamilton, Robert Trivers, John Maynard Smith, and George R. Price. The three sociobiologies by Scott, Altmann and Wilson have in common to place naturalist studies at the core of the research on animal social behavior and by drawing alliances with emerging research methodologies, at a time when "biology in the field" was threatened to be made old-fashioned by "modern" practices of science (laboratory studies, mathematical biology, molecular biology).

Once a specialist term, "sociobiology" became widely known in 1975 when Wilson published his book Sociobiology: The New Synthesis, which sparked an intense controversy. Since then "sociobiology" has largely been equated with Wilson's vision. The book pioneered and popularized the attempt to explain the evolutionary mechanics behind social behaviors such as altruism, aggression, and nurturance, primarily in ants (Wilson's own research specialty) and other Hymenoptera, but also in other animals. However, the influence of evolution on behavior has been of interest to biologists and philosophers since soon after the discovery of evolution itself. Peter Kropotkin's Mutual Aid: A Factor of Evolution, written in the early 1890s, is a popular example. The final chapter of the book is devoted to sociobiological explanations of human behavior, and Wilson later wrote a Pulitzer Prize winning book, On Human Nature, that addressed human behavior specifically.

Edward H. Hagen writes in The Handbook of Evolutionary Psychology that sociobiology is, despite the public controversy regarding the applications to humans, "one of the scientific triumphs of the twentieth century." "Sociobiology is now part of the core research and curriculum of virtually all biology departments, and it is a foundation of the work of almost all field biologists. " Sociobiological research on nonhuman organisms has increased dramatically and continuously in the world's top scientific journals such as Nature and Science. The more general term behavioral ecology is commonly substituted for the term sociobiology in order to avoid the public controversy.

Theory

Sociobiologists maintain that human behavior, as well as nonhuman animal behavior, can be partly explained as the outcome of natural selection. They contend that in order to fully understand behavior, it must be analyzed in terms of evolutionary considerations.

Natural selection is fundamental to evolutionary theory. Variants of hereditary traits which increase an organism's ability to survive and reproduce will be more greatly represented in subsequent generations, i.e., they will be "selected for". Thus, inherited behavioral mechanisms that allowed an organism a greater chance of surviving and/or reproducing in the past are more likely to survive in present organisms. That inherited adaptive behaviors are present in nonhuman animal species has been multiply demonstrated by biologists, and it has become a foundation of evolutionary biology. However, there is continued resistance by some researchers over the application of evolutionary models to humans, particularly from within the social sciences, where culture has long been assumed to be the predominant driver of behavior.

Nikolaas Tinbergen, whose work influenced sociobiology

Sociobiology is based upon two fundamental premises:

  • Certain behavioral traits are inherited,
  • Inherited behavioral traits have been honed by natural selection. Therefore, these traits were probably "adaptive" in the environment in which the species evolved.

Sociobiology uses Nikolaas Tinbergen's four categories of questions and explanations of animal behavior. Two categories are at the species level; two, at the individual level. The species-level categories (often called "ultimate explanations") are

  • the function (i.e., adaptation) that a behavior serves and
  • the evolutionary process (i.e., phylogeny) that resulted in this functionality.

The individual-level categories (often called "proximate explanations") are

Sociobiologists are interested in how behavior can be explained logically as a result of selective pressures in the history of a species. Thus, they are often interested in instinctive, or intuitive behavior, and in explaining the similarities, rather than the differences, between cultures. For example, mothers within many species of mammals – including humans – are very protective of their offspring. Sociobiologists reason that this protective behavior likely evolved over time because it helped the offspring of the individuals which had the characteristic to survive. This parental protection would increase in frequency in the population. The social behavior is believed to have evolved in a fashion similar to other types of nonbehavioral adaptations, such as a coat of fur, or the sense of smell.

Individual genetic advantage fails to explain certain social behaviors as a result of gene-centred selection. E.O. Wilson argued that evolution may also act upon groups. The mechanisms responsible for group selection employ paradigms and population statistics borrowed from evolutionary game theory. Altruism is defined as "a concern for the welfare of others". If altruism is genetically determined, then altruistic individuals must reproduce their own altruistic genetic traits for altruism to survive, but when altruists lavish their resources on non-altruists at the expense of their own kind, the altruists tend to die out and the others tend to increase. An extreme example is a soldier losing his life trying to help a fellow soldier. This example raises the question of how altruistic genes can be passed on if this soldier dies without having any children.

Within sociobiology, a social behavior is first explained as a sociobiological hypothesis by finding an evolutionarily stable strategy that matches the observed behavior. Stability of a strategy can be difficult to prove, but usually, it will predict gene frequencies. The hypothesis can be supported by establishing a correlation between the gene frequencies predicted by the strategy, and those expressed in a population.

Altruism between social insects and littermates has been explained in such a way. Altruistic behavior, behavior that increases the reproductive fitness of others at the apparent expense of the altruist, in some animals has been correlated to the degree of genome shared between altruistic individuals. A quantitative description of infanticide by male harem-mating animals when the alpha male is displaced as well as rodent female infanticide and fetal resorption are active areas of study. In general, females with more bearing opportunities may value offspring less, and may also arrange bearing opportunities to maximize the food and protection from mates.

An important concept in sociobiology is that temperament traits exist in an ecological balance. Just as an expansion of a sheep population might encourage the expansion of a wolf population, an expansion of altruistic traits within a gene pool may also encourage increasing numbers of individuals with dependent traits.

Studies of human behavior genetics have generally found behavioral traits such as creativity, extroversion, aggressiveness, and IQ have high heritability. The researchers who carry out those studies are careful to point out that heritability does not constrain the influence that environmental or cultural factors may have on those traits.

Various theorists have argued that in some environments criminal behavior might be adaptive. The evolutionary neuroandrogenic (ENA) theory, by sociologist/criminologist Lee Ellis, posits that female sexual selection has led to increased competitive behavior among men, sometimes resulting in criminality. In another theory, Mark van Vugt argues that a history of intergroup conflict for resources between men have led to differences in violence and aggression between men and women. The novelist Elias Canetti also has noted applications of sociobiological theory to cultural practices such as slavery and autocracy.

Support for premise

Genetic mouse mutants illustrate the power that genes exert on behavior. For example, the transcription factor FEV (aka Pet1), through its role in maintaining the serotonergic system in the brain, is required for normal aggressive and anxiety-like behavior. Thus, when FEV is genetically deleted from the mouse genome, male mice will instantly attack other males, whereas their wild-type counterparts take significantly longer to initiate violent behavior. In addition, FEV has been shown to be required for correct maternal behavior in mice, such that offspring of mothers without the FEV factor do not survive unless cross-fostered to other wild-type female mice.

A genetic basis for instinctive behavioral traits among non-human species, such as in the above example, is commonly accepted among many biologists; however, attempting to use a genetic basis to explain complex behaviors in human societies has remained extremely controversial.

Reception

Steven Pinker argues that critics have been overly swayed by politics and a fear of biological determinism, accusing among others Stephen Jay Gould and Richard Lewontin of being "radical scientists", whose stance on human nature is influenced by politics rather than science, while Lewontin, Steven Rose and Leon Kamin, who drew a distinction between the politics and history of an idea and its scientific validity, argue that sociobiology fails on scientific grounds. Gould grouped sociobiology with eugenics, criticizing both in his book The Mismeasure of Man. When Napoleon Chagnon scheduled sessions on sociobiology at the 1976 American Anthropological Association convention, other scholars attempted to cancel them with what Chagnon later described as "Impassioned accusations of racism, fascism and Nazism"; Margaret Mead's support caused the sessions to occur as scheduled.

Noam Chomsky has expressed views on sociobiology on several occasions. During a 1976 meeting of the Sociobiology Study Group, as reported by Ullica Segerstråle, Chomsky argued for the importance of a sociobiologically informed notion of human nature. Chomsky argued that human beings are biological organisms and ought to be studied as such, with his criticism of the "blank slate" doctrine in the social sciences (which would inspire a great deal of Steven Pinker's and others' work in evolutionary psychology), in his 1975 Reflections on Language. Chomsky further hinted at the possible reconciliation of his anarchist political views and sociobiology in a discussion of Peter Kropotkin's Mutual Aid: A Factor of Evolution, which focused more on altruism than aggression, suggesting that anarchist societies were feasible because of an innate human tendency to cooperate.

Wilson has claimed that he had never meant to imply what ought to be, only what is the case. However, some critics have argued that the language of sociobiology readily slips from "is" to "ought", an instance of the naturalistic fallacy. Pinker has argued that opposition to stances considered anti-social, such as ethnic nepotism, is based on moral assumptions, meaning that such opposition is not falsifiable by scientific advances. The history of this debate, and others related to it, are covered in detail by Cronin (1993), Segerstråle (2000), and Alcock (2001).

Pluto

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Pluto 134340 Pluto Pluto, imaged by the New Horizons spac...