Search This Blog

Wednesday, February 5, 2025

Leukemia

From Wikipedia, the free encyclopedia
Leukemia
Other namesLeukaemia
A Wright's stained bone marrow aspirate smears from individuals with B-cell acute lymphoblastic leukemia(left) and acute myeloid leukemia (right). Myeloid leukemia cells are usually larger, contain prominent nucleoli, and specific, but not mandatory, cytoplasmic inclusions – Auer rods (purple needles).
Pronunciation
SpecialtyHematology and oncology
SymptomsBleeding, bruising, fatigue, fever, increased risk of infections
Usual onsetAll ages, most common in 60s and 70s. It is the most common malignant cancer in children, but the cure rates are also higher for them.
CausesInherited and environmental factors
Risk factorsSmoking, family history, ionizing radiation, some chemicals such as trichloroethylene, prior chemotherapy, Down syndrome.
Diagnostic methodBlood tests, bone marrow biopsy
TreatmentChemotherapy, radiation therapy, targeted therapy, bone marrow transplant, supportive care
PrognosisFive-year survival rate 67% (U.S.)
Frequency2.3 million (2015)
Deaths353,500 (2015)

Leukemia (also spelled leukaemia; pronounced /lˈkmə/ loo-KEE-mee-ə) is a group of blood cancers that usually begin in the bone marrow and produce high numbers of abnormal blood cells. These blood cells are not fully developed and are called blasts or leukemia cells. Symptoms may include bleeding and bruising, bone pain, fatigue, fever, and an increased risk of infections. These symptoms occur due to a lack of normal blood cells. Diagnosis is typically made by blood tests or bone marrow biopsy.

The exact cause of leukemia is unknown. A combination of genetic factors and environmental (non-inherited) factors are believed to play a role. Risk factors include smoking, ionizing radiation, petrochemicals (such as benzene), prior chemotherapy, and Down syndrome. People with a family history of leukemia are also at higher risk. There are four main types of leukemia—acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML)—and a number of less common types. Leukemias and lymphomas both belong to a broader group of tumors that affect the blood, bone marrow, and lymphoid system, known as tumors of the hematopoietic and lymphoid tissues.

Treatment may involve some combination of chemotherapy, radiation therapy, targeted therapy, and bone marrow transplant, with supportive and palliative care provided as needed. Certain types of leukemia may be managed with watchful waiting. The success of treatment depends on the type of leukemia and the age of the person. Outcomes have improved in the developed world. Five-year survival rate was 67% in the United States in the period from 2014 to 2020. In children under 15 in first-world countries, the five-year survival rate is greater than 60% or even 90%, depending on the type of leukemia. For infants (those diagnosed under the age of 1), the survival rate is around 40%. In children who are cancer-free five years after diagnosis of acute leukemia, the cancer is unlikely to return.

In 2015, leukemia was present in 2.3 million people worldwide and caused 353,500 deaths. In 2012, it had newly developed in 352,000 people. It is the most common type of cancer in children, with three-quarters of leukemia cases in children being the acute lymphoblastic type. However, over 90% of all leukemias are diagnosed in adults, CLL and AML being most common. It occurs more commonly in the developed world.

Classification

Four major kinds of leukemia
Cell type Acute Chronic
Lymphocytic leukemia
(or "lymphoblastic")
Acute lymphoblastic leukemia
(ALL)
Chronic lymphocytic leukemia
(CLL)
Myelogenous leukemia
("myeloid" or "nonlymphocytic")
Acute myelogenous leukemia
(AML or myeloblastic)
Chronic myelogenous leukemia
(CML)

General classification

Clinically and pathologically, leukemia is subdivided into a variety of large groups. The first division is between its acute and chronic forms:

  • Acute leukemia is characterized by a rapid increase in the number of immature blood cells. The crowding that results from such cells makes the bone marrow unable to produce healthy blood cells resulting in low hemoglobin and low platelets. Immediate treatment is required in acute leukemia because of the rapid progression and accumulation of the malignant cells, which then spill over into the bloodstream and spread to other organs of the body. Acute forms of leukemia are the most common forms of leukemia in children.
  • Chronic leukemia is characterized by the excessive buildup of relatively mature, but still abnormal, white blood cells (or, more rarely, red blood cells). Typically taking months or years to progress, the cells are produced at a much higher rate than normal, resulting in many abnormal white blood cells. Whereas acute leukemia must be treated immediately, chronic forms are sometimes monitored for some time before treatment to ensure maximum effectiveness of therapy. Chronic leukemia mostly occurs in older people but can occur in any age group.

Additionally, the diseases are subdivided according to which kind of blood cell is affected. This divides leukemias into lymphoblastic or lymphocytic leukemias and myeloid or myelogenous leukemias:

Combining these two classifications provides a total of four main categories. Within each of these main categories, there are typically several subcategories. Finally, some rarer types are usually considered to be outside of this classification scheme.

Specific types

Pre-leukemia

Signs and symptoms

Common symptoms of chronic or acute leukemia

The most common symptoms in children are easy bruising, pale skin, fever, and an enlarged spleen or liver.

Damage to the bone marrow, by way of displacing the normal bone marrow cells with higher numbers of immature white blood cells, results in a lack of blood platelets, which are important in the blood clotting process. This means people with leukemia may easily become bruised, bleed excessively, or develop pinprick bleeds (petechiae).

White blood cells, which are involved in fighting pathogens, may be suppressed or dysfunctional. This could cause the person's immune system to be unable to fight off a simple infection or to start attacking other body cells. Because leukemia prevents the immune system from working normally, some people experience frequent infection, ranging from infected tonsils, sores in the mouth, or diarrhea to life-threatening pneumonia or opportunistic infections.

Finally, the red blood cell deficiency leads to anemia, which may cause dyspnea and pallor.

Some people experience other symptoms, such as fevers, chills, night sweats, weakness in the limbs, feeling fatigued and other common flu-like symptoms. Some people experience nausea or a feeling of fullness due to an enlarged liver and spleen; this can result in unintentional weight loss. Blasts affected by the disease may come together and become swollen in the liver or in the lymph nodes causing pain and leading to nausea.

If the leukemic cells invade the central nervous system, then neurological symptoms (notably headaches) can occur. Uncommon neurological symptoms like migraines, seizures, or coma can occur as a result of brain stem pressure. All symptoms associated with leukemia can be attributed to other diseases. Consequently, leukemia is always diagnosed through medical tests.

The word leukemia, which means 'white blood', is derived from the characteristic high white blood cell count that presents in most affected people before treatment. The high number of white blood cells is apparent when a blood sample is viewed under a microscope, with the extra white blood cells frequently being immature or dysfunctional. The excessive number of cells can also interfere with the level of other cells, causing further harmful imbalance in the blood count.

Some people diagnosed with leukemia do not have high white blood cell counts visible during a regular blood count. This less-common condition is called aleukemia. The bone marrow still contains cancerous white blood cells that disrupt the normal production of blood cells, but they remain in the marrow instead of entering the bloodstream, where they would be visible in a blood test. For a person with aleukemia, the white blood cell counts in the bloodstream can be normal or low. Aleukemia can occur in any of the four major types of leukemia, and is particularly common in hairy cell leukemia.

Causes

Studies in 2009 and 2010 have shown a positive correlation between exposure to formaldehyde and the development of leukemia, particularly myeloid leukemia. The different leukemias likely have different causes.

Leukemia, like other cancers, results from mutations in the DNA. Certain mutations can trigger leukemia by activating oncogenes or deactivating tumor suppressor genes, and thereby disrupting the regulation of cell death, differentiation or division. These mutations may occur spontaneously or as a result of exposure to radiation or carcinogenic substances.

Among adults, the known causes are natural and artificial ionizing radiation and petrochemicals, notably benzene and alkylating chemotherapy agents for previous malignancies. Use of tobacco is associated with a small increase in the risk of developing acute myeloid leukemia in adults. Cohort and case-control studies have linked exposure to some petrochemicals and hair dyes to the development of some forms of leukemia. Diet has very limited or no effect, although eating more vegetables may confer a small protective benefit.

Viruses have also been linked to some forms of leukemia. For example, human T-lymphotropic virus (HTLV-1) causes adult T-cell leukemia.

A few cases of maternal-fetal transmission (a baby acquires leukemia because its mother had leukemia during the pregnancy) have been reported. Children born to mothers who use fertility drugs to induce ovulation are more than twice as likely to develop leukemia during their childhoods than other children.

In a recent systematic review and meta-analysis of any type of leukemia in neonates using phototherapy, typically to treat neonatal jaundice, a statistically significant association was detected between using phototherapy and myeloid leukemia. However, it is still questionable whether phototherapy is genuinely the cause of cancer or simply a result of the same underlying factors that gave rise to cancer. 

Radiation

Large doses of Sr-90 (called a bone seeking radioisotope) from nuclear reactor accidents, increases the risk of bone cancer and leukemia in animals and is presumed to do so in people.

Genetic conditions

Some people have a genetic predisposition towards developing leukemia. This predisposition is demonstrated by family histories and twin studies. The affected people may have a single gene or multiple genes in common. In some cases, families tend to develop the same kinds of leukemia as other members; in other families, affected people may develop different forms of leukemia or related blood cancers.

In addition to these genetic issues, people with chromosomal abnormalities or certain other genetic conditions have a greater risk of leukemia. For example, people with Down syndrome have a significantly increased risk of developing forms of acute leukemia (especially acute myeloid leukemia), and Fanconi anemia is a risk factor for developing acute myeloid leukemia. Mutation in SPRED1 gene has been associated with a predisposition to childhood leukemia.

Inherited bone marrow failure syndromes represent a kind of premature aging of the bone marrow. In people with these syndromes and in older adults, mutations associated with clonal hematopoiesis may arise as an adaptive response to a progressively deteriorating hematopoietic niche, i.e., a depleting pool of Hematopoietic stem cells. The mutated stem cells then acquire a self-renewal advantage.

Chronic myelogenous leukemia is associated with a genetic abnormality called the Philadelphia translocation; 95% of people with CML carry the Philadelphia mutation, although this is not exclusive to CML and can be observed in people with other types of leukemia.

Non-ionizing radiation

Whether or not non-ionizing radiation causes leukemia has been studied for several decades. The International Agency for Research on Cancer expert working group undertook a detailed review of all data on static and extremely low frequency electromagnetic energy, which occurs naturally and in association with the generation, transmission, and use of electrical power. They concluded that there is limited evidence that high levels of ELF magnetic (but not electric) fields might cause some cases of childhood leukemia. No evidence for a relationship to leukemia or another form of malignancy in adults has been demonstrated. Since exposure to such levels of ELFs is relatively uncommon, the World Health Organization concludes that ELF exposure, if later proven to be causative, would account for just 100 to 2400 cases worldwide each year, representing 0.2 to 4.9% of the total incidence of childhood leukemia for that year (about 0.03 to 0.9% of all leukemias).

Diagnosis

The increase in white blood cells in leukemia

Diagnosis is usually based on repeated complete blood counts and a bone marrow examination following observations of the symptoms. Sometimes, blood tests may not show that a person has leukemia, especially in the early stages of the disease or during remission. A lymph node biopsy can be performed to diagnose certain types of leukemia in certain situations.

Following diagnosis, blood chemistry tests can be used to determine the degree of liver and kidney damage or the effects of chemotherapy on the person. When concerns arise about other damages due to leukemia, doctors may use an X-ray, MRI, or ultrasound. These can potentially show leukemia's effects on such body parts as bones (X-ray), the brain (MRI), or the kidneys, spleen, and liver (ultrasound). CT scans can be used to check lymph nodes in the chest, though this is uncommon.

Despite the use of these methods to diagnose whether or not a person has leukemia, many people have not been diagnosed because many of the symptoms are vague, non-specific, and can refer to other diseases. For this reason, the American Cancer Society estimates that at least one-fifth of the people with leukemia have not yet been diagnosed.

Treatment

Most forms of leukemia are treated with pharmaceutical medication, typically combined into a multi-drug chemotherapy regimen. Some are also treated with radiation therapy. In some cases, a bone marrow transplant is effective.

Acute lymphoblastic

Management of ALL is directed towards control of bone marrow and systemic (whole-body) disease. Additionally, treatment must prevent leukemic cells from spreading to other sites, particularly the central nervous system (CNS); periodic lumbar punctures are used for diagnostic purposes and to administer intrathecal prophylactic methotrexate. In general, ALL treatment is divided into several phases:

  • Induction chemotherapy to bring about bone marrow remission. For adults, standard induction plans include prednisone, vincristine, and an anthracycline drug; other drug plans may include L-asparaginase or cyclophosphamide. For children with low-risk ALL, standard therapy usually consists of three drugs (prednisone, L-asparaginase, and vincristine) for the first month of treatment.
  • Consolidation therapy or intensification therapy to eliminate any remaining leukemia cells. There are many different approaches to consolidation, but it is typically a high-dose, multi-drug treatment that is undertaken for a few months. People with low- to average-risk ALL receive therapy with antimetabolite drugs such as methotrexate and 6-mercaptopurine (6-MP). People who are high-risk receive higher drug doses of these drugs, plus additional drugs.
  • CNS prophylaxis (preventive therapy) to stop cancer from spreading to the brain and nervous system in high-risk people. Standard prophylaxis may include radiation of the head and/or drugs delivered directly into the spine.
  • Maintenance treatments with chemotherapeutic drugs to prevent disease recurrence once remission has been achieved. Maintenance therapy usually involves lower drug doses and may continue for up to three years.
  • Alternatively, allogeneic bone marrow transplantation may be appropriate for high-risk or relapsed people.

Chronic lymphocytic

Decision to treat

Hematologists base CLL treatment on both the stage and symptoms of the individual person. A large group of people with CLL have low-grade disease, which does not benefit from treatment. Individuals with CLL-related complications or more advanced disease often benefit from treatment. In general, the indications for treatment are:

Treatment approach

Most CLL cases are incurable by present treatments, so treatment is directed towards suppressing the disease for many years, rather than curing it. The primary chemotherapeutic plan is combination chemotherapy with chlorambucil or cyclophosphamide, plus a corticosteroid such as prednisone or prednisolone. The use of a corticosteroid has the additional benefit of suppressing some related autoimmune diseases, such as immunohemolytic anemia or immune-mediated thrombocytopenia. In resistant cases, single-agent treatments with nucleoside drugs such as fludarabine, pentostatin, or cladribine may be successful. Younger and healthier people may choose allogeneic or autologous bone marrow transplantation in the hope of a permanent cure.

Acute myelogenous

Many different anti-cancer drugs are effective for the treatment of AML. Treatments vary somewhat according to the age of the person and according to the specific subtype of AML. Overall, the strategy is to control bone marrow and systemic (whole-body) disease, while offering specific treatment for the central nervous system (CNS), if involved.

In general, most oncologists rely on combinations of drugs for the initial, induction phase of chemotherapy. Such combination chemotherapy usually offers the benefits of early remission and a lower risk of disease resistance. Consolidation and maintenance treatments are intended to prevent disease recurrence. Consolidation treatment often entails a repetition of induction chemotherapy or the intensification of chemotherapy with additional drugs. By contrast, maintenance treatment involves drug doses that are lower than those administered during the induction phase.

Chronic myelogenous

There are many possible treatments for CML, but the standard of care for newly diagnosed people is imatinib (Gleevec) therapy. Compared to most anti-cancer drugs, it has relatively few side effects and can be taken orally at home. With this drug, more than 90% of people will be able to keep the disease in check for at least five years, so that CML becomes a chronic, manageable condition.

In a more advanced, uncontrolled state, when the person cannot tolerate imatinib, or if the person wishes to attempt a permanent cure, then an allogeneic bone marrow transplantation may be performed. This procedure involves high-dose chemotherapy and radiation followed by infusion of bone marrow from a compatible donor. Approximately 30% of people die from this procedure.

Hairy cell

Decision to treat
People with hairy cell leukemia who are symptom-free typically do not receive immediate treatment. Treatment is generally considered necessary when the person shows signs and symptoms such as low blood cell counts (e.g., infection-fighting neutrophil count below 1.0 K/μL), frequent infections, unexplained bruises, anemia, or fatigue that is significant enough to disrupt the person's everyday life.

Typical treatment approach
People who need treatment usually receive either one week of cladribine, given daily by intravenous infusion or a simple injection under the skin, or six months of pentostatin, given every four weeks by intravenous infusion. In most cases, one round of treatment will produce a prolonged remission.

Other treatments include rituximab infusion or self-injection with Interferon-alpha. In limited cases, the person may benefit from splenectomy (removal of the spleen). These treatments are not typically given as the first treatment because their success rates are lower than cladribine or pentostatin.

T-cell prolymphocytic

Most people with T-cell prolymphocytic leukemia, a rare and aggressive leukemia with a median survival of less than one year, require immediate treatment.

T-cell prolymphocytic leukemia is difficult to treat, and it does not respond to most available chemotherapeutic drugs. Many different treatments have been attempted, with limited success in certain people: purine analogues (pentostatin, fludarabine, cladribine), chlorambucil, and various forms of combination chemotherapy (cyclophosphamide, doxorubicin, vincristine, prednisone CHOP, cyclophosphamide, vincristine, prednisone [COP], vincristine, doxorubicin, prednisone, etoposide, cyclophosphamide, bleomycin VAPEC-B). Alemtuzumab (Campath), a monoclonal antibody that attacks white blood cells, has been used in treatment with greater success than previous options.

Some people who successfully respond to treatment also undergo stem cell transplantation to consolidate the response.

Juvenile myelomonocytic

Treatment for juvenile myelomonocytic leukemia can include splenectomy, chemotherapy, and bone marrow transplantation.

Prognosis

The success of treatment depends on the type of leukemia and the age of the person. Outcomes have improved in the developed world. The average five-year survival rate is 65% in the United States. In children under 15, the five-year survival rate is greater (60 to 85%), depending on the type of leukemia. In children with acute leukemia who are cancer-free after five years, the cancer is unlikely to return.

Outcomes depend on whether it is acute or chronic, the specific abnormal white blood cell type, the presence and severity of anemia or thrombocytopenia, the degree of tissue abnormality, the presence of metastasis and lymph node and bone marrow infiltration, the availability of therapies and the skills of the health care team. Treatment outcomes may be better when people are treated at larger centers with greater experience.

Epidemiology

Deaths due to leukemia per million persons in 2012
  0–7
  8–13
  14–22
  23–29
  30–34
  35–39
  40–46
  47–64
  65–85
  86–132

In 2010, globally, approximately 281,500 people died of leukemia. In 2000, approximately 256,000 children and adults around the world developed a form of leukemia, and 209,000 died from it. This represents about 3% of the almost seven million deaths due to cancer that year, and about 0.35% of all deaths from any cause. Of the sixteen separate sites the body compared, leukemia was the 12th most common class of neoplastic disease and the 11th most common cause of cancer-related death. Leukemia occurs more commonly in the developed world.

United States

About 245,000 people in the United States are affected with some form of leukemia, including those that have achieved remission or cure. Rates from 1975 to 2011 have increased by 0.7% per year among children. Approximately 44,270 new cases of leukemia were diagnosed in the year 2008 in the US. This represents 2.9% of all cancers (excluding simple basal cell and squamous cell skin cancers) in the United States, and 30.4% of all blood cancers.

Among children with some form of cancer, about a third have a type of leukemia, most commonly acute lymphoblastic leukemia. A type of leukemia is the second most common form of cancer in infants (under the age of 12 months) and the most common form of cancer in older children. Boys are somewhat more likely to develop leukemia than girls, and white American children are almost twice as likely to develop leukemia than black American children. Only about 3% cancer diagnoses among adults are for leukemias, but because cancer is much more common among adults, more than 90% of all leukemias are diagnosed in adults.

Race is a risk factor in the United States. Hispanics, especially those under the age of 20, are at the highest risk for leukemia, while whites, Native Americans, Asian Americans, and Alaska Natives are at higher risk than African Americans.

More men than women are diagnosed with leukemia and die from the disease. Around 30 percent more men than women have leukemia.

Australia

In Australia, leukemia is the eleventh most common cancer. In 2014–2018, Australians diagnosed with leukemia had a 64% chance (65% for males and 64% for females) of surviving for five years compared to the rest of the Australian population–there was a 21% increase in survival rates between 1989–1993.

UK

Overall, leukemia is the eleventh most common cancer in the UK (around 8,600 people were diagnosed with the disease in 2011), and it is the ninth most common cause of cancer death (around 4,800 people died in 2012).

History

Photo of the upper body of a bespectacled man
Rudolf Virchow

Leukemia was first described by anatomist and surgeon Alfred-Armand-Louis-Marie Velpeau in 1827. A more complete description was given by pathologist Rudolf Virchow in 1845. Around ten years after Virchow's findings, pathologist Franz Ernst Christian Neumann found that the bone marrow of a deceased person with leukemia was colored "dirty green-yellow" as opposed to the normal red. This finding allowed Neumann to conclude that a bone marrow problem was responsible for the abnormal blood of people with leukemia.

By 1900, leukemia was viewed as a family of diseases as opposed to a single disease. By 1947, Boston pathologist Sidney Farber believed from past experiments that aminopterin, a folic acid mimic, could potentially cure leukemia in children. The majority of the children with ALL who were tested showed signs of improvement in their bone marrow, but none of them were actually cured. Nevertheless, this result did lead to further experiments.

In 1962, researchers Emil J. Freireich, Jr. and Emil Frei III used combination chemotherapy to attempt to cure leukemia. The tests were successful with some people surviving long after the tests.

Etymology

Observing an abnormally large number of white blood cells in a blood sample from a person, Virchow called the condition Leukämie in German, which he formed from the two Greek words leukos (λευκός), meaning 'white', and haima (αἷμα), meaning 'blood'. It was formerly also called leucemia.

Society and culture

According to Susan Sontag, leukemia was often romanticized in 20th-century fiction, portrayed as a joy-ending, clean disease whose fair, innocent and gentle victims die young or at the wrong time. As such, it was the cultural successor to tuberculosis, which held this cultural position until it was discovered to be an infectious disease. The 1970 romance novel Love Story is an example of this romanticization of leukemia.

In the United States, around $5.4 billion is spent on treatment a year.

Research directions

Significant research into the causes, prevalence, diagnosis, treatment, and prognosis of leukemia is being performed. Hundreds of clinical trials are being planned or conducted at any given time. Studies may focus on effective means of treatment, better ways of treating the disease, improving the quality of life for people, or appropriate care in remission or after cures.

In general, there are two types of leukemia research: clinical or translational research and basic research. Clinical/translational research focuses on studying the disease in a defined and generally immediately applicable way, such as testing a new drug in people. By contrast, basic science research studies the disease process at a distance, such as seeing whether a suspected carcinogen can cause leukemic changes in isolated cells in the laboratory or how the DNA changes inside leukemia cells as the disease progresses. The results from basic research studies are generally less immediately useful to people with the disease.

Treatment through gene therapy is currently being pursued. One such approach used genetically modified T cells, known as chimeric antigen receptor T cells (CAR-T cells), to attack cancer cells. In 2011, a year after treatment, two of the three people with advanced chronic lymphocytic leukemia were reported to be cancer-free and in 2013, three of five subjects who had acute lymphocytic leukemia were reported to be in remission for five months to two years. Subsequent studies with a variety of CAR-T types continue to be promising. As of 2018, two CAR-T therapies have been approved by the Food and Drug Administration. CAR-T treatment has significant side effects, and loss of the antigen targeted by the CAR-T cells is a common mechanism for relapse. The stem cells that cause different types of leukemia are also being researched.

Pregnancy

Leukemia is rarely associated with pregnancy, affecting only about 1 in 10,000 pregnant women. How it is handled depends primarily on the type of leukemia. Nearly all leukemias appearing in pregnant women are acute leukemias. Acute leukemias normally require prompt, aggressive treatment, despite significant risks of pregnancy loss and birth defects, especially if chemotherapy is given during the developmentally sensitive first trimester. Chronic myelogenous leukemia can be treated with relative safety at any time during pregnancy with Interferon-alpha hormones. Treatment for chronic lymphocytic leukemias, which are rare in pregnant women, can often be postponed until after the end of the pregnancy.

Tuesday, February 4, 2025

Carbon-neutral fuel

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Carbon-neutral_fuel

Carbon-neutral fuel is fuel which produces no net-greenhouse gas emissions or carbon footprint. In practice, this usually means fuels that are made using carbon dioxide (CO2) as a feedstock. Proposed carbon-neutral fuels can broadly be grouped into synthetic fuels, which are made by chemically hydrogenating carbon dioxide, and biofuels, which are produced using natural CO2-consuming processes like photosynthesis.

The carbon dioxide used to make synthetic fuels may be directly captured from the air, recycled from power plant flue exhaust gas or derived from carbonic acid in seawater. Common examples of synthetic fuels include ammonia and methane, although more complex hydrocarbons such as gasoline and jet fuel have also been successfully synthesized artificially. In addition to being carbon neutral, such renewable fuels can alleviate the costs and dependency issues of imported fossil fuels without requiring either electrification of the vehicle fleet or conversion to hydrogen or other fuels, enabling continued compatible and affordable vehicles. In order to be truly carbon-neutral, any energy required for the process must be itself be carbon-neutral or emissions-free, like renewable energy or nuclear energy.

If the combustion of carbon-neutral fuels is subject to carbon capture at the flue, they result in net-negative carbon dioxide emission and may thus constitute a form of greenhouse gas remediation. Negative emissions are widely considered an indispensable component of efforts to limit global warming, although negative emissions technologies are currently not economically viable for private sector companies. Carbon credits are likely to play an important role for carbon-negative fuels.

Production of synthetic hydrocarbons

Synthetic hydrocarbons can be produced in chemical reactions between carbon dioxide, which can be captured from power plants or the air, and hydrogen. The fuel, often referred to as electrofuel, stores the energy that was used in the production of the hydrogen.

Hydrogen fuel is typically prepared by the electrolysis of water in a power to gas process. To minimize emissions, the electricity is produced using a low-emission energy source such as wind, solar, or nuclear power.

Through the Sabatier reaction methane can then be produced which may then be stored to be burned later in power plants (as a synthetic natural gas), transported by pipeline, truck, or tanker ship, or be used in gas to liquids processes such as the Fischer–Tropsch process to make traditional fuels for transportation or heating.

There are a few more fuels that can be created using hydrogen. Formic acid for example can be made by reacting the hydrogen with CO2. Formic acid combined with CO2 can form isobutanol.

Methanol can be made from a chemical reaction of a carbon-dioxide molecule with three hydrogen molecules to produce methanol and water. The stored energy can be recovered by burning the methanol in a combustion engine, releasing carbon dioxide, water, and heat. Methane can be produced in a similar reaction. Special precautions against methane leaks are important since methane is nearly 100 times as potent as CO2, regarding the 20-year global warming potential. More energy can be used to combine methanol or methane into larger hydrocarbon fuel molecules.

Researchers have also suggested using methanol to produce dimethyl ether. This fuel could be used as a substitute for diesel fuel due to its ability to self ignite under high pressure and temperature. It is already being used in some areas for heating and energy generation. It is nontoxic, but must be stored under pressure. Larger hydrocarbons and ethanol can also be produced from carbon dioxide and hydrogen.

All synthetic hydrocarbons are generally produced at temperatures of 200–300 °C, and at pressures of 20 to 50 bar. Catalysts are usually used to improve the efficiency of the reaction and create the desired type of hydrocarbon fuel. Such reactions are exothermic and use about 3 mol of hydrogen per mole of carbon dioxide involved. They also produce large amounts of water as a byproduct.

Sources of carbon for recycling

The most economical source of carbon for recycling into fuel is flue-gas emissions from fossil-fuel combustion where it can be obtained for about US$7.50 per ton. However, this is not carbon-neutral, since the carbon is of fossil origin, therefore moving carbon from the geosphere to the atmosphere. Since carbonic acid in seawater is in chemical equilibrium with atmospheric carbon dioxide, extraction of carbon from seawater has been studied. Researchers have estimated that carbon extraction from seawater would cost about $50 per ton. Carbon capture from ambient air is more costly, at between $94 and $232 per ton and is considered impractical for fuel synthesis or carbon sequestration. Direct air capture is less developed than other methods. Proposals for this method involve using a caustic chemical to react with carbon dioxide in the air to produce carbonates. These can then be broken down and hydrated to release pure CO2 gas and regenerate the caustic chemical. This process requires more energy than other methods because carbon dioxide is at much lower concentrations in the atmosphere than in other sources.

Researchers have also suggested using biomass as a carbon source for fuel production. Adding hydrogen to the biomass would reduce its carbon to produce fuel. This method has the advantage of using plant matter to cheaply capture carbon dioxide. The plants also add some chemical energy to the fuel from biological molecules. This may be a more efficient use of biomass than conventional biofuel because it uses most of the carbon and chemical energy from the biomass instead of releasing as much energy and carbon. Its main disadvantage is, as with conventional ethanol production, it competes with food production.

Renewable and nuclear energy costs

Nighttime wind power is considered the most economical form of electrical power with which to synthesize fuel, because the load curve for electricity peaks sharply during the warmest hours of the day, but wind tends to blow slightly more at night than during the day. Therefore, the price of nighttime wind power is often much less expensive than any alternative. Off-peak wind power prices in high wind penetration areas of the U.S. averaged 1.64 cents per kilowatt-hour in 2009, but only 0.71 cents/kWh during the least expensive six hours of the day. Typically, wholesale electricity costs 2 to 5 cents/kWh during the day. Commercial fuel synthesis companies suggest they can produce gasoline for less than petroleum fuels when oil costs more than $55 per barrel.

In 2010, a team of process chemists led by Heather Willauer of the U.S. Navy, estimates that 100 megawatts of electricity can produce 160 cubic metres (41,000 US gal) of jet fuel per day and shipboard production from nuclear power would cost about $1,600 per cubic metre ($6/US gal). While that was about twice the petroleum fuel cost in 2010, it is expected to be much less than the market price in less than five years if recent trends continue. Moreover, since the delivery of fuel to a carrier battle group costs about $2,100 per cubic metre ($8/US gal), shipboard production is already much less expensive.

Willauer said seawater is the "best option" for a source of synthetic jet fuel. By April 2014, Willauer's team had not yet made fuel to the standard required by military jets, but they were able in September 2013 to use the fuel to fly a radio-controlled model airplane powered by a common two-stroke internal combustion engine. Because the process requires a large input of electrical energy, a plausible first step of implementation would be for American nuclear-powered aircraft carriers (the Nimitz-class and the Gerald R. Ford-class) to manufacture their own jet fuel. The U.S. Navy is expected to deploy the technology some time in the 2020s.

In 2023, a study published by the NATO Energy Security Centre of Excellence, concluded that e-fuels offer one of the most promising decarbonization pathways for military mobility across the land, sea and air domains.

Demonstration projects and commercial development

A 250 kilowatt methane synthesis plant was constructed by the Center for Solar Energy and Hydrogen Research (ZSW) at Baden-Württemberg and the Fraunhofer Society in Germany and began operating in 2010. It is being upgraded to 10 megawatts, scheduled for completion in autumn 2012.

The George Olah carbon dioxide recycling plant (named after George Andrew Olah) operated by Carbon Recycling International in Grindavík, Iceland, has been producing 2 million liters of methanol transportation fuel per year from flue exhaust of the Svartsengi Power Station since 2011. It has the capacity to produce 5 million liters per year.

Audi has constructed a carbon-neutral liquefied natural gas (LNG) plant in Werlte, Germany. The plant is intended to produce transportation fuel to offset LNG used in their A3 Sportback g-tron automobiles, and can keep 2,800 metric tons of CO2 out of the environment per year at its initial capacity.

Zero, a British-based company set up by former F1 engineer Paddy Lowe, has developed a process it terms 'petrosynthesis' to develop synthetic fuels from atmospheric carbon dioxide and water using renewable energy. In 2022 it began work on a demonstration production plant at Bicester Heritage near Oxford.

Commercial developments are taking place in Columbia, South Carolina, Camarillo, California, and Darlington, England. A demonstration project in Berkeley, California, proposes synthesizing both fuels and food oils from recovered flue gases.

Greenhouse gas remediation

Carbon-neutral fuels can lead to greenhouse gas remediation because carbon dioxide gas would be reused to produce fuel instead of being released into the atmosphere. Capturing the carbon dioxide in flue gas emissions from power plants would eliminate their greenhouse gas emissions, although burning the fuel in vehicles would release that carbon because there is no economical way to capture those emissions. This approach would reduce net carbon dioxide emission by about 50% if it were used on all fossil fuel power plants. Most coal and natural gas power plants have been predicted to be economically retrofittable with carbon dioxide scrubbers for carbon capture to recycle flue exhaust or for carbon sequestration. Such recycling is expected to not only cost less than the excess economic impacts of climate change if it were not done, but also to pay for itself as global fuel demand growth and peak oil shortages increase the price of petroleum and fungible natural gas.

Capturing CO2 directly from the air, known as direct air capture, or extracting carbonic acid from seawater would also reduce the amount of carbon dioxide in the environment, and create a closed cycle of carbon to eliminate new carbon dioxide emissions. Use of these methods would eliminate the need for fossil fuels entirely, assuming that enough renewable energy could be generated to produce the fuel. Using synthetic hydrocarbons to produce synthetic materials such as plastics could result in permanent sequestration of carbon from the atmosphere.

Technologies

Traditional fuels, methanol or ethanol

Some authorities have recommended producing methanol instead of traditional transportation fuels. It is a liquid at normal temperatures and can be toxic if ingested. Methanol has a higher octane rating than gasoline but a lower energy density, and can be mixed with other fuels or used on its own. It may also be used in the production of more complex hydrocarbons and polymers. Direct methanol fuel cells have been developed by Caltech's Jet Propulsion Laboratory to convert methanol and oxygen into electricity. It is possible to convert methanol into gasoline, jet fuel or other hydrocarbons, but that requires additional energy and more complex production facilities. Methanol is slightly more corrosive than traditional fuels, requiring automobile modifications on the order of US$100 each to use it.

In 2016, a method using carbon spikes, copper nanoparticles and nitrogen that converts carbon dioxide to ethanol was developed.

Microalgae

Fuel made from microalgae could potentially have a low carbon footprint and is an active area of research, although no large-scale production system has been commercialized to date. Microalgae are aquatic unicellular organisms. Although they, unlike most plants, have extremely simple cell structures, they are still photoautotrophic, able to use solar energy to convert carbon dioxide into carbohydrates and fats via photosynthesis. These compounds can serve as raw materials for biofuels like bioethanol or biodiesel. Therefore, even though combusting microalgae-based fuel for energy would still produce emissions like any other fuel, it could be close to carbon-neutral if they, as a whole, consumed as much carbon dioxide as is emitted during combustion.

The advantages of microalgae are their higher CO2-fixation efficiency compared to most plants and their ability to thrive in a wide variety of aquatic habitats. Their main disadvantage is their high cost. It has been argued that their unique and highly variable chemical compositions may make it attractive for specific applications.

Microalgae also can be used as livestock feed due to their proteins. Even more, some species of microalgae produce valuable compounds such as pigments and pharmaceuticals.

Production

Raceway pond used for the cultivation of microalgae. The water is kept in constant motion with a powered paddle wheel.

Two main ways of cultivating microalgae are raceway pond systems and photo-bioreactors. Raceway pond systems are constructed by a closed loop oval channel that has a paddle wheel to circulate water and prevent sedimentation. The channel is open to the air and its depth is in the range of 0.25–0.4 m (0.82–1.31 ft). The pond needs to be kept shallow since self-shading and optical absorption can cause the limitation of light penetration through the solution of algae broth. PBRs's culture medium is constructed by closed transparent array of tubes. It has a central reservoir which circulated the microalgae broth. PBRs is an easier system to be controlled compare to the raceway pond system, yet it costs a larger overall production expenses.[citation needed]

The carbon emissions from microalgae biomass produced in raceway ponds could be compared to the emissions from conventional biodiesel by having inputs of energy and nutrients as carbon-intensive. The corresponding emissions from microalgae biomass produced in PBRs could also be compared and might even exceed the emissions from conventional fossil diesel. The inefficiency is due to the amount of electricity used to pump the algae broth around the system. Using co-product to generate electricity is one strategy that might improve the overall carbon balance. Another thing that needs to be acknowledged is that environmental impacts can also come from water management, carbon dioxide handling, and nutrient supply, several aspects that could constrain system design and implementation options. But, in general, Raceway Pond systems demonstrate a more attractive energy balance than PBR systems.

Economy

Production cost of microalgae-biofuel through implementation of raceway pond systems is dominated by the operational cost which includes labour, raw materials, and utilities. In raceway pond system, during the cultivation process, electricity takes up the largest energy fraction of total operational energy requirements. It is used to circulate the microalgae cultures. It takes up an energy fraction ranging from 22% to 79%. In contrast, capital cost dominates the cost of production of microalgae-biofuel in PBRs. This system has a high installation cost though the operational cost is relatively lower than raceway pond systems.

Microalgae-biofuel production costs a larger amount of money compared to fossil fuel production. The cost estimation of producing microalgae-biofuel is around $3.1 per litre ($11.57/US gal), which is considerably more expensive than conventional gasoline. However, when compared with electrification of the vehicle fleet – a key advantage of such biofuel is the avoidance of the costly distribution of large amounts of electrical energy (as is required to convert existing vehicle fleets to battery electric technology), therein allowing for the re-use of the existing liquid-fuel transportation infrastructure. Biofuel such as ethanol is also greatly more energy dense than current battery technologies (approximately 6x as much) further promoting its economic viability.

Environmental impact

The construction of large-scale microalgae cultivation facilities would inevitably result in negative environmental impacts related to land use change, such as the destruction of existing natural habitats. Microalgae can also under certain conditions emit greenhouse gases, like methane or nitrous oxide, or foul-smelling gases, like hydrogen sulfide, although this has not been widely studied to date. If poorly managed, toxins naturally produced by microalgae may leak into the surrounding soil or ground water.

Production

Water undergoes electrolysis at high temperatures to form hydrogen gas and oxygen gas. The energy to perform this is extracted from renewable sources such as wind power. Then, the hydrogen is reacted with compressed carbon dioxide captured by direct air capture. The reaction produces blue crude which consists of hydrocarbon. The blue crude is then refined to produce high efficiency E-diesel. This method is, however, still debatable because with the current production capability it can only produce 3,000 liters in a few months, 0.0002% of the daily production of fuel in the US. Furthermore, the thermodynamic and economic feasibility of this technology have been questioned. An article suggests that this technology does not create an alternative to fossil fuel but rather converting renewable energy into liquid fuel. The article also states that the energy return on energy invested using fossil diesel is 18 times higher than that for e-diesel.

History

Investigation of carbon-neutral fuels has been ongoing for decades. A 1965 report suggested synthesizing methanol from carbon dioxide in air using nuclear power for a mobile fuel depot. Shipboard production of synthetic fuel using nuclear power was studied in 1977 and 1995. A 1984 report studied the recovery of carbon dioxide from fossil fuel plants. A 1995 report compared converting vehicle fleets for the use of carbon-neutral methanol with the further synthesis of gasoline.

Wireless device radiation and health

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Wireless_device_radiation_and...