Search This Blog

Monday, December 10, 2018

Theory of solar cells

From Wikipedia, the free encyclopedia

The theory of solar cells explains the process by which light energy in photons is converted into electric current when the photons strike a suitable semiconductor device. The theoretical studies are of practical use because they predict the fundamental limits of a solar cell, and give guidance on the phenomena that contribute to losses and solar cell efficiency.
 
Band diagram of a solar cell, corresponding to very low current (horizontal Fermi level), very low voltage (metal valence bands at same height), and therefore very low illumination

Simple explanation

  • Photons in sunlight hit the solar panel and are absorbed by semi-conducting materials.
  • Electrons (negatively charged) are knocked loose from their atoms as they are excited. Due to their special structure and the materials in solar cells, the electrons are only allowed to move in a single direction. The electronic structure of the materials is very important for the process to work, and often silicon incorporating small amounts of boron or phosphorus is used in different layers.
  • An array of solar cells converts solar energy into a usable amount of direct current (DC) electricity.

Photogeneration of charge carriers

When a photon hits a piece of silicon, one of three things can happen:
  1. The photon can pass straight through the silicon — this (generally) happens for lower energy photons.
  2. The photon can reflect off the surface.
  3. The photon can be absorbed by the silicon if the photon energy is higher than the silicon band gap value. This generates an electron-hole pair and sometimes heat depending on the band structure.
Band diagram of a silicon solar cell, corresponding to very low current (horizontal Fermi level), very low voltage (metal valence bands at same height), and therefore very low illumination

When a photon is absorbed, its energy is given to an electron in the crystal lattice. Usually this electron is in the valence band. The energy given to the electron by the photon "excites" it into the conduction band where it is free to move around within the semiconductor. The network of covalent bonds that the electron was previously a part of now has one fewer electron. This is known as a hole. The presence of a missing covalent bond allows the bonded electrons of neighboring atoms to move into the "hole," leaving another hole behind, thus propagating holes throughout the lattice. It can be said that photons absorbed in the semiconductor create electron-hole pairs. 

A photon only needs to have energy greater than that of the band gap in order to excite an electron from the valence band into the conduction band. However, the solar frequency spectrum approximates a black body spectrum at about 5,800 K, and as such, much of the solar radiation reaching the Earth is composed of photons with energies greater than the band gap of silicon. These higher energy photons will be absorbed by the solar cell, but the difference in energy between these photons and the silicon band gap is converted into heat (via lattice vibrations — called phonons) rather than into usable electrical energy. The photovoltaic effect can also occur when two photons are absorbed simultaneously in a process called two-photon photovoltaic effect. However, high optical intensities are required for this nonlinear process.

The p-n junction

The most commonly known solar cell is configured as a large-area p-n junction made from silicon. As a simplification, one can imagine bringing a layer of n-type silicon into direct contact with a layer of p-type silicon. In practice, p-n junctions of silicon solar cells are not made in this way, but rather by diffusing an n-type dopant into one side of a p-type wafer (or vice versa). 

If a piece of p-type silicon is placed in close contact with a piece of n-type silicon, then a diffusion of electrons occurs from the region of high electron concentration (the n-type side of the junction) into the region of low electron concentration (p-type side of the junction). When the electrons diffuse across the p-n junction, they recombine with holes on the p-type side. However (in the absence of an external circuit) this diffusion of carriers does not go on indefinitely because charges build up on either side of the junction and create an electric field. The electric field promotes charge flow, known as drift current, that opposes and eventually balances out the diffusion of electrons and holes. This region where electrons and holes have diffused across the junction is called the depletion region because it contains practically no mobile charge carriers. It is also known as the space charge region, although space charge extends a bit further in both directions than the depletion region.

Charge carrier separation

There are two causes of charge carrier motion and separation in a solar cell:
  1. drift of carriers, driven by the electric field, with electrons being pushed one way and holes the other way
  2. diffusion of carriers from zones of higher carrier concentration to zones of lower carrier concentration (following a gradient of chemical potential).
These two "forces" may work one against the other at any given point in the cell. For instance, an electron moving through the junction from the p region to the n region (as in the diagram at the beginning of this article) is being pushed by the electric field against the concentration gradient. The same goes for a hole moving in the opposite direction. 

It is easiest to understand how a current is generated when considering electron-hole pairs that are created in the depletion zone, which is where there is a strong electric field. The electron is pushed by this field toward the n side and the hole toward the p side. (This is opposite to the direction of current in a forward-biased diode, such as a light-emitting diode in operation.) When the pair is created outside the space charge zone, where the electric field is smaller, diffusion also acts to move the carriers, but the junction still plays a role by sweeping any electrons that reach it from the p side to the n side, and by sweeping any holes that reach it from the n side to the p side, thereby creating a concentration gradient outside the space charge zone. 

In thick solar cells there is very little electric field in the active region outside the space charge zone, so the dominant mode of charge carrier separation is diffusion. In these cells the diffusion length of minority carriers (the length that photo-generated carriers can travel before they recombine) must be large compared to the cell thickness. In thin film cells (such as amorphous silicon), the diffusion length of minority carriers is usually very short due to the existence of defects, and the dominant charge separation is therefore drift, driven by the electrostatic field of the junction, which extends to the whole thickness of the cell.

Once the minority carrier enters the drift region, it is 'swept' across the junction and, at the other side of the junction, becomes a majority carrier. This reverse current is a generation current, fed both thermally and (if present) by the absorption of light. On the other hand, majority carriers are driven into the drift region by diffusion (resulting from the concentration gradient), which leads to the forward current; only the majority carriers with the highest energies (in the so-called Boltzmann tail; cf. Maxwell–Boltzmann statistics) can fully cross the drift region. Therefore, the carrier distribution in the whole device is governed by a dynamic equilibrium between reverse current and forward current.

Connection to an external load

Ohmic metal-semiconductor contacts are made to both the n-type and p-type sides of the solar cell, and the electrodes connected to an external load. Electrons that are created on the n-type side, or created on the p-type side, "collected" by the junction and swept onto the n-type side, may travel through the wire, power the load, and continue through the wire until they reach the p-type semiconductor-metal contact. Here, they recombine with a hole that was either created as an electron-hole pair on the p-type side of the solar cell, or a hole that was swept across the junction from the n-type side after being created there. 

The voltage measured is equal to the difference in the quasi Fermi levels of the majority carriers (electrons in the n-type portion and holes in the p-type portion) at the two terminals.

Equivalent circuit of a solar cell

The equivalent circuit of a solar cell
 
The schematic symbol of a solar cell

To understand the electronic behavior of a solar cell, it is useful to create a model which is electrically equivalent, and is based on discrete ideal electrical components whose behavior is well defined. An ideal solar cell may be modelled by a current source in parallel with a diode; in practice no solar cell is ideal, so a shunt resistance and a series resistance component are added to the model. The resulting equivalent circuit of a solar cell is shown on the left. Also shown, on the right, is the schematic representation of a solar cell for use in circuit diagrams.

Characteristic equation

From the equivalent circuit it is evident that the current produced by the solar cell is equal to that produced by the current source, minus that which flows through the diode, minus that which flows through the shunt resistor:
where
  • I = output current (ampere)
  • IL = photogenerated current (ampere)
  • ID = diode current (ampere)
  • ISH = shunt current (ampere).
The current through these elements is governed by the voltage across them:
where
  • Vj = voltage across both diode and resistor RSH (volt)
  • V = voltage across the output terminals (volt)
  • I = output current (ampere)
  • RS = series resistance (Ω).
By the Shockley diode equation, the current diverted through the diode is:
where
By Ohm's law, the current diverted through the shunt resistor is:
where
  • RSH = shunt resistance (Ω).
Substituting these into the first equation produces the characteristic equation of a solar cell, which relates solar cell parameters to the output current and voltage:
An alternative derivation produces an equation similar in appearance, but with V on the left-hand side. The two alternatives are identities; that is, they yield precisely the same results. 

Since the parameters I0, n, RS, and RSH cannot be measured directly, the most common application of the characteristic equation is nonlinear regression to extract the values of these parameters on the basis of their combined effect on solar cell behavior. 

When RS is not zero, the above equation does not give the current I directly, but it can then be solved using the Lambert W function:
When an external load is used with the cell, its resistance can simply be added to RS and V set to zero in order to find the current.

When RSH is infinite there is a solution for V for any less than :
Otherwise one can solve for V using the Lambert W function:
However, when RSH is large it's better to solve the original equation numerically.

The general form of the solution is a curve with I decreasing as V increases (see graphs lower down). The slope at small or negative V (where the W function is near zero) approaches , whereas the slope at high V approaches .

Open-circuit voltage and short-circuit current

When the cell is operated at open circuit, I = 0 and the voltage across the output terminals is defined as the open-circuit voltage. Assuming the shunt resistance is high enough to neglect the final term of the characteristic equation, the open-circuit voltage VOC is:
Similarly, when the cell is operated at short circuit, V = 0 and the current I through the terminals is defined as the short-circuit current. It can be shown that for a high-quality solar cell (low RS and I0, and high RSH) the short-circuit current ISC is:
It is not possible to extract any power from the device when operating at either open circuit or short circuit conditions.

Effect of physical size

The values of IL, I0, RS, and RSH are dependent upon the physical size of the solar cell. In comparing otherwise identical cells, a cell with twice the junction area of another will, in principle, have double the IL and I0 because it has twice the area where photocurrent is generated and across which diode current can flow. By the same argument, it will also have half the RS of the series resistance related to vertical current flow; however, for large-area silicon solar cells, the scaling of the series resistance encountered by lateral current flow is not easily predictable since it will depend crucially on the grid design (it is not clear what "otherwise identical" means in this respect). Depending on the shunt type, the larger cell may also have half the RSH because it has twice the area where shunts may occur; on the other hand, if shunts occur mainly at the perimeter, then RSH will decrease according to the change in circumference, not area. 

Since the changes in the currents are the dominating ones and are balancing each other, the open-circuit voltage is practically the same; VOC starts to depend on the cell size only if RSH becomes too low. To account for the dominance of the currents, the characteristic equation is frequently written in terms of current density, or current produced per unit cell area:
where
  • J = current density (ampere/cm2)
  • JL = photogenerated current density (ampere/cm2)
  • J0 = reverse saturation current density (ampere/cm2)
  • rS = specific series resistance (Ω-cm2)
  • rSH = specific shunt resistance (Ω-cm2).
This formulation has several advantages. One is that since cell characteristics are referenced to a common cross-sectional area they may be compared for cells of different physical dimensions. While this is of limited benefit in a manufacturing setting, where all cells tend to be the same size, it is useful in research and in comparing cells between manufacturers. Another advantage is that the density equation naturally scales the parameter values to similar orders of magnitude, which can make numerical extraction of them simpler and more accurate even with naive solution methods. 

There are practical limitations of this formulation. For instance, certain parasitic effects grow in importance as cell sizes shrink and can affect the extracted parameter values. Recombination and contamination of the junction tend to be greatest at the perimeter of the cell, so very small cells may exhibit higher values of J0 or lower values of RSH than larger cells that are otherwise identical. In such cases, comparisons between cells must be made cautiously and with these effects in mind. 

This approach should only be used for comparing solar cells with comparable layout. For instance, a comparison between primarily quadratical solar cells like typical crystalline silicon solar cells and narrow but long solar cells like typical thin film solar cells can lead to wrong assumptions caused by the different kinds of current paths and therefore the influence of, for instance, a distributed series resistance contribution to rS. Macro-architecture of the solar cells could result in different surface areas being placed in any fixed volume - particularly for thin film solar cells and flexible solar cells which may allow for highly convoluted folded structures. If volume is the binding constraint, then efficiency density based on surface area may be of less relevance.

Transparent conducting electrodes

Schematic of charge collection by solar cell electrodes. Light transmits through transparent conducting electrode creating electron hole pairs, which are collected by both the electrodes.
 
Transparent conducting electrodes are essential components of solar cells. It is either a continuous film of indium tin oxide or a conducting wire network, in which wires are charge collectors while voids between wires are transparent for light. An optimum density of wire network is essential for the maximum solar cell performance as higher wire density blocks the light transmittance while lower wire density leads to high recombination losses due to more distance traveled by the charge carriers.

Cell temperature

Effect of temperature on the current-voltage characteristics of a solar cell

Temperature affects the characteristic equation in two ways: directly, via T in the exponential term, and indirectly via its effect on I0 (strictly speaking, temperature affects all of the terms, but these two far more significantly than the others). While increasing T reduces the magnitude of the exponent in the characteristic equation, the value of I0 increases exponentially with T. The net effect is to reduce VOC (the open-circuit voltage) linearly with increasing temperature. The magnitude of this reduction is inversely proportional to VOC; that is, cells with higher values of VOC suffer smaller reductions in voltage with increasing temperature. For most crystalline silicon solar cells the change in VOC with temperature is about -0.50%/°C, though the rate for the highest-efficiency crystalline silicon cells is around -0.35%/°C. By way of comparison, the rate for amorphous silicon solar cells is -0.20%/°C to -0.30%/°C, depending on how the cell is made. 

The amount of photogenerated current IL increases slightly with increasing temperature because of an increase in the number of thermally generated carriers in the cell. This effect is slight, however: about 0.065%/°C for crystalline silicon cells and 0.09% for amorphous silicon cells. 

The overall effect of temperature on cell efficiency can be computed using these factors in combination with the characteristic equation. However, since the change in voltage is much stronger than the change in current, the overall effect on efficiency tends to be similar to that on voltage. Most crystalline silicon solar cells decline in efficiency by 0.50%/°C and most amorphous cells decline by 0.15-0.25%/°C. The figure above shows I-V curves that might typically be seen for a crystalline silicon solar cell at various temperatures.

Series resistance

Effect of series resistance on the current-voltage characteristics of a solar cell

As series resistance increases, the voltage drop between the junction voltage and the terminal voltage becomes greater for the same current. The result is that the current-controlled portion of the I-V curve begins to sag toward the origin, producing a significant decrease in the terminal voltage and a slight reduction in ISC, the short-circuit current. Very high values of RS will also produce a significant reduction in ISC; in these regimes, series resistance dominates and the behavior of the solar cell resembles that of a resistor. These effects are shown for crystalline silicon solar cells in the I-V curves displayed in the figure to the right. 

Losses caused by series resistance are in a first approximation given by Ploss=VRsI=I2RS and increase quadratically with (photo-)current. Series resistance losses are therefore most important at high illumination intensities.

Shunt resistance

Effect of shunt resistance on the current–voltage characteristics of a solar cell

As shunt resistance decreases, the current diverted through the shunt resistor increases for a given level of junction voltage. The result is that the voltage-controlled portion of the I-V curve begins to sag far from the origin, producing a significant decrease in the terminal current I and a slight reduction in VOC. Very low values of RSH will produce a significant reduction in VOC. Much as in the case of a high series resistance, a badly shunted solar cell will take on operating characteristics similar to those of a resistor. These effects are shown for crystalline silicon solar cells in the I-V curves displayed in the figure to the right.

Reverse saturation current

Effect of reverse saturation current on the current-voltage characteristics of a solar cell

If one assumes infinite shunt resistance, the characteristic equation can be solved for VOC:
Thus, an increase in I0 produces a reduction in VOC proportional to the inverse of the logarithm of the increase. This explains mathematically the reason for the reduction in VOC that accompanies increases in temperature described above. The effect of reverse saturation current on the I-V curve of a crystalline silicon solar cell are shown in the figure to the right. Physically, reverse saturation current is a measure of the "leakage" of carriers across the p-n junction in reverse bias. This leakage is a result of carrier recombination in the neutral regions on either side of the junction.

Ideality factor

Effect of ideality factor on the current-voltage characteristics of a solar cell

The ideality factor (also called the emissivity factor) is a fitting parameter that describes how closely the diode's behavior matches that predicted by theory, which assumes the p-n junction of the diode is an infinite plane and no recombination occurs within the space-charge region. A perfect match to theory is indicated when n = 1. When recombination in the space-charge region dominate other recombination, however, n = 2. The effect of changing ideality factor independently of all other parameters is shown for a crystalline silicon solar cell in the I-V curves displayed in the figure to the right. 

Most solar cells, which are quite large compared to conventional diodes, well approximate an infinite plane and will usually exhibit near-ideal behavior under Standard Test Condition (n ≈ 1). Under certain operating conditions, however, device operation may be dominated by recombination in the space-charge region. This is characterized by a significant increase in I0 as well as an increase in ideality factor to n ≈ 2. The latter tends to increase solar cell output voltage while the former acts to erode it. The net effect, therefore, is a combination of the increase in voltage shown for increasing n in the figure to the right and the decrease in voltage shown for increasing I0 in the figure above. Typically, I0 is the more significant factor and the result is a reduction in voltage.

Sometimes, the ideality factor is observed to be greater than 2, which is generally attributed to the presence of Schottky diode or heterojunction in the solar cell. The presence of a heterojunction offset reduces the collection efficiency of the solar cell and may contribute to low fill-factor.

Photovoltaics (updated)

From Wikipedia, the free encyclopedia

The Solar Settlement, a sustainable housing community project in Freiburg, Germany.
 
Photovoltaic SUDI shade is an autonomous and mobile station in France that provides energy for electric cars using solar energy.
 
Solar panels on the International Space Station
 
Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry.

A photovoltaic system employs solar panels, each comprising a number of solar cells, which generate electrical power. PV installations may be ground-mounted, rooftop mounted or wall mounted. The mount may be fixed, or use a solar tracker to follow the sun across the sky.

Solar PV has specific advantages as an energy source: once installed, its operation generates no pollution and no greenhouse gas emissions, it shows simple scalability in respect of power needs and silicon has large availability in the Earth’s crust.

PV systems have the major disadvantage that the power output works best with direct sunlight, so about 10-25% is lost if a tracking system is not used. Dust, clouds, and other obstructions in the atmosphere also diminish the power output. Another important issue is the concentration of the production in the hours corresponding to main insolation, which do not usually match the peaks in demand in human activity cycles. Unless current societal patterns of consumption and electrical networks adjust to this scenario, electricity still needs to be stored for later use or made up by other power sources, usually hydrocarbons. 

Photovoltaic systems have long been used in specialized applications, and stand-alone and grid-connected PV systems have been in use since the 1990s. They were first mass-produced in 2000, when German environmentalists and the Eurosolar organization got government funding for a ten thousand roof program.

Advances in technology and increased manufacturing scale have in any case reduced the cost, increased the reliability, and increased the efficiency of photovoltaic installations. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity, have supported solar PV installations in many countries. More than 100 countries now use solar PV. 

After hydro and wind powers, PV is the third renewable energy source in terms of global capacity. At the end of 2016, worldwide installed PV capacity increased to more than 300 gigawatts (GW), covering approximately two percent of global electricity demand. China, followed by Japan and the United States, is the fastest growing market, while Germany remains the world's largest producer, with solar PV providing seven percent of annual domestic electricity consumption. With current technology (as of 2013), photovoltaics recoups the energy needed to manufacture them in 1.5 years in Southern Europe and 2.5 years in Northern Europe.

Etymology

The term "photovoltaic" comes from the Greek φῶς (phōs) meaning "light", and from "volt", the unit of electro-motive force, the volt, which in turn comes from the last name of the Italian physicist Alessandro Volta, inventor of the battery (electrochemical cell). The term "photo-voltaic" has been in use in English since 1849.

Solar cells

Solar cells generate electricity directly from sunlight.
 
Photovoltaic power potential map
Photovoltaic power potential map estimates, how much kWh of electricity can be produced from a 1 kWp free-standing c-Si modules, optimally inclined towards the Equator. The resulting long-term average (daily or yearly) is calculated based on the time-series weather data of at least recent 10 years. The map is published by the World Bank and provided by Solargis.

Photovoltaics are best known as a method for generating electric power by using solar cells to convert energy from the sun into a flow of electrons by the photovoltaic effect.

Solar cells produce direct current electricity from sunlight which can be used to power equipment or to recharge a battery. The first practical application of photovoltaics was to power orbiting satellites and other spacecraft, but today the majority of photovoltaic modules are used for grid connected power generation. In this case an inverter is required to convert the DC to AC. There is a smaller market for off-grid power for remote dwellings, boats, recreational vehicles, electric cars, roadside emergency telephones, remote sensing, and cathodic protection of pipelines

Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Copper solar cables connect modules (module cable), arrays (array cable), and sub-fields. Because of the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years.

Solar photovoltaic power generation has long been seen as a clean energy technology which draws upon the planet’s most plentiful and widely distributed renewable energy source – the sun. Cells require protection from the environment and are usually packaged tightly in solar panels. 

Photovoltaic power capacity is measured as maximum power output under standardized test conditions (STC) in "Wp" (watts peak). The actual power output at a particular point in time may be less than or greater than this standardized, or "rated", value, depending on geographical location, time of day, weather conditions, and other factors. Solar photovoltaic array capacity factors are typically under 25%, which is lower than many other industrial sources of electricity.

Current developments

For best performance, terrestrial PV systems aim to maximize the time they face the sun. Solar trackers was achieve this by moving PV panels to follow the sun. The increase can be by as much as 20% in winter and by as much as 50% in summer. Static mounted systems can be optimized by analysis of the sun path. Panels are often set to latitude tilt, an angle equal to the latitude, but performance can be improved by adjusting the angle for summer or winter. Generally, as with other semiconductor devices, temperatures above room temperature reduce the performance of photovoltaics.

A number of solar panels may also be mounted vertically above each other in a tower, if the zenith distance of the Sun is greater than zero, and the tower can be turned horizontally as a whole and each panels additionally around a horizontal axis. In such a tower the panels can follow the Sun exactly. Such a device may be described as a ladder mounted on a turnable disk. Each step of that ladder is the middle axis of a rectangular solar panel. In case the zenith distance of the Sun reaches zero, the "ladder" may be rotated to the north or the south to avoid a solar panel producing a shadow on a lower solar panel. Instead of an exactly vertical tower one can choose a tower with an axis directed to the polar star, meaning that it is parallel to the rotation axis of the Earth. In this case the angle between the axis and the Sun is always larger than 66 degrees. During a day it is only necessary to turn the panels around this axis to follow the Sun. Installations may be ground-mounted (and sometimes integrated with farming and grazing) or built into the roof or walls of a building (building-integrated photovoltaics). 

Another recent development involves the makeup of solar cells. Perovskite is a very inexpensive material which is being used to replace the expensive crystalline silicon which is still part of a standard PV cell build to this day. Michael Graetzel, Director of the Laboratory of Photonics and Interfaces at EPFL says, "Today, efficiency has peaked at 18 percent, but it's expected to get even higher in the future." This is a significant claim, as 20% efficiency is typical among solar panels which use more expensive materials.

Efficiency

Best Research-Cell Efficiencies

Electrical efficiency (also called conversion efficiency) is a contributing factor in the selection of a photovoltaic system. However, the most efficient solar panels are typically the most expensive, and may not be commercially available. Therefore, selection is also driven by cost efficiency and other factors. 

The electrical efficiency of a PV cell is a physical property which represents how much electrical power a cell can produce for a given insolation. The basic expression for maximum efficiency of a photovoltaic cell is given by the ratio of output power to the incident solar power (radiation flux times area)
The efficiency is measured under ideal laboratory conditions and represents the maximum achievable efficiency of the PV material. Actual efficiency is influenced by the output Voltage, current, junction temperature, light intensity and spectrum.

The most efficient type of solar cell to date is a multi-junction concentrator solar cell with an efficiency of 46.0% produced by Fraunhofer ISE in December 2014. The highest efficiencies achieved without concentration include a material by Sharp Corporation at 35.8% using a proprietary triple-junction manufacturing technology in 2009, and Boeing Spectrolab (40.7% also using a triple-layer design). The US company SunPower produces cells that have an efficiency of 21.5%, well above the market average of 12–18%.

There is an ongoing effort to increase the conversion efficiency of PV cells and modules, primarily for competitive advantage. In order to increase the efficiency of solar cells, it is important to choose a semiconductor material with an appropriate band gap that matches the solar spectrum. This will enhance the electrical and optical properties. Improving the method of charge collection is also useful for increasing the efficiency. There are several groups of materials that are being developed. Ultrahigh-efficiency devices (η>30%) are made by using GaAs and GaInP2 semiconductors with multijunction tandem cells. High-quality, single-crystal silicon materials are used to achieve high-efficiency, low cost cells (η>20%). 

Recent developments in Organic photovoltaic cells (OPVs) have made significant advancements in power conversion efficiency from 3% to over 15% since their introduction in the 1980s. To date, the highest reported power conversion efficiency ranges from 6.7% to 8.94% for small molecule, 8.4%–10.6% for polymer OPVs, and 7% to 21% for perovskite OPVs. OPVs are expected to play a major role in the PV market. Recent improvements have increased the efficiency and lowered cost, while remaining environmentally-benign and renewable. 

Several companies have begun embedding power optimizers into PV modules called smart modules. These modules perform maximum power point tracking (MPPT) for each module individually, measure performance data for monitoring, and provide additional safety features. Such modules can also compensate for shading effects, wherein a shadow falling across a section of a module causes the electrical output of one or more strings of cells in the module to decrease.

One of the major causes for the decreased performance of cells is overheating. The efficiency of a solar cell declines by about 0.5% for every 1 degree Celsius increase in temperature. This means that a 100 degree increase in surface temperature could decrease the efficiency of a solar cell by about half. Self-cooling solar cells are one solution to this problem. Rather than using energy to cool the surface, pyramid and cone shapes can be formed from silica, and attached to the surface of a solar panel. Doing so allows visible light to reach the solar cells, but reflects infrared rays (which carry heat).

Growth

Worldwide growth of photovoltaics on a semi-log plot since 1992

Solar photovoltaics is growing rapidly and worldwide installed capacity reached about 300 gigawatts (GW) by the end of 2016. Since 2000, installed capacity has seen a growth factor of about 57. The total power output of the world’s PV capacity in a calendar year in 2014 is now beyond 200 TWh of electricity. This represents 1% of worldwide electricity demand. More than 100 countries use solar PV. China, followed by Japan and the United States is now the fastest growing market, while Germany remains the world's largest producer, contributing more than 7% to its national electricity demands. Photovoltaics is now, after hydro and wind power, the third most important renewable energy source in terms of globally installed capacity.

Several market research and financial companies foresee record-breaking global installation of more than 50 GW in 2015. China is predicted to take the lead from Germany and to become the world's largest producer of PV power by installing another targeted 17.8 GW in 2015. India is expected to install 1.8 GW, doubling its annual installations. By 2018, worldwide photovoltaic capacity is projected to doubled or even triple to 430 GW. Solar Power Europe (formerly known as EPIA) also estimates that photovoltaics will meet 10% to 15% of Europe's energy demand in 2030.

In 2017 a study in Science estimated that by 2030 global PV installed capacities will be between 3,000 and 10,000 GW. The EPIA/Greenpeace Solar Generation Paradigm Shift Scenario (formerly called Advanced Scenario) from 2010 shows that by the year 2030, 1,845 GW of PV systems could be generating approximately 2,646 TWh/year of electricity around the world. Combined with energy use efficiency improvements, this would represent the electricity needs of more than 9% of the world's population. By 2050, over 20% of all electricity could be provided by photovoltaics.

Michael Liebreich, from Bloomberg New Energy Finance, anticipates a tipping point for solar energy. The costs of power from wind and solar are already below those of conventional electricity generation in some parts of the world, as they have fallen sharply and will continue to do so. He also asserts, that the electrical grid has been greatly expanded worldwide, and is ready to receive and distribute electricity from renewable sources. In addition, worldwide electricity prices came under strong pressure from renewable energy sources, that are, in part, enthusiastically embraced by consumers.

Deutsche Bank sees a "second gold rush" for the photovoltaic industry to come. Grid parity has already been reached in at least 19 markets by January 2014. Photovoltaics will prevail beyond feed-in tariffs, becoming more competitive as deployment increases and prices continue to fall.

In June 2014 Barclays downgraded bonds of U.S. utility companies. Barclays expects more competition by a growing self-consumption due to a combination of decentralized PV-systems and residential electricity storage. This could fundamentally change the utility's business model and transform the system over the next ten years, as prices for these systems are predicted to fall.

Top 10 PV countries in 2015 (MW)
Installed and Total Solar Power Capacity in 2015 (MW)
# Nation Total Capacity Added Capacity
1 China China 43,530 15,150
2 Germany Germany 39,700 1,450
3 Japan Japan 34,410 11,000
4 United States United States 25,620 7,300
5 Italy Italy 18,920 300
6 United Kingdom United Kingdom 8,780 3,510
7 France France 6,580 879
8 Spain Spain 5,400 56
9 Australia Australia 5,070 935
10 India India 5,050 2,000
Data: IEA-PVPS Snapshot of Global PV 1992–2015 report, March 2015

Environmental impacts of photovoltaic technologies

Types of impacts

While solar photovoltaic (PV) cells are promising for clean energy production, their deployment is hindered by production costs, material availability, and toxicity. Data required to investigate their impact are sometimes affected by a rather large amount of uncertainty. The values of human labor and water consumption, for example, are not precisely assessed due to the lack of systematic and accurate analyses in the scientific literature.

Life cycle assessment (LCA) is one method of determining environmental impacts from PV. Many studies have been done on the various types of PV including first generation, second generation, and third generation. Usually these PV LCA studies select a cradle to gate system boundary because often at the time the studies are conducted, it is a new technology not commercially available yet and their required balance of system components and disposal methods are unknown.

A traditional LCA can look at many different impact categories ranging from global warming potential, eco-toxicity, human toxicity, water depletion, and many others. 

Most LCAs of PV have focused on two categories: carbon dioxide equivalents per kWh and energy pay-back time (EPBT). The EPBT is defined as " the time needed to compensate for the total renewable- and non-renewable- primary energy required during the life cycle of a PV system". A 2015 review of EPBT from first and second generation PV suggested that there was greater variation in embedded energy than in efficiency of the cells implying that it was mainly the embedded energy that needs to reduce to have a greater reduction in EPBT. One difficulty in determining impacts due to PV is to determine if the wastes are released to the air, water, or soil during the manufacturing phase. Research is underway to try to understand emissions and releases during the lifetime of PV systems.

Impacts from first-generation PV

Crystalline silicon modules are the most extensively studied PV type in terms of LCA since they are the most commonly used. Mono-crystalline silicon photovoltaic systems (mono-si) have an average efficiency of 14.0%. The cells tend to follow a structure of front electrode, anti-reflection film, n-layer, p-layer, and back electrode, with the sun hitting the front electrode. EPBT ranges from 1.7 to 2.7 years. The cradle to gate of CO2-eq/kWh ranges from 37.3 to 72.2 grams.

Techniques to produce multi-crystalline silicon (multi-si) photovoltaic cells are simpler and cheaper than mono-si, however tend to make less efficient cells, an average of 13.2%. EPBT ranges from 1.5 to 2.6 years. The cradle to gate of CO2-eq/kWh ranges from 28.5 to 69 grams. Some studies have looked beyond EPBT and GWP to other environmental impacts. In one such study, conventional energy mix in Greece was compared to multi-si PV and found a 95% overall reduction in impacts including carcinogens, eco-toxicity, acidification, eutrophication, and eleven others.

Impacts from second generation

Cadmium telluride (CdTe) is one of the fastest-growing thin film based solar cells which are collectively known as second generation devices. This new thin film device also shares similar performance restrictions (Shockley-Queisser efficiency limit) as conventional Si devices but promises to lower the cost of each device by both reducing material and energy consumption during manufacturing. Today the global market share of CdTe is 5.4%, up from 4.7% in 2008. This technology’s highest power conversion efficiency is 21%. The cell structure includes glass substrate (around 2 mm), transparent conductor layer, CdS buffer layer (50–150 nm), CdTe absorber and a metal contact layer. 

CdTe PV systems require less energy input in their production than other commercial PV systems per unit electricity production. The average CO2-eq/kWh is around 18 grams (cradle to gate). CdTe has the fastest EPBT of all commercial PV technologies, which varies between 0.3 and 1.2 years.

Copper Indium Gallium Diselenide (CIGS) is a thin film solar cell based on the copper indium diselenide (CIS) family of chalcopyrite semiconductors. CIS and CIGS are often used interchangeably within the CIS/CIGS community. The cell structure includes soda lime glass as the substrate, Mo layer as the back contact, CIS/CIGS as the absorber layer, cadmium sulfide (CdS) or Zn (S,OH)x as the buffer layer, and ZnO:Al as the front contact. CIGS is approximately 1/100th the thickness of conventional silicon solar cell technologies. Materials necessary for assembly are readily available, and are less costly per watt of solar cell. CIGS based solar devices resist performance degradation over time and are highly stable in the field.

Reported global warming potential impacts of CIGS range from 20.5 – 58.8 grams CO2-eq/kWh of electricity generated for different solar irradiation (1,700 to 2,200 kWh/m2/y) and power conversion efficiency (7.8 – 9.12%). EPBT ranges from 0.2 to 1.4 years, while harmonized value of EPBT was found 1.393 years. Toxicity is an issue within the buffer layer of CIGS modules because it contains cadmium and gallium. CIS modules do not contain any heavy metals. 

Impacts from third generation

Third-generation PVs are designed to combine the advantages of both the first and second generation devices and they do not have Shockley-Queisser limit, a theoretical limit for first and second generation PV cells. The thickness of a third generation device is less than 1 µm.

One emerging alternative and promising technology is based on an organic-inorganic hybrid solar cell made of methylammonium lead halide perovskites. Perovskite PV cells have progressed rapidly over the past few years and have become one of the most attractive areas for PV research. The cell structure includes a metal back contact (which can be made of Al, Au or Ag), a hole transfer layer (spiro-MeOTAD, P3HT, PTAA, CuSCN, CuI, or NiO), and absorber layer (CH3NH3PbIxBr3-x, CH3NH3PbIxCl3-x or CH3NH3PbI3), an electron transport layer (TiO, ZnO, Al2O3 or SnO2) and a top contact layer (fluorine doped tin oxide or tin doped indium oxide). 

There are a limited number of published studies to address the environmental impacts of perovskite solar cells. The major environmental concern is the lead used in the absorber layer. Due to the instability of perovskite cells lead may eventually be exposed to fresh water during the use phase. These LCA studies looked at human and ecotoxicity of perovskite solar cells and found they were surprisingly low and may not be an environmental issue. Global warming potential of perovskite PVs were found to be in the range of 24–1500 grams CO2-eq/kWh electricity production. Similarly, reported EPBT of the published paper range from 0.2 to 15 years. The large range of reported values highlight the uncertainties associated with these studies. Celik et al. (2016) critically discussed the assumptions made in perovskite PV LCA studies.

Two new promising thin film technologies are copper zinc tin sulfide (Cu2ZnSnS4 or CZTS), zinc phosphide (Zn3P2) and single-walled carbon nano-tubes (SWCNT). These thin films are currently only produced in the lab but may be commercialized in the future. The manufacturing of CZTS and (Zn3P2) processes are expected to be similar to those of current thin film technologies of CIGS and CdTe, respectively. While the absorber layer of SWCNT PV is expected to be synthesized with CoMoCAT method. by Contrary to established thin films such as CIGS and CdTe, CZTS, Zn3P2, and SWCNT PVs are made from earth abundant, nontoxic materials and have the potential to produce more electricity annually than the current worldwide consumption. While CZTS and Zn3P2 offer good promise for these reasons, the specific environmental implications of their commercial production are not yet known. Global warming potential of CZTS and Zn3P2 were found 38 and 30 grams CO2-eq/kWh while their corresponding EPBT were found 1.85 and 0.78 years, respectively. Overall, CdTe and Zn3P2 have similar environmental impacts but can slightly outperform CIGS and CZTS. Celik et al. performed the first LCA study on environmental impacts of SWCNT PVs, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device and interpreted the results by using mono-Si as a reference point. the results show that compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. 

Organic and polymer photovoltaic (OPV) are a relatively new area of research. The tradition OPV cell structure layers consist of a semi-transparent electrode, electron blocking layer, tunnel junction, holes blocking layer, electrode, with the sun hitting the transparent electrode. OPV replaces silver with carbon as an electrode material lowering manufacturing cost and making them more environmentally friendly. OPV are flexible, low weight, and work well with roll-to roll manufacturing for mass production. OPV uses "only abundant elements coupled to an extremely low embodied energy through very low processing temperatures using only ambient processing conditions on simple printing equipment enabling energy pay-back times". Current efficiencies range from 1–6.5%, however theoretical analyses show promise beyond 10% efficiency.

Many different configurations of OPV exist using different materials for each layer. OPV technology rivals existing PV technologies in terms of EPBT even if they currently present a shorter operational lifetime. A 2013 study analyzed 12 different configurations all with 2% efficiency, the EPBT ranged from 0.29–0.52 years for 1 m² of PV. The average CO2-eq/kWh for OPV is 54.922 grams.

Economics

Source: Apricus
There have been major changes in the underlying costs, industry structure and market prices of solar photovoltaics technology, over the years, and gaining a coherent picture of the shifts occurring across the industry value chain globally is a challenge. This is due to: "the rapidity of cost and price changes, the complexity of the PV supply chain, which involves a large number of manufacturing processes, the balance of system (BOS) and installation costs associated with complete PV systems, the choice of different distribution channels, and differences between regional markets within which PV is being deployed". Further complexities result from the many different policy support initiatives that have been put in place to facilitate photovoltaics commercialisation in various countries.

The PV industry has seen dramatic drops in module prices since 2008. In late 2011, factory-gate prices for crystalline-silicon photovoltaic modules dropped below the $1.00/W mark. The $1.00/W installed cost, is often regarded in the PV industry as marking the achievement of grid parity for PV. Technological advancements, manufacturing process improvements, and industry re-structuring, mean that further price reductions are likely in coming years. As of 2017 power-purchase agreement prices for solar farms below $0.05/kWh are common in the United States and the lowest bids in several international countries were about $0.03/kWh.

Financial incentives for photovoltaics, such as feed-in tariffs, have often been offered to electricity consumers to install and operate solar-electric generating systems. Government has sometimes also offered incentives in order to encourage the PV industry to achieve the economies of scale needed to compete where the cost of PV-generated electricity is above the cost from the existing grid. Such policies are implemented to promote national or territorial energy independence, high tech job creation and reduction of carbon dioxide emissions which cause climate change. Due to economies of scale solar panels get less costly as people use and buy more—as manufacturers increase production to meet demand, the cost and price is expected to drop in the years to come.

Solar cell efficiencies vary from 6% for amorphous silicon-based solar cells to 44.0% with multiple-junction concentrated photovoltaics. Solar cell energy conversion efficiencies for commercially available photovoltaics are around 14–22%. Concentrated photovoltaics (CPV) may reduce cost by concentrating up to 1,000 suns (through magnifying lens) onto a smaller sized photovoltaic cell. However, such concentrated solar power requires sophisticated heat sink designs, otherwise the photovoltaic cell overheats, which reduces its efficiency and life. To further exacerbate the concentrated cooling design, the heat sink must be passive, otherwise the power required for active cooling would reduce the overall efficiency and economy. 

Crystalline silicon solar cell prices have fallen from $76.67/Watt in 1977 to an estimated $0.74/Watt in 2013. This is seen as evidence supporting Swanson's law, an observation similar to the famous Moore's Law that states that solar cell prices fall 20% for every doubling of industry capacity.

As of 2011, the price of PV modules has fallen by 60% since the summer of 2008, according to Bloomberg New Energy Finance estimates, putting solar power for the first time on a competitive footing with the retail price of electricity in a number of sunny countries; an alternative and consistent price decline figure of 75% from 2007 to 2012 has also been published, though it is unclear whether these figures are specific to the United States or generally global. The levelised cost of electricity (LCOE) from PV is competitive with conventional electricity sources in an expanding list of geographic regions, particularly when the time of generation is included, as electricity is worth more during the day than at night. There has been fierce competition in the supply chain, and further improvements in the levelised cost of energy for solar lie ahead, posing a growing threat to the dominance of fossil fuel generation sources in the next few years. As time progresses, renewable energy technologies generally get cheaper, while fossil fuels generally get more expensive:
The less solar power costs, the more favorably it compares to conventional power, and the more attractive it becomes to utilities and energy users around the globe. Utility-scale solar power can now be delivered in California at prices well below $100/MWh ($0.10/kWh) less than most other peak generators, even those running on low-cost natural gas. Lower solar module costs also stimulate demand from consumer markets where the cost of solar compares very favorably to retail electric rates.
Price per watt history for conventional (c-Si) solar cells since 1977.

As of 2011, the cost of PV has fallen well below that of nuclear power and is set to fall further. The average retail price of solar cells as monitored by the Solarbuzz group fell from $3.50/watt to $2.43/watt over the course of 2011.
For large-scale installations, prices below $1.00/watt were achieved. A module price of 0.60 Euro/watt ($0.78/watt) was published for a large scale 5-year deal in April 2012.
By the end of 2012, the "best in class" module price had dropped to $0.50/watt, and was expected to drop to $0.36/watt by 2017.

In many locations, PV has reached grid parity, which is usually defined as PV production costs at or below retail electricity prices (though often still above the power station prices for coal or gas-fired generation without their distribution and other costs). However, in many countries there is still a need for more access to capital to develop PV projects. To solve this problem securitization has been proposed and used to accelerate development of solar photovoltaic projects. For example, SolarCity offered, the first U.S. asset-backed security in the solar industry in 2013.

Photovoltaic power is also generated during a time of day that is close to peak demand (precedes it) in electricity systems with high use of air conditioning. More generally, it is now evident that, given a carbon price of $50/ton, which would raise the price of coal-fired power by 5c/kWh, solar PV will be cost-competitive in most locations. The declining price of PV has been reflected in rapidly growing installations, totaling about 23 GW in 2011. Although some consolidation is likely in 2012, due to support cuts in the large markets of Germany and Italy, strong growth seems likely to continue for the rest of the decade. Already, by one estimate, total investment in renewables for 2011 exceeded investment in carbon-based electricity generation.

In the case of self consumption payback time is calculated based on how much electricity is not brought from the grid. Additionally, using PV solar power to charge DC batteries, as used in Plug-in Hybrid Electric Vehicles and Electric Vehicles, leads to greater efficiencies. Traditionally, DC generated electricity from solar PV must be converted to AC for buildings, at an average 10% loss during the conversion. An additional efficiency loss occurs in the transition back to DC for battery driven devices and vehicles, and using various interest rates and energy price changes were calculated to find present values that range from $2,057 to $8,213 (analysis from 2009).

For example, in Germany with electricity prices of 0.25 euro/kWh and Insolation of 900 kWh/kW one kWp will save 225 euro per year and with installation cost of 1700 euro/kWp means that the system will pay back in less than 7 years.

Manufacturing

Overall the manufacturing process of creating solar photovoltaics is simple in that it does not require the culmination of many complex or moving parts. Because of the solid state nature of PV systems they often have relatively long lifetimes, anywhere from 10 to 30 years. To increase electrical output of a PV system, the manufacturer must simply add more photovoltaic components and because of this economies of scale are important for manufacturers as costs decrease with increasing output.

While there are many types of PV systems known to be effective, crystalline silicon PV accounted for around 90% of the worldwide production of PV in 2013. Manufacturing silicon PV systems has several steps. First, polysilicon is processed from mined quartz until it is very pure (semi-conductor grade). This is melted down when small amounts of boron, a group III element, are added to make a p-type semiconductor rich in electron holes. Typically using a seed crystal, an ingot of this solution is grown from the liquid polycrystalline. The ingot may also be cast in a mold. Wafers of this semiconductor material are cut from the bulk material with wire saws, and then go through surface etching before being cleaned. Next, the wafers are placed into a phosphorus vapor deposition furnace which lays a very thin layer of phosphorus, a group V element, which creates an n-type semiconducting surface. To reduce energy losses, an anti-reflective coating is added to the surface, along with electrical contacts. After finishing the cell, cells are connected via electrical circuit according to the specific application and prepared for shipping and installation.

Crystalline silicon photovoltaics are only one type of PV, and while they represent the majority of solar cells produced currently there are many new and promising technologies that have the potential to be scaled up to meet future energy needs. As of 2018, crystalline silicon cell technology serves as the basis for several PV module types, including monocrystalline, multicrystalline, mono PERC, and bifacial. 

Another newer technology, thin-film PV, are manufactured by depositing semiconducting layers on substrate in vacuum. The substrate is often glass or stainless-steel, and these semiconducting layers are made of many types of materials including cadmium telluride (CdTe), copper indium diselenide (CIS), copper indium gallium diselenide (CIGS), and amorphous silicon (a-Si). After being deposited onto the substrate the semiconducting layers are separated and connected by electrical circuit by laser-scribing. Thin-film photovoltaics now make up around 20% of the overall production of PV because of the reduced materials requirements and cost to manufacture modules consisting of thin-films as compared to silicon-based wafers.

Other emerging PV technologies include organic, dye-sensitized, quantum-dot, and Perovskite photovoltaics. OPVs fall into the thin-film category of manufacturing, and typically operate around the 12% efficiency range which is lower than the 12–21% typically seen by silicon based PVs. Because organic photovoltaics require very high purity and are relatively reactive they must be encapsulated which vastly increases cost of manufacturing and meaning that they are not feasible for large scale up. Dye-sensitized PVs are similar in efficiency to OPVs but are significantly easier to manufacture. However these dye-sensitized photovoltaics present storage problems because the liquid electrolyte is toxic and can potentially permeate the plastics used in the cell. Quantum dot solar cells are quantum dot sensitized DSSCs and are solution processed meaning they are potentially scalable, but currently they peak at 12% efficiency. Perovskite solar cells are a very efficient solar energy converter and have excellent optoelectric properties for photovoltaic purposes, but they are expensive and difficult to manufacture.

Applications

Photovoltaic systems

A photovoltaic system, or solar PV system is a power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and directly convert sunlight into electricity, a solar inverter to change the electric current from DC to AC, as well as mounting, cabling and other electrical accessories. PV systems range from small, roof-top mounted or building-integrated systems with capacities from a few to several tens of kilowatts, to large utility-scale power stations of hundreds of megawatts. Nowadays, most PV systems are grid-connected, while stand-alone systems only account for a small portion of the market.
  • Rooftop and building integrated systems
Rooftop PV on half-timbered house
Photovoltaic arrays are often associated with buildings: either integrated into them, mounted on them or mounted nearby on the ground. Rooftop PV systems are most often retrofitted into existing buildings, usually mounted on top of the existing roof structure or on the existing walls. Alternatively, an array can be located separately from the building but connected by cable to supply power for the building. Building-integrated photovoltaics (BIPV) are increasingly incorporated into the roof or walls of new domestic and industrial buildings as a principal or ancillary source of electrical power. Roof tiles with integrated PV cells are sometimes used as well. Provided there is an open gap in which air can circulate, rooftop mounted solar panels can provide a passive cooling effect on buildings during the day and also keep accumulated heat in at night. Typically, residential rooftop systems have small capacities of around 5–10 kW, while commercial rooftop systems often amount to several hundreds of kilowatts. Although rooftop systems are much smaller than ground-mounted utility-scale power plants, they account for most of the worldwide installed capacity.
  • Concentrator photovoltaics
Concentrator photovoltaics (CPV) is a photovoltaic technology that contrary to conventional flat-plate PV systems uses lenses and curved mirrors to focus sunlight onto small, but highly efficient, multi-junction (MJ) solar cells. In addition, CPV systems often use solar trackers and sometimes a cooling system to further increase their efficiency. Ongoing research and development is rapidly improving their competitiveness in the utility-scale segment and in areas of high solar insolation.
  • Photovoltaic thermal hybrid solar collector
Photovoltaic thermal hybrid solar collector (PVT) are systems that convert solar radiation into thermal and electrical energy. These systems combine a solar PV cell, which converts sunlight into electricity, with a solar thermal collector, which captures the remaining energy and removes waste heat from the PV module. The capture of both electricity and heat allow these devices to have higher exergy and thus be more overall energy efficient than solar PV or solar thermal alone.
  • Power stations
Satellite image of the Topaz Solar Farm
Many utility-scale solar farms have been constructed all over the world. As of 2015, the 579-megawatt (MWAC) Solar Star is the world's largest photovoltaic power station, followed by the Desert Sunlight Solar Farm and the Topaz Solar Farm, both with a capacity of 550 MWAC, constructed by US-company First Solar, using CdTe modules, a thin-film PV technology. All three power stations are located in the Californian desert. Many solar farms around the world are integrated with agriculture and some use innovative solar tracking systems that follow the sun's daily path across the sky to generate more electricity than conventional fixed-mounted systems. There are no fuel costs or emissions during operation of the power stations.
  • Rural electrification
Developing countries where many villages are often more than five kilometers away from grid power are increasingly using photovoltaics. In remote locations in India a rural lighting program has been providing solar powered LED lighting to replace kerosene lamps. The solar powered lamps were sold at about the cost of a few months' supply of kerosene. Cuba is working to provide solar power for areas that are off grid. More complex applications of off-grid solar energy use include 3D printers. RepRap 3D printers have been solar powered with photovoltaic technology, which enables distributed manufacturing for sustainable development. These are areas where the social costs and benefits offer an excellent case for going solar, though the lack of profitability has relegated such endeavors to humanitarian efforts. However, in 1995 solar rural electrification projects had been found to be difficult to sustain due to unfavorable economics, lack of technical support, and a legacy of ulterior motives of north-to-south technology transfer.
  • Standalone systems
Until a decade or so ago, PV was used frequently to power calculators and novelty devices. Improvements in integrated circuits and low power liquid crystal displays make it possible to power such devices for several years between battery changes, making PV use less common. In contrast, solar powered remote fixed devices have seen increasing use recently in locations where significant connection cost makes grid power prohibitively expensive. Such applications include solar lamps, water pumps, parking meters, emergency telephones, trash compactors, temporary traffic signs, charging stations, and remote guard posts and signals.
  • Floatovoltaics
In May 2008, the Far Niente Winery in Oakville, CA pioneered the world's first "floatovoltaic" system by installing 994 photovoltaic solar panels onto 130 pontoons and floating them on the winery's irrigation pond. The floating system generates about 477 kW of peak output and when combined with an array of cells located adjacent to the pond is able to fully offset the winery's electricity consumption. The primary benefit of a floatovoltaic system is that it avoids the need to sacrifice valuable land area that could be used for another purpose. In the case of the Far Niente Winery, the floating system saved three-quarters of an acre that would have been required for a land-based system. That land area can instead be used for agriculture. Another benefit of a floatovoltaic system is that the panels are kept at a lower temperature than they would be on land, leading to a higher efficiency of solar energy conversion. The floating panels also reduce the amount of water lost through evaporation and inhibit the growth of algae.
  • In transport
PV has traditionally been used for electric power in space. PV is rarely used to provide motive power in transport applications, but is being used increasingly to provide auxiliary power in boats and cars. Some automobiles are fitted with solar-powered air conditioning to limit interior temperatures on hot days. A self-contained solar vehicle would have limited power and utility, but a solar-charged electric vehicle allows use of solar power for transportation. Solar-powered cars, boats and airplanes have been demonstrated, with the most practical and likely of these being solar cars. The Swiss solar aircraft, Solar Impulse 2, achieved the longest non-stop solo flight in history and completed the first solar-powered aerial circumnavigation of the globe in 2016.
  • Telecommunication and signaling
Solar PV power is ideally suited for telecommunication applications such as local telephone exchange, radio and TV broadcasting, microwave and other forms of electronic communication links. This is because, in most telecommunication application, storage batteries are already in use and the electrical system is basically DC. In hilly and mountainous terrain, radio and TV signals may not reach as they get blocked or reflected back due to undulating terrain. At these locations, low power transmitters (LPT) are installed to receive and retransmit the signal for local population.
  • Spacecraft applications
Part of Juno's solar array
Solar panels on spacecraft are usually the sole source of power to run the sensors, active heating and cooling, and communications. A battery stores this energy for use when the solar panels are in shadow. In some, the power is also used for spacecraft propulsionelectric propulsion. Spacecraft were one of the earliest applications of photovoltaics, starting with the silicon solar cells used on the Vanguard 1 satellite, launched by the US in 1958. Since then, solar power has been used on missions ranging from the MESSENGER probe to Mercury, to as far out in the solar system as the Juno probe to Jupiter. The largest solar power system flown in space is the electrical system of the International Space Station. To increase the power generated per kilogram, typical spacecraft solar panels use high-cost, high-efficiency, and close-packed rectangular multi-junction solar cells made of gallium arsenide (GaAs) and other semiconductor materials.
  • Specialty Power Systems
Photovoltaics may also be incorporated as energy conversion devices for objects at elevated temperatures and with preferable radiative emissivities such as heterogeneous combustors.

Advantages

The 122 PW of sunlight reaching the Earth's surface is plentiful—almost 10,000 times more than the 13 TW equivalent of average power consumed in 2005 by humans. This abundance leads to the suggestion that it will not be long before solar energy will become the world's primary energy source. Additionally, solar electric generation has the highest power density (global mean of 170 W/m2) among renewable energies.

Solar power is pollution-free during use, which enables it to cut down on pollution when it is substituted for other energy sources. For example, MIT estimated that 52,000 people per year die prematurely in the U.S. from coal-fired power plant pollution and all but one of these deaths could be prevented from using PV to replace coal. Production end-wastes and emissions are manageable using existing pollution controls. End-of-use recycling technologies are under development and policies are being produced that encourage recycling from producers.

PV installations can operate for 100 years or even more with little maintenance or intervention after their initial set-up, so after the initial capital cost of building any solar power plant, operating costs are extremely low compared to existing power technologies. 

Grid-connected solar electricity can be used locally thus reducing transmission/distribution losses (transmission losses in the US were approximately 7.2% in 1995).

Compared to fossil and nuclear energy sources, very little research money has been invested in the development of solar cells, so there is considerable room for improvement. Nevertheless, experimental high efficiency solar cells already have efficiencies of over 40% in case of concentrating photovoltaic cells and efficiencies are rapidly rising while mass-production costs are rapidly falling.

In some states of the United States, much of the investment in a home-mounted system may be lost if the home-owner moves and the buyer puts less value on the system than the seller. The city of Berkeley developed an innovative financing method to remove this limitation, by adding a tax assessment that is transferred with the home to pay for the solar panels. Now known as PACE, Property Assessed Clean Energy, 30 U.S. states have duplicated this solution.

There is evidence, at least in California, that the presence of a home-mounted solar system can actually increase the value of a home. According to a paper published in April 2011 by the Ernest Orlando Lawrence Berkeley National Laboratory titled An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California:
The research finds strong evidence that homes with PV systems in California have sold for a premium over comparable homes without PV systems. More specifically, estimates for average PV premiums range from approximately $3.9 to $6.4 per installed watt (DC) among a large number of different model specifications, with most models coalescing near $5.5/watt. That value corresponds to a premium of approximately $17,000 for a relatively new 3,100 watt PV system (the average size of PV systems in the study).

Limitations

  • Pollution and Energy in Production
PV has been a well-known method of generating clean, emission free electricity. PV systems are often made of PV modules and inverter (changing DC to AC). PV modules are mainly made of PV cells, which has no fundamental difference to the material for making computer chips. The process of producing PV cells (computer chips) is energy intensive and involves highly poisonous and environmental toxic chemicals. There are few PV manufacturing plants around the world producing PV modules with energy produced from PV. This measure greatly reduces the carbon footprint during the manufacturing process. Managing the chemicals used in the manufacturing process is subject to the factories' local laws and regulations.
  • Impact on Electricity Network
With the increasing levels of rooftop photovoltaic systems, the energy flow becomes 2-way. When there is more local generation than consumption, electricity is exported to the grid. However, electricity network traditionally is not designed to deal with the 2- way energy transfer. Therefore, some technical issues may occur. For example, in Queensland Australia, there have been more than 30% of households with rooftop PV by the end of 2017. The famous Californian 2020 duck curve appears very often for a lot of communities from 2015 onwards. An over-voltage issue may come out as the electricity flows from these PV households back to the network. There are solutions to manage the over voltage issue, such as regulating PV inverter power factor, new voltage and energy control equipment at electricity distributor level, re-conductor the electricity wires, demand side management, etc. There are often limitations and costs related to these solutions.
  • Implication onto Electricity Bill Management and Energy Investment
There is no silver bullet in electricity or energy demand and bill management, because customers (sites) have different specific situations, e.g. different comfort/convenience needs, different electricity tariffs, or different usage patterns. Electricity tariff may have a few elements, such as daily access and metering charge, energy charge (based on kWh, MWh) or peak demand charge (e.g. a price for the highest 30min energy consumption in a month). PV is a promising option for reducing energy charge when electricity price is reasonably high and continuously increasing, such as in Australia and Germany. However, for sites with peak demand charge in place, PV may be less attractive if peak demands mostly occur in the late afternoon to early evening, for example residential communities. Overall, energy investment is largely an economical decision and it is better to make investment decisions based on systematical evaluation of options in operational improvement, energy efficiency, onsite generation and energy storage.

Representation of a Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Representation_of_a_Lie_group...