Search This Blog

Tuesday, May 21, 2019

Radioactive contamination

From Wikipedia, the free encyclopedia

The Hanford site represents two-thirds of the United States' high-level radioactive waste by volume. Nuclear reactors line the riverbank at the Hanford Site along the Columbia River in January 1960.
 
The sources of radioactive pollution can be classified into two groups: natural and man made.

As of 2013, the Fukushima nuclear disaster site remains highly radioactive, with some 160,000 evacuees still living in temporary housing, and some land will be unfarmable for centuries. The difficult cleanup job will take 40 or more years, and cost tens of billions of dollars.
 
Radioactive contamination, also called radiological contamination, is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids or gases (including the human body), where their presence is unintended or undesirable (from the International Atomic Energy Agency – IAEA – definition).

Such contamination presents a hazard because of the radioactive decay of the contaminants, which emit harmful ionising radiation such as alpha particles or beta particles, gamma rays or neutrons. The degree of hazard is determined by the concentration of the contaminants, the energy of the radiation being emitted, the type of radiation, and the proximity of the contamination to organs of the body. It is important to be clear that the contamination gives rise to the radiation hazard, and the terms "radiation" and "contamination" are not interchangeable.

Contamination may affect a person, a place, an animal, or an object such as clothing. Following an atmospheric nuclear weapon discharge or a nuclear reactor containment breach, the air, soil, people, plants, and animals in the vicinity will become contaminated by nuclear fuel and fission products. A spilled vial of radioactive material like uranyl nitrate may contaminate the floor and any rags used to wipe up the spill. Cases of widespread radioactive contamination include the Bikini Atoll, the Rocky Flats Plant in Colorado, the Fukushima Daiichi nuclear disaster, the Chernobyl disaster, and the area around the Mayak facility in Russia.

Sources of contamination

Global airborne contamination Atmospheric nuclear weapon tests almost doubled the concentration of 14C in the Northern Hemisphere. Plot of atmospheric 14C, New Zealand and Austria. The New Zealand curve is representative for the Southern Hemisphere, the Austrian curve is representative for the Northern Hemisphere. 
 
Radioactive contamination can be due to a variety of causes. It may occur due to release of radioactive gases, liquids or particles. For example, if a radionuclide used in nuclear medicine is spilled (accidentally or, as in the case of the Goiânia accident, through ignorance), the material could be spread by people as they walk around. 

Radioactive contamination may also be an inevitable result of certain processes, such as the release of radioactive xenon in nuclear fuel reprocessing. In cases that radioactive material cannot be contained, it may be diluted to safe concentrations. For a discussion of environmental contamination by alpha emitters please see actinides in the environment

Nuclear fallout is the distribution of radioactive contamination by the 520 atmospheric nuclear explosions that took place from the 1950s to the 1980s. 

In nuclear accidents, a measure of the type and amount of radioactivity released,such as from a reactor containment failure, is known as the source term. The United States Nuclear Regulatory Commission defines this as "Types and amounts of radioactive or hazardous material released to the environment following an accident."

Contamination does not include residual radioactive material remaining at a site after the completion of decommissioning. Therefore, radioactive material in sealed and designated containers is not properly referred to as contamination, although the units of measurement might be the same.

Containment

Large industrial glovebox in the nuclear industry
 
Containment is the primary way of preventing contamination being released into the environment or coming into contact or being ingested by humans.

Being within the intended Containment differentiates radioactive material from radioactive contamination. When radioactive materials are concentrated to a detectable level outside a containment, the area affected is generally referred to as "contaminated".

There are a large number of techniques for containing radioactive materials so that it does not spread beyond the containment and become contamination. In the case of liquids this is by the use of high integrity tanks or containers, usually with a sump system so that leakage can be detected by radiometric or conventional instrumentation.

Where material is likely to become airborne, then extensive use is made of the glovebox, which is a common technique in hazardous laboratory and process operations in many industries. The gloveboxes are kept under a slight negative pressure and the vent gas is filtered in high efficiency filters, which are monitored by radiological instrumentation to ensure they are functioning correctly.

Naturally occurring radioactivity

A variety of radionuclides occur naturally in the environment. Elements like uranium and thorium, and their decay products, are present in rock and soil. Potassium-40, a primordial nuclide, makes up a small percentage of all potassium and is present in the human body. Other nuclides, like carbon-14, which is present in all living organisms, are continuously created by cosmic rays

These levels of radioactivity pose little danger but can confuse measurement. A particular problem is encountered with naturally generated radon gas which can affect instruments which are set to detect contamination close to normal background levels and can cause false alarms. Because of this skill is required by the operator of radiological survey equipment to differentiate between background radiation and the radiation which emanates from contamination.

Naturally occurring radioactive materials (NORM) can be brought to the surface or concentrated by human activities like mining, oil and gas extraction and coal consumption.

Control and monitoring of contamination

G-M counters being used as gamma survey monitors, seeking radioactive satellite debris
 
Radioactive contamination may exist on surfaces or in volumes of material or air, and specialist techniques are used to measure the levels of contamination by detection of the emitted radiation.

Contamination monitoring

Contamination monitoring depends entirely upon the correct and appropriate deployment and utilisation of radiation monitoring instruments.

Surface contamination

Surface contamination may either be fixed or "free". In the case of fixed contamination, the radioactive material cannot by definition be spread, but its radiation is still measurable. In the case of free contamination there is the hazard of contamination spread to other surfaces such as skin or clothing, or entrainment in the air. A concrete surface contaminated by radioactivity can be shaved to a specific depth, removing the contaminated material for disposal.

For occupational workers controlled areas are established where there may be a contamination hazard. Access to such areas is controlled by a variety of barrier techniques, sometimes involving changes of clothing and foot wear as required. The contamination within a controlled area is normally regularly monitored. Radiological protection instrumentation (RPI) plays a key role in monitoring and detecting any potential contamination spread, and combinations of hand held survey instruments and permanently installed area monitors such as Airborne particulate monitors and area gamma monitors are often installed. Detection and measurement of surface contamination of personnel and plant is normally by Geiger counter, scintillation counter or proportional counter. Proportional counters and dual phosphor scintillation counters can discriminate between alpha and beta contamination, but the Geiger counter cannot. Scintillation detectors are generally preferred for hand held monitoring instruments, and are designed with a large detection window to make monitoring of large areas faster. Geiger detectors tend to have small windows, which are more suited to small areas of contamination.

Exit monitoring

The spread of contamination by personnel exiting controlled areas in which nuclear material is used or processed is monitored by specialised installed exit control instruments such as frisk probes, hand contamination monitors and whole body exit monitors. These are used to check that persons exiting controlled areas do not carry contamination on their body or clothes.

In the United Kingdom the HSE has issued a user guidance note on selecting the correct portable radiation measurement instrument for the application concerned. This covers all radiation instrument technologies, and is a useful comparative guide for selecting the correct technology for the contamination type. 

The UK NPL publishes a guide on the alarm levels to be used with instruments for checking personnel exiting controlled areas in which contamination may be encountered. Surface contamination is usually expressed in units of radioactivity per unit of area for alpha or beta emitters. For SI, this is becquerels per square meter (or Bq/m2). Other units such as picoCuries per 100 cm2 or disintegrations per minute per square centimeter (1 dpm/cm2 = 167 Bq/m2) may be used.

Airborne contamination

The air can be contaminated with radioactive isotopes in particulate form, which poses a particular inhalation hazard. Respirators with suitable air filters, or completely self-contained suits with their own air supply can mitigate these dangers. 

Airborne contamination is measured by specialist radiological instruments that continuously pump the sampled air through a filter. Airborne particles accumulate on the filter and can be measured in a number of ways:
  1. The filter paper is periodically manually removed to an instrument such as a "scaler" which measures any accumulated radioactivity.
  2. The filter paper is static and is measured in situ by a radiation detector.
  3. The filter is a slowly moving strip and is measured by a radiation detector. These are commonly called "moving filter" devices and automatically advance the filter to present a clean area for accumulation, and thereby allow a plot of airborne concentration over time.
Commonly a semiconductor radiation detection sensor is used that can also provide spectrographic information on the contamination being collected. 

A particular problem with airborne contamination monitors designed to detect alpha particles is that naturally occurring radon can be quite prevalent and may appear as contamination when low contamination levels are being sought. Modern instruments consequently have "radon compensation" to overcome this effect.

Internal human contamination

Radioactive contamination can enter the body through ingestion, inhalation, absorption, or injection. This will result in a committed dose of radiation.

For this reason, it is important to use personal protective equipment when working with radioactive materials. Radioactive contamination may also be ingested as the result of eating contaminated plants and animals or drinking contaminated water or milk from exposed animals. Following a major contamination incident, all potential pathways of internal exposure should be considered.

Successfully used on Harold McCluskey, chelation therapy and other treatments exist for internal radionuclide contamination.

Decontamination

Cleaning up contamination results in radioactive waste unless the radioactive material can be returned to commercial use by reprocessing. In some cases of large areas of contamination, the contamination may be mitigated by burying and covering the contaminated substances with concrete, soil, or rock to prevent further spread of the contamination to the environment. If a person's body is contaminated by ingestion or by injury and standard cleaning cannot reduce the contamination further, then the person may be permanently contaminated.

Contamination control products have been used by the U.S. Department of Energy (DOE) and the commercial nuclear industry for decades to minimize contamination on radioactive equipment and surfaces and fix contamination in place. "Contamination control products" is a broad term that includes fixatives, strippable coatings, and decontamination gels. A fixative product functions as a permanent coating to stabilize residual loose/transferable radioactive contamination by fixing it in place; this aids in preventing the spread of contamination and reduces the possibility of the contamination becoming airborne, reducing workforce exposure and facilitating future deactivation and decommissioning (D&D) activities. Strippable coating products are loosely adhered paint-like films and are used for their decontamination abilities. They are applied to surfaces with loose/transferable radioactive contamination and then, once dried, are peeled off, which removes the loose/transferable contamination along with the product. The residual radioactive contamination on the surface is significantly reduced once the strippable coating is removed. Modern strippable coatings show high decontamination efficiency and can rival traditional mechanical and chemical decontamination methods. Decontamination gels work in much the same way as other strippable coatings. The results obtained through the use of contamination control products is variable and depends on the type of substrate, the selected contamination control product, the contaminants, and the environmental conditions (e.g., temperature, humidity, etc.).

Some of the largest areas committed to be decontaminated are in the Fukushima Prefecture, Japan. The national government is under pressure to clean up radioactivity due to the Fukushima nuclear accident of March 2011 from as much land as possible so that some of the 110,000 displaced people can return. Stripping out the key radioisotope threatening health (caesium-137) from low level waste could also dramatically decrease the volume of waste requiring special disposal. A goal is to find techniques that might be able to strip out 80 to 95% of the caesium from contaminated soil and other materials, efficiently and without destroying the organic content in the soil. One being investigated is termed hydrothermal blasting. The caesium is broken away from soil particles and then precipitated with ferric ferricyanide (Prussian blue). It would be the only component of the waste requiring special burial sites. The aim is to get annual exposure from the contaminated environment down to one millisievert (mSv) above background. The most contaminated area where radiation doses are greater than 50 mSv/year must remain off limits, but some areas that are currently less than 5 mSv/year may be decontaminated allowing 22,000 residents to return.

To help with protection of people living in geographical areas which have been radioactively contaminated the International Commission on Radiological Protection has published a guide: "Publication 111 – Application of the Commission’s Recommendations to the Protection of People Living in Long-term Contaminated Areas after a Nuclear Accident or a Radiation Emergency".

Contamination hazards

Periodic table with elements colored according to the half-life of their most stable isotope.
 
  Elements which contain at least one stable isotope.
  Radioactive elements: the most stable isotope is very long-lived, with half-life of over four million years.
  Radioactive elements: the most stable isotope has half-life between 800 and 34.000 years.
  Radioactive elements: the most stable isotope has half-life between one day and 130 years.
  Highly radioactive elements: the most stable isotope has half-life between several minutes and one day.
  Extremely radioactive elements: the most stable isotope has half-life less than several minutes.

Low-level contamination

The hazards to people and the environment from radioactive contamination depend on the nature of the radioactive contaminant, the level of contamination, and the extent of the spread of contamination. Low levels of radioactive contamination pose little risk, but can still be detected by radiation instrumentation. If a survey or map is made of a contaminated area, random sampling locations may be labeled with their activity in becquerels or curies on contact. Low levels may be reported in counts per minute using a scintillation counter

In the case of low-level contamination by isotopes with a short half-life, the best course of action may be to simply allow the material to naturally decay. Longer-lived isotopes should be cleaned up and properly disposed of, because even a very low level of radiation can be life-threatening when in long exposure to it. 

Facilities and physical locations that are deemed to be contaminated may be cordoned off by a health physicist and labeled "Contaminated area." Persons coming near such an area would typically require anti-contamination clothing ("anti-Cs").

High-level contamination

High levels of contamination may pose major risks to people and the environment. People can be exposed to potentially lethal radiation levels, both externally and internally, from the spread of contamination following an accident (or a deliberate initiation) involving large quantities of radioactive material. The biological effects of external exposure to radioactive contamination are generally the same as those from an external radiation source not involving radioactive materials, such as x-ray machines, and are dependent on the absorbed dose

When radioactive contamination is being measured or mapped in situ, any location that appears to be a point source of radiation is likely to be heavily contaminated. A highly contaminated location is colloquially referred to as a "hot spot." On a map of a contaminated place, hot spots may be labeled with their "on contact" dose rate in mSv/h. In a contaminated facility, hot spots may be marked with a sign, shielded with bags of lead shot, or cordoned off with warning tape containing the radioactive trefoil symbol

The radiation warning symbol (trefoil)
 
Alpha radiation consists of helium-4 nucleus and is readily stopped by a sheet of paper. Beta radiation, consisting of electrons, is halted by an aluminium plate. Gamma radiation is eventually absorbed as it penetrates a dense material. Lead is good at absorbing gamma radiation, due to its density.
 
The hazard from contamination is the emission of ionising radiation. The principal radiations which will be encountered are alpha, beta and gamma, but these have quite different characteristics. They have widely differing penetrating powers and radiation effect, and the accompanying diagram shows the penetration of these radiations in simple terms. For an understanding of the different ionising effects of these radiations and the weighting factors applied, see the article on absorbed dose.

Radiation monitoring involves the measurement of radiation dose or radionuclide contamination for reasons related to the assessment or control of exposure to radiation or radioactive substances, and the interpretation of the results. The methodological and technical details of the design and operation of environmental radiation monitoring programmes and systems for different radionuclides, environmental media and types of facility are given in IAEA Safety Standards Series No. RS–G-1.8 and in IAEA Safety Reports Series No. 64.

Health effects of contamination

Biological effects

Radioactive contamination by definition emits ionizing radiation, which can irradiate the human body from an external or internal origin.

External irradiation

This is due to radiation from contamination located outside the human body. The source can be in the vicinity of the body or can be on the skin surface. The level of health risk is dependent on duration and the type and strength of irradiation. Penetrating radiation such as gamma rays, X-rays, neutrons or beta particles pose the greatest risk from an external source. Low penetrating radiation such as alpha particles have a low external risk due to the shielding effect of the top layers of skin. See the article on sievert for more information on how this is calculated.

Internal irradiation

Radioactive contamination can be ingested into the human body if it is airborne or is taken in as contamination of food or drink, and will irradiate the body internally. The art and science of assessing internally generated radiation dose is Internal dosimetry

The biological effects of ingested radionuclides depend greatly on the activity, the biodistribution, and the removal rates of the radionuclide, which in turn depends on its chemical form, the particle size, and route of entry. Effects may also depend on the chemical toxicity of the deposited material, independent of its radioactivity. Some radionuclides may be generally distributed throughout the body and rapidly removed, as is the case with tritiated water

Some organs concentrate certain elements and hence radionuclide variants of those elements. This action may lead to much lower removal rates. For instance, the thyroid gland takes up a large percentage of any iodine that enters the body. Large quantities of inhaled or ingested radioactive iodine may impair or destroy the thyroid, while other tissues are affected to a lesser extent. Radioactive iodine-131 is a common fission product; it was a major component of the radioactivity released from the Chernobyl disaster, leading to nine fatal cases of pediatric thyroid cancer and hypothyroidism. On the other hand, radioactive iodine is used in the diagnosis and treatment of many diseases of the thyroid precisely because of the thyroid's selective uptake of iodine.

The radiation risk proposed by the International Commission on Radiological Protection (ICRP) predicts that an effective dose of one sievert (100 rem) carries a 5.5% chance of developing cancer. Such a risk is the sum of both internal and external radiation dose.

The ICRP states "Radionuclides incorporated in the human body irradiate the tissues over time periods determined by their physical half-life and their biological retention within the body. Thus they may give rise to doses to body tissues for many months or years after the intake. The need to regulate exposures to radionuclides and the accumulation of radiation dose over extended periods of time has led to the definition of committed dose quantities". The ICRP further states "For internal exposure, committed effective doses are generally determined from an assessment of the intakes of radionuclides from bioassay measurements or other quantities (e.g., activity retained in the body or in daily excreta). The radiation dose is determined from the intake using recommended dose coefficients".

The ICRP defines two dose quantities for individual committed dose:

Committed equivalent dose, H T(t) is the time integral of the equivalent dose rate in a particular tissue or organ that will be received by an individual following intake of radioactive material into the body by a Reference Person, where t is the integration time in years. This refers specifically to the dose in a specific tissue or organ, in a similar way to external equivalent dose.

Committed effective dose, E(t) is the sum of the products of the committed organ or tissue equivalent doses and the appropriate tissue weighting factors WT, where t is the integration time in years following the intake. The commitment period is taken to be 50 years for adults, and to age 70 years for children. This refers specifically to the dose to the whole body, in a similar way to external effective dose.

Social and psychological effects

A 2015 report in Lancet explained that serious impacts of nuclear accidents were often not directly attributable to radiation exposure, but rather social and psychological effects. The consequences of low-level radiation are often more psychological than radiological. Because damage from very-low-level radiation cannot be detected, people exposed to it are left in anguished uncertainty about what will happen to them. Many believe they have been fundamentally contaminated for life and may refuse to have children for fear of birth defects. They may be shunned by others in their community who fear a sort of mysterious contagion.

Forced evacuation from a radiological or nuclear accident may lead to social isolation, anxiety, depression, psychosomatic medical problems, reckless behavior, even suicide. Such was the outcome of the 1986 Chernobyl nuclear disaster in Ukraine. A comprehensive 2005 study concluded that "the mental health impact of Chernobyl is the largest public health problem unleashed by the accident to date". Frank N. von Hippel, a U.S. scientist, commented on 2011 Fukushima nuclear disaster, saying that "fear of ionizing radiation could have long-term psychological effects on a large portion of the population in the contaminated areas". Evacuation and long-term displacement of affected populations create problems for many people, especially the elderly and hospital patients.

Such great psychological danger does not accompany other materials that put people at risk of cancer and other deadly illness. Visceral fear is not widely aroused by, for example, the daily emissions from coal burning, although, as a National Academy of Sciences study found, this causes 10,000 premature deaths a year in the US population of 317,413,000. Medical errors leading to death in U.S. hospitals are estimated to be between 44,000 and 98,000. It is "only nuclear radiation that bears a huge psychological burden – for it carries a unique historical legacy".

Iodine in biology

From Wikipedia, the free encyclopedia

Iodine is an essential trace element in biological systems. It has the distinction of being the heaviest element commonly needed by living organisms as well as the second-heaviest known to be used by any form of life (only tungsten, a component of a few bacterial enzymes, has a higher atomic number and atomic weight). It is a component of biochemical pathways in organisms from all biological kingdoms, suggesting its fundamental significance throughout the evolutionary history of life. 

Iodine is critical to the proper functioning of the vertebrate endocrine system, and plays smaller roles in numerous other organs, including those of the digestive and reproductive systems. An adequate intake of iodine-containing compounds is important at all stages of development, especially during the fetal and neonatal periods, and diets deficient in iodine can present serious consequences for growth and metabolism.

Functions

Thyroid

In vertebrate biology, iodine's primary function is as a constituent of the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). These molecules are made from addition-condensation products of the amino acid tyrosine, and are stored prior to release in an iodine-containing protein called thyroglobulin. T4 and T3 contain four and three atoms of iodine per molecule, respectively; iodine accounts for 65% of the molecular weight of T4 and 59% of T3. The thyroid gland actively absorbs iodine from the blood to produce and release these hormones into the blood, actions which are regulated by a second hormone, called thyroid-stimulating hormone (TSH), which is produced by the pituitary gland. Thyroid hormones are phylogenetically very old molecules which are synthesized by most multicellular organisms, and which even have some effect on unicellular organisms. 

Thyroid hormones play a fundamental role in biology, acting upon gene transcription mechanisms to regulate the basal metabolic rate. T3 acts on small intestine cells and adipocytes to increase carbohydrate absorption and fatty acid release, respectively. A deficiency of thyroid hormones can reduce basal metabolic rate up to 50%, while an excessive production of thyroid hormones can increase the basal metabolic rate by 100%. T4 acts largely as a precursor to T3, which is (with minor exceptions) the biologically active hormone.

Via the thyroid hormones, iodine has a nutritional relationship with selenium. A family of selenium-dependent enzymes called deiodinases converts T4 to T3 (the active hormone) by removing an iodine atom from the outer tyrosine ring. These enzymes also convert T4 to reverse T3 (rT3) by removing an inner ring iodine atom, and also convert T3 to 3,3'-Diiodothyronine (T2) by removing an inner ring atom. Both of the latter products are inactivated hormones which have essentially no biological effects and are quickly prepared for disposal. A family of non-selenium-dependent enzymes then further deiodinates the products of these reactions. 

Selenium also plays a very important role in the production of glutathione, the body's most powerful antioxidant. During the production of the thyroid hormones, hydrogen peroxide is produced in large quantities, and therefore high iodine in the absence of selenium can destroy the thyroid gland (often described as a sore throat feeling); the peroxides are neutralized through the production of glutathione from selenium. In turn, an excess of selenium increases demand for iodine, and deficiency will result when a diet is high in selenium and low in iodine.

Extrathyroidal iodine

Sequence of 123-iodide human scintiscans after an intravenous injection, (from left) after 30 minutes, 20 hours, and 48 hours. A high and rapid concentration of radio-iodide is evident in cerebrospinal fluid (left), gastric and oral mucosa, salivary glands, arterial walls, ovary and thymus. In the thyroid gland, I-concentration is more progressive, also in a reservoir (from 1% after 30 minutes, and after 6, 20 h, to 5.8% after 48 hours, of the total injected dose.
 
A pheochromocytoma tumor is seen as a dark sphere in the center of the body (it is in the left adrenal gland). The image is by MIBG scintigraphy, showing the tumor by radiation from radioiodine in the MIBG. Two images are seen of the same patient from front and back. The image of the thyroid in the neck is due to unwanted uptake of radioiodine from a radioactive iodine-containing medication by the thyroid gland in the neck. Accumulation at the sides of the head is from salivary gland uptake of iodide. Radioactivity is also seen from uptake by the liver, and excretion and accumulation in the bladder.
 
The human body contains about 15–20 mg of iodine, mostly concentrated in thyroid tissue (70–80%). Extra-thyroidal iodine exists in several other organs, including the mammary glands, eyes, gastric mucosa, cervix, cerebrospinal fluid, arterial walls , ovary and salivary glands. In the cells of these tissues the iodide ion (I) enters directly by the sodium-iodide symporter (NIS). Different tissue responses for iodine and iodide occur in the mammary glands and the thyroid gland of rats. The role of iodine in mammary tissue is related to fetal and neonatal development, but its role in the other tissues is not well known. It has been shown to act as an antioxidant and antiproliferant in various tissues that can uptake iodine. Molecular iodine (I2) has been shown to have a suppressive effect on benign and cancerous neoplasias.

The U.S. Food and Nutrition Board and Institute of Medicine recommended daily allowance of iodine ranges from 150 micrograms per day for adult humans to 290 micrograms per day for lactating mothers. However, the thyroid gland needs no more than 70 micrograms per day to synthesize the requisite daily amounts of T4 and T3. The higher recommended daily allowance levels of iodine seem necessary for optimal function of a number of other body systems, including lactating breasts, gastric mucosa, salivary glands, oral mucosa, arterial walls, thymus, epidermis, choroid plexus and cerebrospinal fluid, among others.

Other functions

Iodine and thyroxine have also been shown to stimulate the spectacular apoptosis of the cells of the larval gills, tail and fins during metamorphosis in amphibians, as well as the transformation of their nervous system from that of the aquatic, herbivorous tadpole into that of the terrestrial, carnivorous adult. The frog species Xenopus laevis has proven to be an ideal model organism for experimental study of the mechanisms of apoptosis and the role of iodine in developmental biology.

Moreover, iodine can add to double bonds of docosahexaenoic acid and arachidonic acid of cellular membranes, making them less reactive to free oxygen radicals.

Dietary recommendations

The U.S. Institute of Medicine (IOM) updated Estimated Average Requirements (EARs) and Recommended Dietary Allowances (RDAs) for iodine in 2000. For people age 14 and up, the iodine RDA is 150 μg/day; the RDA for pregnant women is 220 μg/day and the RDA during lactation is 290 μg/day. For children 1–8 years, the RDA is 90 μg/day; for children 8–13 years, 130 μg/day. As a safety consideration, the IOM sets tolerable upper intake levels (ULs) for vitamins and minerals when evidence is sufficient. The UL for iodine for adults is 1,100 μg/day. This UL was assessed by analyzing the effect of supplementation on thyroid-stimulating hormone. Collectively, the EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes (DRIs).

The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR; AI and UL are defined the same as in the United States. For women and men ages 18 and older, the PRI for iodine is set at 150 μg/day; the PRI during pregnancy or lactation is 200 μg/day. For children ages 1–17 years, the PRI increases with age from 90 to 130 μg/day. These PRIs are comparable to the U.S. RDAs with the exception of that for lactation. The EFSA reviewed the same safety question and set its adult UL at 600 μg/day, which is a bit more than half the U.S. value. Notably, Japan reduced its adult iodine UL from 3,000 to 2,200 µg/day in 2010, but then increased it back to 3,000 µg/day in 2015.

For U.S. food and dietary supplement labeling purposes, the amount in a serving is expressed as a percent of Daily Value (%DV). For iodine specifically, 100% of the Daily Value is considered 150 μg, and this figure remained at 150 μg in the May 27, 2016 revision. A table of the old and new adult Daily Values is provided at Reference Daily Intake. The original deadline to be in compliance was July 28, 2018, but on September 29, 2017, the FDA released a proposed rule that extended the deadline to January 1, 2020 for large companies and January 1, 2021 for small companies.

As of 2000, the median observed intake of iodine from food in the United States was 240 to 300 μg/day for men and 190 to 210 μg/day for women. In Japan, consumption is much higher due to the frequent consumption of seaweed or kombu kelp. The average daily intake in Japan ranges from 1,000 to 3,000 μg/day; previous estimates suggested an average intake as high as 13,000 μg/day.

Food sources

Natural sources of iodine include many marine organisms, such as kelp and certain seafood products, as well as plants grown on iodine-rich soil. Iodized salt is fortified with iodine. According to a Food Fortification Initiative 2016 report, 130 countries have mandatory iodine fortification of salt and an additional 10 have voluntary fortification.

Deficiency

Worldwide, iodine deficiency affects two billion people and is the leading preventable cause of mental retardation. Mental disability is a result which occurs primarily when babies or small children are rendered hypothyroidic by a lack of dietary iodine (new hypothyroidism in adults may cause temporary mental slowing, but not permanent damage).

In areas where there is little iodine in the diet, typically remote inland areas and semi-arid equatorial climates where no marine foods are eaten, iodine deficiency also gives rise to hypothyroidism, the most serious symptoms of which are epidemic goitre (swelling of the thyroid gland), extreme fatigue, mental slowing, depression, weight gain, and low basal body temperatures.

The addition of iodine to table salt (so-called iodized salt) has largely eliminated the most severe consequences of iodine deficiency in wealthier nations, but deficiency remains a serious public health problem in the developing world. Iodine deficiency is also a problem in certain areas of Europe; in Germany, an estimated one billion dollars in healthcare costs is spent each year in combating and treating iodine deficiency.

Iodine and cancer risk

  • Breast cancer. The mammary gland actively concentrates iodine into milk for the benefit of the developing infant, and may develop a goiter-like hyperplasia, sometimes manifesting as fibrocystic breast disease, when iodine level is low. Studies indicate that iodine deficiency, either dietary or pharmacologic, can lead to breast atypia and increased incidence of malignancy in animal models, while iodine treatment can reverse dysplasia, with elemental iodine (I2) having been found to be more effective in reducing ductal hyperplasias and perilobular fibrosis in iodine-deficient rats than iodide (I). On the observation that Japanese women who consume iodine-rich seaweed have a relatively low rate of breast cancer, iodine is suggested as a protection against breast cancer. Iodine is known to induce apoptosis in breast cancer cells. Laboratory evidence has demonstrated an effect of iodine on breast cancer that is in part independent of thyroid function, with iodine inhibiting cancer through modulation of the estrogen pathway. Gene array profiling of the estrogen responsive breast cancer cell line shows that the combination of iodine and iodide alters gene expression and inhibits the estrogen response through up-regulating proteins involved in estrogen metabolism. Whether iodine/iodide will be useful as an adjuvant therapy in the pharmacologic manipulation of the estrogen pathway in women with breast cancer has not been determined clinically.
  • Gastric cancer. Some researchers have found an epidemiologic correlation between iodine deficiency, iodine-deficient goitre, and gastric cancer; a decrease in the death incidence from stomach cancer after iodine-prophylaxis. In the proposed mechanism, the iodide ion functions in gastric mucosa as an antioxidant reducing species that detoxifies poisonous reactive oxygen species, such as hydrogen peroxide.

Precautions and toxicity

Elemental iodine

Elemental iodine is an oxidizing irritant, and direct contact with skin can cause lesions, so iodine crystals should be handled with care. Solutions with high elemental iodine concentration such as tincture of iodine are capable of causing tissue damage if use for cleaning and antisepsis is prolonged. Although elemental iodine is used in the formulation of Lugol's solution, a common medical disinfectant, it becomes triiodide upon reacting with the potassium iodide used in the solution and is therefore non-toxic. Only a small amount of elemental iodine will dissolve in water, and adding potassium iodide allows a much larger amount of elemental iodine to dissolve through the reaction of I2-I3. This allows Lugol's iodine to be produced in strengths varying from 2% to 15% iodine. 

Elemental iodine (I2) is poisonous if taken orally in large amounts; 2–3 grams is a lethal dose for an adult human. Potassium iodide, on the other hand, has a median lethal dose (LD50) that is relatively high in several other animals: in rabbits, it is 10 g/kg; in rats, 14 g/kg, and in mice, 22 g/kg. The tolerable upper intake level for iodine as established by the Food and Nutrition Board is 1,100 µg/day for adults. The safe upper limit of consumption set by the Ministry of Health, Labor and Welfare in Japan is 3,000 µg/day.

The biological half-life of iodine differs between the various organs of the body, from 100 days in the thyroid, to 14 days in the kidneys and spleen, to 7 days in the reproductive organs. Typically the daily urinary elimination rate ranges from 100 to 200 µg/L in humans. However, the Japanese diet, high in iodine-rich kelp, contains 1,000 to 3,000 µg of iodine per day, and research indicates the body can readily eliminate excess iodine that is not needed for thyroid hormone production. The literature reports as much as 30,000 µg/L (30 mg/L) of iodine being safely excreted in the urine in a single day, with levels returning to the standard range in a couple of days, depending on seaweed intake. One study concluded the range of total body iodine content in males was 12.1 mg to 25.3 mg, with a mean of 14.6 mg. It is presumed that once thyroid-stimulating hormone is suppressed, the body simply eliminates excess iodine, and as a result, long-term supplementation with high doses of iodine has no additional effect once the body is replete with enough iodine. It is unknown if the thyroid gland is the rate-limiting factor in generating thyroid hormone from iodine and tyrosine, but assuming it is not, a short-term loading dose of one or two weeks at the tolerable upper intake level may quickly restore thyroid function in iodine-deficient patients.

Iodine vapor is very irritating to the eye, to mucous membranes, and in the respiratory tract. Concentration of iodine in the air should not exceed 1 mg/m³ (eight-hour time-weighted average). 

When mixed with ammonia and water, elemental iodine forms nitrogen triiodide, which is extremely shock-sensitive and can explode unexpectedly.

Iodide ion

Excessive iodine intake presents symptoms similar to those of iodine deficiency. Commonly encountered symptoms are abnormal growth of the thyroid gland and disorders in functioning, as well as in growth of the organism as a whole. Iodide toxicity is similar to (but not the same as) toxicity to ions of the other halogens, such as bromides or fluorides. Excess bromine and fluorine can prevent successful iodine uptake, storage and use in organisms, as both elements can selectively replace iodine biochemically. 

Excess iodine may also be more cytotoxic in combination with selenium deficiency. Iodine supplementation in selenium-deficient populations is theoretically problematic, partly for this reason. Selenocysteine (abbreviated as Sec or U, in older publications also as Se-Cys) is the 21st proteinogenic amino acid, and is the root of iodide ion toxicity when there is a simultaneous insufficiency of biologically available selenium. Selenocysteine exists naturally in all kingdoms of life as a building block of selenoproteins.

Hypersensitivity reactions to iodine-containing compounds

Some people develop a hypersensitivity to compounds of iodine but there are no known cases of people being directly allergic to elemental iodine itself. Notable sensitivity reactions that have been observed in humans include:
  • The application of tincture of iodine may cause a rash.
  • Some cases of reaction to povidone-iodine (Betadine) have been documented to be a chemical burn.
  • Eating iodine-containing foods, especially seafood products such as shellfish, may cause hives.
Medical use of iodine compounds (i.e. as a contrast agent) can cause anaphylactic shock in highly sensitive patients, presumably due to sensitivity to the chemical carrier. Cases of sensitivity to iodine compounds should not be formally classified as iodine allergies, as this perpetuates the erroneous belief that it is the iodine to which patients react, rather than to the specific allergen. Sensitivity to iodine-containing compounds is rare but has a considerable effect given the extremely widespread use of iodine-based contrast media.

Radioactive waste

From Wikipedia, the free encyclopedia

TINT low-level radioactive waste barrels.
 
Radioactive waste is waste that contains radioactive material. Radioactive waste is usually a by-product of nuclear power generation and other applications of nuclear fission or nuclear technology, such as research and medicine. Radioactive waste is hazardous to all forms of life and the environment, and is regulated by government agencies in order to protect human health and the environment.

Radioactivity naturally decays over time, so radioactive waste has to be isolated and confined in appropriate disposal facilities for a sufficient period until it no longer poses a threat. The time radioactive waste must be stored for depends on the type of waste and radioactive isotopes. Current approaches to managing radioactive waste have been segregation and storage for short-lived waste, near-surface disposal for low and some intermediate level waste, and deep burial or partitioning / transmutation for the high-level waste.

A summary of the amounts of radioactive waste and management approaches for most developed countries are presented and reviewed periodically as part of the International Atomic Energy Agency (IAEA) Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

Nature and significance

Radioactive waste typically comprises a number of radionuclides: unstable configurations of elements that decay, emitting ionizing radiation which can be harmful to humans and the environment. These isotopes emit different types and levels of radiation, which last for different periods of time.

Physics

The radioactivity of all radioactive waste weakens with time. All radionuclides contained in the waste have a half-life — the time it takes for half of the atoms to decay into another nuclide — and eventually, all radioactive waste decays into non-radioactive elements (i.e., stable nuclides). Since radioactive decay follows the half-life rule, the rate of decay is inversely proportional to the duration of decay. In other words, the radiation from a long-lived isotope like iodine-129 will be much less intense than that of a short-lived isotope like iodine-131. The two tables show some of the major radioisotopes, their half-lives, and their radiation yield as a proportion of the yield of fission of uranium-235. 

The energy and the type of the ionizing radiation emitted by a radioactive substance are also important factors in determining its threat to humans. The chemical properties of the radioactive element will determine how mobile the substance is and how likely it is to spread into the environment and contaminate humans. This is further complicated by the fact that many radioisotopes do not decay immediately to a stable state but rather to radioactive decay products within a decay chain before ultimately reaching a stable state.

Pharmacokinetics

Exposure to radioactive waste may cause health impacts due to ionizing radiation exposure. In humans, a dose of 1 sievert carries a 5.5% risk of developing cancer, and regulatory agencies assume the risk is linearly proportional to dose even for low doses. Ionizing radiation can cause deletions in chromosomes. If a developing organism such as a fetus is irradiated, it is possible a birth defect may be induced, but it is unlikely this defect will be in a gamete or a gamete-forming cell. The incidence of radiation-induced mutations in humans is small, as in most mammals, because of natural cellular-repair mechanisms, many just now coming to light. These mechanisms range from DNA, mRNA and protein repair, to internal lysosomic digestion of defective proteins, and even induced cell suicide—apoptosis.

Depending on the decay mode and the pharmacokinetics of an element (how the body processes it and how quickly), the threat due to exposure to a given activity of a radioisotope will differ. For instance iodine-131 is a short-lived beta and gamma emitter, but because it concentrates in the thyroid gland, it is more able to cause injury than caesium-137 which, being water soluble, is rapidly excreted through urine. In a similar way, the alpha emitting actinides and radium are considered very harmful as they tend to have long biological half-lives and their radiation has a high relative biological effectiveness, making it far more damaging to tissues per amount of energy deposited. Because of such differences, the rules determining biological injury differ widely according to the radioisotope, time of exposure and sometimes also the nature of the chemical compound which contains the radioisotope.

Sources

Radioactive waste comes from a number of sources. In countries with nuclear power plants, nuclear armament, or nuclear fuel treatment plants, the majority of waste originates from the nuclear fuel cycle and nuclear weapons reprocessing. Other sources include medical and industrial wastes, as well as naturally occurring radioactive materials (NORM) that can be concentrated as a result of the processing or consumption of coal, oil and gas, and some minerals, as discussed below.

Nuclear fuel cycle

Front end

Waste from the front end of the nuclear fuel cycle is usually alpha-emitting waste from the extraction of uranium. It often contains radium and its decay products. 

Uranium dioxide (UO2) concentrate from mining is a thousand or so times as radioactive as the granite used in buildings. It is refined from yellowcake (U3O8), then converted to uranium hexafluoride gas (UF6). As a gas, it undergoes enrichment to increase the U-235 content from 0.7% to about 4.4% (LEU). It is then turned into a hard ceramic oxide (UO2) for assembly as reactor fuel elements.

The main by-product of enrichment is depleted uranium (DU), principally the U-238 isotope, with a U-235 content of ~0.3%. It is stored, either as UF6 or as U3O8. Some is used in applications where its extremely high density makes it valuable such as anti-tank shells, and on at least one occasion even a sailboat keel. It is also used with plutonium for making mixed oxide fuel (MOX) and to dilute, or downblend, highly enriched uranium from weapons stockpiles which is now being redirected to become reactor fuel.

Back end

The back-end of the nuclear fuel cycle, mostly spent fuel rods, contains fission products that emit beta and gamma radiation, and actinides that emit alpha particles, such as uranium-234 (half-life 245 thousand years), neptunium-237 (2.144 million years), plutonium-238 (87.7 years) and americium-241 (432 years), and even sometimes some neutron emitters such as californium (half-life of 898 years for Cf-251). These isotopes are formed in nuclear reactors

It is important to distinguish the processing of uranium to make fuel from the reprocessing of used fuel. Used fuel contains the highly radioactive products of fission (see high level waste below). Many of these are neutron absorbers, called neutron poisons in this context. These eventually build up to a level where they absorb so many neutrons that the chain reaction stops, even with the control rods completely removed. At that point the fuel has to be replaced in the reactor with fresh fuel, even though there is still a substantial quantity of uranium-235 and plutonium present. In the United States, this used fuel is usually "stored", while in other countries such as Russia, the United Kingdom, France, Japan and India, the fuel is reprocessed to remove the fission products, and the fuel can then be re-used. The fission products removed from the fuel are a concentrated form of high-level waste as are the chemicals used in the process. While these countries reprocess the fuel carrying out single plutonium cycles, India is the only country known to be planning multiple plutonium recycling schemes.

Fuel composition and long term radioactivity

Activity of U-233 for three fuel types. In the case of MOX, the U-233 increases for the first 650 thousand years as it is produced by decay of Np-237 which was created in the reactor by absorption of neutrons by U-235.
 
Total activity for three fuel types. In region 1 we have radiation from short-lived nuclides, and in region 2 from Sr-90 and Cs-137. On the far right we see the decay of Np-237 and U-233.
 
The use of different fuels in nuclear reactors results in different spent nuclear fuel (SNF) composition, with varying activity curves.

Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. 

An example of this effect is the use of nuclear fuels with thorium. Th-232 is a fertile material that can undergo a neutron capture reaction and two beta minus decays, resulting in the production of fissile U-233. The SNF of a cycle with thorium will contain U-233. Its radioactive decay will strongly influence the long-term activity curve of the SNF around a million years. A comparison of the activity associated to U-233 for three different SNF types can be seen in the figure on the top right. The burnt fuels are thorium with reactor-grade plutonium (RGPu), thorium with weapons-grade plutonium (WGPu) and Mixed Oxide fuel (MOX, no thorium). For RGPu and WGPu, the initial amount of U-233 and its decay around a million years can be seen. This has an effect in the total activity curve of the three fuel types. The initial absence of U-233 and its daughter products in the MOX fuel results in a lower activity in region 3 of the figure on the bottom right, whereas for RGPu and WGPu the curve is maintained higher due to the presence of U-233 that has not fully decayed. Nuclear reprocessing can remove the actinides from the spent fuel so they can be used or destroyed.

Proliferation concerns

Since uranium and plutonium are nuclear weapons materials, there have been proliferation concerns. Ordinarily (in spent nuclear fuel), plutonium is reactor-grade plutonium. In addition to plutonium-239, which is highly suitable for building nuclear weapons, it contains large amounts of undesirable contaminants: plutonium-240, plutonium-241, and plutonium-238. These isotopes are extremely difficult to separate, and more cost-effective ways of obtaining fissile material exist (e.g., uranium enrichment or dedicated plutonium production reactors).

High-level waste is full of highly radioactive fission products, most of which are relatively short-lived. This is a concern since if the waste is stored, perhaps in deep geological storage, over many years the fission products decay, decreasing the radioactivity of the waste and making the plutonium easier to access. The undesirable contaminant Pu-240 decays faster than the Pu-239, and thus the quality of the bomb material increases with time (although its quantity decreases during that time as well). Thus, some have argued, as time passes, these deep storage areas have the potential to become "plutonium mines", from which material for nuclear weapons can be acquired with relatively little difficulty. Critics of the latter idea have pointed out the difficulty of recovering useful material from sealed deep storage areas makes other methods preferable. Specifically, the high radioactivity and heat (80 C in surrounding rock) greatly increases the difficulty of mining a storage area, and the enrichment methods required have high capital costs.

Pu-239 decays to U-235 which is suitable for weapons and which has a very long half-life (roughly 109 years). Thus plutonium may decay and leave uranium-235. However, modern reactors are only moderately enriched with U-235 relative to U-238, so the U-238 continues to serve as a denaturation agent for any U-235 produced by plutonium decay.

One solution to this problem is to recycle the plutonium and use it as a fuel e.g. in fast reactors. In pyrometallurgical fast reactors, the separated plutonium and uranium are contaminated by actinides and cannot be used for nuclear weapons.

Nuclear weapons decommissioning

Waste from nuclear weapons decommissioning is unlikely to contain much beta or gamma activity other than tritium and americium. It is more likely to contain alpha-emitting actinides such as Pu-239 which is a fissile material used in bombs, plus some material with much higher specific activities, such as Pu-238 or polonium. 

In the past the neutron trigger for an atomic bomb tended to be beryllium and a high activity alpha emitter such as polonium; an alternative to polonium is Pu-238. For reasons of national security, details of the design of modern bombs are normally not released to the open literature.

Some designs might contain a radioisotope thermoelectric generator using Pu-238 to provide a long lasting source of electrical power for the electronics in the device. 

It is likely that the fissile material of an old bomb which is due for refitting will contain decay products of the plutonium isotopes used in it, these are likely to include U-236 from Pu-240 impurities, plus some U-235 from decay of the Pu-239; due to the relatively long half-life of these Pu isotopes, these wastes from radioactive decay of bomb core material would be very small, and in any case, far less dangerous (even in terms of simple radioactivity) than the Pu-239 itself.

The beta decay of Pu-241 forms Am-241; the in-growth of americium is likely to be a greater problem than the decay of Pu-239 and Pu-240 as the americium is a gamma emitter (increasing external-exposure to workers) and is an alpha emitter which can cause the generation of heat. The plutonium could be separated from the americium by several different processes; these would include pyrochemical processes and aqueous/organic solvent extraction. A truncated PUREX type extraction process would be one possible method of making the separation. Naturally occurring uranium is not fissile because it contains 99.3% of U-238 and only 0.7% of U-235.

Legacy waste

Due to historic activities typically related to radium industry, uranium mining, and military programs, numerous sites contain or are contaminated with radioactivity. In the United States alone, the Department of Energy states there are "millions of gallons of radioactive waste" as well as "thousands of tons of spent nuclear fuel and material" and also "huge quantities of contaminated soil and water." Despite copious quantities of waste, the DOE has stated a goal of cleaning all presently contaminated sites successfully by 2025. The Fernald, Ohio site for example had "31 million pounds of uranium product", "2.5 billion pounds of waste", "2.75 million cubic yards of contaminated soil and debris", and a "223 acre portion of the underlying Great Miami Aquifer had uranium levels above drinking standards." The United States has at least 108 sites designated as areas that are contaminated and unusable, sometimes many thousands of acres. DOE wishes to clean or mitigate many or all by 2025, using the recently developed method of geomelting, however the task can be difficult and it acknowledges that some may never be completely remediated. In just one of these 108 larger designations, Oak Ridge National Laboratory, there were for example at least "167 known contaminant release sites" in one of the three subdivisions of the 37,000-acre (150 km2) site. Some of the U.S. sites were smaller in nature, however, cleanup issues were simpler to address, and DOE has successfully completed cleanup, or at least closure, of several sites.

Medicine

Radioactive medical waste tends to contain beta particle and gamma ray emitters. It can be divided into two main classes. In diagnostic nuclear medicine a number of short-lived gamma emitters such as technetium-99m are used. Many of these can be disposed of by leaving it to decay for a short time before disposal as normal waste. Other isotopes used in medicine, with half-lives in parentheses, include:

Industry

Industrial source waste can contain alpha, beta, neutron or gamma emitters. Gamma emitters are used in radiography while neutron emitting sources are used in a range of applications, such as oil well logging.

Naturally occurring radioactive material

Annual release of uranium and thorium radioisotopes from coal combustion, predicted by ORNL to cumulatively amount to 2.9 million tons over the 1937–2040 period, from the combustion of an estimated 637 billion tons of coal worldwide.
 
Substances containing natural radioactivity are known as NORM (Naturally occurring radioactive material). After human processing that exposes or concentrates this natural radioactivity (such as mining bringing coal to the surface or burning it to produce concentrated ash), it becomes technologically enhanced naturally occurring radioactive material (TENORM). A lot of this waste is alpha particle-emitting matter from the decay chains of uranium and thorium. The main source of radiation in the human body is potassium-40 (40K), typically 17 milligrams in the body at a time and 0.4 milligrams/day intake. Most rocks, due to their components, have a low level of radioactivity. Usually ranging from 1 millisievert (mSv) to 13 mSv annually depending on location, average radiation exposure from natural radioisotopes is 2.0 mSv per person a year worldwide. This makes up the majority of typical total dosage (with mean annual exposure from other sources amounting to 0.6 mSv from medical tests averaged over the whole populace, 0.4 mSv from cosmic rays, 0.005 mSv from the legacy of past atmospheric nuclear testing, 0.005 mSv occupational exposure, 0.002 mSv from the Chernobyl disaster, and 0.0002 mSv from the nuclear fuel cycle).

TENORM is not regulated as restrictively as nuclear reactor waste, though there are no significant differences in the radiological risks of these materials.

Coal

Coal contains a small amount of radioactive uranium, barium, thorium and potassium, but, in the case of pure coal, this is significantly less than the average concentration of those elements in the Earth's crust. The surrounding strata, if shale or mudstone, often contain slightly more than average and this may also be reflected in the ash content of 'dirty' coals. The more active ash minerals become concentrated in the fly ash precisely because they do not burn well. The radioactivity of fly ash is about the same as black shale and is less than phosphate rocks, but is more of a concern because a small amount of the fly ash ends up in the atmosphere where it can be inhaled. According to U.S. NCRP reports, population exposure from 1000-MWe power plants amounts to 490 person-rem/year for coal power plants, 100 times as great as nuclear power plants (4.8 person-rem/year). (The exposure from the complete nuclear fuel cycle from mining to waste disposal is 136 person-rem/year; the corresponding value for coal use from mining to waste disposal is "probably unknown".)

Oil and gas

Residues from the oil and gas industry often contain radium and its decay products. The sulfate scale from an oil well can be very radium rich, while the water, oil and gas from a well often contain radon. The radon decays to form solid radioisotopes which form coatings on the inside of pipework. In an oil processing plant the area of the plant where propane is processed is often one of the more contaminated areas of the plant as radon has a similar boiling point to propane.

Classification

Classifications of radioactive waste varies by country. The IAEA, which publishes the Radioactive Waste Safety Standards (RADWASS), also plays a significant role.

Mill tailings

Removal of very low-level waste
 
Uranium tailings are waste by-product materials left over from the rough processing of uranium-bearing ore. They are not significantly radioactive. Mill tailings are sometimes referred to as 11(e)2 wastes, from the section of the Atomic Energy Act of 1946 that defines them. Uranium mill tailings typically also contain chemically hazardous heavy metal such as lead and arsenic. Vast mounds of uranium mill tailings are left at many old mining sites, especially in Colorado, New Mexico, and Utah.

Although mill tailings are not very radioactive, they have long half-lives. Mill tailings often contain radium, thorium and trace amounts of uranium.

Low-level waste

Low level waste (LLW) is generated from hospitals and industry, as well as the nuclear fuel cycle. Low-level wastes include paper, rags, tools, clothing, filters, and other materials which contain small amounts of mostly short-lived radioactivity. Materials that originate from any region of an Active Area are commonly designated as LLW as a precautionary measure even if there is only a remote possibility of being contaminated with radioactive materials. Such LLW typically exhibits no higher radioactivity than one would expect from the same material disposed of in a non-active area, such as a normal office block. Example LLW includes wiping rags, mops, medical tubes, laboratory animal carcasses, and more.

Some high-activity LLW requires shielding during handling and transport but most LLW is suitable for shallow land burial. To reduce its volume, it is often compacted or incinerated before disposal. Low-level waste is divided into four classes: class A, class B, class C, and Greater Than Class C (GTCC).

Intermediate-level waste

Spent fuel flasks are transported by railway in the United Kingdom. Each flask is constructed of 14 in (360 mm) thick solid steel and weighs in excess of 50 tons
 
Intermediate-level waste (ILW) contains higher amounts of radioactivity and in general require shielding, but not cooling. Intermediate-level wastes includes resins, chemical sludge and metal nuclear fuel cladding, as well as contaminated materials from reactor decommissioning. It may be solidified in concrete or bitumen for disposal. As a general rule, short-lived waste (mainly non-fuel materials from reactors) is buried in shallow repositories, while long-lived waste (from fuel and fuel reprocessing) is deposited in geological repository. U.S. regulations do not define this category of waste; the term is used in Europe and elsewhere.

High-level waste

High-level waste (HLW) is produced by nuclear reactors. The exact definition of HLW differs internationally. After a nuclear fuel rod serves one fuel cycle and is removed from the core, it is considered HLW. Fuel rods contain fission products and transuranic elements generated in the reactor core. Spent fuel is highly radioactive and often hot. HLW accounts for over 95 percent of the total radioactivity produced in the process of nuclear electricity generation. The amount of HLW worldwide is currently increasing by about 12,000 metric tons every year, which is the equivalent to about 100 double-decker buses (~200 single-decker buses) or a two-story structure with a footprint the size of a basketball court. A 1000-MW nuclear power plant produces about 27 tonnes of spent nuclear fuel (unreprocessed) every year. In 2010, there was very roughly estimated to be stored some 250,000 tons of nuclear HLW, that does not include amounts that have escaped into the environment from accidents or tests. Japan estimated to hold 17,000 tons of HLW in storage in 2015. HLW have been shipped to other countries to be stored or reprocessed, and in some cases, shipped back as active fuel. 

The radioactive waste from spent fuel rods consist primarily of cesium-137 and strontium-90, but it may also include plutonium, which can be considered a transuranic waste. The half-lives of these radioactive elements can differ quite extremely. Some elements, such as cesium-137 and strontium-90 have half-lives of approximately 30 years. Meanwhile, plutonium has a half-life of that can stretch to as long as 24,000 years.

The ongoing controversy over high-level radioactive waste disposal is a major constraint on the nuclear power's global expansion. Most scientists agree that the main proposed long-term solution is deep geological burial, either in a mine or a deep borehole. However, almost six decades after commercial nuclear energy began, no government has succeeded in opening such a repository for civilian high-level nuclear waste, although Finland is in the advanced stage of the construction of such facility, the Onkalo spent nuclear fuel repository. Reprocessing or recycling spent nuclear fuel options already available or under active development still generate waste and so are not a total solution, but can reduce the sheer quantity of waste, and there are many such active programs worldwide. Deep geological burial remains the only responsible way to deal with high-level nuclear waste. The Morris Operation is currently the only de facto high-level radioactive waste storage site in the United States.

Transuranic waste

Transuranic waste (TRUW) as defined by U.S. regulations is, without regard to form or origin, waste that is contaminated with alpha-emitting transuranic radionuclides with half-lives greater than 20 years and concentrations greater than 100 nCi/g (3.7 MBq/kg), excluding high-level waste. Elements that have an atomic number greater than uranium are called transuranic ("beyond uranium"). Because of their long half-lives, TRUW is disposed more cautiously than either low- or intermediate-level waste. In the U.S., it arises mainly from weapons production, and consists of clothing, tools, rags, residues, debris and other items contaminated with small amounts of radioactive elements (mainly plutonium). 

Under U.S. law, transuranic waste is further categorized into "contact-handled" (CH) and "remote-handled" (RH) on the basis of the radiation dose rate measured at the surface of the waste container. CH TRUW has a surface dose rate not greater than 200 mrem per hour (2 mSv/h), whereas RH TRUW has a surface dose rate of 200 mrem/h (2 mSv/h) or greater. CH TRUW does not have the very high radioactivity of high-level waste, nor its high heat generation, but RH TRUW can be highly radioactive, with surface dose rates up to 1,000,000  mrem/h (10,000 mSv/h). The U.S. currently disposes of TRUW generated from military facilities at the Waste Isolation Pilot Plant (WIPP) in a deep salt formation in New Mexico.

Prevention

A theoretical way to reduce waste accumulation is to phase out current reactors in favour of Generation IV Reactors, which output less waste per power generated. Fast reactors can theoretically consume some existing waste. The UK's Nuclear Decommissioning Authority published a position paper in 2014 on the progress on approaches to the management of separated plutonium, which summarises the conclusions of the work that NDA shared with UK government.

Management

Modern medium to high level transport container for nuclear waste

Of particular concern in nuclear waste management are two long-lived fission products, Tc-99 (half-life 220,000 years) and I-129 (half-life 15.7 million years), which dominate spent fuel radioactivity after a few thousand years. The most troublesome transuranic elements in spent fuel are Np-237 (half-life two million years) and Pu-239 (half-life 24,000 years). Nuclear waste requires sophisticated treatment and management to successfully isolate it from interacting with the biosphere. This usually necessitates treatment, followed by a long-term management strategy involving storage, disposal or transformation of the waste into a non-toxic form. Governments around the world are considering a range of waste management and disposal options, though there has been limited progress toward long-term waste management solutions.

In the second half of the 20th century, several methods of disposal of radioactive waste were investigated by nuclear nations, which are :
  • "Long term above ground storage", not implemented.
  • "Disposal in outer space" (for instance, inside the Sun), not implemented - as it would be currently too expensive.
  • "Deep borehole disposal", not implemented.
  • "Rock-melting", not implemented.
  • "Disposal at subduction zones", not implemented.
  • "Ocean disposal", used to be done by the USSR, the United Kingdom, Switzerland, the United States, Belgium, France, The Netherlands, Japan, Sweden, Russia, Germany, Italy and South Korea. (1954–93) This is no longer permitted by international agreements.
  • "Sub seabed disposal", not implemented, not permitted by international agreements.
  • "Disposal in ice sheets", rejected in Antarctic Treaty
  • "Direct injection", done by USSR and USA.
  • Nuclear transmutation, using lasers to cause beta decay to convert the unstable atoms to those with shorter half-lives.
In the US, waste management policy completely broke down with the ending of work on the incomplete Yucca Mountain Repository. At present there are 70 nuclear power plant sites where spent fuel is stored. A Blue Ribbon Commission was appointed by President Obama to look into future options for this and future waste. A deep geological repository seems to be favored.

Initial treatment

Vitrification

Long-term storage of radioactive waste requires the stabilization of the waste into a form which will neither react nor degrade for extended periods. It is theorized that one way to do this might be through vitrification. Currently at Sellafield the high-level waste (PUREX first cycle raffinate) is mixed with sugar and then calcined. Calcination involves passing the waste through a heated, rotating tube. The purposes of calcination are to evaporate the water from the waste, and de-nitrate the fission products to assist the stability of the glass produced.

The 'calcine' generated is fed continuously into an induction heated furnace with fragmented glass. The resulting glass is a new substance in which the waste products are bonded into the glass matrix when it solidifies. As a melt, this product is poured into stainless steel cylindrical containers ("cylinders") in a batch process. When cooled, the fluid solidifies ("vitrifies") into the glass. After being formed, the glass is highly resistant to water.

After filling a cylinder, a seal is welded onto the cylinder head. The cylinder is then washed. After being inspected for external contamination, the steel cylinder is stored, usually in an underground repository. In this form, the waste products are expected to be immobilized for thousands of years.

The glass inside a cylinder is usually a black glossy substance. All this work (in the United Kingdom) is done using hot cell systems. Sugar is added to control the ruthenium chemistry and to stop the formation of the volatile RuO4 containing radioactive ruthenium isotopes. In the West, the glass is normally a borosilicate glass (similar to Pyrex), while in the former Soviet bloc it is normal to use a phosphate glass. The amount of fission products in the glass must be limited because some (palladium, the other Pt group metals, and tellurium) tend to form metallic phases which separate from the glass. Bulk vitrification uses electrodes to melt soil and wastes, which are then buried underground. In Germany a vitrification plant is in use; this is treating the waste from a small demonstration reprocessing plant which has since been closed down.

Ion exchange

It is common for medium active wastes in the nuclear industry to be treated with ion exchange or other means to concentrate the radioactivity into a small volume. The much less radioactive bulk (after treatment) is often then discharged. For instance, it is possible to use a ferric hydroxide floc to remove radioactive metals from aqueous mixtures. After the radioisotopes are absorbed onto the ferric hydroxide, the resulting sludge can be placed in a metal drum before being mixed with cement to form a solid waste form. In order to get better long-term performance (mechanical stability) from such forms, they may be made from a mixture of fly ash, or blast furnace slag, and Portland cement, instead of normal concrete (made with Portland cement, gravel and sand).

Synroc

The Australian Synroc (synthetic rock) is a more sophisticated way to immobilize such waste, and this process may eventually come into commercial use for civil wastes (it is currently being developed for US military wastes). Synroc was invented by Prof Ted Ringwood (a geochemist) at the Australian National University. The Synroc contains pyrochlore and cryptomelane type minerals. The original form of Synroc (Synroc C) was designed for the liquid high level waste (PUREX raffinate) from a light water reactor. The main minerals in this Synroc are hollandite (BaAl2Ti6O16), zirconolite (CaZrTi2O7) and perovskite (CaTiO3). The zirconolite and perovskite are hosts for the actinides. The strontium and barium will be fixed in the perovskite. The caesium will be fixed in the hollandite.

Long term management

The time frame in question when dealing with radioactive waste ranges from 10,000 to 1,000,000 years, according to studies based on the effect of estimated radiation doses. Researchers suggest that forecasts of health detriment for such periods should be examined critically. Practical studies only consider up to 100 years as far as effective planning and cost evaluations are concerned. Long term behavior of radioactive wastes remains a subject for ongoing research projects in geoforecasting.

Above-ground disposal

Dry cask storage typically involves taking waste from a spent fuel pool and sealing it (along with an inert gas) in a steel cylinder, which is placed in a concrete cylinder which acts as a radiation shield. It is a relatively inexpensive method which can be done at a central facility or adjacent to the source reactor. The waste can be easily retrieved for reprocessing.

Geologic disposal

Diagram of an underground low-level radioactive waste disposal site
 
On Feb. 14, 2014, radioactive materials at the Waste Isolation Pilot Plant leaked from a damaged storage drum due to the use of incorrect packing material. Analysis showed the lack of a "safety culture" at the plant since its successful operation for 15 years had bred complacency.
 
The process of selecting appropriate deep final repositories for high level waste and spent fuel is now under way in several countries with the first expected to be commissioned some time after 2010. The basic concept is to locate a large, stable geologic formation and use mining technology to excavate a tunnel, or large-bore tunnel boring machines (similar to those used to drill the Channel Tunnel from England to France) to drill a shaft 500 metres (1,600 ft) to 1,000 metres (3,300 ft) below the surface where rooms or vaults can be excavated for disposal of high-level radioactive waste. The goal is to permanently isolate nuclear waste from the human environment. Many people remain uncomfortable with the immediate stewardship cessation of this disposal system, suggesting perpetual management and monitoring would be more prudent. 

Because some radioactive species have half-lives longer than one million years, even very low container leakage and radionuclide migration rates must be taken into account. Moreover, it may require more than one half-life until some nuclear materials lose enough radioactivity to cease being lethal to living things. A 1983 review of the Swedish radioactive waste disposal program by the National Academy of Sciences found that country's estimate of several hundred thousand years—perhaps up to one million years—being necessary for waste isolation "fully justified."

Ocean floor disposal of radioactive waste has been suggested by the finding that deep waters in the North Atlantic Ocean do not present an exchange with shallow waters for about 140 years based on oxygen content data recorded over a period of 25 years. They include burial beneath a stable abyssal plain, burial in a subduction zone that would slowly carry the waste downward into the Earth's mantle, and burial beneath a remote natural or human-made island. While these approaches all have merit and would facilitate an international solution to the problem of disposal of radioactive waste, they would require an amendment of the Law of the Sea.

Article 1 (Definitions), 7., of the 1996 Protocol to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, (the London Dumping Convention) states:
"'Sea' means all marine waters other than the internal waters of States, as well as the seabed and the subsoil thereof; it does not include sub-seabed repositories accessed only from land."
The proposed land-based subductive waste disposal method disposes of nuclear waste in a subduction zone accessed from land and therefore is not prohibited by international agreement. This method has been described as the most viable means of disposing of radioactive waste, and as the state-of-the-art as of 2001 in nuclear waste disposal technology. Another approach termed Remix & Return would blend high-level waste with uranium mine and mill tailings down to the level of the original radioactivity of the uranium ore, then replace it in inactive uranium mines. This approach has the merits of providing jobs for miners who would double as disposal staff, and of facilitating a cradle-to-grave cycle for radioactive materials, but would be inappropriate for spent reactor fuel in the absence of reprocessing, due to the presence of highly toxic radioactive elements such as plutonium within it.

Deep borehole disposal is the concept of disposing of high-level radioactive waste from nuclear reactors in extremely deep boreholes. Deep borehole disposal seeks to place the waste as much as 5 kilometres (3.1 mi) beneath the surface of the Earth and relies primarily on the immense natural geological barrier to confine the waste safely and permanently so that it should never pose a threat to the environment. The Earth's crust contains 120 trillion tons of thorium and 40 trillion tons of uranium (primarily at relatively trace concentrations of parts per million each adding up over the crust's 3 * 1019 ton mass), among other natural radioisotopes. Since the fraction of nuclides decaying per unit of time is inversely proportional to an isotope's half-life, the relative radioactivity of the lesser amount of human-produced radioisotopes (thousands of tons instead of trillions of tons) would diminish once the isotopes with far shorter half-lives than the bulk of natural radioisotopes decayed.

In January 2013, Cumbria county council rejected UK central government proposals to start work on an underground storage dump for nuclear waste near to the Lake District National Park. "For any host community, there will be a substantial community benefits package and worth hundreds of millions of pounds" said Ed Davey, Energy Secretary, but nonetheless, the local elected body voted 7–3 against research continuing, after hearing evidence from independent geologists that "the fractured strata of the county was impossible to entrust with such dangerous material and a hazard lasting millennia."

Transmutation

There have been proposals for reactors that consume nuclear waste and transmute it to other, less-harmful or shorter-lived, nuclear waste. In particular, the Integral Fast Reactor was a proposed nuclear reactor with a nuclear fuel cycle that produced no transuranic waste and in fact, could consume transuranic waste. It proceeded as far as large-scale tests, but was then canceled by the US Government. Another approach, considered safer but requiring more development, is to dedicate subcritical reactors to the transmutation of the left-over transuranic elements.

An isotope that is found in nuclear waste and that represents a concern in terms of proliferation is Pu-239. The large stock of plutonium is a result of its production inside uranium-fueled reactors and of the reprocessing of weapons-grade plutonium during the weapons program. An option for getting rid of this plutonium is to use it as a fuel in a traditional Light Water Reactor (LWR). Several fuel types with differing plutonium destruction efficiencies are under study. 

Transmutation was banned in the US in April 1977 by President Carter due to the danger of plutonium proliferation, but President Reagan rescinded the ban in 1981. Due to the economic losses and risks, construction of reprocessing plants during this time did not resume. Due to high energy demand, work on the method has continued in the EU. This has resulted in a practical nuclear research reactor called Myrrha in which transmutation is possible. Additionally, a new research program called ACTINET has been started in the EU to make transmutation possible on a large, industrial scale. According to President Bush's Global Nuclear Energy Partnership (GNEP) of 2007, the US is now actively promoting research on transmutation technologies needed to markedly reduce the problem of nuclear waste treatment.

There have also been theoretical studies involving the use of fusion reactors as so called "actinide burners" where a fusion reactor plasma such as in a tokamak, could be "doped" with a small amount of the "minor" transuranic atoms which would be transmuted (meaning fissioned in the actinide case) to lighter elements upon their successive bombardment by the very high energy neutrons produced by the fusion of deuterium and tritium in the reactor. A study at MIT found that only 2 or 3 fusion reactors with parameters similar to that of the International Thermonuclear Experimental Reactor (ITER) could transmute the entire annual minor actinide production from all of the light water reactors presently operating in the United States fleet while simultaneously generating approximately 1 gigawatt of power from each reactor.

Re-use

Another option is to find applications for the isotopes in nuclear waste so as to re-use them. Already, caesium-137, strontium-90 and a few other isotopes are extracted for certain industrial applications such as food irradiation and radioisotope thermoelectric generators. While re-use does not eliminate the need to manage radioisotopes, it can reduce the quantity of waste produced. 

The Nuclear Assisted Hydrocarbon Production Method, Canadian patent application 2,659,302, is a method for the temporary or permanent storage of nuclear waste materials comprising the placing of waste materials into one or more repositories or boreholes constructed into an unconventional oil formation. The thermal flux of the waste materials fracture the formation and alters the chemical and/or physical properties of hydrocarbon material within the subterranean formation to allow removal of the altered material. A mixture of hydrocarbons, hydrogen, and/or other formation fluids is produced from the formation. The radioactivity of high-level radioactive waste affords proliferation resistance to plutonium placed in the periphery of the repository or the deepest portion of a borehole.
Breeder reactors can run on U-238 and transuranic elements, which comprise the majority of spent fuel radioactivity in the 1,000–100,000-year time span.

Space disposal

Space disposal is attractive because it removes nuclear waste from the planet. It has significant disadvantages, such as the potential for catastrophic failure of a launch vehicle, which could spread radioactive material into the atmosphere and around the world. A high number of launches would be required because no individual rocket would be able to carry very much of the material relative to the total amount that needs to be disposed of. This makes the proposal impractical economically and it increases the risk of at least one or more launch failures. To further complicate matters, international agreements on the regulation of such a program would need to be established. Costs and inadequate reliability of modern rocket launch systems for space disposal has been one of the motives for interest in non-rocket space launch systems such as mass drivers, space elevators, and other proposals.

National management plans

Most countries are considerably ahead of the United States in developing plans for high-level radioactive waste disposal. Sweden and Finland are furthest along in committing to a particular disposal technology, while many others reprocess spent fuel or contract with France or Great Britain to do it, taking back the resulting plutonium and high-level waste. "An increasing backlog of plutonium from reprocessing is developing in many countries... It is doubtful that reprocessing makes economic sense in the present environment of cheap uranium."

In many European countries (e.g., Britain, Finland, the Netherlands, Sweden and Switzerland) the risk or dose limit for a member of the public exposed to radiation from a future high-level nuclear waste facility is considerably more stringent than that suggested by the International Commission on Radiation Protection or proposed in the United States. European limits are often more stringent than the standard suggested in 1990 by the International Commission on Radiation Protection by a factor of 20, and more stringent by a factor of ten than the standard proposed by the US Environmental Protection Agency (EPA) for Yucca Mountain nuclear waste repository for the first 10,000 years after closure.

The U.S. EPA's proposed standard for greater than 10,000 years is 250 times more permissive than the European limit. The U.S. EPA proposed a legal limit of a maximum of 3.5 millisieverts (350 millirem) each annually to local individuals after 10,000 years, which would be up to several percent of the exposure currently received by some populations in the highest natural background regions on Earth, though the U.S. DOE predicted that received dose would be much below that limit. Over a timeframe of thousands of years, after the most active short half-life radioisotopes decayed, burying U.S. nuclear waste would increase the radioactivity in the top 2000 feet of rock and soil in the United States (10 million km2) by 1 part in 10 million over the cumulative amount of natural radioisotopes in such a volume, but the vicinity of the site would have a far higher concentration of artificial radioisotopes underground than such an average.

Mongolia

After serious opposition had arisen about plans and negotiations between Mongolia with Japan and the United States of America to build nuclear-waste facilities in Mongolia, Mongolia stopped all negotiations in September 2011. These negotiations had started after U.S. Deputy Secretary of Energy Daniel B. Poneman visited Mongolia in September, 2010. Talks took place in Washington DC between officials of Japan, the United States and Mongolia in February 2011. After this the United Arab Emirates (UAE), which wanted to buy nuclear fuel from Mongolia, joined in the negotiations. The talks were kept secret, and although The Mainichi Daily News reported on them in May, Mongolia officially denied the existence of these negotiations. However, alarmed by this news, Mongolian citizens protested against the plans, and demanded the government withdraw the plans and disclose information. The Mongolian President Tsakhiagiin Elbegdorj issued a presidential order on September 13 banning all negotiations with foreign governments or international organizations on nuclear-waste storage plans in Mongolia. The Mongolian government has accused the newspaper of distributing false claims around the world. After the presidential order, the Mongolian president fired the individual who was supposedly involved in these conversations.

Illegal dumping

Authorities in Italy are investigating a 'Ndrangheta mafia clan accused of trafficking and illegally dumping nuclear waste. According to a whistleblower, a manager of the Italy's state energy research agency Enea paid the clan to get rid of 600 drums of toxic and radioactive waste from Italy, Switzerland, France, Germany, and the US, with Somalia as the destination, where the waste was buried after buying off local politicians. Former employees of Enea are suspected of paying the criminals to take waste off their hands in the 1980s and 1990s. Shipments to Somalia continued into the 1990s, while the 'Ndrangheta clan also blew up shiploads of waste, including radioactive hospital waste, sending them to the sea bed off the Calabrian coast. According to the environmental group Legambiente, former members of the 'Ndrangheta have said that they were paid to sink ships with radioactive material for the last 20 years.

Accidents

A few incidents have occurred when radioactive material was disposed of improperly, shielding during transport was defective, or when it was simply abandoned or even stolen from a waste store. In the Soviet Union, waste stored in Lake Karachay was blown over the area during a dust storm after the lake had partly dried out. At Maxey Flat, a low-level radioactive waste facility located in Kentucky, containment trenches covered with dirt, instead of steel or cement, collapsed under heavy rainfall into the trenches and filled with water. The water that invaded the trenches became radioactive and had to be disposed of at the Maxey Flat facility itself. In other cases of radioactive waste accidents, lakes or ponds with radioactive waste accidentally overflowed into the rivers during exceptional storms. In Italy, several radioactive waste deposits let material flow into river water, thus contaminating water for domestic use. In France, in the summer of 2008 numerous incidents happened; in one, at the Areva plant in Tricastin, it was reported that during a draining operation, liquid containing untreated uranium overflowed out of a faulty tank and about 75 kg of the radioactive material seeped into the ground and, from there, into two rivers nearby; in another case, over 100 staff were contaminated with low doses of radiation.

Scavenging of abandoned radioactive material has been the cause of several other cases of radiation exposure, mostly in developing nations, which may have less regulation of dangerous substances (and sometimes less general education about radioactivity and its hazards) and a market for scavenged goods and scrap metal. The scavengers and those who buy the material are almost always unaware that the material is radioactive and it is selected for its aesthetics or scrap value. Irresponsibility on the part of the radioactive material's owners, usually a hospital, university or military, and the absence of regulation concerning radioactive waste, or a lack of enforcement of such regulations, have been significant factors in radiation exposures. For an example of an accident involving radioactive scrap originating from a hospital see the Goiânia accident.

Transportation accidents involving spent nuclear fuel from power plants are unlikely to have serious consequences due to the strength of the spent nuclear fuel shipping casks.

On 15 December 2011, top government spokesman Osamu Fujimura of the Japanese government admitted that nuclear substances were found in the waste of Japanese nuclear facilities. Although Japan did commit itself in 1977 to these inspections in the safeguard agreement with the IAEA, the reports were kept secret for the inspectors of the International Atomic Energy Agency. Japan did start discussions with the IAEA about the large quantities of enriched uranium and plutonium that were discovered in nuclear waste cleared away by Japanese nuclear operators. At the press conference Fujimura said: "Based on investigations so far, most nuclear substances have been properly managed as waste, and from that perspective, there is no problem in safety management," But according to him, the matter was at that moment still being investigated.

Associated hazard warning signs

Representation of a Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Representation_of_a_Lie_group...