From Wikipedia, the free encyclopedia
Fetal memory is integral to mother-infant attachment.
There is some evidence that fetal memory may begin within the second trimester after conception. Substantial evidence for fetal memories has been found at around 30 weeks after conception.
Fetal memory is important for parental recognition, and facilitates the
bond between child and parents. One of the most important types of
memory is that which stores information contributing to the maternal
bond between infant and mother. This form of memory is important for a
type of development known as attachment. Fetal memory is thus critical to the survival of the fetus both prenatally (in the womb) and after birth as an infant.
Development
The Central Nervous System (CNS) and memory in the fetus develop from the ectoderm following fertilization via a process called neurulation. The ectoderm is the outermost layer of the embryo. This happens towards the end of the third week of gestation (time period when the embryo is carried in the women's uterus) and ends with the start of the development of the neural tube,
an important structure crucial to development of the central nervous
system. Some evidence suggests memory is actually responsible for
carrying out the development of the CNS during neurulation. However,
much more research needs to be done on this. Fetal memory and brain
development can be impaired by a number of maternal implications.
Rubella, intrauterine hypoxia and hypothyroidism are some of the more
researched examples. Alcohol and other substances such as hard drugs can
affect this process as well.
Functions
Once neurulation is complete and has given rise to the nervous system,
fetal memory becomes responsible for a variety of tasks. One of its
main functions at this point is to control breathing in the fetus. Also
noted, was its ability to control eye movement and coordination during
all nine months of development. There is evidence that these are
practiced in the womb
and carried out similarly after birth. Learning language as an infant
also requires fetal memory. It is now known that the mother's voice is
clearly heard from inside the womb and that the fetus can differentiate
speech sounds, particularly the phonemes
(a single segment of sound) in speech. This is evident in the baby when
born, showing many signs of early language comprehension. It has also
been shown that infants prefer their mother's native language after
being exposed to it in the womb. Evidence also exists that the infant,
when born, prefers its mother's smell from having memorized her scent as
a fetus. Memory is critical for the recognition process that takes
place between the mother and infant through breastfeeding. Breast milk contains contents recognizable by the infant that they were exposed to through amniotic fluid
(fluid that encompasses the fetus and is responsible for its nutrition
in the womb) in the fetal stage. Since the baby is so dependent upon the
mother, maternal nutrition also plays a large role in the infant
developing healthy brain functioning; including memory function, which
the infant cannot live without. Thus, fetal memory is critical to the
survival and healthy development of the infant before and after birth.
Many of these functions are measured through methods such as classical conditioning, habituation and exposure learning, being the most popular.
Measurement techniques
There are considered to be three paradigms used to investigate fetal learning and memory. They are: classical conditioning, habituation and exposure learning.
Classical conditioning
Classical conditioning is described as the pairing of a conditioned stimulus
(CS) (such as a vibration) with an unconditioned stimulus (US) (such as
a loud noise) to evoke a conditioned response (CR) (agitation). In this
pairing, the vibration will be presented immediately followed by a loud
noise. Initially, the presentation of the loud noise (US) would cause
the unconditioned response (UR) (natural agitation) without prior
classical conditioning. However, the continuous pairing of the loud
noise (US) with the vibration (CS) converts the unconditioned response
(UR) into a (CR) as the fetus
learns that the presentation of a vibration will be followed by a loud
noise. Eventually, the fetus will respond to the vibration (CS) without
being exposed to the loud noise (US); this is when conditioning has
occurred. Conditioning has been demonstrated in as few as 12-15 pairings
of the vibration (CS) with the loud noise (US) in fetuses as early as
32 weeks of gestation.
Another study replicated these findings.
Fetuses between 32 and 39 weeks gestation were presented a pure
tone (CS), which was paired with a vibroacoustic stimulus (US). A
vibroacoustic stimulus is a low bass sound frequency that is felt by the
fetus as a mechanical vibration.
After 10-20 pairings, approximately 50% of the fetuses showed
successful conditioning, unrelated to age or sex of the fetus. It is
suggested that poorly prepared experimental set up, inaccurate or
inappropriate response measures and unsuitable stimuli could all
contribute to failed conditioning, as opposed to lack of fetal memory. Reasons for some fetuses demonstrating conditioning, while others do not, remains undetermined.
Habituation
Evidence shows that newborns in the neonatal period, like above, are habituated to auditory stimuli experienced while a fetus.
The second paradigm, habituation, is one of the most successful ways of
investigating fetal memory. Habituation has been demonstrated in
fetuses as early as 22 weeks and corresponds to the onset of fetal
auditory abilities. Both auditory and vibroacoustic stimulation have been used in habituation. Vibroacoustic stimulation
is a technique involving the repetitive stimulation of the fetus, by
applying a vibroacoustic stimulus (in predetermined intervals) to the
abdomen of the mother. The movement and reaction of the fetus, in
response to the stimulus, is recorded using ultrasound
technology. This process is repeated until habituation, defined as a
lack of response to the stimulus by the fetus, is reached. Stimulation
trials continue into the neonatal
period (first 28 days after birth) by presenting the same auditory
stimulus, to test whether or not the fetus has memory of the stimulation
events. A scientific control
group of babies in the neonatal period, having not been exposed to the
stimulus as a fetus, are used in neonatal trials to serve as a
comparison.
Results from another recent study suggest that fetuses were able to form both short and long-term memories.
This conclusion was drawn from the fact that habituation rates (number
of stimuli needed to habituate) were higher in babies in the neonatal
stage that had not previously undergone fetal stimulations when compared
to those who had: therefore demonstrating the memory of the stimulus in
its fetal stage being carried into the neonatal stage.
Exposure learning
The
final experimental technique used to investigate fetal learning and
memory is exposure learning. This technique allows the experimenter a
lot of control over the presentation of the stimulus and following
testing.
Exposure learning is the act of presenting the fetus with a stimulus,
such as a television theme tune, repeatedly while in the womb and then
testing recognition (learning) of that tune after birth. One experiment
was conducted where fetuses were exposed to the television theme tune
from the show "Neighbours" while in the womb.
In the first condition of the experiment, newborns age 2–4 days who
were exposed to the tune while in the womb were presented with the tune
after birth. Upon hearing the tune, these newborns showed physiological
changes, such as a decrease in heart rate. This observed change did not
happen with unfamiliar tunes, or to newborns that were not exposed to
the tune in the womb; so the tune had to be learned in the womb.
Recognition of the tune was strong 2–4 days after birth, however,
diminished after the age of 21 days without repeated exposure.
A second exposure learning experiment, using the television theme
tune, was conducted to determine when learning and memory could first
take place in utero.
It was determined that by 30–37 weeks of gestation, fetuses previously
exposed to the theme tune were more active when presented with the tune
than those who had no previous experience with the tune. This
demonstrates that stimulus recognition begins no earlier than 30 weeks
of gestation.
Implications
Overall,
studies indicate that there is an ability for fetal learning and
memory, and through classical conditioning, habituation and exposure
learning that memory can be measured. It is important to note that
certain periods in fetal development allow for different learning and
memory abilities, which should be taken into consideration when
determining if fetal memory exists. Auditory stimuli presented in the
womb can be retained and recognized (learned) into the days following
birth and that learning is specific to familiar auditory stimuli.
Measuring learning and memory in the fetus has only been discussed in
terms of healthy pregnancies; however, many factors such as disease
affect these delicate processes.
Diseases and conditions affecting fetal memory
Much research and literature has shown that endocrine, neurological and most other diseases a mother or father carries can have adverse effects on a fetus's development.
The majority of the research done regarding fetal brain development,
and consequently its memory after birth, has focused on one condition or
state and two main diseases: intrauterine hypoxia, hypothyroidism and
rubella.
Intrauterine hypoxia
The
frontal lobe (highlighted in red) is one part of the fetus's brain that
can be negatively affected by decreased levels of oxygen due to
intrauterine hypoxia.
Intrauterine hypoxia
is a condition or state caused by insufficient oxygen levels reaching a
fetus during gestation, having detrimental effects on the development
of its central nervous system (CNS).
In many cases, intrauterine hypoxia results in the death of the fetus.
Commonly known, the CNS is vital to the communication and response
transmissions between the brain and all of the body parts within an
organism. Due to dysfunction in this system such things as cognitive
functioning and attention capacity are impeded, resulting in a poor
ability to decode or encode information and form memories. It has also been discovered that lower levels of oxygen reaching the developing fetus may, in fact, decrease the amount of grey matter produced within its brain and increase the amount of sulcal (referring to a sulcus: a fissure within the surface of the brain) cerebrospinal fluid (CSF); importantly in the frontal lobe and temporal lobe, which are critical memory centers. The later point regarding sulcal CSF has been linked to schizophrenia
(a mental disorder affecting thought processes). Grey matter is a large
component of the CNS and is related to: muscle control, sensory
perceptions, memory, emotions and speech; please follow this link for
more information regarding the different brain structures and their
effects on human function.
Hypothyroidism
Hypothyroidism
is a disease that may have severe, adverse effects on the brain
development in a fetus. These problems are often caused by a
"passing-down" from the mother or from an external neurotoxin causing impaired cognitive ability and, in extreme cases, mental retardation.
Hypothyroidism is usually caused by an iodine deficiency that results in the under production of thyroid hormones or an underdeveloped thyroid gland with similar effects. Thyroid hormone release is regulated by a stimulating hormone called thyrotropin
(TSH) in a normal functioning person. In abnormal cases when there are
lowered levels of thyroid hormone, TSH levels increase to compensate,
thus doctors and medical researchers can measure TSH levels to predict
hypothyroidism. If interested, a good explanation of this process and the consequences of abnormal levels of TSH can be found under this link.
Reduced levels of thyroid hormones have many physical and cognitive
implications for a fetus once fully developed. Because of ethical
reasons, most research has been carried out on rats and other mammals.
However, in the hypothyroid rat brain, numerous malformations were
found: reduced myelin of neurons in the CNS, deficiency of neurons in the cerebral cortex, the visual cortex and auditory cortex, hippocampus and cerebellum, which relate to general learning and motor skill acquisition.
Rubella
Rubella,
synonymous with German measles, is a disease caused by a virus with the
same name and is highly contagious. It is often combated using
preventative measures, typically through vaccination.
For children and adults it can be overcome quite easily once
vaccinated, however, if the fetus is exposed to the virus, especially
during the first trimester (the first three months of pregnancy), major
implications can occur.
Fetal nutrition and memory
Fetal
nutrition has implications for both the short term and long-term
development of the brain. Due to ethical reasons, studies, which may
result in diminished physical functioning or short/long-term damage, are
generally done on animals before being deemed safe for human trials.
There are two points in rodent brain development during which treatment with choline, a neurotransmitter, produces lifelong enhancement of spatial memory.
Choline, a neurotransmitter important for spatial memory.
The first point is at 12–17 days into embryo development, and the
second is between 16 and 30 days after the rat has been born. Baby rats,
from mothers fed a diet lacking in choline
during these two periods of pregnancy, have poorer memory function than
baby rats from mothers who received choline. Choline, when given during
these critical periods, causes a major improvement in memory
performance when rats are being trained in a maze. Even in older rats,
these memory changes persist and can be used to easily identify which
rats came from mothers that received enough choline. Supplementation
with choline appears to reduce the speed at which memory declines with
age. Choline before pregnancy is also related to changes in the birth,
death, and migration of cells in the hippocampus
during the development of the baby rats in the womb. Choline is also
associated with the different location and shape of neurons involved in
memory storage within the brain.
In another study using rats, it was found that the size of the
hippocampus (the central region in memory functioning) was affected by
protein malnutrition. More specifically, only the CA1 region of the
hippocampus seemed to demonstrate a significant reduction in size. The
CA1 subsection of the hippocampus was 20% smaller in offspring from
mothers who were fed a protein deficient diet while pregnant. Because
the region of the hippocampus affected by protein malnutrition is so
specific, global hippocampal function is not impaired, but rather just
the function that would appear to be associated with the CA1. Rats with
the CA1 volume deficit were found to perform poorly in a tasks requiring
behavioural inhibition and accurate response timing.
As both of these studies have only been done on rats, it is still
unknown for certain whether the same effects of choline would be seen
in humans. Further research in this area is needed.
Longitudinal memory effects of prenatal drug exposure
Crystal
Methamphetamine is an example of a recreational drug that can have
serious negative consequences on fetal memory development if used during
pregnancy.
Similarly to nutritional intake, drugs consumed by the mother during
pregnancy can affect the brain development of her fetus. There has been a
great deal of research concerned with the damaging effects of prenatal
drug use, and how exactly this use impairs future memory functioning of
the child. Research has focused on a variety of recreational drugs,
primarily alcohol, cocaine, heroin, and methamphetamine.
Pregnancy category
Most drugs are rated by the Food and Drug Administration to a pregnancy category,
which is a government assessment of the risks to the fetus that drug
use by the mother incurs. The pregnancy category levels (from least to
most dangerous) are A, B, C, D and X and are described as follows:
- Category A: "Adequate and well-controlled studies have failed to
demonstrate a risk to the fetus in the first trimester of pregnancy
(and there is no evidence of risk in later trimesters)"
- Category B: "Animal reproduction studies have failed to demonstrate a
risk to the fetus and there are no adequate and well-controlled studies
in pregnant women"
- Category C: "Animal reproduction studies have shown an adverse
effect on the fetus and there are no adequate and well-controlled
studies in humans, but potential benefits may warrant use of the drug in
pregnant women despite potential risks"
- Category D: "There is positive evidence of human fetal risk based on
adverse reaction data from investigational or marketing experience or
studies in humans, but potential benefits may warrant use of the drug in
pregnant women despite potential risks"
- Category X: "Studies in animals or humans have demonstrated fetal
abnormalities and/or there is positive evidence of human fetal risk
based on adverse reaction data from investigational or marketing
experience, and the risks involved in use of the drug in pregnant women
clearly outweigh potential benefits"
Alcohol
Alcoholic beverages are the most commonly abused recreational drug and include beer, wine and spirits.
Alcohol is the most widely used of these drugs, and for that reason,
the majority research on prenatal drug use has been focused on it.
Research shows that prenatal exposure to alcohol can have many negative
consequences, and is significantly associated with memory problems,
attention problems and decreased cognitive functioning (mental processes
involved in memory, perception, thinking etc.) for the offspring later
in life. Also, it can lead to the development of alcohol-related
problems in later years, such as alcohol dependence.
One study compared data about maternal drinking during pregnancy
(alcohol consumption by the pregnant mother), to observations gathered
about the offspring many years after birth. The mother's alcoholic drinking levels during mid pregnancy were measured via self-report measures (a questionnaire). In this longitudinal study
(a study which measures participant changes over time through repeated
measures), the offspring also reported their drinking habits at 21 years
of age, and completed the Alcohol Dependence Scale (a self-report
questionnaire).
The results suggested that there is a significant correlation between
prenatal alcohol exposure and the presence of dangerous alcohol problems
at age 21. Episodic drinking (multiple drinks during drinking
occasions) by the mother significantly increased subsequent Alcohol
Dependence scores for their children.
One of the items on the Alcohol Dependence scale most positively
related to their prenatal alcohol exposure includes "blacking out". Blackouts are alcohol-related amnesia,
occurring when long-term memory creation is impaired during a drinking
episode, resulting in an inability to remember. The frequency of
blackouts in young adults while drinking is strongly related to prenatal
alcohol exposure; those exposed to alcohol as a fetus are more
vulnerable to experiencing blackouts as an adult. Prenatal alcohol
exposure can also lead to decreased problem solving skills and/or
attention deficits. Attention deficits result in an inability to
maintain focus on one task for a length of time, and being prone to
distraction.
Another study examined the relationship between prenatal alcohol
exposure and executive functioning performance through a number of
tests. Executive functions
are a group of processes that serve to regulate more basic brain
functions such as memory, motor skills and attention. Patients who had
been exposed prenatally to alcohol show decreased ability to hold and
manipulate information in working memory (the memory system that is used to keep things in mind during complex tasks). Those with Fetal Alcohol Syndrome
(FAS) and Fetal Alcohol Effects (FAE) (defects caused by a mother's
alcohol consumption during pregnancy), have poor problem solving skills
compared to control participants (participants that do not have either
FAS or FAE). The memory tests used to assess the participants in this
study included the following:
- Consonant Trigrams Test (CTT) – a measure of working memory. The
participant attempts to remember three consonants, while having to
count backwards by three through various delays.
- Digit Span –
another measure of working memory. The participant is given a set of
numbers and is asked to recount as many as possibly afterwards.
- California Verbal Learning Test (CVLT) – tests for lists which are learned over repeated trials.
Prenatal alcohol exposure directly affects the ability to switch
tasks, maintain attention as well as keep and manipulate information in
working memory despite distraction.
Therefore, in almost all cases in this study, the patients with FAS or
FAE had inferior performance on the tests when compared to the control
group. Patterns show that longitudinal memory effects of prenatal
alcohol exposure manifest themselves both directly and also indirectly
through lower IQ.
Cocaine
Cocaine is an addictive stimulant,
and although there is not a comparable academic research base to
alcohol, there are a fair number of studies which show adverse effects
to memory performance after prenatal exposure. The pregnancy category
level of cocaine is C, as described above.
Prenatal exposure to cocaine has also been linked to decreased
cognitive functioning in school aged children, including lower scores in
short-term memory assessments. Short-term memory
is the memory system responsible for holding information in an easily
accessible state for a short period of time. One particular study
examined the effects of prenatal cocaine exposure, among other factors,
on cognitive ability in children. In this specific assessment, the Stanford-Binet IV Test,
an IQ test, was given to children who were exposed to cocaine in utero
(before birth) as well as a control group of children (not exposed to
cocaine in utero). Overall, those children who were exposed to cocaine
during pregnancy had lower scores on the Short Term Memory scale than
unexposed children at all age levels, especially boys. Cocaine exposure
also predicted lower IQ scores in general. Exposing prenatal offspring
to cocaine can cause irreversible damage and increase developmental
risks, especially for boys.
A review of 42 follow up studies of prenatal drug exposed
children suggests that cocaine affects the areas concerned with behavior
problems, attention, language and cognition for children tested between
4 and 13 years of age. Specifically, short-term memory, visual spatial
short-term memory (short-term memory for visual information
specifically) and working memory were negatively affected in a number of
studies.
Heroin
Prenatal exposure research is less abundant for opiates, such as heroin. Despite this, heroin is given a pregnancy risk level of X, the highest rating.
One study suggested that children exposed to prenatal heroin performed worse in memory subscales of the McCarthy Scales.
In other words, youth who had been prenatally exposed to heroin
performed worse on general cognitive tasks, including those associated
with memory.
Methamphetamine
The
hippocampus (red), which is vital to attention and verbal memory, has
been shown to be reduced in size in patients with prenatal
methamphetamine exposure.
Methamphetamine is another stimulant that has been demonstrated to
have negative effects on the offspring of a pregnant woman, and is
considered a level C pregnancy category drug. One study attempted to
determine the neurotoxic effects (harm to nerve cells) of prenatal
methamphetamine exposure on brain development, as well as on cognitive
functioning. Children exposed to methamphetamine in utero scored lower
on key measures of memory performance, including attention, verbal
memory and long term spatial memory.
The reduced size of brain structures associated with memory and attention was also noted through magnetic resonance imaging
(MRI), a process used to produce images of the brain for observation.
For example, those with prenatal methamphetamine exposure had, on
average, a smaller hippocampus
(a brain structure involved in many things, including memory) than
control participants. This reduction in size was correlated with poorer
sustained attention (decreased ability to focus on a single task for a
period of time) and delayed verbal memory (memory of words read or
heard). The conclusion from this study is that prenatal methamphetamine
exposure can be neurotoxic to the developing fetus brain.