Search This Blog

Thursday, May 9, 2024

Vertebral column

From Wikipedia, the free encyclopedia
Vertebral column
The human vertebral column and its regions
 
Vertebral column of a goat

The vertebral column, also known as the spinal column, spine or backbone, is the core part of the axial skeleton in vertebrate animals. The vertebral column is the defining and eponymous characteristic of the vertebrate endoskeleton, where the notochord (an elastic collagen-wrapped glycoprotein rod) found in all chordates has been replaced by a segmented series of mineralized irregular bones (or sometimes, cartilages) called vertebrae, separated by fibrocartilaginous intervertebral discs (the center of which is a notochord remnant). The dorsal portion of the vertebral column houses the spinal canal, an elongated cavity formed by alignment of the vertebral neural arches that encloses and protects the spinal cord, with spinal nerves exiting via the intervertebral foramina to innervate each body segments.

There are around 50,000 species of animals that have a vertebral column. The human spine is one of the most-studied examples, as the general structure of human vertebrae is fairly typical (homologous) of that found in other mammals, reptiles and birds. The shape of the vertebral body does, however, vary somewhat between different groups of living species.

Individual vertebrae are named according to their corresponding body region (neck, thorax, abdomen, pelvis or tail). In clinical medicine, features on vertebrae (particularly the spinous process) can be used as surface landmarks to guide medical procedures such as lumbar punctures and spinal anesthesia. There are also many different spinal diseases in humans that can affect both the bony vertebrae and the intervertebral discs, with kyphosis/scoliosis, ankylosing spondylitis, degenerative discs and spina bifida being recognizable examples.

Structure

The number of vertebrae in a region can vary but overall the number remains the same. In a human vertebral column, there are normally 33 vertebrae. The upper 24 pre-sacral vertebrae are articulating and separated from each other by intervertebral discs, and the lower nine are fused in adults, five in the sacrum and four in the coccyx, or tailbone. The articulating vertebrae are named according to their region of the spine. There are 7 cervical vertebrae, 12 thoracic vertebrae and 5 lumbar vertebrae. The number of those in the cervical region, however, is only rarely changed, while that in the coccygeal region varies most. Excluding rare deviations, the total number of vertebrae ranges from 32 to 35. In about 10% of people, both the total number of pre-sacral vertebrae and the number of vertebrae in individual parts of the spine can vary. The most frequent deviations are: 11 (rarely 13) thoracic vertebrae, 4 or 6 lumbar vertebrae, 3 or 5 coccygeal vertebrae (rarely up to 7).

There are numerous ligaments extending the length of the column, which include the anterior and posterior longitudinal ligaments at the front and back of the vertebral bodies, the ligamentum flavum in deep to the laminae, the interspinous and supraspinous ligaments between spinous processes, and the intertransverse ligaments between the transverse processes.

Vertebrae

Numbering order of the vertebrae of the human spinal column

The vertebrae in the human vertebral column is divided into different body regions, which correspond to the curvatures of the vertebral column. The articulating vertebrae are named according to their region of the spine. Vertebrae in these regions are essentially alike, with minor variation. These regions are called the cervical spine, thoracic spine, lumbar spine, sacrum, and coccyx. There are seven cervical vertebrae, twelve thoracic vertebrae, and five lumbar vertebrae.

The number of vertebrae in a region can vary but overall the number remains the same. The number of those in the cervical region, however, is only rarely changed. The vertebrae of the cervical, thoracic, and lumbar spines are independent bones and generally quite similar. The vertebrae of the sacrum and coccyx are usually fused and unable to move independently. Two special vertebrae are the atlas and axis, on which the head rests.

Anatomy of a vertebra

A typical vertebra consists of two parts: the vertebral body (or centrum), which is ventral (or anterior, in the standard anatomical position) and withstands axial structural load; and the vertebral arch (also known as neural arch), which is dorsal (or posterior) and provides articulations and anchorages for ribs and core skeletal muscles. Together, these enclose the vertebral foramen, the series of which align to form the spinal canal, a body cavity that contains the spinal cord. Because the vertebral column will outgrow the spinal cord during child development, by adulthood the spinal cord often ends at the upper lumbar spine (at around L1/L2 level), the lower (caudal) end of the spinal canal is occupied by a ponytail-like bundle of spinal nerves descriptively called cauda equina (from Latin "horse's tail"), and the sacrum and coccyx are fused without a central foramen.

The vertebral arch is formed by a ventral pair of pedicles and a dorsal pair of laminae, and supports seven processes, four articular, two transverse and one spinous, the latter also being known as the neural spine. The transverse and spinous processes and their associated ligaments serve as important attachment sites for back and paraspinal muscles and the thoracolumbar fasciae. The spinous processes of the cervical and lumbar regions can be felt through the skin, and are important surface landmarks in clinical medicine.

The four articular processes for two pairs of plane facet joints above and below each vertebra, articulating with those of the adjacent vertebrae and are joined by a thin portion of the neural arch called the pars interarticularis. The orientation of the facet joints restricts the range of motion between the vertebrae. Underneath each pedicle is a small hole (enclosed by the pedicle of the vertebral below) called intervertebral foramen, which transmit the corresponding spinal nerve and dorsal root ganglion that exit the spinal canal.

From top to bottom, the vertebrae are:

Combined vertebral regions

For some medical purposes, adjacent vertebral regions may be considered together:

  • Cervicothoracic spine (or region or division): the combined region of the cervical vertebrae and the thoracic vertebrae
  • Thoracolumbar spine (or region or division): the combined region of the thoracic vertebrae and the lumbar vertebrae
  • Lumbosacral spine (or region or division): the combined region of the lumbar vertebrae and the sacral vertebrae

Shape

The vertebral column is curved in several places, a result of human bipedal evolution. These curves increase the vertebral column's strength, flexibility, and ability to absorb shock, stabilising the body in upright position. When the load on the spine is increased, the curvatures increase in depth (become more curved) to accommodate the extra weight. They then spring back when the weight is removed.

The upper cervical spine has a curve, convex forward, that begins at the axis (second cervical vertebra) at the apex of the odontoid process or dens and ends at the middle of the second thoracic vertebra; it is the least marked of all the curves. This inward curve is known as a lordotic curve.

A thoracic spine X-ray of a 57-year-old male.

The thoracic curve, concave forward, begins at the middle of the second and ends at the middle of the twelfth thoracic vertebra. Its most prominent point behind corresponds to the spinous process of the seventh thoracic vertebra. This curve is known as a kyphotic curve.

Lateral lumbar X-ray of a 34-year-old male

The lumbar curve is more marked in the female than in the male; it begins at the middle of the last thoracic vertebra, and ends at the sacrovertebral angle. It is convex anteriorly, the convexity of the lower three vertebrae being much greater than that of the upper two. This curve is described as a lordotic curve.

The sacral curve begins at the sacrovertebral articulation, and ends at the point of the coccyx; its concavity is directed downward and forward as a kyphotic curve.

The thoracic and sacral kyphotic curves are termed primary curves, because they are present in the fetus. The cervical and lumbar curves are compensatory, or secondary, and are developed after birth. The cervical curve forms when the infant is able to hold up its head (at three or four months) and sit upright (at nine months). The lumbar curve forms later from twelve to eighteen months, when the child begins to walk.

Surfaces

Anterior surface

When viewed from in front, the width of the bodies of the vertebrae is seen to increase from the second cervical to the first thoracic; there is then a slight diminution in the next three vertebrae. Below this, there is again a gradual and progressive increase in width as low as the sacrovertebral angle. From this point there is a rapid diminution, to the apex of the coccyx.

Posterior surface

From behind, the vertebral column presents in the median line the spinous processes. In the cervical region (with the exception of the second and seventh vertebrae), these are short, horizontal, and bifid. In the upper part of the thoracic region they are directed obliquely downward; in the middle they are almost vertical, and in the lower part they are nearly horizontal. In the lumbar region they are nearly horizontal. The spinous processes are separated by considerable intervals in the lumbar region, by narrower intervals in the neck, and are closely approximated in the middle of the thoracic region. Occasionally one of these processes deviates a little from the median line — which can sometimes be indicative of a fracture or a displacement of the spine. On either side of the spinous processes is the vertebral groove formed by the laminae in the cervical and lumbar regions, where it is shallow, and by the laminae and transverse processes in the thoracic region, where it is deep and broad; these grooves lodge the deep muscles of the back. Lateral to the spinous processes are the articular processes, and still more laterally the transverse processes. In the thoracic region, the transverse processes stand backward, on a plane considerably behind that of the same processes in the cervical and lumbar regions. In the cervical region, the transverse processes are placed in front of the articular processes, lateral to the pedicles and between the intervertebral foramina. In the thoracic region they are posterior to the pedicles, intervertebral foramina, and articular processes. In the lumbar region they are in front of the articular processes, but behind the intervertebral foramina.

Lateral surfaces

The sides of the vertebral column are separated from the posterior surface by the articular processes in the cervical and thoracic regions and by the transverse processes in the lumbar region. In the thoracic region, the sides of the bodies of the vertebrae are marked in the back by the facets for articulation with the heads of the ribs. More posteriorly are the intervertebral foramina, formed by the juxtaposition of the vertebral notches, oval in shape, smallest in the cervical and upper part of the thoracic regions and gradually increasing in size to the last lumbar. They transmit the special spinal nerves and are situated between the transverse processes in the cervical region and in front of them, in the thoracic and lumbar regions.

Ligaments

There are different ligaments involved in the holding together of the vertebrae in the column, and in the column's movement. The anterior and posterior longitudinal ligaments extend the length of the vertebral column along the front and back of the vertebral bodies. The interspinous ligaments connect the adjoining spinous processes of the vertebrae. The supraspinous ligament extends the length of the spine running along the back of the spinous processes, from the sacrum to the seventh cervical vertebra. From there it is continuous with the nuchal ligament.

Development

The striking segmented pattern of the spine is established during embryogenesis when somites are rhythmically added to the posterior of the embryo. Somite formation begins around the third week when the embryo begins gastrulation and continues until all somites are formed. Their number varies between species: there are 42 to 44 somites in the human embryo and around 52 in the chick embryo. The somites are spheres, formed from the paraxial mesoderm that lies at the sides of the neural tube and they contain the precursors of spinal bone, the vertebrae ribs and some of the skull, as well as muscle, ligaments and skin. Somitogenesis and the subsequent distribution of somites is controlled by a clock and wavefront model acting in cells of the paraxial mesoderm. Soon after their formation, sclerotomes, which give rise to some of the bone of the skull, the vertebrae and ribs, migrate, leaving the remainder of the somite now termed a dermamyotome behind. This then splits to give the myotomes which will form the muscles and dermatomes which will form the skin of the back. Sclerotomes become subdivided into an anterior and a posterior compartment. This subdivision plays a key role in the definitive patterning of vertebrae that form when the posterior part of one somite fuses to the anterior part of the consecutive somite during a process termed resegmentation. Disruption of the somitogenesis process in humans results in diseases such as congenital scoliosis. So far, the human homologues of three genes associated to the mouse segmentation clock, (MESP2, DLL3 and LFNG), have been shown to be mutated in cases of congenital scoliosis, suggesting that the mechanisms involved in vertebral segmentation are conserved across vertebrates. In humans the first four somites are incorporated in the base of the occipital bone of the skull and the next 33 somites will form the vertebrae, ribs, muscles, ligaments and skin. The remaining posterior somites degenerate. During the fourth week of embryogenesis, the sclerotomes shift their position to surround the spinal cord and the notochord. This column of tissue has a segmented appearance, with alternating areas of dense and less dense areas.

As the sclerotome develops, it condenses further eventually developing into the vertebral body. Development of the appropriate shapes of the vertebral bodies is regulated by HOX genes.

The less dense tissue that separates the sclerotome segments develop into the intervertebral discs.

The notochord disappears in the sclerotome (vertebral body) segments but persists in the region of the intervertebral discs as the nucleus pulposus. The nucleus pulposus and the fibers of the anulus fibrosus make up the intervertebral disc.

The primary curves (thoracic and sacral curvatures) form during fetal development. The secondary curves develop after birth. The cervical curvature forms as a result of lifting the head and the lumbar curvature forms as a result of walking.

Function

Spinal cord

The spinal cord nested in the vertebral column.

The vertebral column surrounds the spinal cord which travels within the spinal canal, formed from a central hole within each vertebra. The spinal cord is part of the central nervous system that supplies nerves and receives information from the peripheral nervous system within the body. The spinal cord consists of grey and white matter and a central cavity, the central canal. Adjacent to each vertebra emerge spinal nerves. The spinal nerves provide sympathetic nervous supply to the body, with nerves emerging forming the sympathetic trunk and the splanchnic nerves.

The spinal canal follows the different curves of the column; it is large and triangular in those parts of the column that enjoy the greatest freedom of movement, such as the cervical and lumbar regions, and is small and rounded in the thoracic region, where motion is more limited. The spinal cord terminates in the conus medullaris and cauda equina.

Clinical significance

3D Medical Animation still shot of Spina Bifida
3D Medical Animation still shot of Spina Bifida

Disease

Spina bifida is a congenital disorder in which there is a defective closure of the vertebral arch. Sometimes the spinal meninges and also the spinal cord can protrude through this, and this is called spina bifida cystica. Where the condition does not involve this protrusion it is known as spina bifida occulta. Sometimes all of the vertebral arches may remain incomplete.

Another, though rare, congenital disease is Klippel–Feil syndrome, which is the fusion of any two of the cervical vertebrae.

Spondylolisthesis is the forward displacement of a vertebra and retrolisthesis is a posterior displacement of one vertebral body with respect to the adjacent vertebra to a degree less than a dislocation.

Spondylolysis, also known as a pars defect, is a defect or fracture at the pars interarticularis of the vertebral arch.

Spinal disc herniation, more commonly called a "slipped disc", is the result of a tear in the outer ring (anulus fibrosus) of the intervertebral disc, which lets some of the soft gel-like material, the nucleus pulposus, bulge out in a hernia.

Spinal stenosis is a narrowing of the spinal canal which can occur in any region of the spine though less commonly in the thoracic region. The stenosis can constrict the spinal canal giving rise to a neurological deficit.

Pain at the coccyx (tailbone) is known as coccydynia.

Spinal cord injury is damage to the spinal cord that causes changes in its function, either temporary or permanent. Spinal cord injuries can be divided into categories: complete transection, hemisection, central spinal cord lesions, posterior spinal cord lesions, and anterior spinal cord lesions.

Scalloping vertebrae is the increase in the concavity of the posterior vertebral body. It can be seen on lateral X-ray and sagittal views of CT and MRI scans. Its concavity is due to the increased pressure exerting on the vertebrae due to a mass. Internal spinal mass such as spinal astrocytoma, ependymoma, schwannoma, neurofibroma, and achondroplasia causes vertebrae scalloping.

Curvature

Diagram showing normal curvature of the vertebrae from childhood to teenage

Excessive or abnormal spinal curvature is classed as a spinal disease or dorsopathy and includes the following abnormal curvatures:

  • Kyphosis is an exaggerated kyphotic (convex) curvature of the thoracic region in the sagittal plane, also called hyperkyphosis. This produces the so-called "humpback" or "dowager's hump", a condition commonly resulting from osteoporosis.
  • Lordosis is an exaggerated lordotic (concave) curvature of the lumbar region in the sagittal plane, is known as lumbar hyperlordosis and also as "swayback". Temporary lordosis is common during pregnancy.
  • Scoliosis, lateral curvature, is the most common abnormal curvature, occurring in 0.5% of the population. It is more common among females and may result from unequal growth of the two sides of one or more vertebrae, so that they do not fuse properly. It can also be caused by pulmonary atelectasis (partial or complete deflation of one or more lobes of the lungs) as observed in asthma or pneumothorax.
  • Kyphoscoliosis, a combination of kyphosis and scoliosis.

Anatomical landmarks

Surface projections of organs of the torso. The transpyloric line is seen at L1

Individual vertebrae of the human vertebral column can be felt and used as surface anatomy, with reference points are taken from the middle of the vertebral body. This provides anatomical landmarks that can be used to guide procedures such as a lumbar puncture and also as vertical reference points to describe the locations of other parts of human anatomy, such as the positions of organs.

Other animals

Variations in vertebrae

The general structure of vertebrae in other animals is largely the same as in humans. Individual vertebrae are composed of a centrum (body), arches protruding from the top and bottom of the centrum, and various processes projecting from the centrum and/or arches. An arch extending from the top of the centrum is called a neural arch, while the haemal arch is found underneath the centrum in the caudal (tail) vertebrae of fish, most reptiles, some birds, some dinosaurs and some mammals with long tails. The vertebral processes can either give the structure rigidity, help them articulate with ribs, or serve as muscle attachment points. Common types are transverse process, diapophyses, parapophyses, and zygapophyses (both the cranial zygapophyses and the caudal zygapophyses). The centrum of the vertebra can be classified based on the fusion of its elements. In temnospondyls, bones such as the spinous process, the pleurocentrum and the intercentrum are separate ossifications. Fused elements, however, classify a vertebra as having holospondyly.

A vertebra can also be described in terms of the shape of the ends of the centrum. Centra with flat ends are acoelous, like those in mammals. These flat ends of the centra are especially good at supporting and distributing compressive forces. Amphicoelous vertebra have centra with both ends concave. This shape is common in fish, where most motion is limited. Amphicoelous centra often are integrated with a full notochord. Procoelous vertebrae are anteriorly concave and posteriorly convex. They are found in frogs and modern reptiles. Opisthocoelous vertebrae are the opposite, possessing anterior convexity and posterior concavity. They are found in salamanders, and in some non-avian dinosaurs. Heterocoelous vertebrae have saddle-shaped articular surfaces. This type of configuration is seen in turtles that retract their necks, and birds, because it permits extensive lateral and vertical flexion motion without stretching the nerve cord too extensively or wringing it about its long axis.

In horses, the Arabian (breed) can have one less vertebrae and pair of ribs. This anomaly disappears in foals that are the product of an Arabian and another breed of horse.

Regional vertebrae

Vertebrae are defined by their location in the vertebral column. Cervical vertebrae are those in the neck area. With the exception of the two sloth genera (Choloepus and Bradypus) and the manatee genus, (Trichechus), all mammals have seven cervical vertebrae. In other vertebrates, the number of cervical vertebrae can range from a single vertebra in amphibians to as many as 25 in swans or 76 in the extinct plesiosaur Elasmosaurus. The dorsal vertebrae range from the bottom of the neck to the top of the pelvis. Dorsal vertebrae attached to the ribs are called thoracic vertebrae, while those without ribs are called lumbar vertebrae. The sacral vertebrae are those in the pelvic region, and range from one in amphibians, to two in most birds and modern reptiles, or up to three to five in mammals. When multiple sacral vertebrae are fused into a single structure, it is called the sacrum. The synsacrum is a similar fused structure found in birds that is composed of the sacral, lumbar, and some of the thoracic and caudal vertebra, as well as the pelvic girdle. Caudal vertebrae compose the tail, and the final few can be fused into the pygostyle in birds, or into the coccygeal or tail bone in chimpanzees (and humans).

Fish and amphibians

A vertebra (diameter 5 mm) of a small ray-finned fish

The vertebrae of lobe-finned fishes consist of three discrete bony elements. The vertebral arch surrounds the spinal cord, and is of broadly similar form to that found in most other vertebrates. Just beneath the arch lies a small plate-like pleurocentrum, which protects the upper surface of the notochord, and below that, a larger arch-shaped intercentrum to protect the lower border. Both of these structures are embedded within a single cylindrical mass of cartilage. A similar arrangement was found in the primitive Labyrinthodonts, but in the evolutionary line that led to reptiles (and hence, also to mammals and birds), the intercentrum became partially or wholly replaced by an enlarged pleurocentrum, which in turn became the bony vertebral body. In most ray-finned fishes, including all teleosts, these two structures are fused with, and embedded within, a solid piece of bone superficially resembling the vertebral body of mammals. In living amphibians, there is simply a cylindrical piece of bone below the vertebral arch, with no trace of the separate elements present in the early tetrapods.

In cartilaginous fish, such as sharks, the vertebrae consist of two cartilaginous tubes. The upper tube is formed from the vertebral arches, but also includes additional cartilaginous structures filling in the gaps between the vertebrae, and so enclosing the spinal cord in an essentially continuous sheath. The lower tube surrounds the notochord, and has a complex structure, often including multiple layers of calcification.

Lampreys have vertebral arches, but nothing resembling the vertebral bodies found in all higher vertebrates. Even the arches are discontinuous, consisting of separate pieces of arch-shaped cartilage around the spinal cord in most parts of the body, changing to long strips of cartilage above and below in the tail region. Hagfishes lack a true vertebral column, and are therefore not properly considered vertebrates, but a few tiny neural arches are present in the tail.

Other vertebrates

The general structure of human vertebrae is fairly typical of that found in mammals, reptiles, and birds. The shape of the vertebral body does, however, vary somewhat between different groups. In mammals, such as humans, it typically has flat upper and lower surfaces, while in reptiles the anterior surface commonly has a concave socket into which the expanded convex face of the next vertebral body fits. Even these patterns are only generalisations, however, and there may be variation in form of the vertebrae along the length of the spine even within a single species. Some unusual variations include the saddle-shaped sockets between the cervical vertebrae of birds and the presence of a narrow hollow canal running down the centre of the vertebral bodies of geckos and tuataras, containing a remnant of the notochord.

Reptiles often retain the primitive intercentra, which are present as small crescent-shaped bony elements lying between the bodies of adjacent vertebrae; similar structures are often found in the caudal vertebrae of mammals. In the tail, these are attached to chevron-shaped bones called haemal arches, which attach below the base of the spine, and help to support the musculature. These latter bones are probably homologous with the ventral ribs of fish. The number of vertebrae in the spines of reptiles is highly variable, and may be several hundred in some species of snake.

In birds, there is a variable number of cervical vertebrae, which often form the only truly flexible part of the spine. The thoracic vertebrae are partially fused, providing a solid brace for the wings during flight. The sacral vertebrae are fused with the lumbar vertebrae, and some thoracic and caudal vertebrae, to form a single structure, the synsacrum, which is thus of greater relative length than the sacrum of mammals. In living birds, the remaining caudal vertebrae are fused into a further bone, the pygostyle, for attachment of the tail feathers.

Aside from the tail, the number of vertebrae in mammals is generally fairly constant. There are almost always seven cervical vertebrae (sloths and manatees are among the few exceptions), followed by around twenty or so further vertebrae, divided between the thoracic and lumbar forms, depending on the number of ribs. There are generally three to five vertebrae with the sacrum, and anything up to fifty caudal vertebrae.

Dinosaurs

The vertebral column in dinosaurs consists of the cervical (neck), dorsal (back), sacral (hips), and caudal (tail) vertebrae. Saurischian dinosaur vertebrae sometimes possess features known as pleurocoels, which are hollow depressions on the lateral portions of the vertebrae, perforated to create an entrance into the air chambers within the vertebrae, which served to decrease the weight of these bones without sacrificing strength. These pleurocoels were filled with air sacs, which would have further decreased weight. In sauropod dinosaurs, the largest known land vertebrates, pleurocoels and air sacs may have reduced the animal's weight by over a ton in some instances, a handy evolutionary adaption in animals that grew to over 30 metres in length. In many hadrosaur and theropod dinosaurs, the caudal vertebrae were reinforced by ossified tendons. The presence of three or more sacral vertebrae, in association with the hip bones, is one of the defining characteristics of dinosaurs. The occipital condyle is a structure on the posterior part of a dinosaur's skull that articulates with the first cervical vertebra.

Platinum

From Wikipedia, the free encyclopedia
 
Platinum, 78Pt
Platinum
Pronunciation/ˈplætənəm/ (PLAT-ən-əm)
Appearancesilvery white

Standard atomic weight Ar°(Pt)

Platinum in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium
Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium

Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Pd

Pt

Ds
iridiumplatinumgold
Atomic number (Z)78
Groupgroup 10
Periodperiod 6
Block  d-block
Electron configuration[Xe] 4f14 5d9 6s1
Electrons per shell2, 8, 18, 32, 17, 1
Physical properties
Phase at STPsolid
Melting point2041.4 K ​(1768.3 °C, ​3214.9 °F)
Boiling point4098 K ​(3825 °C, ​6917 °F)
Density (at 20° C)21.452 g/cm3
when liquid (at m.p.)19.77 g/cm3
Heat of fusion22.17 kJ/mol
Heat of vaporization510 kJ/mol
Molar heat capacity25.86 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2330 (2550) 2815 3143 3556 4094
Atomic properties
Oxidation states−3, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly basic oxide)
ElectronegativityPauling scale: 2.28
Ionization energies
  • 1st: 870 kJ/mol
  • 2nd: 1791 kJ/mol

Atomic radiusempirical: 139 pm
Covalent radius136±5 pm
Van der Waals radius175 pm
Color lines in a spectral range
Spectral lines of platinum
Other properties
Natural occurrenceprimordial
Crystal structureface-centered cubic (fcc) (cF4)
Lattice constant

a = 392.36 pm (at 20 °C)
Thermal expansion8.93×10−6/K (at 20 °C)
Thermal conductivity71.6 W/(m⋅K)
Electrical resistivity105 nΩ⋅m (at 20 °C)
Magnetic orderingparamagnetic
Molar magnetic susceptibility+201.9 × 10−6 cm3/mol (290 K)
Tensile strength125–240 MPa
Young's modulus168 GPa
Shear modulus61 GPa
Bulk modulus230 GPa
Speed of sound thin rod2800 m/s (at r.t.)
Poisson ratio0.38
Mohs hardness3.5
Vickers hardness400–550 MPa
Brinell hardness300–500 MPa
CAS Number7440-06-4

Platinum is a chemical element; it has symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish platina, a diminutive of plata "silver".

Platinum is a member of the platinum group of elements and group 10 of the periodic table of elements. It has six naturally occurring isotopes. It is one of the rarer elements in Earth's crust, with an average abundance of approximately 5 μg/kg. It occurs in some nickel and copper ores along with some native deposits, mostly in South Africa, which accounts for ~80% of the world production. Because of its scarcity in Earth's crust, only a few hundred tonnes are produced annually, and given its important uses, it is highly valuable and is a major precious metal commodity.

Platinum is one of the least reactive metals. It has remarkable resistance to corrosion, even at high temperatures, and is therefore considered a noble metal. Consequently, platinum is often found chemically uncombined as native platinum. Because it occurs naturally in the alluvial sands of various rivers, it was first used by pre-Columbian South American natives to produce artifacts. It was referenced in European writings as early as the 16th century, but it was not until Antonio de Ulloa published a report on a new metal of Colombian origin in 1748 that it began to be investigated by scientists.

Platinum is used in catalytic converters, laboratory equipment, electrical contacts and electrodes, platinum resistance thermometers, dentistry equipment, and jewelry. Platinum is used in the glass industry to manipulate molten glass, which does not "wet" platinum. As a heavy metal, it leads to health problems upon exposure to its salts; but due to its corrosion resistance, metallic platinum has not been linked to adverse health effects. Compounds containing platinum, such as cisplatin, oxaliplatin and carboplatin, are applied in chemotherapy against certain types of cancer.

Pure platinum is currently less expensive than pure gold, having been so continuously since 2015, but has been twice as expensive or more, mostly prior to 2008. In early 2021, the value of platinum ranged from US$1,055 to US$1,320 per troy ounce.

Characteristics

Physical

Pure platinum is a lustrous, ductile, and malleable, silver-white metal. Platinum is more ductile than gold, silver or copper, thus being the most ductile of pure metals, but it is less malleable than gold. Its physical characteristics and chemical stability make it useful for industrial applications. Its resistance to wear and tarnish is well suited to use in fine jewellery.

Chemical

Platinum being dissolved in hot aqua regia

Platinum has excellent resistance to corrosion. Bulk platinum does not oxidize in air at any temperature, but it forms a thin surface film of PtO2 that can be easily removed by heating to about 400 °C.

The most common oxidation states of platinum are +2 and +4. The +1 and +3 oxidation states are less common, and are often stabilized by metal bonding in bimetallic (or polymetallic) species. Tetracoordinate platinum(II) compounds tend to adopt 16-electron square planar geometries. Although elemental platinum is generally unreactive, it is attacked by chlorine, bromine, iodine, and sulfur. It reacts vigorously with fluorine at 500 °C (932 °F) to form platinum tetrafluoride. Platinum is insoluble in hydrochloric and nitric acid, but dissolves in hot aqua regia (a mixture of nitric and hydrochloric acids), to form aqueous chloroplatinic acid, H2PtCl6:

Pt + 4 HNO3 + 6 HCl → H2PtCl6 + 4 NO2 + 4 H2O

As a soft acid, the Pt2+ ion has a great affinity for sulfide and sulfur ligands. Numerous DMSO complexes have been reported and care is taken in the choosing of reaction solvents.

In 2007, the German scientist Gerhard Ertl won the Nobel Prize in Chemistry for determining the detailed molecular mechanisms of the catalytic oxidation of carbon monoxide over platinum (catalytic converter).

Isotopes

Platinum has six naturally occurring isotopes: 190
Pt
, 192
Pt
, 194
Pt
, 195
Pt
, 196
Pt
, and 198
Pt
. The most abundant of these is 195
Pt
, comprising 33.83% of all platinum. It is the only stable isotope with a non-zero spin. The spin of 1/2 and other favourable magnetic properties of the nucleus are utilised in 195
Pt
NMR
. Due to its spin and large abundance, 195
Pt
satellite peaks are also often observed in 1
H
and 31
P
NMR spectroscopy (e.g., for Pt-phosphine and Pt-alkyl complexes). 190
Pt
is the least abundant at only 0.01%. Of the naturally occurring isotopes, only 190
Pt
is unstable, though it decays with a half-life of 6.5×1011 years, causing an activity of 15 Bq/kg of natural platinum. Other isotopes can undergo alpha decay, but their decay has never been observed, therefore they are considered stable. Platinum also has 38 synthetic isotopes ranging in atomic mass from 165 to 208, making the total number of known isotopes 44. The least stable of these are 165
Pt
and 166
Pt
, with half-lives of 260 µs, whereas the most stable is 193
Pt
with a half-life of 50 years. Most platinum isotopes decay by some combination of beta decay and alpha decay. 188
Pt
, 191
Pt
, and 193
Pt
decay primarily by electron capture. 190
Pt
and 198
Pt
are predicted to have energetically favorable double beta decay paths.

Occurrence

A native platinum nugget, Kondyor mine, Khabarovsk Krai
Platinum-palladium ore, Stillwater mine, Beartooth Mountains, Montana, US
Sulfidic serpentintite (platinum-palladium ore) from the same mine as above

Platinum is an extremely rare metal, occurring at a concentration of only 0.005 ppm in Earth's crust. Sometimes mistaken for silver, platinum is often found chemically uncombined as native platinum and as alloy with the other platinum-group metals and iron mostly. Most often the native platinum is found in secondary deposits in alluvial deposits. The alluvial deposits used by pre-Columbian people in the Chocó Department, Colombia are still a source for platinum-group metals. Another large alluvial deposit is in the Ural Mountains, Russia, and it is still mined.

In nickel and copper deposits, platinum-group metals occur as sulfides (e.g., (Pt,Pd)S), tellurides (e.g., PtBiTe), antimonides (PdSb), and arsenides (e.g. PtAs2), and as end alloys with nickel or copper. Platinum arsenide, sperrylite (PtAs2), is a major source of platinum associated with nickel ores in the Sudbury Basin deposit in Ontario, Canada. At Platinum, Alaska, about 17,000 kg (550,000 ozt) was mined between 1927 and 1975. The mine ceased operations in 1990. The rare sulfide mineral cooperite, (Pt,Pd,Ni)S, contains platinum along with palladium and nickel. Cooperite occurs in the Merensky Reef within the Bushveld complex, Gauteng, South Africa.

In 1865, chromites were identified in the Bushveld region of South Africa, followed by the discovery of platinum in 1906. In 1924, the geologist Hans Merensky discovered a large supply of platinum in the Bushveld Igneous Complex in South Africa. The specific layer he found, named the Merensky Reef, contains around 75% of the world's known platinum. The large copper–nickel deposits near Norilsk in Russia, and the Sudbury Basin, Canada, are the two other large deposits. In the Sudbury Basin, the huge quantities of nickel ore processed make up for the fact platinum is present as only 0.5 ppm in the ore. Smaller reserves can be found in the United States, for example in the Absaroka Range in Montana. In 2010, South Africa was the top producer of platinum, with an almost 77% share, followed by Russia at 13%; world production in 2010 was 192,000 kg (423,000 lb).

Large platinum deposits are present in the state of Tamil Nadu, India.

Platinum exists in higher abundances on the Moon and in meteorites. Correspondingly, platinum is found in slightly higher abundances at sites of bolide impact on Earth that are associated with resulting post-impact volcanism, and can be mined economically; the Sudbury Basin is one such example.

Compounds

Halides

Hexachloroplatinic acid mentioned above is probably the most important platinum compound, as it serves as the precursor for many other platinum compounds. By itself, it has various applications in photography, zinc etchings, indelible ink, plating, mirrors, porcelain coloring, and as a catalyst.

Treatment of hexachloroplatinic acid with an ammonium salt, such as ammonium chloride, gives ammonium hexachloroplatinate, which is relatively insoluble in ammonium solutions. Heating this ammonium salt in the presence of hydrogen reduces it to elemental platinum. Potassium hexachloroplatinate is similarly insoluble, and hexachloroplatinic acid has been used in the determination of potassium ions by gravimetry.

When hexachloroplatinic acid is heated, it decomposes through platinum(IV) chloride and platinum(II) chloride to elemental platinum, although the reactions do not occur stepwise:

(H3O)2PtCl6·nH2O ⇌ PtCl4 + 2 HCl + (n + 2) H2O
PtCl4 ⇌ PtCl2 + Cl2
PtCl2 ⇌ Pt + Cl2

All three reactions are reversible. Platinum(II) and platinum(IV) bromides are known as well. Platinum hexafluoride is a strong oxidizer capable of oxidizing oxygen.

Oxides

Platinum(IV) oxide, PtO2, also known as "Adams' catalyst", is a black powder that is soluble in potassium hydroxide (KOH) solutions and concentrated acids. PtO2 and the less common PtO both decompose upon heating. Platinum(II,IV) oxide, Pt3O4, is formed in the following reaction:

2 Pt2+ + Pt4+ + 4 O2− → Pt3O4

Other compounds

Unlike palladium acetate, platinum(II) acetate is not commercially available. Where a base is desired, the halides have been used in conjunction with sodium acetate. The use of platinum(II) acetylacetonate has also been reported.

Several barium platinides have been synthesized in which platinum exhibits negative oxidation states ranging from −1 to −2. These include BaPt, Ba
3
Pt
2
, and Ba
2
Pt
. Caesium platinide, Cs
2
Pt
, a dark-red transparent crystalline compound has been shown to contain Pt2−
anions. Platinum also exhibits negative oxidation states at surfaces reduced electrochemically. The negative oxidation states exhibited by platinum are unusual for metallic elements, and they are attributed to the relativistic stabilization of the 6s orbitals.

It is predicted that even the cation PtO2+
4
in which platinum exists in the +10 oxidation state may be achievable.

Zeise's salt, containing an ethylene ligand, was one of the first organometallic compounds discovered. Dichloro(cycloocta-1,5-diene)platinum(II) is a commercially available olefin complex, which contains easily displaceable cod ligands ("cod" being an abbreviation of 1,5-cyclooctadiene). The cod complex and the halides are convenient starting points to platinum chemistry.

Cisplatin, or cis-diamminedichloroplatinum(II) is the first of a series of square planar platinum(II)-containing chemotherapy drugs. Others include carboplatin and oxaliplatin. These compounds are capable of crosslinking DNA, and kill cells by similar pathways to alkylating chemotherapeutic agents. (Side effects of cisplatin include nausea and vomiting, hair loss, tinnitus, hearing loss, and nephrotoxicity.)

Organoplatinum compounds such as the above antitumour agents, as well as soluble inorganic platinum complexes, are routinely characterised using 195
Pt
nuclear magnetic resonance spectroscopy
.

History

Early uses

Archaeologists have discovered traces of platinum in the gold used in ancient Egyptian burials as early as 1200 BCE. For example, a small box from burial of Shepenupet II was found to be decorated with gold-platinum hieroglyphics. However, the extent of early Egyptians' knowledge of the metal is unclear. It is quite possible they did not recognize there was platinum in their gold.

The metal was used by Native Americans near modern-day Esmeraldas, Ecuador to produce artifacts of a white gold-platinum alloy. Archeologists usually associate the tradition of platinum-working in South America with the La Tolita Culture (c. 600 BCE – 200 CE), but precise dates and location are difficult, as most platinum artifacts from the area were bought secondhand through the antiquities trade rather than obtained by direct archeological excavation. To work the metal, they would combine gold and platinum powders by sintering. The resulting gold–platinum alloy would then be soft enough to shape with tools. The platinum used in such objects was not the pure element, but rather a naturally occurring mixture of the platinum group metals, with small amounts of palladium, rhodium, and iridium.

European discovery

The first European reference to platinum appears in 1557 in the writings of the Italian humanist Julius Caesar Scaliger as a description of an unknown noble metal found between Darién and Mexico, "which no fire nor any Spanish artifice has yet been able to liquefy". From their first encounters with platinum, the Spanish generally saw the metal as a kind of impurity in gold, and it was treated as such. It was often simply thrown away, and there was an official decree forbidding the adulteration of gold with platinum impurities.

A left-pointing crescent, tangent on its right to a circle containing at its center a solid circular dot
This alchemical symbol for platinum was made by joining the symbols of silver (moon) and gold (sun).
Antonio de Ulloa is credited in European history with the discovery of platinum.

In 1735, Antonio de Ulloa and Jorge Juan y Santacilia saw Native Americans mining platinum while the Spaniards were travelling through Colombia and Peru for eight years. Ulloa and Juan found mines with the whitish metal nuggets and took them home to Spain. Antonio de Ulloa returned to Spain and established the first mineralogy lab in Spain and was the first to systematically study platinum, which was in 1748. His historical account of the expedition included a description of platinum as being neither separable nor calcinable. Ulloa also anticipated the discovery of platinum mines. After publishing the report in 1748, Ulloa did not continue to investigate the new metal. In 1758, he was sent to superintend mercury mining operations in Huancavelica.

In 1741, Charles Wood, a British metallurgist, found various samples of Colombian platinum in Jamaica, which he sent to William Brownrigg for further investigation.

In 1750, after studying the platinum sent to him by Wood, Brownrigg presented a detailed account of the metal to the Royal Society, stating that he had seen no mention of it in any previous accounts of known minerals. Brownrigg also made note of platinum's extremely high melting point and refractoriness toward borax. Other chemists across Europe soon began studying platinum, including Andreas Sigismund Marggraf, Torbern Bergman, Jöns Jakob Berzelius, William Lewis, and Pierre Macquer. In 1752, Henrik Scheffer published a detailed scientific description of the metal, which he referred to as "white gold", including an account of how he succeeded in fusing platinum ore with the aid of arsenic. Scheffer described platinum as being less pliable than gold, but with similar resistance to corrosion.

Means of malleability

Karl von Sickingen researched platinum extensively in 1772. He succeeded in making malleable platinum by alloying it with gold, dissolving the alloy in hot aqua regia, precipitating the platinum with ammonium chloride, igniting the ammonium chloroplatinate, and hammering the resulting finely divided platinum to make it cohere. Franz Karl Achard made the first platinum crucible in 1784. He worked with the platinum by fusing it with arsenic, then later volatilizing the arsenic.

Because the other platinum-family members were not discovered yet (platinum was the first in the list), Scheffer and Sickingen made the false assumption that due to its hardness—which is slightly more than for pure iron—platinum would be a relatively non-pliable material, even brittle at times, when in fact its ductility and malleability are close to that of gold. Their assumptions could not be avoided because the platinum they experimented with was highly contaminated with minute amounts of platinum-family elements such as osmium and iridium, amongst others, which embrittled the platinum alloy. Alloying this impure platinum residue called "plyoxen" with gold was the only solution at the time to obtain a pliable compound, but nowadays, very pure platinum is available and extremely long wires can be drawn from pure platinum, very easily, due to its crystalline structure, which is similar to that of many soft metals.

In 1786, Charles III of Spain provided a library and laboratory to Pierre-François Chabaneau to aid in his research of platinum. Chabaneau succeeded in removing various impurities from the ore, including gold, mercury, lead, copper, and iron. This led him to believe he was working with a single metal, but in truth the ore still contained the yet-undiscovered platinum-group metals. This led to inconsistent results in his experiments. At times, the platinum seemed malleable, but when it was alloyed with iridium, it would be much more brittle. Sometimes the metal was entirely incombustible, but when alloyed with osmium, it would volatilize. After several months, Chabaneau succeeded in producing 23 kilograms of pure, malleable platinum by hammering and compressing the sponge form while white-hot. Chabeneau realized the infusibility of platinum would lend value to objects made of it, and so started a business with Joaquín Cabezas producing platinum ingots and utensils. This started what is known as the "platinum age" in Spain.

Production

An aerial photograph of a platinum mine in South Africa. South Africa accounts for ~80% of global platinum production and a majority of the world's known platinum deposits.
Time trend of platinum production

Platinum, along with the rest of the platinum-group metals, is obtained commercially as a by-product from nickel and copper mining and processing. During electrorefining of copper, noble metals such as silver, gold and the platinum-group metals as well as selenium and tellurium settle to the bottom of the cell as "anode mud", which forms the starting point for the extraction of the platinum-group metals.

If pure platinum is found in placer deposits or other ores, it is isolated from them by various methods of subtracting impurities. Because platinum is significantly denser than many of its impurities, the lighter impurities can be removed by simply floating them away in a liquid. Platinum is paramagnetic, whereas nickel and iron are both ferromagnetic. These two impurities are thus removed by running an electromagnet over the mixture. Because platinum has a higher melting point than most other substances, many impurities can be burned or melted away without melting the platinum. Finally, platinum is resistant to hydrochloric and sulfuric acids, whereas other substances are readily attacked by them. Metal impurities can be removed by stirring the mixture in either of the two acids and recovering the remaining platinum.

One suitable method for purification for the raw platinum, which contains platinum, gold, and the other platinum-group metals, is to process it with aqua regia, in which palladium, gold and platinum are dissolved, whereas osmium, iridium, ruthenium and rhodium stay unreacted. The gold is precipitated by the addition of iron(II) chloride and after filtering off the gold, the platinum is precipitated as ammonium chloroplatinate by the addition of ammonium chloride. Ammonium chloroplatinate can be converted to platinum by heating. Unprecipitated hexachloroplatinate(IV) may be reduced with elemental zinc, and a similar method is suitable for small scale recovery of platinum from laboratory residues. Mining and refining platinum has environmental impacts.

Applications

Cutaway view of a metal-core catalytic converter

Of the 218 tonnes of platinum sold in 2014, 98 tonnes were used for vehicle emissions control devices (45%), 74.7 tonnes for jewelry (34%), 20.0 tonnes for chemical production and petroleum refining (9.2%), and 5.85 tonnes for electrical applications such as hard disk drives (2.7%). The remaining 28.9 tonnes went to various other minor applications, such as medicine and biomedicine, glassmaking equipment, investment, electrodes, anticancer drugs, oxygen sensors, spark plugs and turbine engines.

Catalyst

The most common use of platinum is as a catalyst in chemical reactions, often as platinum black. It has been employed as a catalyst since the early 19th century, when platinum powder was used to catalyze the ignition of hydrogen. Its most important application is in automobiles as a catalytic converter, which allows the complete combustion of low concentrations of unburned hydrocarbons from the exhaust into carbon dioxide and water vapor. Platinum is also used in the petroleum industry as a catalyst in a number of separate processes, but especially in catalytic reforming of straight-run naphthas into higher-octane gasoline that becomes rich in aromatic compounds. PtO2, also known as Adams' catalyst, is used as a hydrogenation catalyst, specifically for vegetable oils. Platinum also strongly catalyzes the decomposition of hydrogen peroxide into water and oxygen and it is used in fuel cells as a catalyst for the reduction of oxygen.

Green energy transition

As a fuel cell catalyst, platinum enables hydrogen and oxygen reactions to take place at an optimum rate. It is used in platinum-based proton exchange memebrane (PEM) technologies required in green hydrogen production as well as fuel cell electric vehicle adoption (FCEV).

Standard

Prototype International Meter bar made by Johnson Matthey

From 1889 to 1960, the meter was defined as the length of a platinum-iridium (90:10) alloy bar, known as the international prototype meter. The previous bar was made of platinum in 1799. Until May 2019, the kilogram was defined as the mass of the international prototype of the kilogram, a cylinder of the same platinum-iridium alloy made in 1879.

The Standard Platinum Resistance Thermometer (SPRT) is one of the four types of thermometers used to define the International Temperature Scale of 1990 (ITS-90), the international calibration standard for temperature measurements. The resistance wire in the thermometer is made of pure platinum (NIST manufactured the wires from platinum bar stock with a chemical purity of 99.999% by weight). In addition to laboratory uses, Platinum Resistance Thermometry (PRT) also has many industrial applications, industrial standards include ASTM E1137 and IEC 60751.

The standard hydrogen electrode also uses a platinized platinum electrode due to its corrosion resistance, and other attributes.

As an investment

Platinum is a precious metal commodity; its bullion has the ISO currency code of XPT. Coins, bars, and ingots are traded or collected. Platinum finds use in jewellery, usually as a 90–95% alloy, due to its inertness. It is used for this purpose for its prestige and inherent bullion value. Jewellery trade publications advise jewellers to present minute surface scratches (which they term patina) as a desirable feature in an attempt to enhance value of platinum products.

In watchmaking, Vacheron Constantin, Patek Philippe, Rolex, Breitling, and other companies use platinum for producing their limited edition watch series. Watchmakers appreciate the unique properties of platinum, as it neither tarnishes nor wears out (the latter quality relative to gold).

During periods of sustained economic stability and growth, the price of platinum tends to be as much as twice the price of gold, whereas during periods of economic uncertainty, the price of platinum tends to decrease due to reduced industrial demand, falling below the price of gold. Gold prices are more stable in slow economic times, as gold is considered a safe haven. Although gold is also used in industrial applications, especially in electronics due to its use as a conductor, its demand is not so driven by industrial uses. In the 18th century, platinum's rarity made King Louis XV of France declare it the only metal fit for a king.

Other uses

In the laboratory, platinum wire is used for electrodes; platinum pans and supports are used in thermogravimetric analysis because of the stringent requirements of chemical inertness upon heating to high temperatures (~1000 °C). Platinum is used as an alloying agent for various metal products, including fine wires, noncorrosive laboratory containers, medical instruments, dental prostheses, electrical contacts, and thermocouples. Platinum-cobalt, an alloy of roughly three parts platinum and one part cobalt, is used to make relatively strong permanent magnets. Platinum-based anodes are used in ships, pipelines, and steel piers. Platinum drugs are used to treat a wide variety of cancers, including testicular and ovarian carcinomas, melanoma, small-cell and non-small-cell lung cancer, myelomas and lymphomas.

Symbol of prestige in marketing

Platinum's rarity as a metal has caused advertisers to associate it with exclusivity and wealth. "Platinum" debit and credit cards have greater privileges than "gold" cards. "Platinum awards" are the second highest possible, ranking above "gold", "silver" and "bronze", but below diamond. For example, in the United States, a musical album that has sold more than 1 million copies will be credited as "platinum", whereas an album that has sold more than 10 million copies will be certified as "diamond". Some products, such as blenders and vehicles, with a silvery-white color are identified as "platinum". Platinum is considered a precious metal, although its use is not as common as the use of gold or silver. The frame of the Crown of Queen Elizabeth The Queen Mother, manufactured for her coronation as Consort of King George VI, is made of platinum. It was the first British crown to be made of this particular metal.

Health problems

According to the Centers for Disease Control and Prevention, short-term exposure to platinum salts may cause irritation of the eyes, nose, and throat, and long-term exposure may cause both respiratory and skin allergies. The current OSHA standard is 2 micrograms per cubic meter of air averaged over an 8-hour work shift. The National Institute for Occupational Safety and Health has set a recommended exposure limit (REL) for platinum as 1 mg/m3 over an 8-hour workday.

As platinum is a catalyst in the manufacture of the silicone rubber and gel components of several types of medical implants (breast implants, joint replacement prosthetics, artificial lumbar discs, vascular access ports, etc.), the possibility that platinum could enter the body and cause adverse effects has merited study. The Food and Drug Administration and other institutions have reviewed the issue and found no evidence to suggest toxicity in vivo. Chemically unbounded platinum has been identified by the FDA as a "fake cancer 'cure'". The misunderstanding is created by healthcare workers who are using inappropriately the name of the metal as a slang term for platinum-based chemotherapy medications like cisplatin. They are platinum compounds, not the metal itself.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...