Search This Blog

Wednesday, February 4, 2015

Lorentz transformation


From Wikipedia, the free encyclopedia

In physics, the Lorentz transformation (or transformations) is named after the Dutch physicist Hendrik Lorentz. It was the result of attempts by Lorentz and others to explain how the speed of light was observed to be independent of the reference frame, and to understand the symmetries of the laws of electromagnetism. The Lorentz transformation is in accordance with special relativity, but was derived before special relativity.

The transformations describe how measurements of space and time by two observers are related. They reflect the fact that observers moving at different velocities may measure different distances, elapsed times, and even different orderings of events. They supersede the Galilean transformation of Newtonian physics, which assumes an absolute space and time (see Galilean relativity). The Galilean transformation is a good approximation only at relative speeds much smaller than the speed of light.
The Lorentz transformation is a linear transformation. It may include a rotation of space; a rotation-free Lorentz transformation is called a Lorentz boost.

In Minkowski space, the Lorentz transformations preserve the spacetime interval between any two events. They describe only the transformations in which the spacetime event at the origin is left fixed, so they can be considered as a hyperbolic rotation of Minkowski space. The more general set of transformations that also includes translations is known as the Poincaré group.

History

Many physicists, including Woldemar Voigt, George FitzGerald, Joseph Larmor, and Hendrik Lorentz himself had been discussing the physics implied by these equations since 1887.[1]

Early in 1889, Oliver Heaviside had shown from Maxwell's equations that the electric field surrounding a spherical distribution of charge should cease to have spherical symmetry once the charge is in motion relative to the ether. FitzGerald then conjectured that Heaviside’s distortion result might be applied to a theory of intermolecular forces. Some months later, FitzGerald published the conjecture that bodies in motion are being contracted, in order to explain the baffling outcome of the 1887 ether-wind experiment of Michelson and Morley. In 1892, Lorentz independently presented the same idea in a more detailed manner, which was subsequently called FitzGerald–Lorentz contraction hypothesis.[2] Their explanation was widely known before 1905.[3]

Lorentz (1892–1904) and Larmor (1897–1900), who believed the luminiferous ether hypothesis, were also seeking the transformation under which Maxwell's equations are invariant when transformed from the ether to a moving frame. They extended the FitzGerald–Lorentz contraction hypothesis and found out that the time coordinate has to be modified as well ("local time"). Henri Poincaré gave a physical interpretation to local time (to first order in v/c) as the consequence of clock synchronization, under the assumption that the speed of light is constant in moving frames.[4] Larmor is credited to have been the first to understand the crucial time dilation property inherent in his equations.[5]

In 1905, Poincaré was the first to recognize that the transformation has the properties of a mathematical group, and named it after Lorentz.[6] Later in the same year Albert Einstein published what is now called special relativity, by deriving the Lorentz transformation under the assumptions of the principle of relativity and the constancy of the speed of light in any inertial reference frame, and by abandoning the mechanical aether.[7]

Lorentz transformation for frames in standard configuration

Consider two observers O and O′, each using their own Cartesian coordinate system to measure space and time intervals. O uses (t, x, y, z) and O′ uses (t′, x′, y′, z′). Assume further that the coordinate systems are oriented so that, in 3 dimensions, the x-axis and the x′-axis are collinear, the y-axis is parallel to the y′-axis, and the z-axis parallel to the z′-axis. The relative velocity between the two observers is v along the common x-axis; O measures O′ to move at velocity v along the coincident xx′ axes, while O′ measures O to move at velocity −v along the coincident xx′ axes. Also assume that the origins of both coordinate systems are the same, that is, coincident times and positions. If all these hold, then the coordinate systems are said to be in standard configuration.

The inverse of a Lorentz transformation relates the coordinates the other way round; from the coordinates O′ measures (t′, x′, y′, z′) to the coordinates O measures (t, x, y, z), so t, x, y, z are in terms of t′, x′, y′, z′. The mathematical form is nearly identical to the original transformation; the only difference is the negation of the uniform relative velocity (from v to −v), and exchange of primed and unprimed quantities, because O′ moves at velocity v relative to O, and equivalently, O moves at velocity −v relative to O′. This symmetry makes it effortless to find the inverse transformation (carrying out the exchange and negation saves a lot of rote algebra), although more fundamentally; it highlights that all physical laws should remain unchanged under a Lorentz transformation.[8]

Below, the Lorentz transformations are called "boosts" in the stated directions.

Boost in the x-direction


The spacetime coordinates of an event, as measured by each observer in their inertial reference frame (in standard configuration) are shown in the speech bubbles.

Top: frame F′ moves at velocity v along the x-axis of frame F.
Bottom: frame F moves at velocity −v along the x′-axis of frame F′.[9]

These are the simplest forms. The Lorentz transformation for frames in standard configuration can be shown to be (see for example [10] and [11]):
\begin{align}
t' &= \gamma \left( t - \frac{vx}{c^2} \right)  \\ 
x' &= \gamma \left( x - v t \right)\\
y' &= y \\ 
z' &= z
\end{align}
where:
The use of β and γ is standard throughout the literature.[12] For the remainder of the article – they will be also used throughout unless otherwise stated. Since the above is a linear system of equations (more technically a linear transformation), they can be written in matrix form:

\begin{bmatrix}
c t' \\ x' \\ y' \\ z'
\end{bmatrix}
=
\begin{bmatrix}
\gamma&-\beta \gamma&0&0\\
-\beta \gamma&\gamma&0&0\\
0&0&1&0\\
0&0&0&1\\
\end{bmatrix}
\begin{bmatrix}
c\,t \\ x \\ y \\ z
\end{bmatrix} ,
According to the principle of relativity, there is no privileged frame of reference, so the inverse transformations frame F′ to frame F must be given by simply negating v:
\begin{align}
t &= \gamma \left( t' + \frac{vx'}{c^2} \right)  \\ 
x &= \gamma \left( x' + v t' \right)\\
y &= y' \\ 
z &= z',
\end{align}
where the value of γ remains unchanged. These equations are also obtained by algebraically solving the standard equations for the variables t, x, y, z.

Boost in the y or z directions

The above collection of equations apply only for a boost in the x-direction. The standard configuration works equally well in the y or z directions instead of x, and so the results are similar.

For the y-direction:
\begin{align}
t' &= \gamma \left( t -  \frac{vy}{c^2} \right)  \\ 
x' &= x \\ 
y' &= \gamma \left( y - vt \right)\\
z' &= z
\end{align}
summarized by

\begin{bmatrix}
c t' \\ x' \\ y' \\ z'
\end{bmatrix}
=
\begin{bmatrix}
\gamma&0&-\beta \gamma&0\\
0&1&0&0\\
-\beta \gamma&0&\gamma&0\\
0&0&0&1\\
\end{bmatrix}
\begin{bmatrix}
c\,t \\ x \\ y \\ z
\end{bmatrix} ,
where v and so β are now in the y-direction.

For the z-direction:
\begin{align}
t' &= \gamma \left( t -  \frac{vz}{c^2} \right)  \\ 
x' &= x \\ 
y' &= y \\
z' &= \gamma \left( z - v t \right)\\
\end{align}
summarized by

\begin{bmatrix}
c t' \\ x' \\ y' \\ z'
\end{bmatrix}
=
\begin{bmatrix}
\gamma&0&0&-\beta \gamma\\
0&1&0&0\\
0&0&1&0\\
-\beta \gamma&0&0&\gamma\\
\end{bmatrix}
\begin{bmatrix}
c\,t \\ x \\ y \\ z
\end{bmatrix} ,
where v and so β are now in the z-direction.

The Lorentz or boost matrix is usually denoted by Λ (Greek capital lambda). Above the transformations have been applied to the four-position X,

\mathbf{X} = \begin{bmatrix}
c\,t \\ x \\ y \\ z
\end{bmatrix}\ , \quad \mathbf{X}' = \begin{bmatrix}
c\,t' \\ x' \\ y' \\ z'
\end{bmatrix},
The Lorentz transform for a boost in one of the above directions can be compactly written as a single matrix equation:
\mathbf{X}' = \boldsymbol{\Lambda}(v)\mathbf{X} .

Boost in any direction


Boost in an arbitrary direction.

Vector form

For a boost in an arbitrary direction with velocity v, that is, O observes O′ to move in direction v in the F coordinate frame, while O′ observes O to move in direction −v in the F′ coordinate frame, it is convenient to decompose the spatial vector r into components perpendicular and parallel to v:
\mathbf{r}=\mathbf{r}_\perp+\mathbf{r}_\|
so that
\mathbf{r} \cdot \mathbf{v} = \mathbf{r}_\bot \cdot \mathbf{v} + \mathbf{r}_\parallel \cdot \mathbf{v} = r_\parallel v
where denotes the dot product (see also orthogonality for more information). Then, only time and the component r in the direction of v;
\begin{align}
t' & = \gamma \left(t - \frac{\mathbf{r} \cdot \mathbf{v}}{c^{2}} \right) \\
\mathbf{r'} & = \mathbf{r}_\perp + \gamma (\mathbf{r}_\| - \mathbf{v} t)
\end{align}
are "warped" by the Lorentz factor:
\gamma(\mathbf{v}) = \frac{1}{\sqrt{1 - \tfrac{\mathbf{v} \cdot \mathbf{v}}{c^{2}}}} = \frac{1}{\sqrt{1 - \tfrac{v^2}{c^2}}}.
The parallel and perpendicular components can be eliminated, by substituting \mathbf{r}_\bot = \mathbf{r} - \mathbf{r}_\parallel into r′:
\mathbf{r}' = \mathbf{r} + \left(\gamma  - 1 \right)\mathbf{r}_\parallel - \gamma\mathbf{v}t \,.
Since r and v are parallel we have
\mathbf{r}_\parallel = r_\parallel \dfrac{\mathbf{v}}{v} = \left(\dfrac{\mathbf{r}\cdot\mathbf{v}}{v}\right) \frac{\mathbf{v}}{v}
where geometrically and algebraically:
  • v/v is a dimensionless unit vector pointing in the same direction as r,
  • r = (rv)/v is the projection of r into the direction of v,
substituting for r and factoring v gives
\mathbf{r}' = \mathbf{r} + \left(\frac{\gamma-1}{v^2}\mathbf{r}\cdot\mathbf{v} - \gamma t \right)\mathbf{v}\,.
This method, of eliminating parallel and perpendicular components, can be applied to any Lorentz transformation written in parallel-perpendicular form.

Matrix forms

These equations can be expressed in block matrix form as

\begin{bmatrix}
c t' \\
\mathbf{r'}
\end{bmatrix}
=
\begin{bmatrix}
\gamma & - \gamma \boldsymbol{\beta}^\mathrm{T} \\
-\gamma\boldsymbol{\beta} & \mathbf{I} + (\gamma-1) \boldsymbol{\beta}\boldsymbol{\beta}^\mathrm{T}/\beta^2  \\
\end{bmatrix}
\begin{bmatrix}
c t  \\
\mathbf{r}
\end{bmatrix}\,,
where I is the 3×3 identity matrix and β = v/c is the relative velocity vector (in units of c) as a column vector – in cartesian and tensor index notation it is:
\boldsymbol{\beta} = \frac{\bold{v}}{c} 
\equiv \begin{bmatrix}
\beta_x \\ \beta_y \\ \beta_z
\end{bmatrix} 
= \frac{1}{c}\begin{bmatrix}
v_x \\ v_y \\ v_z
\end{bmatrix}
\equiv \begin{bmatrix}
\beta_1 \\ \beta_2 \\ \beta_3
\end{bmatrix} 
= \frac{1}{c}\begin{bmatrix}
v_1 \\ v_2 \\ v_3
\end{bmatrix}
βT = vT/c is the transpose – a row vector:
\boldsymbol{\beta}^\mathrm{T} = \frac{\bold{v}^\mathrm{T}}{c} 
\equiv \begin{bmatrix}
\beta_x & \beta_y & \beta_z
\end{bmatrix} 
= \frac{1}{c}\begin{bmatrix}
v_x & v_y & v_z
\end{bmatrix}
\equiv \begin{bmatrix}
\beta_1 & \beta_2 & \beta_3
\end{bmatrix} 
= \frac{1}{c}\begin{bmatrix}
v_1 & v_2 & v_3 \\
\end{bmatrix}
and β is the magnitude of β:
\beta = |\boldsymbol{\beta}| = \sqrt{\beta_x^2 + \beta_y^2 + \beta_z^2}\,.
More explicitly stated:

\begin{bmatrix}
c\,t' \\ x' \\ y' \\ z'
\end{bmatrix}
=
\begin{bmatrix}
\gamma&-\gamma\,\beta_x&-\gamma\,\beta_y&-\gamma\,\beta_z\\
-\gamma\,\beta_x&1+(\gamma-1)\dfrac{\beta_x^2}{\beta^2}&(\gamma-1)\dfrac{\beta_x \beta_y}{\beta^2}&(\gamma-1)\dfrac{\beta_x \beta_z}{\beta^2}\\
-\gamma\,\beta_y&(\gamma-1)\dfrac{\beta_y \beta_x}{\beta^2}&1+(\gamma-1)\dfrac{\beta_y^2}{\beta^2}&(\gamma-1)\dfrac{\beta_y \beta_z}{\beta^2}\\
-\gamma\,\beta_z&(\gamma-1)\dfrac{\beta_z \beta_x}{\beta^2}&(\gamma-1)\dfrac{\beta_z \beta_y}{\beta^2}&1+(\gamma-1)\dfrac{\beta_z^2}{\beta^2}\\
\end{bmatrix}
\begin{bmatrix}
c\,t \\ x \\ y \\ z
\end{bmatrix}\,.
The transformation Λ can be written in the same form as before,
\mathbf{X}' = \boldsymbol{\Lambda}(\mathbf{v})\mathbf{X}.
which has the structure:[13]
\begin{bmatrix}
c\,t' \\ x' \\ y' \\ z'
\end{bmatrix} =

\begin{bmatrix}
 \Lambda_{00} & \Lambda_{01} & \Lambda_{02} & \Lambda_{03} \\
 \Lambda_{10} & \Lambda_{11} & \Lambda_{12} & \Lambda_{13} \\
 \Lambda_{20} & \Lambda_{21} & \Lambda_{22} & \Lambda_{23} \\
 \Lambda_{30} & \Lambda_{31} & \Lambda_{32} & \Lambda_{33} \\
\end{bmatrix}

\begin{bmatrix}
c\,t \\ x \\ y \\ z
\end{bmatrix}.
and the components deduced from above are:
 \begin{align} \Lambda_{00} & = \gamma, \\
\Lambda_{0i} & = \Lambda_{i0} = - \gamma \beta_{i}, \\
\Lambda_{ij} & = \Lambda_{ji} = ( \gamma - 1 )\dfrac{\beta_{i}\beta_{j}}{\beta^{2}} + \delta_{ij}= ( \gamma - 1 )\dfrac{v_i v_j}{v^2} + \delta_{ij}, \\
\end{align}
\,\!
where δij is the Kronecker delta, and by convention: Latin letters for indices take the values 1, 2, 3, for spatial components of a 4-vector (Greek indices take values 0, 1, 2, 3 for time and space components).

Note that this transformation is only the "boost," i.e., a transformation between two frames whose x, y, and z axis are parallel and whose spacetime origins coincide. The most general proper Lorentz transformation also contains a rotation of the three axes, because the composition of two boosts is not a pure boost but is a boost followed by a rotation. The rotation gives rise to Thomas precession. The boost is given by a symmetric matrix, but the general Lorentz transformation matrix need not be symmetric.

Composition of two boosts

The composition of two Lorentz boosts B(u) and B(v) of velocities u and v is given by:[14][15]
B(\mathbf{u})B(\mathbf{v})=B\left ( \mathbf{u}\oplus\mathbf{v} \right )\mathrm{Gyr}\left [ \mathbf{u},\mathbf{v}\right ]=\mathrm{Gyr}\left [\mathbf{u},\mathbf{v} \right ]B \left ( \mathbf{v}\oplus\mathbf{u} \right ),
where
  • B(v) is the 4 × 4 matrix that uses the components of v, i.e. v1, v2, v3 in the entries of the matrix, or rather the components of v/c in the representation that is used above,
  • \mathbf{u}\oplus\mathbf{v} is the velocity-addition,
  • Gyr[u,v] (capital G) is the rotation arising from the composition. If the 3 × 3 matrix form of the rotation applied to spatial coordinates is given by gyr[u,v], then the 4 × 4 matrix rotation applied to 4-coordinates is given by:[14]

\mathrm{Gyr}[\mathbf{u},\mathbf{v}]=
\begin{pmatrix}
1 & 0 \\
0 & \mathrm{gyr}[\mathbf{u},\mathbf{v}]
\end{pmatrix}\,,
  • gyr (lower case g) is the gyrovector space abstraction of the gyroscopic Thomas precession, defined as an operator on a velocity w in terms of velocity addition:
\text{gyr}[\mathbf{u},\mathbf{v}]\mathbf{w}=\ominus(\mathbf{u} \oplus \mathbf{v}) \oplus (\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}))
for all w.
The composition of two Lorentz transformations L(u, U) and L(v, V) which include rotations U and V is given by:[16]
L(\mathbf{u},U)L(\mathbf{v},V)=L(\mathbf{u}\oplus U\mathbf{v}, \mathrm{gyr}[\mathbf{u},U\mathbf{v}]UV)

Visualizing the transformations in Minkowski space

Lorentz transformations can be depicted on the Minkowski light cone spacetime diagram.

The momentarily co-moving inertial frames along the world line of a rapidly accelerating observer (center). The vertical direction indicates time, while the horizontal indicates distance, the dashed line is the spacetime trajectory ("world line") of the observer. The small dots are specific events in spacetime. If one imagines these events to be the flashing of a light, then the events that pass the two diagonal lines in the bottom half of the image (the past light cone of the observer in the origin) are the events visible to the observer. The slope of the world line (deviation from being vertical) gives the relative velocity to the observer. Note how the momentarily co-moving inertial frame changes when the observer accelerates.
Particle travelling at constant velocity (straight worldline coincident with time t′ axis).
Accelerating particle (curved worldline).

Lorentz transformations on the Minkowski light cone spacetime diagram, for one space and one time dimension.

The yellow axes are the rest frame of an observer, the blue axes correspond to the frame of a moving observer

The red lines are world lines, a continuous sequence of events: straight for an object travelling at constant velocity, curved for an object accelerating. Worldlines of light form the boundary of the light cone.

The purple hyperbolae indicate this is a hyperbolic rotation, the hyperbolic angle ϕ is called rapidity (see below). The greater the relative speed between the reference frames, the more "warped" the axes become. The relative velocity cannot exceed c.

The black arrow is a displacement four-vector between two events (not necessarily on the same world line), showing that in a Lorentz boost; time dilation (fewer time intervals in moving frame) and length contraction (shorter lengths in moving frame) occur. The axes in the moving frame are orthogonal (even though they do not look so).

Rapidity

The Lorentz transformation can be cast into another useful form by defining a parameter ϕ called the rapidity (an instance of hyperbolic angle) such that
e^{\phi} = \gamma(1+\beta)  = \gamma \left( 1 + \frac{v}{c} \right) = \sqrt \frac{1 + \tfrac{v}{c}}{1 - \tfrac{v}{c}},
and thus
e^{-\phi} = \gamma(1-\beta)  = \gamma \left( 1 - \frac{v}{c} \right) = \sqrt \frac{1 - \tfrac{v}{c}}{1 + \tfrac{v}{c}}.
Equivalently:
\phi =  \ln \left[\gamma(1+\beta)\right] =  -\ln \left[\gamma(1-\beta)\right]  \,
Then the Lorentz transformation in standard configuration is:
\begin{align}
& c t-x = e^{- \phi}(c t' - x') \\
& c t+x = e^{\phi}(c t' + x') \\
& y = y' \\
& z = z'.
\end{align}

Hyperbolic expressions

From the above expressions for eφ and e−φ
 \gamma = \cosh\phi  =   { e^{\phi} + e^{-\phi} \over 2 },
 \beta \gamma = \sinh\phi  =   { e^{\phi} - e^{-\phi} \over 2 },
and therefore,
 \beta = \tanh\phi   =   { e^{\phi} - e^{-\phi} \over e^{\phi} + e^{-\phi}   } .

Hyperbolic rotation of coordinates

Substituting these expressions into the matrix form of the transformation, it is evident that

\begin{bmatrix}
c t' \\ x' \\ y' \\ z'
\end{bmatrix}
=
\begin{bmatrix}
\cosh\phi &-\sinh\phi & 0 & 0 \\
-\sinh\phi  & \cosh\phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
c t \\ x \\ y \\ z
\end{bmatrix}\ .
Thus, the Lorentz transformation can be seen as a hyperbolic rotation of coordinates in Minkowski space, where the parameter ϕ represents the hyperbolic angle of rotation, often referred to as rapidity.
This transformation is sometimes illustrated with a Minkowski diagram, as displayed above.

This 4-by-4 boost matrix can thus be written compactly as a Matrix exponential,
\begin{bmatrix}
\cosh\phi &-\sinh\phi & 0 & 0 \\
-\sinh\phi  & \cosh\phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}= \exp \left( - \phi \begin{bmatrix}
0 &1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}\right)\equiv \exp (-\phi K_x),
where the simpler Lie-algebraic hyperbolic rotation generator Kx is called a boost generator.

Transformation of other physical quantities

The transformation matrix is universal for all four-vectors, not just 4-dimensional spacetime coordinates. If Z is any four-vector, then:[13]
 \mathbf{Z}' = \boldsymbol{\Lambda}(\mathbf{v})\mathbf{Z}.
or in tensor index notation:
 Z^{\alpha'} = \Lambda^{\alpha'}{}_\alpha Z^\alpha \,.
in which the primed indices denote indices of Z in the primed frame.
More generally, the transformation of any tensor quantity T is given by:[17]
T^{\alpha' \beta' \cdots \zeta'}_{\theta' \iota' \cdots \kappa'} =
\Lambda^{\alpha'}{}_{\mu} \Lambda^{\beta'}{}_{\nu} \cdots \Lambda^{\zeta'}{}_{\rho}
\Lambda_{\theta'}{}^{\sigma} \Lambda_{\iota'}{}^{\upsilon} \cdots \Lambda_{\kappa'}{}^{\phi}
T^{\mu \nu \cdots \rho}_{\sigma \upsilon \cdots \phi}
where \Lambda_{\chi'}{}^{\psi} \, is the inverse matrix of \Lambda^{\chi'}{}_{\psi} \,.

Special relativity

The crucial insight of Einstein's clock-setting method is the idea that time is relative. In essence, each observer's frame of reference is associated with a unique set of clocks, the result being that time as measured for a location passes at different rates for different observers.[18] This was a direct result of the Lorentz transformations and is called time dilation. We can also clearly see from the Lorentz "local time" transformation that the concept of the relativity of simultaneity and of the relativity of length contraction are also consequences of that clock-setting hypothesis.[19]

Transformation of the electromagnetic field

Lorentz transformations can also be used to prove that magnetic and electric fields are simply different aspects of the same force — the electromagnetic force, as a consequence of relative motion between electric charges and observers.[20] The fact that the electromagnetic field shows relativistic effects becomes clear by carrying out a simple thought experiment:[21]
  • Consider an observer measuring a charge at rest in a reference frame F. The observer will detect a static electric field. As the charge is stationary in this frame, there is no electric current, so the observer will not observe any magnetic field.
  • Consider another observer in frame F′ moving at relative velocity v (relative to F and the charge). This observer will see a different electric field because the charge is moving at velocity −v in their rest frame. Further, in frame F′ the moving charge constitutes an electric current, and thus the observer in frame F′ will also see a magnetic field.
This shows that the Lorentz transformation also applies to electromagnetic field quantities when changing the frame of reference, given below in vector form.

The correspondence principle

For relative speeds much less than the speed of light, the Lorentz transformations reduce to the Galilean transformation in accordance with the correspondence principle.

The correspondence limit is usually stated mathematically as: as v → 0, c → ∞. In words: as velocity approaches 0, the speed of light (seems to) approach infinity. Hence, it is sometimes said that nonrelativistic physics is a physics of "instantaneous action at a distance".[18]

Spacetime interval

In a given coordinate system xμ, if two events A and B are separated by
(\Delta t, \Delta x, \Delta y, \Delta z) = (t_B-t_A, x_B-x_A, y_B-y_A, z_B-z_A)\ ,
the spacetime interval between them is given by
s^2 = - c^2(\Delta t)^2 + (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\ .
This can be written in another form using the Minkowski metric. In this coordinate system,
\eta_{\mu\nu} =
\begin{bmatrix} -1&0&0&0\\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&1 \end{bmatrix}\ .
Then, we can write

s^2 = \begin{bmatrix}c \Delta t & \Delta x & \Delta y & \Delta z \end{bmatrix}
\begin{bmatrix} -1&0&0&0\\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&1 \end{bmatrix}
\begin{bmatrix} c \Delta t \\ \Delta x \\ \Delta y \\ \Delta z \end{bmatrix}
or, using the Einstein summation convention,
s^2= \eta_{\mu\nu} x^\mu x^\nu\ .
Now suppose that we make a coordinate transformation xμxμ. Then, the interval in this coordinate system is given by

s'^2 = \begin{bmatrix}c \Delta t' & \Delta x' & \Delta y' & \Delta z' \end{bmatrix}
\begin{bmatrix} -1&0&0&0\\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&1 \end{bmatrix}
\begin{bmatrix} c \Delta t' \\ \Delta x' \\ \Delta y' \\ \Delta z' \end{bmatrix}
or
s'^2= \eta_{\mu\nu} x'^\mu x'^\nu\ .
It is a result of special relativity that the interval is an invariant. That is, s2 = s2. For this to hold, it can be shown[22] that it is necessary (but not sufficient) for the coordinate transformation to be of the form
x'^\mu = x^\nu \Lambda^\mu_\nu + C^\mu\ .
Here, Cμ is a constant vector and Λμν a constant matrix, where we require that
\eta_{\mu\nu}\Lambda^\mu_\alpha \Lambda^\nu_\beta = \eta_{\alpha\beta}\ .
Such a transformation is called a Poincaré transformation or an inhomogeneous Lorentz transformation.[23] The Ca represents a spacetime translation. When Ca = 0, the transformation is called an homogeneous Lorentz transformation, or simply a Lorentz transformation.

Taking the determinant of
\eta_{\mu\nu}{\Lambda^\mu}_\alpha{\Lambda^\nu}_\beta = \eta_{\alpha\beta}
gives us
\det (\Lambda^a_b) = \pm 1\ .
The cases are:
  • Proper Lorentz transformations have det(Λμν) = +1, and form a subgroup called the special orthogonal group SO(1,3).
  • Improper Lorentz transformations are det(Λμν) = −1, which do not form a subgroup, as the product of any two improper Lorentz transformations will be a proper Lorentz transformation.
From the above definition of Λ it can be shown that (Λ00)2 ≥ 1, so either Λ00 ≥ 1 or Λ00 ≤ −1, called orthochronous and non-orthochronous respectively. An important subgroup of the proper Lorentz transformations are the proper orthochronous Lorentz transformations which consist purely of boosts and rotations. Any Lorentz transform can be written as a proper orthochronous, together with one or both of the two discrete transformations; space inversion P and time reversal T, whose non-zero elements are:
P^0_0=1,  P^1_1=P^2_2=P^3_3=-1
T^0_0=-1,  T^1_1=T^2_2=T^3_3=1
The set of Poincaré transformations satisfies the properties of a group and is called the Poincaré group. Under the Erlangen program, Minkowski space can be viewed as the geometry defined by the Poincaré group, which combines Lorentz transformations with translations. In a similar way, the set of all Lorentz transformations forms a group, called the Lorentz group.

A quantity invariant under Lorentz transformations is known as a Lorentz scalar.

Tachyon


From Wikipedia, the free encyclopedia

Alt text
Because a tachyon would always move faster than light, it would not be possible to see it approaching. After a tachyon has passed nearby, we would be able to see two images of it, appearing and departing in opposite directions. The black line is the shock wave of Cherenkov radiation, shown only in one moment of time. This double image effect is most prominent for an observer located directly in the path of a superluminal object (in this example a sphere, shown in grey). The right hand bluish shape is the image formed by the blue-doppler shifted light arriving at the observer—who is located at the apex of the black Cherenkov lines—from the sphere as it approaches. The left-hand reddish image is formed from red-shifted light that leaves the sphere after it passes the observer. Because the object arrives before the light, the observer sees nothing until the sphere starts to pass the observer, after which the image-as-seen-by-the-observer splits into two—one of the arriving sphere (to the right) and one of the departing sphere (to the left).

A tachyon /ˈtæki.ɒn/ or tachyonic particle is a hypothetical particle that always moves faster than light. The word comes from the Greek: ταχύς or tachys, meaning "swift, quick, fast, rapid", and was coined in 1967 by Gerald Feinberg.[1] The complementary particle types are called luxon (always moving at the speed of light) and bradyon (always moving slower than light), which both exist. The possibility of particles moving faster than light was first proposed by Bilaniuk, Deshpande, and George Sudarshan in 1962, although the term they used for it was "meta-particle".[2]

Most physicists think that faster-than-light particles cannot exist because they are not consistent with the known laws of physics.[3][4] If such particles did exist, they could be used to build a tachyonic antitelephone and send signals faster than light, which (according to special relativity) would lead to violations of causality.[4] Potentially consistent theories that allow faster-than-light particles include those that break Lorentz invariance, the symmetry underlying special relativity, so that the speed of light is not a barrier.

In the 1967 paper that coined the term,[1] Feinberg proposed that tachyonic particles could be quanta of a quantum field with negative squared mass. However, it was soon realized that excitations of such imaginary mass fields do not in fact propagate faster than light,[5] and instead represent an instability known as tachyon condensation.[3] Nevertheless, negative squared mass fields are commonly referred to as "tachyons",[6] and in fact have come to play an important role in modern physics.

Despite theoretical arguments against the existence of faster-than-light particles, experiments have been conducted to search for them. No compelling evidence for their existence has been found. In September 2011, it was reported that a tau neutrino had travelled faster than the speed of light in a major release by CERN; however, later updates from CERN on the OPERA project indicate that the faster-than-light readings were resultant from "a faulty element of the experiment's fibre optic timing system".[7]

In paper accepted for publication in Astroparticle Physics by professor Robert Ehrlich it is stated that six observations based on data and fits to data from a variety of areas are consistent with the hypothesis that the electron neutrino is a tachyon with imaginary mass.[8]

Tachyons in relativistic theory

In special relativity, a faster-than-light particle would have space-like four-momentum,[1] in contrast to ordinary particles that have time-like four-momentum. It would also have imaginary mass and proper time.[citation needed] Being constrained to the spacelike portion of the energy–momentum graph, it could not slow down to subluminal speeds.[1]

Mass

In a Lorentz invariant theory, the same formulas that apply to ordinary slower-than-light particles (sometimes called "bradyons" in discussions of tachyons) must also apply to tachyons. In particular the energy–momentum relation:
E^2 = p^2c^2 + m^2c^4 \;
(where p is the relativistic momentum of the bradyon and m is its rest mass) should still apply, along with the formula for the total energy of a particle:
E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}.
This equation shows that the total energy of a particle (bradyon or tachyon) contains a contribution from its rest mass (the "rest mass–energy") and a contribution from its motion, the kinetic energy.
When v is larger than c, the denominator in the equation for the energy is "imaginary", as the value under the radical is negative. Because the total energy must be real, the numerator must also be imaginary: i.e. the rest mass m must be imaginary, as a pure imaginary number divided by another pure imaginary number is a real number.

Speed

One curious effect is that, unlike ordinary particles, the speed of a tachyon increases as its energy decreases. In particular,  E approaches zero when  v approaches infinity. (For ordinary bradyonic matter, E increases with increasing speed, becoming arbitrarily large as v approaches c, the speed of light). Therefore, just as bradyons are forbidden to break the light-speed barrier, so too are tachyons forbidden from slowing down to below c, because infinite energy is required to reach the barrier from either above or below.

As noted by Einstein, Tolman, and others, special relativity implies that faster-than-light particles, if they existed, could be used to communicate backwards in time.[9]

Neutrinos

In 1985 Chodos et al. proposed that neutrinos can have a tachyonic nature.[10] The possibility of standard model particles moving at superluminal speeds can be modeled using Lorentz invariance violating terms, for example in the Standard-Model Extension.[11][12][13] In this framework, neutrinos experience Lorentz-violating oscillations and can travel faster than light at high energies. This proposal was strongly criticized.[14]

Cherenkov radiation

A tachyon with an electric charge would lose energy as Cherenkov radiation[15]—just as ordinary charged particles do when they exceed the local speed of light in a medium. A charged tachyon traveling in a vacuum therefore undergoes a constant proper time acceleration and, by necessity, its worldline forms a hyperbola in space-time. However reducing a tachyon's energy increases its speed, so that the single hyperbola formed is of two oppositely charged tachyons with opposite momenta (same magnitude, opposite sign) which annihilate each other when they simultaneously reach infinite speed at the same place in space. (At infinite speed, the two tachyons have no energy each and finite momentum of opposite direction, so no conservation laws are violated in their mutual annihilation. The time of annihilation is frame dependent.)

Even an electrically neutral tachyon would be expected to lose energy via gravitational Cherenkov radiation, because it has a gravitational mass, and therefore increase in speed as it travels, as described above. If the tachyon interacts with any other particles, it can also radiate Cherenkov energy into those particles. Neutrinos interact with the other particles of the Standard Model, and Andrew Cohen and Sheldon Glashow recently used this to argue that the faster-than-light neutrino anomaly cannot be explained by making neutrinos propagate faster than light, and must instead be due to an error in the experiment.[16]

Causality

Causality is a fundamental principle of physics. If tachyons can transmit information faster than light, then according to relativity they violate causality, leading to logical paradoxes of the "kill your own grandfather" type. This is often illustrated with thought experiments such as the "tachyon telephone paradox"[9] or "logically pernicious self-inhibitor."[17]

The problem can be understood in terms of the relativity of simultaneity in special relativity, which says that different inertial reference frames will disagree on whether two events at different locations happened "at the same time" or not, and they can also disagree on the order of the two events (technically, these disagreements occur when spacetime interval between the events is 'space-like', meaning that neither event lies in the future light cone of the other).[18]

If one of the two events represents the sending of a signal from one location and the second event represents the reception of the same signal at another location, then as long as the signal is moving at the speed of light or slower, the mathematics of simultaneity ensures that all reference frames agree that the transmission-event happened before the reception-event.[18] However, in the case of a hypothetical signal moving faster than light, there would always be some frames in which the signal was received before it was sent, so that the signal could be said to have moved backwards in time. Because one of the two fundamental postulates of special relativity says that the laws of physics should work the same way in every inertial frame, if it is possible for signals to move backwards in time in any one frame, it must be possible in all frames. This means that if observer A sends a signal to observer B which moves faster than light in A's frame but backwards in time in B's frame, and then B sends a reply which moves faster than light in B's frame but backwards in time in A's frame, it could work out that A receives the reply before sending the original signal, challenging causality in every frame and opening the door to severe logical paradoxes.[19] Mathematical details can be found in the tachyonic antitelephone article, and an illustration of such a scenario using spacetime diagrams can be found in Baker, R. (2003)[20]

Reinterpretation principle

The reinterpretation principle[1][2][19] asserts that a tachyon sent back in time can always be reinterpreted as a tachyon traveling forward in time, because observers cannot distinguish between the emission and absorption of tachyons. The attempt to detect a tachyon from the future (and violate causality) would actually create the same tachyon and send it forward in time (which is causal).

However, this principle is not widely accepted as resolving the paradoxes.[9][19][21] Instead, what would be required to avoid paradoxes is that unlike any known particle, tachyons do not interact in any way and can never be detected or observed, because otherwise a tachyon beam could be modulated and used to create an anti-telephone[9] or a "logically pernicious self-inhibitor".[17] All forms of energy are believed to interact at least gravitationally, and many authors state that superluminal propagation in Lorentz invariant theories always leads to causal paradoxes.[22][23]

Fundamental models

In modern physics, all fundamental particles are regarded as excitations of quantum fields. There are several distinct ways in which tachyonic particles could be embedded into a field theory.

Fields with imaginary mass

In the paper that coined the term "tachyon", Gerald Feinberg studied Lorentz invariant quantum fields with imaginary mass.[1] Because the group velocity for such a field is superluminal, naively it appears that its excitations propagate faster than light. However, it was quickly understood that the superluminal group velocity does not correspond to the speed of propagation of any localized excitation (like a particle). Instead, the negative mass represents an instability to tachyon condensation, and all excitations of the field propagate subluminally and are consistent with causality.[5] Despite having no faster-than-light propagation, such fields are referred to simply as "tachyons" in many sources.[3][6][24][25][26][27]
Tachyonic fields play an important role in modern physics. Perhaps the most famous is the Higgs boson of the Standard Model of particle physics, which—in its uncondensed phase—has an imaginary mass. In general, the phenomenon of spontaneous symmetry breaking, which is closely related to tachyon condensation, plays a very important role in many aspects of theoretical physics, including the Ginzburg–Landau and BCS theories of superconductivity. Another example of a tachyonic field is the tachyon of bosonic string theory.[24][26][28]

Tachyons are predicted by bosonic string theory and also the NS (which is the open bosonic sector) and NS-NS (which is the closed bosonic sector) sectors of RNS Superstring theory before GSO projection. However, due to the Sen conjecture—also known as tachyon condensation—this is not possible. This resulted in the necessity for the GSO projection.

Lorentz-violating theories

In theories that do not respect Lorentz invariance the speed of light is not (necessarily) a barrier, and particles can travel faster than the speed of light without infinite energy or causal paradoxes.[22] A class of field theories of that type are the so-called Standard Model extensions. However, the experimental evidence for Lorentz invariance is extremely good, so such theories are very tightly constrained.[29][30]

Fields with non-canonical kinetic term

By modifying the kinetic energy of the field, it is possible to produce Lorentz invariant field theories with excitations that propagate superluminally.[5][23] However, such theories in general do not have a well-defined Cauchy problem (for reasons related to the issues of causality discussed above), and are probably inconsistent quantum mechanically.

History

As mentioned above, the term "tachyon" was coined by Gerald Feinberg in a 1967 paper titled "Possibility of Faster-Than-Light Particles".[1] He had been inspired by the science-fiction story "Beep" by James Blish.[31] Feinberg studied the kinematics of such particles according to special relativity. In his paper he also introduced fields with imaginary mass (now also referred to as "tachyons") in an attempt to understand the microphysical origin such particles might have.

The first hypothesis regarding faster-than-light particles is sometimes attributed to German physicist Arnold Sommerfeld in 1904,[32] and more recent discussions happened in 1962[2] and 1969.[33]

In fiction

Tachyons have appeared in many works of fiction. They have been used as a standby mechanism upon which many science fiction authors rely to establish faster-than-light communication, with or without reference to causality issues. The word tachyon has become widely recognized to such an extent that it can impart a science-fictional connotation even if the subject in question has no particular relation to superluminal travel (a form of technobabble, akin to positronic brain).
Also referenced in the movie, "K-PAX". Kevin Spacey's character claims to have traveled to Earth at Tachyon speeds. In the Watchmen comic book universe, the use of tachyons can disrupt Dr. Manhattan's ability to perceive time. Tachyons also figure prominently in the Star Trek universe, and are often associated with time travel scenarios in the Star Trek universe. Also recently mentioned in The Flash episode "the Man in the Yellow Suit".[34]

Computer-aided software engineering

From Wikipedia, the free encyclopedia ...