Search This Blog

Friday, February 20, 2015

Rare earth element (Lanthanide)



From Wikipedia, the free encyclopedia


Rare earth ore, shown with a United States penny for size comparison

These rare-earth oxides are used as tracers to determine which parts of a drainage basin are eroding. Clockwise from top center: praseodymium, cerium, lanthanum, neodymium, samarium, and gadolinium.[1]

As defined by IUPAC, a rare earth element (REE) or rare earth metal is one of a set of seventeen chemical elements in the periodic table, specifically the fifteen lanthanides, as well as scandium and yttrium.[2] Scandium and yttrium are considered rare earth elements because they tend to occur in the same ore deposits as the lanthanides and exhibit similar chemical properties.

Despite their name, rare earth elements (with the exception of the radioactive promethium) are relatively plentiful in Earth's crust, with cerium being the 25th most abundant element at 68 parts per million (similar to copper). However, because of their geochemical properties, rare earth elements are typically dispersed and not often found concentrated as rare earth minerals in economically exploitable ore deposits.[3] It was the very scarcity of these minerals (previously called "earths") that led to the term "rare earth". The first such mineral discovered was gadolinite, a compound of cerium, yttrium, iron, silicon and other elements. This mineral was extracted from a mine in the village of Ytterby in Sweden; several of the rare earth elements bear names derived from this location.

List

A table listing the seventeen rare earth elements, their atomic number and symbol, the etymology of their names, and their main usages (see also Applications of lanthanides) is provided here. Some of the rare earth elements are named after the scientists who discovered or elucidated their elemental properties, and some after their geographical discovery.

Z Symbol Name Etymology Selected applications
21 Sc Scandium from Latin Scandia (Scandinavia). Light aluminium-scandium alloys for aerospace components, additive in metal-halide lamps and mercury-vapor lamps,[4] radioactive tracing agent in oil refineries
39 Y Yttrium after the village of Ytterby, Sweden, where the first rare earth ore was discovered. Yttrium aluminium garnet (YAG) laser, yttrium vanadate (YVO4) as host for europium in TV red phosphor, YBCO high-temperature superconductors, yttria-stabilized zirconia (YSZ), yttrium iron garnet (YIG) microwave filters,[4] energy-efficient light bulbs,[5] spark plugs, gas mantles, additive to steel
57 La Lanthanum from the Greek "lanthanein", meaning to be hidden. High refractive index and alkali-resistant glass, flint, hydrogen storage, battery-electrodes, camera lenses, fluid catalytic cracking catalyst for oil refineries
58 Ce Cerium after the dwarf planet Ceres, named after the Roman goddess of agriculture. Chemical oxidizing agent, polishing powder, yellow colors in glass and ceramics, catalyst for self-cleaning ovens, fluid catalytic cracking catalyst for oil refineries, ferrocerium flints for lighters
59 Pr Praseodymium from the Greek "prasios", meaning leek-green, and "didymos", meaning twin. Rare-earth magnets, lasers, core material for carbon arc lighting, colorant in glasses and enamels, additive in didymium glass used in welding goggles,[4] ferrocerium firesteel (flint) products.
60 Nd Neodymium from the Greek "neos", meaning new, and "didymos", meaning twin. Rare-earth magnets, lasers, violet colors in glass and ceramics, didymium glass, ceramic capacitors
61 Pm Promethium after the Titan Prometheus, who brought fire to mortals. Nuclear batteries
62 Sm Samarium after mine official, Vasili Samarsky-Bykhovets. Rare-earth magnets, lasers, neutron capture, masers
63 Eu Europium after the continent of Europe. Red and blue phosphors, lasers, mercury-vapor lamps, fluorescent lamps, NMR relaxation agent
64 Gd Gadolinium after Johan Gadolin (1760–1852), to honor his investigation of rare earths. Rare-earth magnets, high refractive index glass or garnets, lasers, X-ray tubes, computer memories, neutron capture, MRI contrast agent, NMR relaxation agent, magnetostrictive alloys such as Galfenol, steel additive
65 Tb Terbium after the village of Ytterby, Sweden. Green phosphors, lasers, fluorescent lamps, magnetostrictive alloys such as Terfenol-D
66 Dy Dysprosium from the Greek "dysprositos", meaning hard to get. Rare-earth magnets, lasers, magnetostrictive alloys such as Terfenol-D
67 Ho Holmium after Stockholm (in Latin, "Holmia"), native city of one of its discoverers. Lasers, wavelength calibration standards for optical spectrophotometers, magnets
68 Er Erbium after the village of Ytterby, Sweden. Infrared lasers, vanadium steel, fiber-optic technology
69 Tm Thulium after the mythological northern land of Thule. Portable X-ray machines, metal-halide lamps, lasers
70 Yb Ytterbium after the village of Ytterby, Sweden. Infrared lasers, chemical reducing agent, decoy flares, stainless steel, stress gauges, nuclear medicine
71 Lu Lutetium after Lutetia, the city that later became Paris. Positron emission tomography – PET scan detectors, high-refractive-index glass, lutetium tantalate hosts for phosphors

A mnemonic for the names of the sixth-row elements in order is "Lately college parties never produce sexy European girls that drink heavily even though you look".[6]

Abbreviations

The following abbreviations are often used:
  • RE = rare earth
  • REM = rare-earth metals
  • REE = rare-earth elements
  • REO = rare-earth oxides
  • REY = rare-earth elements and yttrium
  • LREE = light rare earth elements (Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd; also known as the cerium group)[7][8]
  • HREE = heavy rare earth elements (Y, Tb, Dy, Ho, Er, Tm, Yb, and Lu; also known as the yttrium group)[7][8]
The densities of the LREEs (as pure elements) range from 2.989 (scandium) to 7.9 g/cc (gadolinium), whereas those of the HREEs are from 8.2 to 9.8, except for yttrium (4.47) and ytterbium (between 6.9 and 7). The distinction between the groups is more to do with atomic volume and geological behavior (see lower down).

Discovery and early history

Rare earth elements became known to the world with the discovery of the black mineral "Ytterbite" (renamed to Gadolinite in 1800) by Lieutenant Carl Axel Arrhenius in 1787, at a quarry in the village of Ytterby, Sweden.[9]

Arrhenius's "Ytterbite" reached Johan Gadolin, a Royal Academy of Turku professor, and his analysis yielded an unknown oxide (earth) that he called yttria. Anders Gustav Ekeberg isolated beryllium from the gadolinite but failed to recognize other elements that the ore contained. After this discovery in 1794 a mineral from Bastnäs near Riddarhyttan, Sweden, which was believed to be an irontungsten mineral, was re-examined by Jöns Jacob Berzelius and Wilhelm Hisinger. In 1803 they obtained a white oxide and called it ceria. Martin Heinrich Klaproth independently discovered the same oxide and called it ochroia.

Thus by 1803 there were two known rare earth elements, Yttrium and Cerium, although it took another 30 years for researchers to determine that other elements were contained in the two ores ceria and yttria (the similarity of the rare earth metals' chemical properties made their separation difficult).

In 1839 Carl Gustav Mosander, an assistant of Berzelius, separated ceria by heating the nitrate and dissolving the product in nitric acid. He called the oxide of the soluble salt lanthana. It took him three more years to separate the lanthana further into didymia and pure lanthana. Didymia, although not further separable by Mosander's techniques, was a mixture of oxides.

In 1842 Mosander also separated the yttria into three oxides: pure yttria, terbia and erbia (all the names are derived from the town name "Ytterby"). The earth giving pink salts he called terbium; the one that yielded yellow peroxide he called erbium.

So in 1842 the number of rare earth elements had reached six: Yttrium, Cerium, lanthanum, Didymium, Erbium and Terbium.

Nils Johan Berlin and Marc Delafontaine tried also to separate the crude yttria and found the same substances that Mosander obtained, but Berlin named (1860) the substance giving pink salts erbium and Delafontaine named the substance with the yellow peroxide Terbium. This confusion led to several false claims of new elements, such as the mosandrium of J. Lawrence Smith, or the philippium and decipium of Delafontaine.

Spectroscopy

There were no further discoveries for 30 years, and the element didymium was listed in the periodic table of elements with a molecular mass of 138. In 1879 Delafontaine used the new physical process of optical-flame spectroscopy, and he found several new spectral lines in didymia. Also in 1879, the new element samarium was isolated by Paul Émile Lecoq de Boisbaudran from the mineral samarskite.

The samaria earth was further separated by Lecoq de Boisbaudran in 1886 and a similar result was obtained by Jean Charles Galissard de Marignac by direct isolation from samarskite. They named the element gadolinium after Johan Gadolin, and its oxide was named "gadolinia".

Further spectroscopic analysis between 1886 and 1901 of samaria, yttria, and samarskite by William Crookes, Lecoq de Boisbaudran and Eugène-Anatole Demarçay yielded several new spectroscopic lines that indicated the existence of an unknown element. The fractional crystallization of the oxides then yielded europium in 1901.

In 1839 the third source for rare earths became available. This is a mineral similar to gadolinite, uranotantalum (now called "samarskite"). This mineral from Miass in the southern Ural Mountains was documented by Gustave Rose. The Russian chemist R. Harmann proposed that a new element he called "ilmenium" should be present in this mineral, but later, Christian Wilhelm Blomstrand, Galissard de Marignac, and Heinrich Rose found only tantalum and niobium (columbium) in it.

The exact number of rare earth elements that existed was highly unclear, and a maximum number of 25 was estimated. The use of X-ray spectra (obtained by X-ray crystallography) by Henry Gwyn Jeffreys Moseley made it possible to assign atomic numbers to the elements. Moseley found that the exact number of lanthanides had to be 15 and that element 61 had yet to be discovered.

Using these facts about atomic numbers from X-ray crystallography, Moseley also showed that hafnium (element 72) would not be a rare earth element. Moseley was killed in World War I in 1915, years before hafnium was discovered. Hence, the claim of Georges Urbain that he had discovered element 72 was untrue. Hafnium is an element that lies in the periodic table immediately below zirconium, and hafnium and zirconium are very similar in their chemical and physical properties.

During the 1940s, Frank Spedding and others in the United States (during the Manhattan Project) developed the chemical ion exchange procedures for separating and purifying the rare earth elements. This method was first applied to the actinides for separating plutonium-239 and neptunium, from uranium, thorium, actinium, and the other actinide rare earths in the materials produced in nuclear reactors. The plutonium-239 was very desirable because it is a fissile material.

The principal sources of rare earth elements are the minerals bastnäsite, monazite, and loparite and the lateritic ion-adsorption clays. Despite their high relative abundance, rare earth minerals are more difficult to mine and extract than equivalent sources of transition metals (due in part to their similar chemical properties), making the rare earth elements relatively expensive. Their industrial use was very limited until efficient separation techniques were developed, such as ion exchange, fractional crystallization and liquid-liquid extraction during the late 1950s and early 1960s.[10]

Early classification

Before the time that ion exchange methods and elution were available, the separation of the rare earths was primarily achieved by repeated precipitation or crystallisation. In those days, the first separation was into two main groups, the cerium group earths (scandium, lanthanum, cerium, praseodymium, neodymium, and samarium) and the yttrium group earths (yttrium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium). Europium, gadolinium, and terbium were either considered as a separate group of rare earth elements (the terbium group), or europium was included in the cerium group, and gadoliniun and terbium were included in the yttrium group. The reason for this division arose from the difference in solubility of rare earth double sulfates with sodium and potassium. The sodium double sulfates of the cerium group are difficultly soluble, those of the terbium group slightly, and those of the yttrium group are very soluble.[11]

Origin

Rare earth elements, except scandium, are heavier than iron and thus are produced by supernova nucleosynthesis or the s-process in asymptotic giant branch stars. In nature, spontaneous fission of uranium-238 produces trace amounts of radioactive promethium, but most promethium is synthetically produced in nuclear reactors.

Rare earth elements change through time in small quantities (ppm, parts per million), so their proportion can be used for geochronology and dating fossils.

Geological distribution


Abundance of elements in Earth's crust per million of Si atoms

Rare earth cerium is actually the 25th most abundant element in Earth's crust, having 68 parts per million (about as common as copper). Only the highly unstable and radioactive promethium "rare earth" is quite scarce.

The rare earth elements are often found together. The longest-lived isotope of promethium has a half life of 17.7 years, so the element exists in nature in only negligible amounts (approximately 572 g in the entire Earth's crust).[12] Promethium is one of the two elements that do not have stable (non-radioactive) isotopes and are followed by (i.e. with higher atomic number) stable elements (the other being technetium).

Due to lanthanide contraction, yttrium, which is trivalent, is of similar ionic size as dysprosium and its lanthanide neighbors. Due to the relatively gradual decrease in ionic size with increasing atomic number, the rare earth elements have always been difficult to separate. Even with eons of geological time, geochemical separation of the lanthanides has only rarely progressed much farther than a broad separation between light versus heavy lanthanides, otherwise known as the cerium and yttrium earths. This geochemical divide is reflected in the first two rare earths that were discovered, yttria in 1794 and ceria in 1803. As originally found, each comprised the entire mixture of the associated earths. Rare earth minerals, as found, usually are dominated by one group or the other, depending on which size range best fits the structural lattice.

Thus, among the anhydrous rare earth phosphates, it is the tetragonal mineral xenotime that incorporates yttrium and the yttrium earths, whereas the monoclinic monazite phase incorporates cerium and the cerium earths preferentially. The smaller size of the yttrium group allows it a greater solid solubility in the rock-forming minerals that comprise Earth's mantle, and thus yttrium and the yttrium earths show less enrichment in Earth's crust relative to chondritic abundance, than does cerium and the cerium earths. This has economic consequences: large ore bodies of the cerium earths are known around the world, and are being exploited. Corresponding orebodies for yttrium tend to be rarer, smaller, and less concentrated. Most of the current supply of yttrium originates in the "ion absorption clay" ores of Southern China. Some versions provide concentrates containing about 65% yttrium oxide, with the heavy lanthanides being present in ratios reflecting the Oddo-Harkins rule: even-numbered heavy lanthanides at abundances of about 5% each, and odd-numbered lanthanides at abundances of about 1% each. Similar compositions are found in xenotime or gadolinite.

Well-known minerals containing yttrium include gadolinite, xenotime, samarskite, euxenite, fergusonite, yttrotantalite, yttrotungstite, yttrofluorite (a variety of fluorite), thalenite, yttrialite. Small amounts occur in zircon, which derives its typical yellow fluorescence from some of the accompanying heavy lanthanides. The zirconium mineral eudialyte, such as is found in southern Greenland, contains small but potentially useful amounts of yttrium. Of the above yttrium minerals, most played a part in providing research quantities of lanthanides during the discovery days. Xenotime is occasionally recovered as a byproduct of heavy sand processing, but is not as abundant as the similarly recovered monazite (which typically contains a few percent of yttrium). Uranium ores from Ontario have occasionally yielded yttrium as a byproduct.

Well-known minerals containing cerium and the light lanthanides include bastnäsite, monazite, allanite, loparite, ancylite, parisite, lanthanite, chevkinite, cerite, stillwellite, britholite, fluocerite, and cerianite. Monazite (marine sands from Brazil, India, or Australia; rock from South Africa), bastnäsite (from Mountain Pass, California, or several localities in China), and loparite (Kola Peninsula, Russia) have been the principal ores of cerium and the light lanthanides.

In 2011, Yasuhiro Kato, a geologist at the University of Tokyo who led a study of Pacific Ocean seabed mud, published results indicating the mud could hold rich concentrations of rare earth minerals. The deposits, studied at 78 sites, came from "[h]ot plumes from hydrothermal vents pull[ing] these materials out of seawater and deposit[ing] them on the seafloor, bit by bit, over tens of millions of years. One square patch of metal-rich mud 2.3 kilometers wide might contain enough rare earths to meet most of the global demand for a year, Japanese geologists report July 3 in Nature Geoscience." "I believe that rare earth resources undersea are much more promising than on-land resources," said Kato. "[C]oncentrations of rare earths were comparable to those found in clays mined in China. Some deposits contained twice as much heavy rare earths such as dysprosium, a component of magnets in hybrid car motors."[13]

Global rare earth production


Global production 1950–2000

Until 1948, most of the world's rare earths were sourced from placer sand deposits in India and Brazil.[14] Through the 1950s, South Africa took the status as the world's rare earth source, after large veins of rare earth bearing monazite were discovered there.[14] Through the 1960s until the 1980s, the Mountain Pass rare earth mine in California was the leading producer. Today, the Indian and South African deposits still produce some rare earth concentrates, but they are dwarfed by the scale of Chinese production. In 2010, China produced over 95% of the world's rare earth supply, mostly in Inner Mongolia,[3][15] although it had only 37% of proven reserves;[16] the latter number has been reported to be only 23% in 2012.[17] All of the world's heavy rare earths (such as dysprosium) come from Chinese rare earth sources such as the polymetallic Bayan Obo deposit.[15][18] In 2010, the United States Geological Survey (USGS) released a study that found that the United States had 13 million metric tons of rare earth elements.[19]

New demand has recently strained supply, and there is growing concern that the world may soon face a shortage of the rare earths.[20] In several years from 2009 worldwide demand for rare earth elements is expected to exceed supply by 40,000 tonnes annually unless major new sources are developed.[21]

China

These concerns have intensified due to the actions of China, the predominant supplier.[22] Specifically, China has announced regulations on exports and a crackdown on smuggling.[23] On September 1, 2009, China announced plans to reduce its export quota to 35,000 tons per year in 2010–2015 to conserve scarce resources and protect the environment.[24] On October 19, 2010 China Daily, citing an unnamed Ministry of Commerce official, reported that China will "further reduce quotas for rare earth exports by 30 percent at most next year to protect the precious metals from over-exploitation".[25] The government in Beijing further increased its control by forcing smaller, independent miners to merge into state-owned corporations or face closure. At the end of 2010, China announced that the first round of export quotas in 2011 for rare earths would be 14,446 tons, which was a 35% decrease from the previous first round of quotas in 2010.[26] China announced further export quotas on 14 July 2011 for the second half of the year with total allocation at 30,184 tons with total production capped at 93,800 tonnes.[27] In September 2011 China announced the halt in production of three of its eight major rare earth mines, responsible for almost 40% of China's total rare earth production.[28] In March 2012, the US, EU, and Japan confronted China at WTO about these export and production restrictions. China responded with claims that the restrictions had environmental protection in mind.[29] In August 2012, China announced a further 20% reduction in production.[30] These restrictions have damaged industries in other countries and forced producers of rare earth products to relocate their operations to China.[29] The Chinese restrictions on supply failed in 2012 as prices dropped in response to the opening of other sources.[31] The price of dysprosium oxide cost $994/kg in 2011, but dropped to $265/kg by 2014.[32]

On August 29, 2014 the WTO ruled that China had broken free trade agreements, and the WTO said in the summary of key findings that
the Panel concluded that the overall effect of the foreign and domestic restrictions is to encourage domestic extraction and secure preferential use of those materials by Chinese manufacturers.[33]
China declared it would implement the ruling on September 26, 2014 but would need some time to do so. By January 5, 2015, China had lifted all quotas from the export of rare earths, however export licences will still be required.[32]

Outside of China

As a result of the increased demand and tightening restrictions on exports of the metals from China, some countries are stockpiling rare earth resources.[34] Searches for alternative sources in Australia, Brazil, Canada, South Africa, Tanzania, Greenland, and the United States are ongoing.[35] Mines in these countries were closed when China undercut world prices in the 1990s, and it will take a few years to restart production as there are many barriers to entry.[23] One example is the Mountain Pass mine in California, that announced its resumption of operations on a start-up basis on August 27, 2012.[15][36] Other significant sites under development outside of China include the Nolans Project in Central Australia, the remote Hoidas Lake project in northern Canada,[37] and the Mount Weld project in Australia.[15][36][38] The Hoidas Lake project has the potential to supply about 10% of the $1 billion of REE consumption that occurs in North America every year.[39] Vietnam signed an agreement in October 2010 to supply Japan with rare earths[40] from its northwestern Lai Châu Province.[41]

Also under consideration for mining are sites such as Thor Lake in the Northwest Territories, various locations in Vietnam,[15][21][42] and a site in southeast Nebraska in the US, where Quantum Rare Earth Development, a Canadian company, is currently conducting test drilling and economic feasibility studies toward opening a niobium mine.[43] Additionally, a large deposit of rare earth minerals was recently discovered in Kvanefjeld in southern Greenland.[44] Pre-feasibility drilling at this site has confirmed significant quantities of black lujavrite, which contains about 1% rare-earth oxides (REO).[45] The European Union has urged Greenland to restrict Chinese development of rare-earth projects there, but as of early 2013, the government of Greenland has said that it has no plans to impose such restrictions.[46] Many Danish politicians have expressed concerns that other nations, including China, could gain influence in thinly populated Greenland, given the number of foreign workers and investment that could come from Chinese companies in the near future because of the law passed December 2012.[47]

Adding to potential mine sites, ASX listed Peak Resources announced in February 2012, that their Tanzanian based Ngualla project contained not only the 6th largest deposit by tonnage outside of China, but also the highest grade of rare earth elements of the 6.[48]

North Korea has been reported to have sold rare earth metals to China. During May and June 2014, North Korea sold over 1.88 million dollar's worth of rare earth metals to China.[49] Other sources suggest that North Korea has the world's second largest reserve of rare earth metals, with potentially over 20 million tons in total.[50]

Other sources

Significant quantities of rare earth oxides are found in tailings accumulated from 50 years of uranium ore, shale and loparite mining at Sillamäe, Estonia.[51] Due to the rising prices of rare earths, extraction of these oxides has become economically viable. The country currently exports around 3,000 tonnes per year, representing around 2% of world production.[52] Similar resources are suspected in the western United States, where gold rush-era mines are believed to have discarded large amounts of rare earths, because they had no value at the time.[53]

Nuclear reprocessing is another potential source of rare earth or any other elements.[citation needed] Nuclear fission of uranium or plutonium produces a full range[citation needed] of elements, including all their isotopes.[citation needed] However, due to the radioactivity of many of these isotopes, it is unlikely that extracting them from the mixture can be done safely and economically.

In May 2012, researchers from two prevalent universities in Japan announced that they had discovered rare earths in Ehime Prefecture, Japan.[54][55] In 2012, Japanese scientists discovered about 6.8 million tons of rare earth elements near the island of Minami-Tori-Shima, enough to supply Japan's current consumption for over 200 years. Around 90% of the world's production of REE comes from China, and Japan imports 60% of that.[56]

Recycling

Another recently developed source of rare earths is electronic waste and other wastes that have significant rare earth components. New advances in recycling technology have made extraction of rare earths from these materials more feasible,[57] and recycling plants are currently operating in Japan, where there is an estimated 300,000 tons of rare earths stored in unused electronics.[58] In France, the Rhodia group is setting up two factories, in La Rochelle and Saint-Fons, that will produce 200 tons of rare earths a year from used fluorescent lamps, magnets and batteries.[59][60]

Malaysian refining plans

In early 2011, Australian mining company, Lynas, was reported to be "hurrying to finish" a US$230 million rare earth refinery on the eastern coast of Peninsular Malaysia's industrial port of Kuantan. The plant would refine ore— lanthanides concentrate from the Mount Weld mine in Australia. The ore would be trucked to Fremantle and transported by container ship to Kuantan. However, the Malaysian authorities confirmed that as of October 2011, Lynas was not given any permit to import any rare earth ore into Malaysia. On February 2, 2012, the Malaysian AELB (Atomic Energy Licensing Board) recommended that Lynas be issued a Temporary Operating License (TOL) subject to completion of a number of conditions. On April 3, 2012, Lynas announced to the Malaysian media that these conditions had been met, and was now waiting on the issuance of the licence. Within two years, Lynas was said to expect the refinery to be able to meet nearly a third of the world's demand for rare earth materials, not counting China."[61] The Kuantan development brought renewed attention to the Malaysian town of Bukit Merah in Perak, where a rare-earth mine operated by a Mitsubishi Chemical subsidiary, Asian Rare Earth, closed in 1992 and left continuing environmental and health concerns.[62] In mid-2011, after protests, Malaysian government restrictions on the Lynas plant were announced. At that time, citing subscription-only Dow Jones Newswire reports, a Barrons report said the Lynas investment was $730 million, and the projected share of the global market it would fill put at "about a sixth."[63] An independent review was initiated by Malaysian Government and United Nations and conducted by the International Atomic Energy Agency (IAEA) between 29 May and 3 June 2011 to address concerns of radioactive hazards. The IAEA team was not able to identify any non-compliance with international radiation safety standards.[64]

On 2 September 2014, Lynas was issued a 2-year Full Operating Stage License (FOSL) by the Malaysian Atomic Energy Licensing Board (AELB).[65]

Environmental considerations


Satellite image of the Bayan Obo Mining District, 2006.

Mining, refining, and recycling of rare earths have serious environmental consequences if not properly managed. A particular hazard is mildly radioactive slurry tailings resulting from the common occurrence of thorium and uranium in rare earth element ores.[66] Additionally, toxic acids are required during the refining process.[16] Improper handling of these substances can result in extensive environmental damage. In May 2010, China announced a major, five-month crackdown on illegal mining in order to protect the environment and its resources. This campaign is expected to be concentrated in the South,[67] where mines – commonly small, rural, and illegal operations – are particularly prone to releasing toxic wastes into the general water supply.[15][68] However, even the major operation in Baotou, in Inner Mongolia, where much of the world's rare earth supply is refined, has caused major environmental damage.[16]

Residents blamed a rare earth refinery at Bukit Merah for birth defects and eight leukemia cases within five years in a community of 11,000 — after many years with no leukemia cases. Seven of the leukemia victims died. Osamu Shimizu, a director of Asian Rare Earth, said, "the company might have sold a few bags of calcium phosphate fertilizer on a trial basis as it sought to market byproducts; calcium phosphate is not radioactive or dangerous," in reply to a former resident of Bukit Merah who said, "The cows that ate the grass [grown with the fertilizer] all died."[69] Malaysia's Supreme Court ruled on 23 December 1993 that there was no evidence that the local chemical joint venture Asian Rare Earth was contaminating the local environment.[70]

The Bukit Merah mine in Malaysia has been the focus of a US$100 million cleanup that is proceeding in 2011. After having accomplished the hilltop entombment of 11,000 truckloads of radioactively contaminated material, the project is expected to entail in summer, 2011, the removal of "more than 80,000 steel barrels of radioactive waste to the hilltop repository."[62]

In May 2011, after the Fukushima Daiichi nuclear disaster, widespread protests took place in Kuantan over the Lynas refinery and radioactive waste from it. The ore to be processed has very low levels of thorium, and Lynas founder and chief executive Nicholas Curtis said "There is absolutely no risk to public health." T. Jayabalan, a doctor who says he has been monitoring and treating patients affected by the Mitsubishi plant, "is wary of Lynas's assurances. The argument that low levels of thorium in the ore make it safer doesn't make sense, he says, because radiation exposure is cumulative."[69] Construction of the facility has been halted until an independent United Nations IAEA panel investigation is completed, which is expected by the end of June 2011.[71] New restrictions were announced by the Malaysian government in late June.[63]

IAEA panel investigation is completed and no construction has been halted. Lynas is on budget and on schedule to start producing 2011. The IAEA report has concluded in a report issued on Thursday June 2011 said it did not find any instance of "any non-compliance with international radiation safety standards" in the project.[72]

Geo-political considerations

China has officially cited resource depletion and environmental concerns as the reasons for a nationwide crackdown on its rare earth mineral production sector.[28] However, non-environmental motives have also been imputed to China's rare earth policy.[16] According to The Economist, "Slashing their exports of rare-earth metals...is all about moving Chinese manufacturers up the supply chain, so they can sell valuable finished goods to the world rather than lowly raw materials."[73] One possible example is the division of General Motors that deals with miniaturized magnet research, which shut down its US office and moved its entire staff to China in 2006[74] (it should be noted that China's export quota only applies to the metal but not products made from these metals such as magnets).

It was reported,[75] but officially denied,[by whom?][76] that China instituted an export ban on shipments of rare earth oxides (but not alloys) to Japan on 22 September 2010, in response to the detainment of a Chinese fishing boat captain by the Japanese Coast Guard.[77] On September 2, 2010, a few days before the fishing boat incident, The Economist reported that "China...in July announced the latest in a series of annual export reductions, this time by 40% to precisely 30,258 tonnes."[78]

The United States Department of Energy in its 2010 Critical Materials Strategy report identified dysprosium as the element that was most critical in terms of import reliance.[79]

A 2011 report issued by the US Geological Survey and US Department of the Interior, "China's Rare-Earth Industry," outlines industry trends within China and examines national policies that may guide the future of the country's production. The report notes that China's lead in the production of rare-earth minerals has accelerated over the past two decades. In 1990, China accounted for only 27% of such minerals. In 2009, world production was 132,000 metric tons; China produced 129,000 of those tons. According to the report, recent patterns suggest that China will slow the export of such materials to the world: "Owing to the increase in domestic demand, the Government has gradually reduced the export quota during the past several years." In 2006, China allowed 47 domestic rare-earth producers and traders and 12 Sino-foreign rare-earth producers to export. Controls have since tightened annually; by 2011, only 22 domestic rare-earth producers and traders and 9 Sino-foreign rare-earth producers were authorized. The government's future policies will likely keep in place strict controls: "According to China's draft rare-earth development plan, annual rare-earth production may be limited to between 130,000 and 140,000 [metric tons] during the period from 2009 to 2015. The export quota for rare-earth products may be about 35,000 [metric tons] and the Government may allow 20 domestic rare-earth producers and traders to export rare earths."[80]

The United States Geological Survey is actively surveying southern Afghanistan for rare earth deposits under the protection of United States military forces. Since 2009 the USGS has conducted remote sensing surveys as well as fieldwork to verify Soviet claims that volcanic rocks containing rare earth metals exist in Helmand province near the village of Khanneshin. The USGS study team has located a sizable area of rocks in the center of an extinct volcano containing light rare earth elements including cerium and neodymium. It has mapped 1.3 million metric tons of desirable rock, or about 10 years of supply at current demand levels. The Pentagon has estimated its value at about $7.4 billion.[81]

Rare earth pricing

Rare earth elements are not exchange-traded in the same way that precious (for instance, gold and silver) or non-ferrous metals (such as nickel, tin, copper, and aluminium) are. Instead they are sold on the private market, which makes their prices difficult to monitor and track. The 17 elements are not usually sold in their pure form, but instead are distributed in mixtures of varying purity, e.g. "Neodymium metal ≥ 99%". As such, pricing can vary based on the quantity and quality required by the end user's application.

Carcinogen



From Wikipedia, the free encyclopedia


The international pictogram for chemicals that are sensitising, mutagenic, carcinogenic or toxic to reproduction.

A carcinogen is any substance, radionuclide, or radiation that is an agent directly involved in causing cancer. This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive substances are considered carcinogens, but their carcinogenic activity is attributed to the radiation, for example gamma rays and alpha particles, which they emit. Common examples of non-radioactive carcinogens are inhaled asbestos, certain dioxins, and tobacco smoke. Although the public generally associates carcinogenicity with synthetic chemicals, it is equally likely to arise in both natural and synthetic substances.[1] Carcinogens are not necessarily immediately toxic, thus their effect can be insidious.

Cancer is any disease in which normal cells are damaged and do not undergo programmed cell death as fast as they divide via mitosis. Carcinogens may increase the risk of cancer by altering cellular metabolism or damaging DNA directly in cells, which interferes with biological processes, and induces the uncontrolled, malignant division, ultimately leading to the formation of tumors. Usually, severe DNA damage leads to apoptosis, but if the programmed cell death pathway is damaged, then the cell cannot prevent itself from becoming a cancer cell.

There are many natural carcinogens. Aflatoxin B1, which is produced by the fungus Aspergillus flavus growing on stored grains, nuts and peanut butter, is an example of a potent, naturally occurring microbial carcinogen. Certain viruses such as hepatitis B and human papilloma virus have been found to cause cancer in humans. The first one shown to cause cancer in animals is Rous sarcoma virus, discovered in 1910 by Peyton Rous. Other infectious organisms which cause cancer in humans include some bacteria (e.g. Helicobacter pylori [2][3]) and helminths (e.g. Opisthorchis viverrini [4] and Clonorchis sinensis [5]).

Dioxins and dioxin-like compounds, benzene, kepone, EDB, and asbestos have all been classified as carcinogenic.[6] As far back as the 1930s, industrial smoke and tobacco smoke were identified as sources of dozens of carcinogens, including benzo[a]pyrene, tobacco-specific nitrosamines such as nitrosonornicotine, and reactive aldehydes such as formaldehyde—which is also a hazard in embalming and making plastics. Vinyl chloride, from which PVC is manufactured, is a carcinogen and thus a hazard in PVC production.

Co-carcinogens are chemicals that do not necessarily cause cancer on their own, but promote the activity of other carcinogens in causing cancer.

After the carcinogen enters the body, the body makes an attempt to eliminate it through a process called biotransformation. The purpose of these reactions is to make the carcinogen more water-soluble so that it can be removed from the body. However, in some cases, these reactions can also convert a less toxic carcinogen into a more toxic carcinogen.

DNA is nucleophilic, therefore soluble carbon electrophiles are carcinogenic, because DNA attacks them. For example, some alkenes are toxicated by human enzymes to produce an electrophilic epoxide. DNA attacks the epoxide, and is bound permanently to it. This is the mechanism behind the carcinogenicity of benzo[a]pyrene in tobacco smoke, other aromatics, aflatoxin and mustard gas.

IUPAC definition
Carcinogenicity: Ability or tendency to produce cancer.
Note: In general, polymers are not known as carcinogens or mutagens,
however, residual monomers or additives can cause genetic mutations.[7]

Radiation

CERCLA identifies all radionuclides as carcinogens, although the nature of the emitted radiation (alpha, beta, gamma, or neutron and the radioactive strength), its consequent capacity to cause ionization in tissues, and the magnitude of radiation exposure, determine the potential hazard. Carcinogenicity of radiation depends of the type of radiation, type of exposure, and penetration. For example, alpha radiation has low penetration and is not a hazard outside the body, but emitters are carcinogenic when inhaled or ingested.
For example, Thorotrast, a (incidentally radioactive) suspension previously used as a contrast medium in x-ray diagnostics, is a potent human carcinogen known because of its retention within various organs and persistent emission of alpha particles.

Not all types of electromagnetic radiation are carcinogenic. Low-energy waves on the electromagnetic spectrum including radio waves, microwaves, infrared radiation and visible light are thought not to be, because they have insufficient energy to break chemical bonds. Evidence for carcinogenic effects of non-ionizing radiation is generally inconclusive, though there are some documented cases of radar technicians with prolonged high exposure experiencing significantly higher cancer incidence.[8] Higher-energy radiation, including ultraviolet radiation (present in sunlight), x-rays, and gamma radiation, generally is carcinogenic, if received in sufficient doses.

Low level ionizing radiation may induce irreparable DNA damage (leading to replicational and transcriptional errors needed for neoplasia or may trigger viral interactions) leading to pre-mature aging and cancer.[9][10][11]

Substances or foods irradiated with electrons or electromagnetic radiation (such as microwave, X-ray or gamma) are not carcinogenic.[citation needed] In contrast, non-electromagnetic neutron radiation produced inside nuclear reactors can produce secondary radiation through nuclear transmutation.

In prepared food

Cooking food at high temperatures, for example grilling or barbecuing meats, can lead to the formation of minute quantities of many potent carcinogens that are comparable to those found in cigarette smoke (i.e., benzo[a]pyrene).[12] Charring of food resembles coking and tobacco pyrolysis, and produces similar carcinogens. There are several carcinogenic pyrolysis products, such as polynuclear aromatic hydrocarbons, which are converted by human enzymes into epoxides, which attach permanently to DNA. Pre-cooking meats in a microwave oven for 2–3 minutes before grilling shortens the time on the hot pan, and removes heterocyclic amine (HCA) precursors, which can help minimize the formation of these carcinogens.[13]

Reports from the Food Standards Agency have found that the known animal carcinogen acrylamide is generated in fried or overheated carbohydrate foods (such as french fries and potato chips).[14] Studies are underway at the FDA and European regulatory agencies to assess its potential risk to humans.

Mechanisms of carcinogenicity

Carcinogens can be classified as genotoxic or nongenotoxic. Genotoxins cause irreversible genetic damage or mutations by binding to DNA. Genotoxins include chemical agents like N-nitroso-N-methylurea (NMU) or non-chemical agents such as ultraviolet light and ionizing radiation. Certain viruses can also act as carcinogens by interacting with DNA.

Nongenotoxins do not directly affect DNA but act in other ways to promote growth. These include hormones and some organic compounds.[15]

Classification

Approximate equivalences
between classification schemes
IARC GHS NTP ACGIH EU
Group 1 Cat. 1A Known A1 Cat. 1
Group 2A Cat. 1B Reasonably
suspected
A2 Cat. 2
Group 2B
Cat. 2 A3 Cat. 3
Group 3
A4
Group 4 A5

International Agency for Research on Cancer

The International Agency for Research on Cancer (IARC) is an intergovernmental agency established in 1965, which forms part of the World Health Organization of the United Nations. It is based in Lyon, France. Since 1971 it has published a series of Monographs on the Evaluation of Carcinogenic Risks to Humans[16] that have been highly influential in the classification of possible carcinogens.
  • Group 1: the agent (mixture) is definitely carcinogenic to humans. The exposure circumstance entails exposures that are carcinogenic to humans.
  • Group 2A: the agent (mixture) is probably carcinogenic to humans. The exposure circumstance entails exposures that are probably carcinogenic to humans.
  • Group 2B: the agent (mixture) is possibly carcinogenic to humans. The exposure circumstance entails exposures that are possibly carcinogenic to humans.
  • Group 3: the agent (mixture or exposure circumstance) is not classifiable as to its carcinogenicity to humans.
  • Group 4: the agent (mixture) is probably not carcinogenic to humans.

Globally Harmonized System

The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is a United Nations initiative to attempt to harmonize the different systems of assessing chemical risk which currently exist (as of March 2009) around the world. It classifies carcinogens into two categories, of which the first may be divided again into subcategories if so desired by the competent regulatory authority:
  • Category 1: known or presumed to have carcinogenic potential for humans
    • Category 1A: the assessment is based primarily on human evidence
    • Category 1B: the assessment is based primarily on animal evidence
  • Category 2: suspected human carcinogens

U.S. National Toxicology Program

The National Toxicology Program of the U.S. Department of Health and Human Services is mandated to produce a biennial Report on Carcinogens.[17] As of June 2011, the latest edition was the 12th report (2011).[6] It classifies carcinogens into two groups:
  • Known to be a human carcinogen
  • Reasonably anticipated to be a human carcinogen

American Conference of Governmental Industrial Hygienists

The American Conference of Governmental Industrial Hygienists (ACGIH) is a private organization best known for its publication of threshold limit values (TLVs) for occupational exposure and monographs on workplace chemical hazards. It assesses carcinogenicity as part of wider assessment of the occupational hazards of chemicals.
  • Group A1: Confirmed human carcinogen
  • Group A2: Suspected human carcinogen
  • Group A3: Confirmed animal carcinogen with unknown relevance to humans
  • Group A4: Not classifiable as a human carcinogen
  • Group A5: Not suspected as a human carcinogen

European Union

The European Union classification of carcinogens is contained in the Dangerous Substances Directive and the Dangerous Preparations Directive. It consists of three categories:
  • Category 1: Substances known to be carcinogenic to humans.
  • Category 2: Substances which should be regarded as if they are carcinogenic to humans.
  • Category 3: Substances which cause concern for humans, owing to possible carcinogenic effects but in respect of which the available information is not adequate for making a satisfactory assessment.
This assessment scheme is being phased out in favor of the GHS scheme (see above), to which it is very close in category definitions.

Safe Work Australia

Under a previous name, the NOHSC, in 1999 Safe Work Australia published the Approved Criteria for Classifying Hazardous Substances [NOHSC:1008(1999)].[18] Section 4.76 of this document outlines the criteria for classifying carcinogens as approved by the Australian government. This classification consists of three categories:
  • Category 1: Substances known to be carcinogenic to humans.
  • Category 2: Substances that should be regarded as if they were carcinogenic to humans.
  • Category 3: Substances that have possible carcinogenic effects in humans but about which there is insufficient information to make an assessment.

Procarcinogen

A procarcinogen is a precursor to a carcinogen. One example is nitrites when taken in by the diet. They are not carcinogenic themselves, but turn into nitrosamines in the body, which are carcinogenic.[19]

Common carcinogens

Occupational carcinogens

Occupational carcinogens are agents that pose a risk of cancer in several specific work-locations:

Carcinogen Associated cancer sites or types Occupational uses or sources
Arsenic and its compounds
  • Smelting byproduct
  • Component of:
    • Alloys
    • Electrical and semiconductor devices
    • Medications (e.g. melarsoprol)
    • Herbicides
    • Fungicides
    • Animal dips
    • Drinking water from contaminated aquifers.
Asbestos Not in widespread use, but found in:
  • Constructions
    • Roofing papers
    • Floor tiles
  • Fire-resistant textiles
  • Friction linings (only outside Europe)
    • Replacement friction linings for automobiles still may contain asbestos
Benzene
Beryllium and its compounds
  • Lung
  • Missile fuel
  • Lightweight alloys
    • Aerospace applications
    • Nuclear reactors
Cadmium and its compounds[20]
Hexavalent chromium(VI) compounds
  • Lung
  • Paints
  • Pigments
  • Preservatives
IC engine exhaust gas
Ethylene oxide
  • Leukemia
  • Ripening agent for fruits and nuts
  • Rocket propellant
  • Fumigant for foodstuffs and textiles
  • Sterilant for hospital equipment
Nickel
  • Nose
  • Lung
  • Nickel plating
  • Ferrous alloys
  • Ceramics
  • Batteries
  • Stainless-steel welding byproduct
Radon and its decay products
  • Lung
  • Uranium decay
    • Quarries and mines
    • Cellars and poorly ventilated places
Vinyl chloride
Shift work that involves
circadian disruption[22]
Involuntary smoking (Passive smoking)[23]
  • Lung
Radium-226, Radium-224,
Plutonium-238, Plutonium-239[24]
and other alpha particle
emitters with high atomic weight
Unless else specified in boxes, then ref is:[25]

Others

Major carcinogens implicated in the four most common cancers worldwide

In this section, the carcinogens implicated as the main causative agents of the four most common cancers worldwide are briefly described. These four cancers are lung, breast, colon, and stomach cancers. Together they account for about 41% of worldwide cancer incidence and 42% of cancer deaths (for more detailed information on the carcinogens implicated in these and other cancers, see references[26][27]).

Lung cancer

Lung cancer is the most common cancer in the world, both in terms of cases (1.6 million cases; 12.7% of total cancer cases) and deaths (1.4 million deaths; 18.2% of total cancer deaths).[28] Lung cancer is largely caused by tobacco smoke. Risk estimates for lung cancer in the United States indicate that tobacco smoke is responsible for 90% of lung cancers. Other factors are implicated in lung cancer, and these factors can interact synergistically with smoking, so that total attributable risk adds up to more than 100%. These factors include occupational exposure to carcinogens (about 9-15%), radon (10%) and outdoor air pollution (1-2%).[29] Tobacco smoke is a complex mixture of more than 5,300 identified chemicals. The most important carcinogens in tobacco smoke have been determined by a “Margin of Exposure” approach.[30] Using this approach, the most important tumorigenic compounds in tobacco smoke were, in order of importance, acrolein, formaldehyde, acrylonitrile, 1,3-butadiene, cadmium, acetaldehyde, ethylene oxide and isoprene. Most of these compounds cause DNA damage by forming DNA adducts or by inducing other alterations in DNA.[27] DNA damages are subject to error-prone DNA repair or can cause replication errors. Such errors in repair or replication can result in mutations in tumor suppressor genes or oncogenes leading to cancer.

Breast cancer

Breast cancer is the second most common cancer [(1.4 million cases, 10.9%), but ranks 5th as cause of death (458,000, 6.1%)].[28] Increased risk of breast cancer is associated with persistently elevated blood levels of estrogen.[31] Estrogen appears to contribute to breast carcinogenesis by three processes; (1) the metabolism of estrogen to genotoxic, mutagenic carcinogens, (2) the stimulation of tissue growth, and (3) the repression of phase II detoxification enzymes that metabolize ROS leading to increased oxidative DNA damage.[32][33][34] The major estrogen in humans, estradiol, can be metabolized to quinone derivatives that form adducts with DNA.[35] These derivatives can cause dupurination, the removal of bases from the phosphodiester backbone of DNA, followed by inaccurate repair or replication of the apurinic site leading to mutation and eventually cancer. This genotoxic mechanism may interact in synergy with estrogen receptor-mediated, persistent cell proliferation to ultimately cause breast cancer.[35] Genetic background, dietary practices and environmental factors also likely contribute to the incidence of DNA damage and breast cancer risk.

Colon cancer

Colorectal cancer is the third most common cancer [1.2 million cases (9.4%), 608,000 deaths (8.0%)].[28] Tobacco smoke may be responsible for up to 20% of colorectal cancers in the United States.[36] In addition, substantial evidence implicates bile acids as an important factor in colon cancer. Twelve studies (summarized in Bernstein et al.[37]) indicate that the bile acids deoxycholic acid (DCA) and/or lithocholic acid (LCA) induce production of DNA damaging reactive oxygen species and/or reactive nitrogen species in human or animal colon cells. Furthermore 14 studies showed that DCA and LCA induce DNA damage in colon cells. Also 27 studies reported that bile acids cause programmed cell death (apoptosis). Increased apoptosis can result in selective survival of cells that are resistant to induction of apoptosis.[37] Colon cells with reduced ability to undergo apoptosis in response to DNA damage would tend to accumulate mutations, and such cells may give rise to colon cancer.[37] Epidemiologic studies have found that fecal bile acid concentrations are increased in populations with a high incidence of colon cancer. Dietary increases in total fat or saturated fat result in elevated DCA and LCA in feces and elevated exposure of the colon epithelium to these bile acids. When the bile acid DCA was added to the standard diet of wild-type mice invasive colon cancer was induced in 56% of the mice after 8 to 10 months.[38] Overall, the available evidence indicates that DCA and LCA are centrally important DNA-damaging carcinogens in colon cancer.

Stomach cancer

Stomach cancer is the fourth most common cancer [990,000 cases (7.8%), 738,000 deaths (9.7%)].[28] Helicobacter pylori infection is the main causative factor in stomach cancer. Chronic gastritis (inflammation) caused by H. pylori is often long-standing if not treated. Infection of gastric epithelial cells with H. pylori results in increased production of reactive oxygen species (ROS).[39][40] ROS cause oxidative DNA damage including the major base alteration 8-hydroxydeoxyguanosine (8-OHdG). 8-OHdG resulting from ROS is increased in chronic gastritis.
The altered DNA base can cause errors during DNA replication that have mutagenic and carcinogenic potential. Thus H. pylori-induced ROS appear to be the major carcinogens in stomach cancer because they cause oxidative DNA damage leading to carcinogenic mutations.

Butane

From Wikipedia, the free encyclopedia ...