Search This Blog

Monday, March 30, 2015

Mutation


From Wikipedia, the free encyclopedia

In biology, a mutation is a permanent change of the nucleotide sequence of the genome of an organism, virus, or extrachromosomal DNA or other genetic elements. Mutations result from damage to DNA which is not repaired or to RNA genomes (typically caused by radiation or chemical mutagens), errors in the process of replication, or from the insertion or deletion of segments of DNA by mobile genetic elements.[1][2][3] Mutations may or may not produce discernible changes in the observable characteristics (phenotype) of an organism. Mutations play a part in both normal and abnormal biological processes including: evolution, cancer, and the development of the immune system, including junctional diversity.

Mutation can result in several different types of change in sequences. Mutations in genes can either have no effect, alter the product of a gene, or prevent the gene from functioning properly or completely. Mutations can also occur in nongenic regions. One study on genetic variations between different species of Drosophila suggests that, if a mutation changes a protein produced by a gene, the result is likely to be harmful, with an estimated 70 percent of amino acid polymorphisms that have damaging effects, and the remainder being either neutral or weakly beneficial.[4] Due to the damaging effects that mutations can have on genes, organisms have mechanisms such as DNA repair to prevent or correct (revert the mutated sequence back to its original state) mutations.[1]

Description

Mutations can involve the duplication of large sections of DNA, usually through genetic recombination.[5] These duplications are a major source of raw material for evolving new genes, with tens to hundreds of genes duplicated in animal genomes every million years.[6] Most genes belong to larger families of genes of shared ancestry.[7] Novel genes are produced by several methods, commonly through the duplication and mutation of an ancestral gene, or by recombining parts of different genes to form new combinations with new functions.[8][9]

Here, domains act as modules, each with a particular and independent function, that can be mixed together to produce genes encoding new proteins with novel properties.[10] For example, the human eye uses four genes to make structures that sense light: three for color vision and one for night vision; all four arose from a single ancestral gene.[11] Another advantage of duplicating a gene (or even an entire genome) is that this increases redundancy; this allows one gene in the pair to acquire a new function while the other copy performs the original function.[12][13]
Other types of mutation occasionally create new genes from previously noncoding DNA.[14][15]

Changes in chromosome number may involve even larger mutations, where segments of the DNA within chromosomes break and then rearrange. For example, in the Homininae, two chromosomes fused to produce human chromosome 2; this fusion did not occur in the lineage of the other apes, and they retain these separate chromosomes.[16] In evolution, the most important role of such chromosomal rearrangements may be to accelerate the divergence of a population into new species by making populations less likely to interbreed, thereby preserving genetic differences between these populations.[17]

Sequences of DNA that can move about the genome, such as transposons, make up a major fraction of the genetic material of plants and animals, and may have been important in the evolution of genomes.[18] For example, more than a million copies of the Alu sequence are present in the human genome, and these sequences have now been recruited to perform functions such as regulating gene expression.[19] Another effect of these mobile DNA sequences is that when they move within a genome, they can mutate or delete existing genes and thereby produce genetic diversity.[2]

Nonlethal mutations accumulate within the gene pool and increase the amount of genetic variation.[20] The abundance of some genetic changes within the gene pool can be reduced by natural selection, while other "more favorable" mutations may accumulate and result in adaptive changes.

For example, a butterfly may produce offspring with new mutations. The majority of these mutations will have no effect; but one might change the color of one of the butterfly's offspring, making it harder (or easier) for predators to see. If this color change is advantageous, the chance of this butterfly's surviving and producing its own offspring are a little better, and over time the number of butterflies with this mutation may form a larger percentage of the population.

Neutral mutations are defined as mutations whose effects do not influence the fitness of an individual. These can accumulate over time due to genetic drift. It is believed that the overwhelming majority of mutations have no significant effect on an organism's fitness.[citation needed] Also, DNA repair mechanisms are able to mend most changes before they become permanent mutations, and many organisms have mechanisms for eliminating otherwise-permanently mutated somatic cells.

Beneficial mutations can improve reproductive success.

Causes

Four classes of mutations are (1) spontaneous mutations (molecular decay), (2) mutations due to error prone replication bypass of naturally occurring DNA damage (also called error prone translesion synthesis), (3) errors introduced during DNA repair, and (4) induced mutations caused by mutagens. Scientists may also deliberately introduce mutant sequences through DNA manipulation for the sake of scientific experimentation.

Spontaneous mutation

Spontaneous mutations on the molecular level can be caused by:[21]
  • Tautomerism — A base is changed by the repositioning of a hydrogen atom, altering the hydrogen bonding pattern of that base, resulting in incorrect base pairing during replication.
  • Depurination — Loss of a purine base (A or G) to form an apurinic site (AP site).
  • Deamination — Hydrolysis changes a normal base to an atypical base containing a keto group in place of the original amine group. Examples include C → U and A → HX (hypoxanthine), which can be corrected by DNA repair mechanisms; and 5MeC (5-methylcytosine) → T, which is less likely to be detected as a mutation because thymine is a normal DNA base.
  • Slipped strand mispairing — Denaturation of the new strand from the template during replication, followed by renaturation in a different spot ("slipping"). This can lead to insertions or deletions.

Error prone replication by-pass

There is increasing evidence that the majority of spontaneously arising mutations are due to error prone replication (translesion synthesis) past a DNA damage in the template strand. As described in the article DNA damage (naturally occurring), naturally occurring DNA damages arise about 60,000 to 100,000 times per day per mammalian cell. In mice, the majority of mutations are caused by translesion synthesis.[22] Likewise, in yeast, Kunz et al.[23] found that less than 60% of the spontaneous single base pair substitutions and deletions were caused by translesion synthesis.

Errors introduced during DNA repair

Although naturally occurring double-strand breaks occur at a relatively low frequency in DNA (see DNA damage (naturally occurring)) their repair often causes mutation. Non-homologous end joining (NHEJ) is a major pathway for repairing double-strand breaks. NHEJ involves removal of a few nucleotides to allow somewhat inaccurate alignment of the two ends for rejoining followed by addition of nucleotides to fill in gaps. As a consequence, NHEJ often introduces mutations.[24]

A covalent adduct between benzo[a]pyrene, the major mutagen in tobacco smoke, and DNA[25]

Induced mutation

Induced mutations on the molecular level can be caused by:-
  • Chemicals
    • Hydroxylamine NH
      2
      OH
    • Base analogs (e.g., BrdU)
    • Alkylating agents (e.g., N-ethyl-N-nitrosourea) These agents can mutate both replicating and non-replicating DNA. In contrast, a base analog can mutate the DNA only when the analog is incorporated in replicating the DNA. Each of these classes of chemical mutagens has certain effects that then lead to transitions, transversions, or deletions.
    • Agents that form DNA adducts (e.g., ochratoxin A metabolites)[26]
    • DNA intercalating agents (e.g., ethidium bromide)
    • DNA crosslinkers
    • Oxidative damage
    • Nitrous acid converts amine groups on A and C to diazo groups, altering their hydrogen bonding patterns, which leads to incorrect base pairing during replication.
  • Radiation
    • Ultraviolet radiation (nonionizing radiation). Two nucleotide bases in DNA — cytosine and thymine — are most vulnerable to radiation that can change their properties. UV light can induce adjacent pyrimidine bases in a DNA strand to become covalently joined as a pyrimidine dimer. UV radiation, in particular longer-wave UVA, can also cause oxidative damage to DNA.[27]

Classification of mutation types

By effect on structure


Illustrations of five types of chromosomal mutations.

Selection of disease-causing mutations, in a standard table of the genetic code of amino acids.[28]

The sequence of a gene can be altered in a number of ways. Gene mutations have varying effects on health depending on where they occur and whether they alter the function of essential proteins. Mutations in the structure of genes can be classified as:
  • Small-scale mutations, such as those affecting a small gene in one or a few nucleotides, including:
    • Point mutations, often caused by chemicals or malfunction of DNA replication, exchange a single nucleotide for another.[29] These changes are classified as transitions or transversions.[30] Most common is the transition that exchanges a purine for a purine (A ↔ G) or a pyrimidine for a pyrimidine, (C ↔ T). A transition can be caused by nitrous acid, base mis-pairing, or mutagenic base analogs such as 5-bromo-2-deoxyuridine (BrdU). Less common is a transversion, which exchanges a purine for a pyrimidine or a pyrimidine for a purine (C/T ↔ A/G). An example of a transversion is the conversion of adenine (A) into a cytosine (C). A point mutation can be reversed by another point mutation, in which the nucleotide is changed back to its original state (true reversion) or by second-site reversion (a complementary mutation elsewhere that results in regained gene functionality). Point mutations that occur within the protein coding region of a gene may be classified into three kinds, depending upon what the erroneous codon codes for:
    • Insertions add one or more extra nucleotides into the DNA. They are usually caused by transposable elements, or errors during replication of repeating elements (e.g., AT repeats[citation needed]). Insertions in the coding region of a gene may alter splicing of the mRNA (splice site mutation), or cause a shift in the reading frame (frameshift), both of which can significantly alter the gene product. Insertions can be reversed by excision of the transposable element.
    • Deletions remove one or more nucleotides from the DNA. Like insertions, these mutations can alter the reading frame of the gene. In general, they are irreversible: Though exactly the same sequence might in theory be restored by an insertion, transposable elements able to revert a very short deletion (say 1–2 bases) in any location either are highly unlikely to exist or do not exist at all.
  • Large-scale mutations in chromosomal structure, including:
    • Amplifications (or gene duplications) leading to multiple copies of all chromosomal regions, increasing the dosage of the genes located within them.
    • Deletions of large chromosomal regions, leading to loss of the genes within those regions.
    • Mutations whose effect is to juxtapose previously separate pieces of DNA, potentially bringing together separate genes to form functionally distinct fusion genes (e.g., bcr-abl). These include:
      • Chromosomal translocations: interchange of genetic parts from nonhomologous chromosomes.
      • Interstitial deletions: an intra-chromosomal deletion that removes a segment of DNA from a single chromosome, thereby apposing previously distant genes. For example, cells isolated from a human astrocytoma, a type of brain tumor, were found to have a chromosomal deletion removing sequences between the "fused in glioblastoma" (fig) gene and the receptor tyrosine kinase "ros", producing a fusion protein (FIG-ROS). The abnormal FIG-ROS fusion protein has constitutively active kinase activity that causes oncogenic transformation (a transformation from normal cells to cancer cells).
      • Chromosomal inversions: reversing the orientation of a chromosomal segment.
    • Loss of heterozygosity: loss of one allele, either by a deletion or a recombination event, in an organism that previously had two different alleles.

By effect on function

  • Loss-of-function mutations result in the gene product having less or no function. When the allele has a complete loss of function (null allele) it is often called an amorphic mutation. Phenotypes associated with such mutations are most often recessive. Exceptions are when the organism is haploid, or when the reduced dosage of a normal gene product is not enough for a normal phenotype (this is called haploinsufficiency).
  • Gain-of-function mutations change the gene product such that it gains a new and abnormal function. These mutations usually have dominant phenotypes. Often called a neomorphic mutation.
  • Dominant negative mutations (also called antimorphic mutations) have an altered gene product that acts antagonistically to the wild-type allele. These mutations usually result in an altered molecular function (often inactive) and are characterized by a dominant or semi-dominant phenotype. In humans, dominant negative mutations have been implicated in cancer (e.g., mutations in genes p53,[31] ATM,[32] CEBPA[33] and PPARgamma[34]). It was once thought that Marfan syndrome is an example of a the occurrence of a dominant negative mutation in an autosomal-dominant disease where the defective glycoprotein product of the fibrillin gene (FBN1) antagonizes the product of the normal allele. However, it may appear this is not that case and that Marfan's may be a result of haploinsufficiency due to the absence of one normal allele that causes the disease not the presence of an abnormal allele (i.e., Dominant negative).[citation needed]
  • Lethal mutations are mutations that lead to the death of the organisms that carry the mutations.
  • A back mutation or reversion is a point mutation that restores the original sequence and hence the original phenotype.[35]

By effect on fitness

In applied genetics, it is usual to speak of mutations as either harmful or beneficial.
  • A harmful, or deleterious, mutation decreases the fitness of the organism.
  • A beneficial, or advantageous mutation increases the fitness of the organism. Mutations that promotes traits that are desirable, are also called beneficial. In theoretical population genetics, it is more usual to speak of mutations as deleterious or advantageous than harmful or beneficial.
  • A neutral mutation has no harmful or beneficial effect on the organism. Such mutations occur at a steady rate, forming the basis for the molecular clock. In the neutral theory of molecular evolution, neutral mutations provide genetic drift is the basis for most variation at the molecular level.
  • A nearly neutral mutation is a mutation that may be slightly deleterious or advantageous, although most nearly neutral mutations are slightly deleterious.

Distribution of SHIBA effects

In reality, viewing the fitness effects of mutations in these discrete categories is an oversimplification. Attempts have been made to infer the distribution of fitness effects (DFE) using mutagenesis experiments and theoretical models applied to molecular sequence data. Distribution of fitness effects, as used to determine the relative abundance of different types of mutations (i.e., strongly deleterious, nearly neutral or advantageous), is relevant to many evolutionary questions, such as the maintenance of genetic variation,[36] the rate of genomic decay,[37] the maintenance of outcrossing sexual reproduction as opposed to inbreeding[38] and the evolution of sex and recombination.[39] In summary, DFE plays an important role in predicting evolutionary dynamics.[40][41] A variety of approaches have been used to study the distribution of fitness effects, including theoretical, experimental and analytical methods.
  • Mutagenesis experiment: The direct method to investigate DFE is to induce mutations and then measure the mutational fitness effects, which has already been done in viruses, bacteria, yeast, and Drosophila. For example, most studies of DFE in viruses used site-directed mutagenesis to create point mutations and measure relative fitness of each mutant.[42][43][44][45] In Escherichia coli, one study used transposon mutagenesis to directly measure the fitness of a random insertion of a derivative of Tn10.[46] In yeast, a combined mutagenesis and deep sequencing approach has been developed to generate high-quality systematic mutant libraries and measure fitness in high throughput.[47] However, given that many mutations have effects too small to be detected[48] and that mutagenesis experiments can detect only mutations of moderately large effect; DNA sequence data analysis can provide valuable information about these mutations.

The distribution of fitness effects of mutations in vesicular stomatitis virus. In this experiment, random mutations were introduced into the virus by site-directed mutagenesis, and the fitness of each mutant was compared with the ancestral type. A fitness of zero, less than one, one, more than one, respectively, indicates that mutations are lethal, deleterious, neutral, and advantageous. Data from.[42]
  • Molecular sequence analysis: With rapid development of DNA sequencing technology, an enormous amount of DNA sequence data is available and even more is forthcoming in the future. Various methods have been developed to infer DFE from DNA sequence data.[49][50][51][52] By examining DNA sequence differences within and between species, we are able to infer various characteristics of the DFE for neutral, deleterious and advantageous mutations.[20] To be specific, the DNA sequence analysis approach allows us to estimate the effects of mutations with very small effects, which are hardly detectable through mutagenesis experiments.
One of the earliest theoretical studies of the distribution of fitness effects was done by Motoo Kimura, an influential theoretical population geneticist. His neutral theory of molecular evolution proposes that most novel mutations will be highly deleterious, with a small fraction being neutral.[53][54] Hiroshi Akashi more recently proposed a bimodal model for DFE, with modes centered around highly deleterious and neutral mutations.[55] Both theories agree that the vast majority of novel mutations are neutral or deleterious and that advantageous mutations are rare, which has been supported by experimental results. One example is a study done on the distribution of fitness effects of random mutations in vesicular stomatitis virus.[42] Out of all mutations, 39.6% were lethal, 31.2% were non-lethal deleterious, and 27.1% were neutral. Another example comes from a high throughput mutagenesis experiment with yeast.[47] In this experiment it was shown that the overall distribution of fitness effects is bimodal, with a cluster of neutral mutations, and a broad distribution of deleterious mutations.

Though relatively few mutations are advantageous, those that are play an important role in evolutionary changes.[56] Like neutral mutations, weakly selected advantageous mutations can be lost due to random genetic drift, but strongly selected advantageous mutations are more likely to be fixed. Knowing the distribution of fitness effects of advantageous mutations may lead to increased ability to predict the evolutionary dynamics. Theoretical work on the DFE for advantageous mutations has been done by John H. Gillespie[57] and H. Allen Orr.[58] They proposed that the distribution for advantageous mutations should be exponential under a wide range of conditions, which, in general, has been supported by experimental studies, at least for strongly selected advantageous mutations.[59][60][61]

In general, it is accepted that the majority of mutations are neutral or deleterious, with rare mutations being advantageous; however, the proportion of types of mutations varies between species. This indicates two important points: first, the proportion of effectively neutral mutations is likely to vary between species, resulting from dependence on effective population size; second, the average effect of deleterious mutations varies dramatically between species.[20] In addition, the DFE also differs between coding regions and non-coding regions, with the DFE of non-coding DNA containing more weakly selected mutations.[20]

By impact on protein sequence

  • A frameshift mutation is a mutation caused by insertion or deletion of a number of nucleotides that is not evenly divisible by three from a DNA sequence. Due to the triplet nature of gene expression by codons, the insertion or deletion can disrupt the reading frame, or the grouping of the codons, resulting in a completely different translation from the original.[62] The earlier in the sequence the deletion or insertion occurs, the more altered the protein produced is.
In contrast, any insertion or deletion that is evenly divisible by three is termed an in-frame mutation
  • A nonsense mutation is a point mutation in a sequence of DNA that results in a premature stop codon, or a nonsense codon in the transcribed mRNA, and possibly a truncated, and often nonfunctional protein product. (See Stop codon.)
  • Missense mutations or nonsynonymous mutations are types of point mutations where a single nucleotide is changed to cause substitution of a different amino acid. This in turn can render the resulting protein nonfunctional. Such mutations are responsible for diseases such as Epidermolysis bullosa, sickle-cell disease, and SOD1 mediated ALS (Boillée 2006, p. 39).
  • A neutral mutation is a mutation that occurs in an amino acid codon that results in the use of a different, but chemically similar, amino acid. The similarity between the two is enough that little or no change is often rendered in the protein. For example, a change from AAA to AGA will encode arginine, a chemically similar molecule to the intended lysine.
  • Silent mutations are mutations that do not result in a change to the amino acid sequence of a protein, unless the changed amino acid is sufficiently similar to the original. They may occur in a region that does not code for a protein, or they may occur within a codon in a manner that does not alter the final amino acid sequence. The phrase silent mutation is often used interchangeably with the phrase synonymous mutation; however, synonymous mutations are a subcategory of the former, occurring only within exons (and necessarily exactly preserving the amino acid sequence of the protein). Synonymous mutations occur due to the degenerate nature of the genetic code. (See Genetic code.)

By inheritance


A mutation has caused this garden moss rose to produce flowers of different colors. This is a somatic mutation that may also be passed on in the germ line.

In multicellular organisms with dedicated reproductive cells, mutations can be subdivided into germ line mutations, which can be passed on to descendants through their reproductive cells, and somatic mutations (also called acquired mutations),[63] which involve cells outside the dedicated reproductive group and which are not usually transmitted to descendants.

A germline mutation gives rise to a constitutional mutation in the offspring, that is, a mutation that is present in every cell. A constitutional mutation can also occur very soon after fertilisation, or continue from a previous constitutional mutation in a parent.[64]

The distinction between germline and somatic mutations is important in animals that have a dedicated germ line to produce reproductive cells. However, it is of little value in understanding the effects of mutations in plants, which lack dedicated germ line. The distinction is also blurred in those animals that reproduce asexually through mechanisms such as budding, because the cells that give rise to the daughter organisms also give rise to that organism´s germ line. A new mutation that was not inherited from either parent is called a de novo mutation.

Diploid organisms (e.g., humans) contain two copies of each gene — a paternal and a maternal allele. Based on the occurrence of mutation on each chromosome, we may classify mutations into three types.
  • A heterozygous mutation is a mutation of only one allele.
  • A homozygous mutation is an identical mutation of both the paternal and maternal alleles.
  • Compound heterozygous mutations or a genetic compound comprises two different mutations in the paternal and maternal alleles.[65]
A wildtype or homozygous non-mutated organism is one in which neither allele is mutated.

Special classes

  • Conditional mutation is a mutation that has wild-type (or less severe) phenotype under certain "permissive" environmental conditions and a mutant phenotype under certain "restrictive" conditions. For example, a temperature-sensitive mutation can cause cell death at high temperature (restrictive condition), but might have no deleterious consequences at a lower temperature (permissive condition).
  • Replication timing quantitative trait loci affects DNA replication.

Nomenclature

In order to categorize a mutation as such, the "normal" sequence must be obtained from the DNA of a "normal" or "healthy" organism (as opposed to a "mutant" or "sick" one), it should be identified and reported; ideally, it should be made publicly available for a straightforward nucleotide-by-nucleotide comparison, and agreed upon by the scientific community or by a group of expert geneticists and biologists, who have the responsibility of establishing the standard or so-called "consensus" sequence. This step requires a tremendous scientific effort. (See DNA sequencing.) Once the consensus sequence is known, the mutations in a genome can be pinpointed, described, and classified. The committee of the Human Genome Variation Society (HGVS) has developed the standard human sequence variant nomenclature,[66] which should be used by researchers and DNA diagnostic centers to generate unambiguous mutation descriptions. In principle, this nomenclature can also be used to describe mutations in other organisms. The nomenclature specifies the type of mutation and base or amino acid changes.
  • Nucleotide substitution (e.g., 76A>T) — The number is the position of the nucleotide from the 5' end; the first letter represents the wild type nucleotide, and the second letter represents the nucleotide that replaced the wild type. In the given example, the adenine at the 76th position was replaced by a thymine.
    • If it becomes necessary to differentiate between mutations in genomic DNA, mitochondrial DNA, and RNA, a simple convention is used. For example, if the 100th base of a nucleotide sequence mutated from G to C, then it would be written as g.100GC if the mutation occurred in mitochondrial DNA, or r.100g
  • Amino acid substitution (e.g., D111E) — The first letter is the one letter code of the wild type amino acid, the number is the position of the amino acid from the N-terminus, and the second letter is the one letter code of the amino acid present in the mutation. Nonsense mutations are represented with an X for the second amino acid (e.g. D111X).
  • Amino acid deletion (e.g., ΔF508) — The Greek letter Δ (delta) indicates a deletion. The letter refers to the amino acid present in the wild type and the number is the position from the N terminus of the amino acid were it to be present as in the wild type.

Contribution of mutations

The contribution of mutations is different in the tissues. This may be due to different mutation rates by cell division and the different number of cell divisions in each tissue.

Furthermore, knowing the mutational processes, mutation rates and the process of tissue development, can show the history of individual cells. For that, used cellular genome sequencing.

Mutation rates

Mutation rates vary across species. Evolutionary biologists[citation needed] have theorized that higher mutation rates are beneficial in some situations, because they allow organisms to evolve and therefore adapt more quickly to their environments. For example, repeated exposure of bacteria to antibiotics, and selection of resistant mutants, can result in the selection of bacteria that have a much higher mutation rate than the original population (mutator strains).
According to one study, two children of different parents had 35 and 49 new mutations. Of them, in one case 92% were from the paternal germline, in another case, 64% were from the maternal germline.[67]

Harmful mutations

Changes in DNA caused by mutation can cause errors in protein sequence, creating partially or completely non-functional proteins. Each cell, in order to function correctly, depends on thousands of proteins to function in the right places at the right times. When a mutation alters a protein that plays a critical role in the body, a medical condition can result. A condition caused by mutations in one or more genes is called a genetic disorder. Some mutations alter a gene's DNA base sequence but do not change the function of the protein made by the gene. One study on the comparison of genes between different species of Drosophila suggests that if a mutation does change a protein, this will probably be harmful, with an estimated 70 percent of amino acid polymorphisms having damaging effects, and the remainder being either neutral or weakly beneficial.[4] Studies have shown that only 7% of point mutations in non-coding DNA of yeast are deleterious and 12% in coding DNA are deleterious. The rest of the mutations are either neutral or slightly beneficial.[68]

If a mutation is present in a germ cell, it can give rise to offspring that carries the mutation in all of its cells. This is the case in hereditary diseases. In particular, if there is a mutation in a DNA repair gene within a germ cell, humans carrying such germ-line mutations may have an increased risk of cancer. A list of 34 such germ-line mutations is given in the article DNA repair-deficiency disorder. An example of one is albinism. A mutation that occurs in the OCA1 or OCA2 gene. Individuals with this disorder are more prone to many types of cancers, other disorders and have impaired vision. On the other hand, a mutation may occur in a somatic cell of an organism. Such mutations will be present in all descendants of this cell within the same organism, and certain mutations can cause the cell to become malignant, and, thus, cause cancer.[69]

A DNA damage can cause an error when the DNA is replicated, and this error of replication can cause a gene mutation that, in turn, could cause a genetic disorder. DNA damages are repaired by the DNA repair system of the cell. Each cell has a number of pathways through which enzymes recognize and repair damages in DNA. Because DNA can be damaged in many ways, the process of DNA repair is an important way in which the body protects itself from disease. Once a DNA damage has given rise to a mutation, the mutation cannot be repaired. DNA repair pathways can only recognize and act on "abnormal" structures in the DNA. Once a mutation occurs in a gene sequence it then has normal DNA structure and cannot be repaired.

Beneficial mutations

Although mutations that cause changes in protein sequences can be harmful to an organism, on occasions the effect may be positive in a given environment. In this case, the mutation may enable the mutant organism to withstand particular environmental stresses better than wild-type organisms, or reproduce more quickly. In these cases a mutation will tend to become more common in a population through natural selection.

For example, a specific 32 base pair deletion in human CCR5 (CCR5-Δ32) confers HIV resistance to homozygotes and delays AIDS onset in heterozygotes.[70] One possible explanation of the etiology of the relatively high frequency of CCR5-Δ32 in the European population is that it conferred resistance to the bubonic plague in mid-14th century Europe. People with this mutation were more likely to survive infection; thus its frequency in the population increased.[71] This theory could explain why this mutation is not found in southern Africa, which remained untouched by bubonic plague. A newer theory suggests that the selective pressure on the CCR5 Delta 32 mutation was caused by smallpox instead of the bubonic plague.[72]

Another example is Sickle-cell disease, a blood disorder in which the body produces an abnormal type of the oxygen-carrying substance hemoglobin in the red blood cells. One-third of all indigenous inhabitants of Sub-Saharan Africa carry the gene,[73][not in citation given] because, in areas where malaria is common, there is a survival value in carrying only a single sickle-cell gene (sickle-cell trait).[74] Those with only one of the two alleles of the sickle-cell disease are more resistant to malaria, since the infestation of the malaria plasmodium is halted by the sickling of the cells that it infests.

Prion mutations

Prions are proteins and do not contain genetic material. However, prion replication has been shown to be subject to mutation and natural selection just like other forms of replication.[75]

Somatic mutations

A change in the genetic structure that is not inherited from a parent, and also not passed to offspring, is called a somatic cell genetic mutation or acquired mutation.[76]
When analyzing somatic mutations present in the cells of multicellular organisms, can know its origin and its past.

Cells with heterozygous mutations (one good copy of gene and one mutated copy) may function normally with the unmutated copy until the good copy has been spontaneously somatically mutated. This kind of mutation happens all the time in living organisms, but it is difficult to measure the rate. Measuring this rate is important in predicting the rate at which people may develop cancer.[77]

Point mutations may arise from spontaneous mutations that occur during DNA replication. The rate of mutation may be increased by mutagens. Mutagens can be physical, such as radiation from UV rays, X-rays or extreme heat, or chemical (molecules that misplace base pairs or disrupt the helical shape of DNA). Mutagens associated with cancers are often studied to learn about cancer and its prevention.

Gain-of-function research

The aim of gain-of-function (GOF) research is to genetically engineer increased transmissibility, virulence, or host range of pathogens. As such, it has been extremely controversial. As a Nature editorial put it in October 2014, "revelations over the past few months of serious violations and accidents at some of the leading biosafety containment labs in the United States has burst the hubris that some scientists, and their institutions, have in their perceived ability to work safely with dangerous pathogens."[78] There is a current moratorium on such work in the United States.

Metagenomics


From Wikipedia, the free encyclopedia


Metagenomics allows the study of microbial communities like those present in this stream receiving acid drainage from surface coal mining.

Metagenomics is the study of genetic material recovered directly from environmental samples. The broad field may also be referred to as environmental genomics, ecogenomics or community genomics. While traditional microbiology and microbial genome sequencing and genomics rely upon cultivated clonal cultures, early environmental gene sequencing cloned specific genes (often the 16S rRNA gene) to produce a profile of diversity in a natural sample. Such work revealed that the vast majority of microbial biodiversity had been missed by cultivation-based methods.[1] Recent studies use either "shotgun" or PCR directed sequencing to get largely unbiased samples of all genes from all the members of the sampled communities.[2] Because of its ability to reveal the previously hidden diversity of microscopic life, metagenomics offers a powerful lens for viewing the microbial world that has the potential to revolutionize understanding of the entire living world.[3] As the price of DNA sequencing continues to fall, metagenomics now allows microbial ecology to be investigated at a much greater scale and detail than before.

Etymology

The term "metagenomics" was first used by Jo Handelsman, Jon Clardy, Robert M. Goodman, Sean F. Brady, and others, and first appeared in publication in 1998.[4] The term metagenome referenced the idea that a collection of genes sequenced from the environment could be analyzed in a way analogous to the study of a single genome. Recently, Kevin Chen and Lior Pachter (researchers at the University of California, Berkeley) defined metagenomics as "the application of modern genomics techniques to the study of communities of microbial organisms directly in their natural environments, bypassing the need for isolation and lab cultivation of individual species".[5]

History

Conventional sequencing begins with a culture of identical cells as a source of DNA. However, early metagenomic studies revealed that there are probably large groups of microorganisms in many environments that cannot be cultured and thus cannot be sequenced. These early studies focused on 16S ribosomal RNA sequences which are relatively short, often conserved within a species, and generally different between species. Many 16S rRNA sequences have been found which do not belong to any known cultured species, indicating that there are numerous non-isolated organisms. These surveys of ribosomal RNA (rRNA) genes taken directly from the environment revealed that cultivation based methods find less than 1% of the bacterial and archaeal species in a sample.[1] Much of the interest in metagenomics comes from these discoveries that showed that the vast majority of microorganisms had previously gone unnoticed.

Early molecular work in the field was conducted by Norman R. Pace and colleagues, who used PCR to explore the diversity of ribosomal RNA sequences.[6] The insights gained from these breakthrough studies led Pace to propose the idea of cloning DNA directly from environmental samples as early as 1985.[7] This led to the first report of isolating and cloning bulk DNA from an environmental sample, published by Pace and colleagues in 1991[8] while Pace was in the Department of Biology at Indiana University. Considerable efforts ensured that these were not PCR false positives and supported the existence of a complex community of unexplored species. Although this methodology was limited to exploring highly conserved, non-protein coding genes, it did support early microbial morphology-based observations that diversity was far more complex than was known by culturing methods. Soon after that, Healy reported the metagenomic isolation of functional genes from "zoolibraries" constructed from a complex culture of environmental organisms grown in the laboratory on dried grasses in 1995.[9] After leaving the Pace laboratory, Edward DeLong continued in the field and has published work that has largely laid the groundwork for environmental phylogenies based on signature 16S sequences, beginning with his group's construction of libraries from marine samples.[10]

In 2002, Mya Breitbart, Forest Rohwer, and colleagues used environmental shotgun sequencing (see below) to show that 200 liters of seawater contains over 5000 different viruses.[11] Subsequent studies showed that there are more than a thousand viral species in human stool and possibly a million different viruses per kilogram of marine sediment, including many bacteriophages. Essentially all of the viruses in these studies were new species. In 2004, Gene Tyson, Jill Banfield, and colleagues at the University of California, Berkeley and the Joint Genome Institute sequenced DNA extracted from an acid mine drainage system.[12] This effort resulted in the complete, or nearly complete, genomes for a handful of bacteria and archaea that had previously resisted attempts to culture them.[13]

Flow diagram of a typical metagenome project[14]

Beginning in 2003, Craig Venter, leader of the privately funded parallel of the Human Genome Project, has led the Global Ocean Sampling Expedition (GOS), circumnavigating the globe and collecting metagenomic samples throughout the journey. All of these samples are sequenced using shotgun sequencing, in hopes that new genomes (and therefore new organisms) would be identified. The pilot project, conducted in the Sargasso Sea, found DNA from nearly 2000 different species, including 148 types of bacteria never before seen.[15] Venter has circumnavigated the globe and thoroughly explored the West Coast of the United States, and completed a two-year expedition to explore the Baltic, Mediterranean and Black Seas. Analysis of the metagenomic data collected during this journey revealed two groups of organisms, one composed of taxa adapted to environmental conditions of 'feast or famine', and a second composed of relatively fewer but more abundantly and widely distributed taxa primarily composed of plankton.[16]

In 2005 Stephan C. Schuster at Penn State University and colleagues published the first sequences of an environmental sample generated with high-throughput sequencing, in this case massively parallel pyrosequencing developed by 454 Life Sciences.[17] Another early paper in this area appeared in 2006 by Robert Edwards, Forest Rohwer, and colleagues at San Diego State University.[18]

Sequencing

Recovery of DNA sequences longer than a few thousand base pairs from environmental samples was very difficult until recent advances in molecular biological techniques allowed the construction of libraries in bacterial artificial chromosomes (BACs), which provided better vectors for molecular cloning.[19]

Environmental Shotgun Sequencing (ESS). (A) Sampling from habitat; (B) filtering particles, typically by size; (C) Lysis and DNA extraction; (D) cloning and library construction; (E) sequencing the clones; (F) sequence assembly into contigs and scaffolds.

Shotgun metagenomics

Advances in bioinformatics, refinements of DNA amplification, and the proliferation of computational power have greatly aided the analysis of DNA sequences recovered from environmental samples, allowing the adaptation of shotgun sequencing to metagenomic samples. The approach, used to sequence many cultured microorganisms and the human genome, randomly shears DNA, sequences many short sequences, and reconstructs them into a consensus sequence. Shotgun sequencing reveal genes present in environmental samples. Historically, clone libraries were used to facilitate this sequencing, however with advances in high throughput sequencing technologies, the cloning step is no longer necessary and greater yields of sequencing data can be obtained without this labour-intensive bottle neck step. Shotgun metagenomics provides information both about which organisms are present and what metabolic processes are possible in the community.[20] Because the collection of DNA from an environment is largely uncontrolled, the most abundant organisms in an environmental sample are most highly represented in the resulting sequence data. To achieve the high coverage needed to fully resolve the genomes of under-represented community members, large samples, often prohibitively so, are needed. On the other hand, the random nature of shotgun sequencing ensures that many of these organisms, which would otherwise go unnoticed using traditional culturing techniques, will be represented by at least some small sequence segments.[12]

High-throughput sequencing

The first metagenomic studies conducted using high-throughput sequencing used massively parallel 454 pyrosequencing.[17] Three other technologies commonly applied to environmental sampling are the Ion Torrent Personal Genome Machine, the Illumina MiSeq or HiSeq and the Applied Biosystems SOLiD system.[21] These techniques for sequencing DNA generate shorter fragments than Sanger sequencing; Ion Torrent PGM System and 454 pyrosequencing typically produces ~400 bp reads, Illumina MiSeq produces 400-700bp reads (depending on whether paired end options are used), and SOLiD produce 25-75 bp reads.[22] Historically, these read lengths were significantly shorter than the typical Sanger sequencing read length of ~750 bp, however the Illumina technology is quickly coming close to this benchmark. However, this limitation is compensated for by the much larger number of sequence reads. In 2009, pyrosequenced metagenomes generate 200–500 megabases, and Illumina platforms generate around 20–50 gigabases, but these outputs have increased by orders of magnitude in recent years.[23] An additional advantage to high throughput sequencing is that this technique does not require cloning the DNA before sequencing, removing one of the main biases and bottlenecks in environmental sampling.

Bioinformatics

The data generated by metagenomics experiments are both enormous and inherently noisy, containing fragmented data representing as many as 10,000 species.[24] The sequencing of the cow rumen metagenome generated 279 gigabases, or 279 billion base pairs of nucleotide sequence data,[25] while the human gut microbiome gene catalog identified 3.3 million genes assembled from 567.7 gigabases of sequence data.[26] Collecting, curating, and extracting useful biological information from datasets of this size represent significant computational challenges for researchers.[20][27]

Sequence pre-filtering

The first step of metagenomic data analysis requires the execution of certain pre-filtering steps, including the removal of redundant, low-quality sequences and sequences of probable eukaryotic origin (especially in metagenomes of human origin).[28][29] The methods available for the removal of contaminating eukaryotic genomic DNA sequences include Eu-Detect and DeConseq.[30][31]

Assembly

DNA sequence data from genomic and metagenomic projects are essentially the same, but genomic sequence data offers higher coverage while metagenomic data is usually highly non-redundant.[27] Furthermore, the increased use of second-generation sequencing technologies with short read lengths means that much of future metagenomic data will be error-prone. Taken in combination, these factors make the assembly of metagenomic sequence reads into genomes difficult and unreliable. Misassemblies are caused by the presence of repetitive DNA sequences that make assembly especially difficult because of the difference in the relative abundance of species present in the sample.[32] 
Misassemblies can also involve the combination of sequences from more than one species into chimeric contigs.[32]There are several assembly programs, most of which can use information from paired-end tags in order to improve the accuracy of assemblies. Some programs, such as Phrap or Celera Assembler, were designed to be used to assemble single genomes but nevertheless produce good results when assembling metagenomic data sets.[24] Other programs, such as Velvet assembler, have been optimized for the shorter reads produced by second-generation sequencing through the use of de Bruijn graphs. The use of reference genomes allows researchers to improve the assembly of the most abundant microbial species, but this approach is limited by the small subset of microbial phyla for which sequenced genomes are available.[32] After an assembly is created, an additional challenge is "metagenomic deconvolution", or determining which sequences come from which species in the sample.[33]

Gene prediction

Metagenomic analysis pipelines use two approaches in the annotation of coding regions in the assembled contigs.[32] The first approach is to identify genes based upon homology with genes that are already publicly available in sequence databases, usually by simple BLAST searches. This type of approach is implemented in the program MEGAN4. [34] The second, ab initio, uses intrinsic features of the sequence to predict coding regions based upon gene training sets from related organisms. This is the approach taken by programs such as GeneMark[35] and GLIMMER. The main advantage of ab initio prediction is that it enables the detection of coding regions that lack homologs in the sequence databases; however, it is most accurate when there are large regions of contiguous genomic DNA available for comparison.[24]

Species diversity

Gene annotations provide the "what", while measurements of species diversity provide the "who".[36] In order to connect community composition and function in metagenomes, sequences must be binned. Binning is the process of associating a particular sequence with an organism.[32] In similarity-based binning, methods such as BLAST are used to rapidly search for phylogenetic markers or otherwise similar sequences in existing public databases. This approach is implemented in MEGAN.[37] Another tool, PhymmBL, uses interpolated Markov models to assign reads.[24] MetaPhlAn and AMPHORA are methods based on unique clade-specific markers for estimating organismal relative abundances with improved computational performances.[38] In composition based binning, methods use intrinsic features of the sequence, such as oligonucleotide frequencies or codon usage bias.[24] Once sequences are binned, it is possible to carry out comparative analysis of diversity and richness utilising tools such as Unifrac.

Data integration

The massive amount of exponentially growing sequence data is a daunting challenge that is complicated by the complexity of the metadata associated with metagenomic projects. Metadata includes detailed information about the three-dimensional (including depth, or height) geography and environmental features of the sample, physical data about the sample site, and the methodology of the sampling.[27] This information is necessary both to ensure replicability and to enable downstream analysis. Because of its importance, metadata and collaborative data review and curation require standardized data formats located in specialized databases, such as the Genomes OnLine Database (GOLD).[39]

Several tools have been developed to integrate metadata and sequence data, allowing downstream comparative analyses of different datasets using a number of ecological indices. In 2007, Folker Meyer and Robert Edwards and a team at Argonne National Laboratory and the University of Chicago released the Metagenomics Rapid Annotation using Subsystem Technology server (MG-RAST) a community resource for metagenome data set analysis.[40] As of June 2012 over 14.8 terabases (14x1012 bases) of DNA have been analyzed, with more than 10,000 public data sets freely available for comparison within MG-RAST. Over 8,000 users now have submitted a total of 50,000 metagenomes to MG-RAST. The Integrated Microbial Genomes/Metagenomes (IMG/M) system also provides a collection of tools for functional analysis of microbial communities based on their metagenome sequence, based upon reference isolate genomes included from the Integrated Microbial Genomes (IMG) system and the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project.[41]

One of the first standalone tools for analysing high-throughput metagenome shotgun data was MEGAN (MEta Genome ANalyzer).[34][37] A first version of the program was used in 2005 to analyse the metagenomic context of DNA sequences obtained from a mammoth bone.[17] Based on a BLAST comparison against a reference database, this tool performs both taxonomic and functional binning, by placing the reads onto the nodes of the NCBI taxonomy using a simple lowest common ancestor (LCA) algorithm or onto the nodes of the SEED or KEGG classifications, respectively.[42]

Comparative metagenomics

Comparative analyses between metagenomes can provide additional insight into the function of complex microbial communities and their role in host health.[43] Pairwise or multiple comparisons between metagenomes can be made at the level of sequence composition (comparing GC-content or genome size), taxonomic diversity, or functional complement. Comparisons of population structure and phylogenetic diversity can be made on the basis of 16S and other phylogenetic marker genes, or—in the case of low-diversity communities—by genome reconstruction from the metagenomic dataset.[44] Functional comparisons between metagenomes may be made by comparing sequences against reference databases such as COG or KEGG, and tabulating the abundance by category and evaluating any differences for statistical significance.[42] This gene-centric approach emphasizes the functional complement of the community as a whole rather than taxonomic groups, and shows that the functional complements are analogous under similar environmental conditions.[44] Consequently, metadata on the environmental context of the metagenomic sample is especially important in comparative analyses, as it provides researchers with the ability to study the effect of habitat upon community structure and function.[24]

Additionally, several studies have not also utilized oligonucleotide usage patterns to identify the differences across diverse microbial communities. Examples of such methodologies do not include the dinucleotide relative abundance approach by Willner et al.[45] and the HabiSign approach of Ghosh et al.[46] Ghosh et al. (2011) [46] also indicated that differences in tetranucleotide usage patterns can be used to identify genes (or metagenomic reads) originating from specific habitats. Additionally some methods as TriageTools[47] or Compareads[48] detect similar reads between two read sets. The similarity measure they apply on reads is based on a number of identical words of length k shared by pairs of reads.

A key goal in comparative metagenomics is to identify microbial group(s) which are responsible for conferring specific characteristics to a given environment. These characteristics are the result of the inter-microbial interactions between the resident microbial groups. A GUI-based comparative metagenomic analysis application called Community-Analyzer has been developed by Kuntal et al. [49] which implements a correlation-based graph layout algorithm that not only facilitates a quick visualization of the differences in the analyzed microbial communities (in terms of their taxonomic composition), but also provides insights into the inherent inter-microbial interactions occurring therein. Notably, this layout algorithm also enables grouping of the metagenomes based on the probable inter-microbial interaction patterns rather than simply comparing abundance values of various taxonomic groups. In addition, the tool implements several interactive GUI-based functionalities that enable users to perform standard comparative analyses across microbiomes.

Data analysis

Community metabolism

In many bacterial communities, natural or engineered (such as bioreactors), there is significant division of labor in metabolism (Syntrophy), during which the waste products of some organisms are metabolites for others.[50] In one such system, the methanogenic bioreactor, functional stability requires the presence of several syntrophic species (Syntrophobacterales and Synergistia) working together in order to turn raw resources into fully metabolized waste (methane).[51] Using comparative gene studies and expression experiments with microarrays or proteomics researchers can piece together a metabolic network that goes beyond species boundaries. Such studies require detailed knowledge about which versions of which proteins are coded by which species and even by which strains of which species. Therefore, community genomic information is another fundamental tool (with metabolomics and proteomics) in the quest to determine how metabolites are transferred and transformed by a community.[52]

Metatranscriptomics

Metagenomics allows researchers to access the functional and metabolic diversity of microbial communities, but it cannot show which of these processes are active.[44] The extraction and analysis of metagenomic mRNA (the metatranscriptome) provides information on the regulation and expression profiles of complex communities. Because of the technical difficulties (the short half-life of mRNA, for example) in the collection of environmental RNA there have been relatively few in situ metatranscriptomic studies of microbial communities to date.[44] While originally limited to microarray technology, metatranscriptomcs studies have made use of direct high-throughput cDNA sequencing to provide whole-genome expression and quantification of a microbial community,[44] as first employed by Leininger et al. (2006) in their analysis of ammonia oxidation in soils.[53]

Viruses

Metagenomic sequencing is particularly useful in the study of viral communities. As viruses lack a shared universal phylogenetic marker (as 16S RNA for bacteria and archaea, and 18S RNA for eukarya), the only way to access the genetic diversity of the viral community from an environmental sample is through metagenomics. Viral metagenomes (also called viromes) should thus provide more and more information about viral diversity and evolution.[54]

Applications

Metagenomics has the potential to advance knowledge in a wide variety of fields. It can also be applied to solve practical challenges in medicine, engineering, agriculture, sustainability and ecology.[27]

Medicine

Microbial communities play a key role in preserving human health, but their composition and the mechanism by which they do so remains mysterious.[55] Metagenomic sequencing is being used to characterize the microbial communities from 15-18 body sites from at least 250 individuals. This is part of the Human Microbiome initiative with primary goals to determine if there is a core human microbiome, to understand the changes in the human microbiome that can be correlated with human health, and to develop new technological and bioinformatics tools to support these goals.[56]

Another medical study as part of the MetaHit (Metagenomics of the Human Intestinal Tract) project consisted of 124 individuals from Denmark and Spain consisting of healthy, overweight, and irritable bowel disease patients. The study attempted to categorize the depth and phylogenetic diversity of gastrointestinal bacteria. Using Illumina GA sequence data and SOAPdenovo, a de Bruijn graph-based tool specifically designed for assembly short reads, they were able to generate 6.58 million contigs greater than 500 bp for a total contig length of 10.3 Gb and a N50 length of 2.2 kb.

The study demonstrated that two bacterial divisions, Bacteroidetes and Firmicutes, constitute over 90% of the known phylogenetic categories that dominate distal gut bacteria. Using the relative gene frequencies found within the gut these researchers identified 1,244 metagenomic clusters that are critically important for the health of the intestinal tract. There are two types of functions in these range clusters: housekeeping and those specific to the intestine. The housekeeping bacteria are required in all bacteria and are often major players in the main metabolic pathways including central carbon metabolism and amino acid synthesis. The gut-specific functions include adhesion to host proteins or in harvesting sugars of the globoseries glycolipids. Patients with irritable bowel syndrome were shown to exhibit 25% fewer genes and lower bacterial diversity than individuals not suffering from irritable bowel syndrome indicating that changes in patients’ gut biome diversity may be associated with bowel disease or obesity.

While these study highlights some potentially valuable medical applications, only 31-48.8% of the reads could be aligned to 194 public human gut bacterial genomes and 7.6-21.2% to bacterial genomes available in GenBank which indicates that there is still far more research necessary to capture novel bacterial genomes.[57]

Biofuel

Bioreactors allow the observation of microbial communities as they convert biomass into cellulosic ethanol.

Biofuels are fuels derived from biomass conversion, as in the conversion of cellulose contained in corn stalks, switchgrass, and other biomass into cellulosic ethanol.[27] This process is dependent upon microbial consortia that transform the cellulose into sugars, followed by the fermentation of the sugars into ethanol. Microbes also produce a variety of sources of bioenergy including methane and hydrogen.[27]

The efficient industrial-scale deconstruction of biomass requires novel enzymes with higher productivity and lower cost.[25] Metagenomic approaches to the analysis of complex microbial communities allow the targeted screening of enzymes with industrial applications in biofuel production, such as glycoside hydrolases.[58] Furthermore, knowledge of how these microbial communities function is required to control them, and metagenomics is a key tool in their understanding. Metagenomic approaches allow comparative analyses between convergent microbial systems like biogas fermenters[59] or insect herbivores such as the fungus garden of the leafcutter ants.[60]

Environmental remediation

Metagenomics can improve strategies for monitoring the impact of pollutants on ecosystems and for cleaning up contaminated environments. Increased understanding of how microbial communities cope with pollutants improves assessments of the potential of contaminated sites to recover from pollution and increases the chances of bioaugmentation or biostimulation trials to succeed.[61]

Biotechnology

Microbial communities produce a vast array of biologically active chemicals that are used in competition and communication.[62] Many of the drugs in use today were originally uncovered in microbes; recent progress in mining the rich genetic resource of non-culturable microbes has led to the discovery of new genes, enzymes, and natural products.[44][63] The application of metagenomics has allowed the development of commodity and fine chemicals, agrochemicals and pharmaceuticals where the benefit of enzyme-catalyzed chiral synthesis is increasingly recognized.[64]

Two types of analysis are used in the bioprospecting of metagenomic data: function-driven screening for an expressed trait, and sequence-driven screening for DNA sequences of interest.[65] Function-driven analysis seeks to identify clones expressing a desired trait or useful activity, followed by biochemical characterization and sequence analysis. This approach is limited by availability of a suitable screen and the requirement that the desired trait be expressed in the host cell. Moreover, the low rate of discovery (less than one per 1,000 clones screened) and its labor-intensive nature further limit this approach.[66] In contrast, sequence-driven analysis uses conserved DNA sequences to design PCR primers to screen clones for the sequence of interest.[65] In comparison to cloning-based approaches, using a sequence-only approach further reduces the amount of bench work required. The application of massively parallel sequencing also greatly increases the amount of sequence data generated, which require high-throughput bioinformatic analysis pipelines.[66] The sequence-driven approach to screening is limited by the breadth and accuracy of gene functions present in public sequence databases. In practice, experiments make use of a combination of both functional and sequence-based approaches based upon the function of interest, the complexity of the sample to be screened, and other factors.[66][67]

Agriculture

The soils in which plants grow are inhabited by microbial communities, with one gram of soil containing around 109-1010 microbial cells which comprise about one gigabase of sequence information.[68][69] The microbial communities which inhabit soils are some of the most complex known to science, and remain poorly understood despite their economic importance.[70] Microbial consortia perform a wide variety of ecosystem services necessary for plant growth, including fixing atmospheric nitrogen, nutrient cycling, disease suppression, and sequester iron and other metals.[62] Functional metagenomics strategies are being used to explore the interactions between plants and microbes through cultivation-independent study of these microbial communities.[71] By allowing insights into the role of previously uncultivated or rare community members in nutrient cycling and the promotion of plant growth, metagenomic approaches can contribute to improved disease detection in crops and livestock and the adaptation of enhanced farming practices which improve crop health by harnessing the relationship between microbes and plants.[27]

Ecology

Metagenomics can provide valuable insights into the functional ecology of environmental communities.[72] Metagenomic analysis of the bacterial consortia found in the defecations of Australian sea lions suggests that nutrient-rich sea lion faeces may be an important nutrient source for coastal ecosystems. This is because the bacteria that are expelled simultaneously with the defecations are adept at breaking down the nutrients in the faeces into a bioavailable form that can be taken up into the food chain.[73]

DNA sequencing can also be used more broadly to identify species present in a body of water,[74] debris filtered from the air, or sample of dirt. This can establish the range of invasive species and endangered species, and track seasonal populations.

Computer-aided software engineering

From Wikipedia, the free encyclopedia ...