Search This Blog

Friday, May 1, 2015

Electroweak interaction


From Wikipedia, the free encyclopedia

In particle physics, the electroweak interaction is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 100 GeV, they would merge into a single electroweak force. Thus, if the universe is hot enough (approximately 1015 K, a temperature exceeded until shortly after the Big Bang), then the electromagnetic force and weak force merge into a combined electroweak force. During the electroweak epoch, the electroweak force separated from the strong force. During the quark epoch, the electroweak force split into the electromagnetic and weak force.

For contributions to the unification of the weak and electromagnetic interaction between elementary particles, Sheldon Glashow, Abdus Salam, and Steven Weinberg were awarded the Nobel Prize in Physics in 1979.[1][2] The existence of the electroweak interactions was experimentally established in two stages, the first being the discovery of neutral currents in neutrino scattering by the Gargamelle collaboration in 1973, and the second in 1983 by the UA1 and the UA2 collaborations that involved the discovery of the W and Z gauge bosons in proton–antiproton collisions at the converted Super Proton Synchrotron. In 1999, Gerardus 't Hooft and Martinus Veltman were awarded the Nobel prize for showing that the electroweak theory is renormalizable.

Formulation


The pattern of weak isospin, T3, and weak hypercharge, YW, of the known elementary particles, showing electric charge, Q, along the weak mixing angle. The neutral Higgs field (circled) breaks the electroweak symmetry and interacts with other particles to give them mass. Three components of the Higgs field become part of the massive W and Z bosons.

Mathematically, the unification is accomplished under an SU(2) × U(1) gauge group. The corresponding gauge bosons are the three W bosons of weak isospin from SU(2) (W+, W0, and W), and the B0 boson of weak hypercharge from U(1), respectively, all of which are massless.

In the Standard Model, the W± and Z0 bosons, and the photon, are produced by the spontaneous symmetry breaking of the electroweak symmetry from SU(2) × U(1)Y to U(1)em, caused by the Higgs mechanism (see also Higgs boson).[3][4][5][6] U(1)Y and U(1)em are different copies of U(1); the generator of U(1)em is given by Q = Y/2 + I3, where Y is the generator of U(1)Y (called the weak hypercharge), and I3 is one of the SU(2) generators (a component of weak isospin).

The spontaneous symmetry breaking causes the W0 and B0 bosons to coalesce together into two different bosons – the Z0 boson, and the photon (γ) as follows:
 \begin{pmatrix}
\gamma \\
Z^0 \end{pmatrix} = \begin{pmatrix}
\cos \theta_W & \sin \theta_W \\
-\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix}
B^0 \\
W^0 \end{pmatrix}

Where θW is the weak mixing angle. The axes representing the particles have essentially just been rotated, in the (W0, B0) plane, by the angle θW. This also introduces a discrepancy between the mass of the Z0 and the mass of the W± particles (denoted as MZ and MW, respectively);
M_Z=\frac{M_W}{\cos\theta_W}
The distinction between electromagnetism and the weak force arises because there is a (nontrivial) linear combination of Y and I3 that vanishes for the Higgs boson (it is an eigenstate of both Y and I3, so the coefficients may be taken as −I3 and Y): U(1)em is defined to be the group generated by this linear combination, and is unbroken because it does not interact with the Higgs.

Lagrangian

Before electroweak symmetry breaking

The Lagrangian for the electroweak interactions is divided into four parts before electroweak symmetry breaking
\mathcal{L}_{EW} = \mathcal{L}_g + \mathcal{L}_f + \mathcal{L}_h + \mathcal{L}_y.
The \mathcal{L}_g term describes the interaction between the three W particles and the B particle.
\mathcal{L}_g = -\frac{1}{4}W_{a}^{\mu\nu}W_{\mu\nu}^a - \frac{1}{4}B^{\mu\nu}B_{\mu\nu},
where W^{a\mu\nu} (a=1,2,3) and B^{\mu\nu} are the field strength tensors for the weak isospin and weak hypercharge fields.


\mathcal{L}_f is the kinetic term for the Standard Model fermions. The interaction of the gauge bosons and the fermions are through the gauge covariant derivative.
\mathcal{L}_f =   \overline{Q}_i iD\!\!\!\!/\; Q_i+ \overline{u}_i iD\!\!\!\!/\; u_i+ \overline{d}_i iD\!\!\!\!/\; d_i+ \overline{L}_i iD\!\!\!\!/\; L_i+ \overline{e}_i iD\!\!\!\!/\; e_i ,
where the subscript i runs over the three generations of fermions, Q, u, and d are the left-handed doublet, right-handed singlet up, and right handed singlet down quark fields, and L and e are the left-handed doublet and right-handed singlet electron fields.

The h term describes the Higgs field F.
\mathcal{L}_h = |D_\mu h|^2 - \lambda \left(|h|^2 - \frac{v^2}{2}\right)^2
The y term gives the Yukawa interaction that generates the fermion masses after the Higgs acquires a vacuum expectation value.
\mathcal{L}_y = - y_{u\, ij} \epsilon^{ab} \,h_b^\dagger\, \overline{Q}_{ia} u_j^c - y_{d\, ij}\, h\, \overline{Q}_i d^c_j - y_{e\,ij} \,h\, \overline{L}_i e^c_j + h.c.

After electroweak symmetry breaking

The Lagrangian reorganizes itself after the Higgs boson acquires a vacuum expectation value. Due to its complexity, this Lagrangian is best described by breaking it up into several parts as follows.
\mathcal{L}_{EW} = \mathcal{L}_K + \mathcal{L}_N + \mathcal{L}_C + \mathcal{L}_H + \mathcal{L}_{HV} + \mathcal{L}_{WWV} + \mathcal{L}_{WWVV} + \mathcal{L}_Y
The kinetic term \mathcal{L}_K contains all the quadratic terms of the Lagrangian, which include the dynamic terms (the partial derivatives) and the mass terms (conspicuously absent from the Lagrangian before symmetry breaking)
 
\begin{align}
\mathcal{L}_K = \sum_f \overline{f}(i\partial\!\!\!/\!\;-m_f)f-\frac14A_{\mu\nu}A^{\mu\nu}-\frac12W^+_{\mu\nu}W^{-\mu\nu}+m_W^2W^+_\mu W^{-\mu} 
\\
\qquad -\frac14Z_{\mu\nu}Z^{\mu\nu}+\frac12m_Z^2Z_\mu Z^\mu+\frac12(\partial^\mu H)(\partial_\mu H)-\frac12m_H^2H^2
\end{align}
where the sum runs over all the fermions of the theory (quarks and leptons), and the fields A_{\mu\nu}^{}, Z_{\mu\nu}^{}, W^-_{\mu\nu}, and W^+_{\mu\nu}\equiv(W^-_{\mu\nu})^\dagger are given as
X_{\mu\nu}=\partial_\mu X_\nu - \partial_\nu X_\mu + g f^{abc}X^{b}_{\mu}X^{c}_{\nu}, (replace X by the relevant field, and fabc with the structure constants for the gauge group).
The neutral current \mathcal{L}_N and charged current \mathcal{L}_C components of the Lagrangian contain the interactions between the fermions and gauge bosons.
\mathcal{L}_{N} = e J_\mu^{em} A^\mu + \frac g{\cos\theta_W}(J_\mu^3-\sin^2\theta_WJ_\mu^{em})Z^\mu,
where the electromagnetic current J_\mu^{em} and the neutral weak current J_\mu^3 are
J_\mu^{em} = \sum_f q_f\overline{f}\gamma_\mu f,
and
J_\mu^3 = \sum_f I^3_f\overline{f} \gamma_\mu\frac{1-\gamma^5}{2}  f
q_f^{} and I_f^3 are the fermions' electric charges and weak isospin.
The charged current part of the Lagrangian is given by
\mathcal{L}_C=-\frac g{\sqrt2}\left[\overline u_i\gamma^\mu\frac{1-\gamma^5}2M^{CKM}_{ij}d_j+\overline\nu_i\gamma^\mu\frac{1-\gamma^5}2e_i\right]W_\mu^++h.c.
\mathcal{L}_H contains the Higgs three-point and four-point self interaction terms.
\mathcal{L}_H=-\frac{gm_H^2}{4m_W}H^3-\frac{g^2m_H^2}{32m_W^2}H^4
\mathcal{L}_{HV} contains the Higgs interactions with gauge vector bosons.
\mathcal{L}_{HV}=\left(gm_WH+\frac{g^2}4H^2\right)\left(W_\mu^+W^{-\mu}+\frac1{2\cos^2\theta_W}Z_\mu Z^\mu\right)
\mathcal{L}_{WWV} contains the gauge three-point self interactions.
\mathcal{L}_{WWV}=-ig[(W_{\mu\nu}^+W^{-\mu}-W^{+\mu}W_{\mu\nu}^-)(A^\nu\sin\theta_W-Z^\nu\cos\theta_W)+W_\nu^-W_\mu^+(A^{\mu\nu}\sin\theta_W-Z^{\mu\nu}\cos\theta_W)]
\mathcal{L}_{WWVV} contains the gauge four-point self interactions

\begin{align}
\mathcal{L}_{WWVV} = -\frac{g^2}4 \Big\{&[2W_\mu^+W^{-\mu} + (A_\mu\sin\theta_W - Z_\mu\cos\theta_W)^2]^2
\\
&- [W_\mu^+W_\nu^- + W_\nu^+W_\mu^- + (A_\mu\sin\theta_W - Z_\mu\cos\theta_W) (A_\nu\sin\theta_W - Z_\nu\cos\theta_W)]^2\Big\}
\end{align}
and \mathcal{L}_Y contains the Yukawa interactions between the fermions and the Higgs field.
\mathcal{L}_Y = -\sum_f \frac{gm_f}{2m_W}\overline ffH
Note the \frac{1-\gamma^5}{2} factors in the weak couplings: these factors project out the left handed components of the spinor fields. This is why electroweak theory (after symmetry breaking) is commonly said to be a chiral theory.

Grand Unified Theory


From Wikipedia, the free encyclopedia

A Grand Unified Theory (GUT) is a model in particle physics in which at high energy, the three gauge interactions of the Standard Model which define the electromagnetic, weak, and strong interactions or forces, are merged into one single force. This unified interaction is characterized by one larger gauge symmetry and thus several force carriers, but one unified coupling constant. If Grand Unification is realized in nature, there is the possibility of a grand unification epoch in the early universe in which the fundamental forces are not yet distinct.

Models that do not unify all interactions using one simple Lie group as the gauge symmetry, but do so using semisimple groups, can exhibit similar properties and are sometimes referred to as Grand Unified Theories as well.
Unifying gravity with the other three interactions would provide a theory of everything (TOE), rather than a GUT. Nevertheless, GUTs are often seen as an intermediate step towards a TOE.

The novel particles predicted by GUT models are expected to have masses around the GUT scale—just a few orders of magnitude below the Planck scale—and so will be well beyond the reach of any foreseen particle collider experiments. Therefore, the particles predicted by GUT models will be unable to be observed directly and instead the effects of grand unification might be detected through indirect observations such as proton decay, electric dipole moments of elementary particles, or the properties of neutrinos.[1] Some grand unified theories predict the existence of magnetic monopoles.

As of 2012, all GUT models which aim to be completely realistic are quite complicated, even compared to the Standard Model, because they need to introduce additional fields and interactions, or even additional dimensions of space. The main reason for this complexity lies in the difficulty of reproducing the observed fermion masses and mixing angles. Due to this difficulty, and due to the lack of any observed effect of grand unification so far, there is no generally accepted GUT model.

History

Historically, the first true GUT which was based on the simple Lie group SU(5), was proposed by Howard Georgi and Sheldon Glashow in 1974.[2] The Georgi–Glashow model was preceded by the Semisimple Lie algebra Pati–Salam model by Abdus Salam and Jogesh Pati,[3] who pioneered the idea to unify gauge interactions.

The acronym GUT was first coined in 1978 by CERN researchers John Ellis, Andrzej Buras, Mary K. Gaillard, and Dimitri Nanopoulos, however in the final version of their paper[4] they opted for the less anatomical GUM (Grand Unification Mass). Nanopoulos later that year was the first to use[5] the acronym in a paper.[6]

Motivation

The fact that the electric charges of electrons and protons seem to cancel each other exactly to extreme precision is essential for the existence of the macroscopic world as we know it, but this important property of elementary particles is not explained in the Standard Model of particle physics. While the description of strong and weak interactions within the Standard Model is based on gauge symmetries governed by the simple symmetry groups SU(3) and SU(2) which allow only discrete charges, the remaining component, the weak hypercharge interaction is described by an abelian symmetry U(1) which in principle allows for arbitrary charge assignments.[note 1] The observed charge quantization, namely the fact that all known elementary particles carry electric charges which appear to be exact multiples of 1/3 of the "elementary" charge, has led to the idea that hypercharge interactions and possibly the strong and weak interactions might be embedded in one Grand Unified interaction described by a single, larger simple symmetry group containing the Standard Model. This would automatically predict the quantized nature and values of all elementary particle charges. Since this also results in a prediction for the relative strengths of the fundamental interactions which we observe, in particular the weak mixing angle, Grand Unification ideally reduces the number of independent input parameters, but is also constrained by observations.

Grand Unification is reminiscent of the unification of electric and magnetic forces by Maxwell's theory of electromagnetism in the 19th century, but its physical implications and mathematical structure are qualitatively different.

Unification of matter particles


Schematic representation of fermions and bosons in SU(5) GUT showing 5 + 10 split in the multiplets. Neutral bosons (photon, Z-boson, and neutral gluons) are not shown but occupy the diagonal entries of the matrix in complex superpositions

SU(5)[edit]


The pattern of weak isospins, weak hypercharges, and strong charges for particles in the SU(5) model, rotated by the predicted weak mixing angle, showing electric charge roughly along the vertical. In addition to Standard Model particles, the theory includes twelve colored X bosons, responsible for proton decay.

SU(5) is the simplest GUT. The smallest simple Lie group which contains the standard model, and upon which the first Grand Unified Theory was based, is
 SU(5) \supset SU(3)\times SU(2)\times U(1).
Such group symmetries allow the reinterpretation of several known particles as different states of a single particle field. However, it is not obvious that the simplest possible choices for the extended "Grand Unified" symmetry should yield the correct inventory of elementary particles. The fact that all currently known (2009) matter particles fit nicely into three copies of the smallest group representations of SU(5) and immediately carry the correct observed charges, is one of the first and most important reasons why people believe that a Grand Unified Theory might actually be realized in nature.

The two smallest irreducible representations of SU(5) are 5 and 10. In the standard assignment, the 5 contains the charge conjugates of the right-handed down-type quark color triplet and a left-handed lepton isospin doublet, while the 10 contains the six up-type quark components, the left-handed down-type quark color triplet, and the right-handed electron. This scheme has to be replicated for each of the three known generations of matter. It is notable that the theory is anomaly free with this matter content.

The hypothetical right-handed neutrinos are not contained in any of these representations, which can explain their relative heaviness (see seesaw mechanism).

SO(10)


The pattern of weak isospin, W, weaker isospin, W', strong g3 and g8, and baryon minus lepton, B, charges for particles in the SO(10) Grand Unified Theory, rotated to show the embedding in E6.

The next simple Lie group which contains the standard model is
SO(10)\supset SU(5)\supset SU(3)\times SU(2)\times U(1).
Here, the unification of matter is even more complete, since the irreducible spinor representation 16 contains both the 5 and 10 of SU(5) and a right-handed neutrino, and thus the complete particle content of one generation of the extended standard model with neutrino masses. This is already the largest simple group which achieves the unification of matter in a scheme involving only the already known matter particles (apart from the Higgs sector).

Since different standard model fermions are grouped together in larger representations, GUTs specifically predict relations among the fermion masses, such as between the electron and the down quark, the muon and the strange quark, and the tau lepton and the bottom quark for SU(5) and SO(10). Some of these mass relations hold approximately, but most don't (see Georgi-Jarlskog mass relation).

The boson matrix for SO(10) is found by taking the 15 × 15 matrix from the 10 + 5 representation of SU(5) and adding an extra row and column for the right handed neutrino. The bosons are found by adding a partner to each of the 20 charged bosons (2 right-handed W bosons, 6 massive charged gluons and 12 X/Y type bosons) and adding an extra heavy neutral Z-boson to make 5 neutral bosons in total. The boson matrix will have a boson or its new partner in each row and column. These pairs combine to create the familiar 16D Dirac spinor matrices of SO(10).

SU(8)

Assuming 4 generations of fermions instead of 3 makes a total of 64 types of particles. These can be put into 64 = 8 + 56 representations of SU(8). This can be divided into SU(5) × SU(3)F × U(1) which is the SU(5) theory together with some heavy bosons which act on the generation number.

O(16)

Again assuming 4 generations of fermions, the 128 particles and anti-particles can be put into a single spinor representation of O(16).

Symplectic Groups and Quaternion Representations

Symplectic gauge groups could also be considered. For example Sp(8) (which is called Sp(4) in the article symplectic group) has a representation in terms of 4 × 4 quaternion unitary matrices which has a 16 dimensional real representation and so might be considered as a candidate for a gauge group. Sp(8) has 32 charged bosons and 4 neutral bosons. Its subgroups include SU(4) so can at least contain the gluons and photon of SU(3) × U(1).

Although it's probably not possible to have weak bosons acting on chiral fermions in this representation. A quaternion representation of the fermions might be:
\begin{bmatrix}
e+i\overline{e}+jv+k\overline{v} \\
u_r+i\overline{u_r}+jd_r+k\overline{d_r} \\
u_g+i\overline{u_g}+jd_g+k\overline{d_g} \\
u_b+i\overline{u_b}+jd_b+k\overline{d_b} \\
\end{bmatrix}_L
A further complication with quaternion representations of fermions is that there are two types of multiplication: left multiplication and right multiplication which must be taken into account. It turns out that including left and right-handed 4 × 4 quaternion matrices is equivalent to including a single right-multiplication by a unit quaternion which adds an extra SU(2) and so has an extra neutral boson and two more charged bosons. Thus the group of left and right handed 4 × 4 quaternion matrcies is Sp(8) × SU(2) which does include the standard model bosons:
 SU(4,H)_L\times H_R = Sp(8)\times SU(2) \supset SU(4)\times SU(2) \supset SU(3)\times SU(2)\times U(1)
If \psi is a quaternion valued spinor, A^{ab}_\mu is quaternion hermitian 4 × 4 matrix coming from Sp(8) and B_\mu is a pure imaginary quaternion (both of which are 4-vector bosons) then the interaction term is:
\overline{\psi^{a}} \gamma_\mu\left( A^{ab}_\mu\psi^b + \psi^a B_\mu \right)

E8 and Octonion Representations

It can be noted that a generation of 16 fermions can be put into the form of an Octonion with each element of the octonion being an 8-vector. If the 3 generations are then put in a 3x3 hermitian matrix with certain additions for the diagonal elements then these matrices form an exceptional (grassman-) Jordan algebra, which has the symmetry group of one of the exceptional Lie groups (F4, E6, E7 or E8) depending on the details.
\psi=\begin{bmatrix}
a & e & \mu \\
\overline{e} & b & \tau \\
\overline{\mu} & \overline{\tau} & c
\end{bmatrix}
[\psi_A,\psi_B] \subset J_3(O)
Because they are fermions the anti-commutators of the Jordan algebra become commutators. It is known that E6 has subgroup O(10) and so is big enough to include the Standard Model. An E8 gauge group, for example, would have 8 neutral bosons, 120 charged bosons and 120 charged anti-bosons. To account for the 248 fermions in the lowest multiplet of E8, these would either have to include anti-particles (and so have Baryogenesis), have new undiscovered particles, or have gravity-like (Spin connection) bosons affecting elements of the particles spin direction. Each of these poses theoretical problems.

Beyond Lie Groups

Other structures have been suggested including Lie 3-algebras and Lie superalgebras. Neither of these fit with Yang–Mills theory. In particular Lie superalgebras would introduce bosons with the wrong statistics. Supersymmetry however does fit with Yang–Mills. For example N=4 Super Yang Mills Theory requires an SU(N) gauge group.

Unification of forces and the role of supersymmetry

The unification of forces is possible due to the energy scale dependence of force coupling parameters in quantum field theory called renormalization group running, which allows parameters with vastly different values at usual energies to converge to a single value at a much higher energy scale.[7]

The renormalization group running of the three gauge couplings in the Standard Model has been found to nearly, but not quite, meet at the same point if the hypercharge is normalized so that it is consistent with SU(5) or SO(10) GUTs, which are precisely the GUT groups which lead to a simple fermion unification. This is a significant result, as other Lie groups lead to different normalizations. However, if the supersymmetric extension MSSM is used instead of the Standard Model, the match becomes much more accurate. In this case, the coupling constants of the strong and electroweak interactions meet at the grand unification energy, also known as the GUT scale:
\Lambda_{\text{GUT}} \approx 10^{16}\,\text{GeV}.
It is commonly believed that this matching is unlikely to be a coincidence, and is often quoted as one of the main motivations to further investigate supersymmetric theories despite the fact that no supersymmetric partner particles have been experimentally observed (Apr 2015). Also, most model builders simply assume supersymmetry because it solves the hierarchy problem—i.e., it stabilizes the electroweak Higgs mass against radiative corrections.[citation needed]

Neutrino masses

Since Majorana masses of the right-handed neutrino are forbidden by SO(10) symmetry, SO(10) GUTs predict the Majorana masses of right-handed neutrinos to be close to the GUT scale where the symmetry is spontaneously broken in those models. In supersymmetric GUTs, this scale tends to be larger than would be desirable to obtain realistic masses of the light, mostly left-handed neutrinos (see neutrino oscillation) via the seesaw mechanism.

Proposed theories

Several such theories have been proposed, but none is currently universally accepted. An even more ambitious theory that includes all fundamental forces, including gravitation, is termed a theory of everything. Some common mainstream GUT models are:
Not quite GUTs:
Note: These models refer to Lie algebras not to Lie groups. The Lie group could be [SU(4) × SU(2) × SU(2)]/Z2, just to take a random example.

The most promising candidate is SO(10).[citation needed] (Minimal) SO(10) does not contain any exotic fermions (i.e. additional fermions besides the Standard Model fermions and the right-handed neutrino), and it unifies each generation into a single irreducible representation. A number of other GUT models are based upon subgroups of SO(10). They are the minimal left-right model, SU(5), flipped SU(5) and the Pati–Salam model. The GUT group E6 contains SO(10), but models based upon it are significantly more complicated. The primary reason for studying E6 models comes from E8 × E8 heterotic string theory.

GUT models generically predict the existence of topological defects such as monopoles, cosmic strings, domain walls, and others. But none have been observed. Their absence is known as the monopole problem in cosmology.
Most GUT models also predict proton decay, although not the Pati–Salam model; current experiments still haven't detected proton decay. This experimental limit on the proton's lifetime pretty much rules out minimal SU(5).
Some GUT theories like SU(5) and SO(10) suffer from what is called the doublet-triplet problem. These theories predict that for each electroweak Higgs doublet, there is a corresponding colored Higgs triplet field with a very small mass (many orders of magnitude smaller than the GUT scale here). In theory, unifying quarks with leptons, the Higgs doublet would also be unified with a Higgs triplet. Such triplets have not been observed. They would also cause extremely rapid proton decay (far below current experimental limits) and prevent the gauge coupling strengths from running together in the renormalization group.

Most GUT models require a threefold replication of the matter fields. As such, they do not explain why there are three generations of fermions. Most GUT models also fail to explain the little hierarchy between the fermion masses for different generations.

Ingredients

A GUT model basically consists of a gauge group which is a compact Lie group, a connection form for that Lie group, a Yang–Mills action for that connection given by an invariant symmetric bilinear form over its Lie algebra (which is specified by a coupling constant for each factor), a Higgs sector consisting of a number of scalar fields taking on values within real/complex representations of the Lie group and chiral Weyl fermions taking on values within a complex rep of the Lie group. The Lie group contains the Standard Model group and the Higgs fields acquire VEVs leading to a spontaneous symmetry breaking to the Standard Model. The Weyl fermions represent matter.

Current status

As of 2012, there is still no hard evidence that nature is described by a Grand Unified Theory. Moreover, since we have no idea which Higgs particle has been observed, the smaller electroweak unification is still pending.[8] The discovery of neutrino oscillations indicates that the Standard Model is incomplete and has led to renewed interest toward certain GUT such as SO(10). One of the few possible experimental tests of certain GUT is proton decay and also fermion masses. There are a few more special tests for supersymmetric GUT.

The gauge coupling strengths of QCD, the weak interaction and hypercharge seem to meet at a common length scale called the GUT scale and equal approximately to 1016 GeV, which is slightly suggestive. This interesting numerical observation is called the gauge coupling unification, and it works particularly well if one assumes the existence of superpartners of the Standard Model particles. Still it is possible to achieve the same by postulating, for instance, that ordinary (non supersymmetric) SO(10) models break with an intermediate gauge scale, such as the one of Pati–Salam group.

Wednesday, April 29, 2015

How I Got Converted to G.M.O. Food





Credit Armando Veve

NAIROBI, Kenya — Mohammed Rahman doesn’t know it yet, but his small farm in central Bangladesh is globally significant. Mr. Rahman, a smallholder farmer in Krishnapur, about 60 miles northwest of the capital, Dhaka, grows eggplant on his meager acre of waterlogged land.

As we squatted in the muddy field, examining the lush green foliage and shiny purple fruits, he explained how, for the first time this season, he had been able to stop using pesticides. This was thanks to a new pest-resistant variety of eggplant supplied by the government-run Bangladesh Agricultural Research Institute.

Despite a recent hailstorm, the weather had been kind, and the new crop flourished. Productivity nearly doubled.

Mr. Rahman had already harvested the small plot 10 times, he said, and sold the brinjal (eggplant’s name in the region) labeled “insecticide free” at a small premium in the local market. Now, with increased profits, he looked forward to being able to lift his family further out of poverty. I could see why this was so urgent: Half a dozen shirtless kids gathered around, clamoring for attention. They all looked stunted by malnutrition.

In a rational world, Mr. Rahman would be receiving support from all sides. He is improving the environment and tackling poverty. Yet the visit was rushed, and my escorts from the research institute were nervous about permitting me to speak with him at all.

The new variety had been subjected to incendiary coverage in the local press, and campaign groups based in Dhaka were suing to have the pest-resistant eggplant banned. Activists had visited some of the fields and tried to pressure the farmers to uproot their crops. Our guides from the institute warned that there was a continuing threat of violence — and they were clearly keen to leave.

Why was there such controversy? Because Mr. Rahman’s pest-resistant eggplant was produced using genetic modification. A gene transferred from a soil bacterium, Bacillus thuringiensis (more commonly known by the abbreviation “Bt”), produces a protein that kills the Fruit and Shoot Borer, a species of moth whose larvae feed on the eggplant, without the need for pesticide sprays. (The protein is entirely nontoxic to other insects and indeed humans.)

Conventional eggplant farmers in Bangladesh are forced to spray their crops as many as 140 times during the growing season, and pesticide poisoning is a chronic health problem in rural areas. But because Bt brinjal is a hated G.M.O., or genetically modified organism, it is Public Enemy No.1 to environmental groups everywhere.

The stakes are especially high because Mr. Rahman is one of only 108 farmers in Bangladesh currently permitted to try out the new variety. Moreover, this is among the first genetically modified food crops to be grown by farmers anywhere in the developing world. Virtually every crop, in every other country, has so far been blocked.

In neighboring India, green campaigners managed to secure a nationwide moratorium against the genetically modified eggplant in 2010. In the Philippines, a Greenpeace-led coalition has tied up the variety in litigation for two years. Greenpeace activists took the precaution of wrecking field trials first, by pulling up the plants.
I, too, was once in that activist camp. A lifelong environmentalist, I opposed genetically modified foods in the past. Fifteen years ago, I even participated in vandalizing field trials in Britain. Then I changed my mind.

After writing two books on the science of climate change, I decided I could no longer continue taking a pro-science position on global warming and an anti-science position on G.M.O.s.

There is an equivalent level of scientific consensus on both issues, I realized, that climate change is real and genetically modified foods are safe. I could not defend the expert consensus on one issue while opposing it on the other.

In Africa, however, countries have fallen like dominoes to anti-G.M. campaigns. I am writing this at a biotechnology conference in Nairobi, where the government slapped a G.M.O. import ban in 2012 after activists brandished pictures of rats with tumors and claimed that G.M. foods caused cancer.

The origin of the scare was a French scientific paper that was later retracted by the journal in which it was originally published because of numerous flaws in methodology. Yet Kenya’s ban remains, creating a food-trade bottleneck that will raise prices, worsening malnutrition and increasing poverty for millions.

In Uganda, the valuable banana crop is being devastated by a new disease called bacterial wilt, while the starchy cassava, a subsistence staple, has been hit by two deadly viruses. Biotech scientists have produced resistant varieties of both crops using genetic modification, but anti-G.M.O. groups have successfully prevented the Ugandan Parliament from passing a biosafety law necessary for their release.

An eminent Ghanaian scientist whom I met recently had received such a high level of harassment from campaigners that he was considering taking a dossier to the police. Activists in his country have also gone to court to stall progress in biotech development.

The environmental movement’s war against genetic engineering has led to a deepening rift with the scientific community. A recent survey by the Pew Research Center and the American Association for the Advancement of Science showed a greater gap between scientists and the public on G.M.O.s than on any other scientific controversy: While 88 percent of association scientists agreed it was safe to eat genetically modified foods, only 37 percent of the public did — a gap in perceptions of 51 points. (The gap on climate change was 37 points; on childhood vaccinations, 18 points.)

On genetic engineering, environmentalists have been markedly more successful than climate change deniers or anti-vaccination campaigners in undermining public understanding of science. The scientific community is losing this battle. If you need visual confirmation of that, try a Google Images search for the term “G.M.O.” Scary pictures proliferate, from an archetypal evil scientist injecting tomatoes with a syringe — an utterly inaccurate representation of the real process of genetic engineering — to tumor-riddled rats and ghoulish chimeras like fish-apples.

In Europe, leaders in Brussels propose to empower all member states of the European Union to ban genetically modified crops, if they so wish. Hungary has even written anti-G.M.O. ideology into its Constitution. Peru has enacted a 10-year moratorium.

As someone who participated in the early anti-G.M.O. movement, I feel I owe a debt to Mr. Rahman and other farmers in developing countries who could benefit from this technology. At Cornell, I am working to amplify the voices of farmers and scientists in a more informed conversation about what biotechnology can bring to food security and environmental protection.

No one claims that biotech is a silver bullet. The technology of genetic modification can’t make the rains come on time or ensure that farmers in Africa have stronger land rights. But improved seed genetics can make a contribution in all sorts of ways: It can increase disease resistance and drought tolerance, which are especially important as climate change continues to bite; and it can help tackle hidden malnutritional problems like vitamin A deficiency.

We need this technology. We must not let the green movement stand in its way.


Mark Lynas is a researcher at the Cornell Alliance for Science and the author, most recently, of “The God Species: How the Planet Can Survive the Age of Humans.”


Roman citizenship

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Rom...