Search This Blog

Wednesday, May 6, 2015

Gravitational wave


From Wikipedia, the free encyclopedia

In physics, gravitational waves are ripples in the curvature of spacetime that propagate as a wave, travelling outward from the source. Predicted in 1916[1][2] by Albert Einstein to exist on the basis of his theory of general relativity,[3][4] gravitational waves theoretically transport energy as gravitational radiation. Sources of detectable gravitational waves could possibly include binary star systems composed of white dwarfs, neutron stars, or black holes. The existence of gravitational waves is a possible consequence of the Lorentz invariance of general relativity since it brings the concept of a limiting speed of propagation of the physical interactions with it. Gravitational waves cannot exist in the Newtonian theory of gravitation, in which physical interactions propagate at infinite speed.

Although gravitational radiation has not been directly detected, there is indirect evidence for its existence.[5] For example, the 1993 Nobel Prize in Physics was awarded for measurements of the Hulse–Taylor binary system that suggests gravitational waves are more than mathematical anomalies. Various gravitational wave detectors exist and on 17 March 2014, astronomers at the Harvard–Smithsonian Center for Astrophysics claimed that they had detected and produced "the first direct image of gravitational waves across the primordial sky" within the cosmic microwave background, providing strong evidence for inflation and the Big Bang.[6][7][8][9][5] Peer review will be needed before there can be any scientific consensus about these new findings.[10][11] On 19 June 2014, lowered confidence in confirming the cosmic inflation findings was reported;[12][13][14] on 19 September 2014, a further reduction in confidence was reported[15][16] and, on 30 January 2015, even less confidence yet was reported.[17][18]

Introduction


History of the Universe - gravitational waves are hypothesized to arise from cosmic inflation, a faster-than-light expansion just after the Big Bang (17 March 2014).[6][8][9]

In Einstein's theory of general relativity, gravity is treated as a phenomenon resulting from the curvature of spacetime. This curvature is caused by the presence of mass. Generally, the more mass that is contained within a given volume of space, the greater the curvature of spacetime will be at the boundary of this volume.[5] As objects with mass move around in spacetime, the curvature changes to reflect the changed locations of those objects. In certain circumstances, accelerating objects generate changes in this curvature, which propagate outwards at the speed of light in a wave-like manner. These propagating phenomena are known as gravitational waves.

As a gravitational wave passes a distant observer, that observer will find spacetime distorted by the effects of strain. Distances between free objects increase and decrease rhythmically as the wave passes, at a frequency corresponding to that of the wave. This occurs despite such free objects never being subjected to an unbalanced force. The magnitude of this effect decreases inversely with distance from the source. Inspiralling binary neutron stars are predicted to be a powerful source of gravitational waves as they coalesce, due to the very large acceleration of their masses as they orbit close to one another. However, due to the astronomical distances to these sources the effects when measured on Earth are predicted to be very small, having strains of less than 1 part in 1020. Scientists are attempting to demonstrate the existence of these waves with ever more sensitive detectors. The current most sensitive measurement is about one part in 5×1022 (as of 2012) provided by the LIGO and VIRGO observatories.[19] The lack of detection in these observatories provides an upper limit on the frequency of such powerful sources.[20][21] A space based observatory, the Laser Interferometer Space Antenna, is currently under development by ESA.

Linearly polarised gravitational wave

Gravitational waves should penetrate regions of space that electromagnetic waves cannot. It is hypothesized that they will be able to provide observers on Earth with information about black holes and other exotic objects in the distant Universe. Such systems cannot be observed with more traditional means such as optical telescopes and radio telescopes. In particular, gravitational waves could be of interest to cosmologists as they offer a possible way of observing the very early universe. This is not possible with conventional astronomy, since before recombination the universe was opaque to electromagnetic radiation.[22] Precise measurements of gravitational waves will also allow scientists to test the general theory of relativity more thoroughly.

In principle, gravitational waves could exist at any frequency. However, very low frequency waves would be impossible to detect and there is no credible source for detectable waves of very high frequency. Stephen W. Hawking and Werner Israel list different frequency bands for gravitational waves that could be plausibly detected, ranging from 10−7 Hz up to 1011 Hz.[23]

Effects of a passing gravitational wave


The effect of a plus-polarized gravitational wave on a ring of particles.

The effect of a cross-polarized gravitational wave on a ring of particles.

The effects of a passing gravitational wave can be visualized by imagining a perfectly flat region of spacetime with a group of motionless test particles lying in a plane (the surface of your screen). As a gravitational wave passes through the particles along a line perpendicular to the plane of the particles (i.e. following your line of vision into the screen), the particles will follow the distortion in spacetime, oscillating in a "cruciform" manner, as shown in the animations. The area enclosed by the test particles does not change and there is no motion along the direction of propagation.

The oscillations depicted here in the animation are exaggerated for the purpose of discussion—in reality a gravitational wave has a very small amplitude (as formulated in linearized gravity). However they enable us to visualize the kind of oscillations associated with gravitational waves as produced for example by a pair of masses in a circular orbit. In this case the amplitude of the gravitational wave is a constant, but its plane of polarization changes or rotates at twice the orbital rate and so the time-varying gravitational wave size (or 'periodic spacetime strain') exhibits a variation as shown in the animation.[24] If the orbit is elliptical then the gravitational wave's amplitude also varies with time according to Einstein's quadrupole formula.[25]

Like other waves, there are a few useful characteristics describing a gravitational wave:
  • Amplitude: Usually denoted h, this is the size of the wave — the fraction of stretching or squeezing in the animation. The amplitude shown here is roughly h=0.5 (or 50%). Gravitational waves passing through the Earth are many billions times weaker than this — h \approx 10^{-20}. Note that this is not the quantity that would be analogous to what is usually called the amplitude of an electromagnetic wave, which would be \frac{\mathrm{d}h}{\mathrm{d}t}.
  • Frequency: Usually denoted f, this is the frequency with which the wave oscillates (1 divided by the amount of time between two successive maximum stretches or squeezes)
  • Wavelength: Usually denoted \lambda, this is the distance along the wave between points of maximum stretch or squeeze.
  • Speed: This is the speed at which a point on the wave (for example, a point of maximum stretch or squeeze) travels. For gravitational waves with small amplitudes, this is equal to the speed of light, c.
The speed, wavelength, and frequency of a gravitational wave are related by the equation c = λ f, just like the equation for a light wave. For example, the animations shown here oscillate roughly once every two seconds. This would correspond to a frequency of 0.5 Hz, and a wavelength of about 600,000 km, or 47 times the diameter of the Earth.

In the example just discussed, we actually assume something special about the wave. We have assumed that the wave is linearly polarized, with a "plus" polarization, written h_{\,+}. Polarization of a gravitational wave is just like polarization of a light wave except that the polarizations of a gravitational wave are at 45 degrees, as opposed to 90 degrees. In particular, if we had a "cross"-polarized gravitational wave, h_{\,\times}, the effect on the test particles would be basically the same, but rotated by 45 degrees, as shown in the second animation. Just as with light polarization, the polarizations of gravitational waves may also be expressed in terms of circularly polarized waves. Gravitational waves are polarized because of the nature of their sources. The polarization of a wave depends on the angle from the source, as we will see in the next section.

Sources of gravitational waves

In general terms, gravitational waves are radiated by objects whose motion involves acceleration, provided that the motion is not perfectly spherically symmetric (like an expanding or contracting sphere) or cylindrically symmetric (like a spinning disk or sphere). A simple example of this principle is provided by the spinning dumbbell. If the dumbbell spins like wheels on an axle, it will not radiate gravitational waves; if it tumbles end over end like two planets orbiting each other, it will radiate gravitational waves. The heavier the dumbbell, and the faster it tumbles, the greater is the gravitational radiation it will give off. If we imagine an extreme case in which the two weights of the dumbbell are massive stars like neutron stars or black holes, orbiting each other quickly, then significant amounts of gravitational radiation would be given off.

Some more detailed examples:
  • Two objects orbiting each other in a quasi-Keplerian planar orbit (basically, as a planet would orbit the Sun) will radiate.
  • A spinning non-axisymmetric planetoid — say with a large bump or dimple on the equator — will radiate.
  • A supernova will radiate except in the unlikely event that the explosion is perfectly symmetric.
  • An isolated non-spinning solid object moving at a constant velocity will not radiate. This can be regarded as a consequence of the principle of conservation of linear momentum.
  • A spinning disk will not radiate. This can be regarded as a consequence of the principle of conservation of angular momentum. However, it will show gravitomagnetic effects.
  • A spherically pulsating spherical star (non-zero monopole moment or mass, but zero quadrupole moment) will not radiate, in agreement with Birkhoff's theorem.
More technically, the third time derivative of the quadrupole moment (or the l-th time derivative of the l-th multipole moment) of an isolated system's stress–energy tensor must be nonzero in order for it to emit gravitational radiation. This is analogous to the changing dipole moment of charge or current necessary for electromagnetic radiation.

Power radiated by orbiting bodies


Two stars of dissimilar mass are in circular orbits. Each revolves about their common center of mass (denoted by the small red cross) in a circle with the larger mass having the smaller orbit.

Two stars of similar mass are in circular orbits about their center of mass

Two stars of similar mass are in highly elliptical orbits about their center of mass

Gravitational waves carry energy away from their sources and, in the case of orbiting bodies, this is associated with an inspiral or decrease in orbit. Imagine for example a simple system of two masses — such as the Earth-Sun system — moving slowly compared to the speed of light in circular orbits. Assume that these two masses orbit each other in a circular orbit in the xy plane. To a good approximation, the masses follow simple Keplerian orbits. However, such an orbit represents a changing quadrupole moment. That is, the system will give off gravitational waves.

Suppose that the two masses are m_1 and m_2, and they are separated by a distance r. The power given off (radiated) by this system is:
P = \frac{\mathrm{d}E}{\mathrm{d}t} = - \frac{32}{5}\, \frac{G^4}{c^5}\, \frac{(m_1m_2)^2 (m_1+m_2)}{r^5} ,[26]
where G is the gravitational constant, c is the speed of light in vacuum and where the negative sign means that power is being given off by the system, rather than received. For a system like the Sun and Earth, r is about 1.5×1011 m and m_1 and m_2 are about 2×1030 and 6×1024 kg respectively. In this case, the power is about 200 watts. This is truly tiny compared to the total electromagnetic radiation given off by the Sun (roughly 3.86×1026 watts).

In theory, the loss of energy through gravitational radiation could eventually drop the Earth into the Sun. However, the total energy of the Earth orbiting the Sun (kinetic energy + gravitational potential energy) is about 1.14×1036 joules of which only 200 joules per second is lost through gravitational radiation, leading to a decay in the orbit by about 1×1015 meters per day or roughly the diameter of a proton. At this rate, it would take the Earth approximately 1×1013 times more than the current age of the Universe to spiral onto the Sun. This estimate overlooks the decrease in r over time, but the majority of the time the bodies are far apart and only radiating slowly, so the difference is unimportant in this example.

A more dramatic example of radiated gravitational energy is represented by two solar mass (M) neutron stars orbiting at a distance from each other of 1.89×108 m (only 0.63 light-seconds apart). [The Sun is 8 light minutes from the Earth.] Plugging their masses into the above equation shows that the gravitational radiation from them would be 1.38×1028 watts, which is about 100 times more than the Sun's electromagnetic radiation.

Orbital decay from gravitational radiation

Gravitational radiation robs the orbiting bodies of energy. It first circularizes their orbits and then gradually shrinks their radius. As the energy of the orbit is reduced, the distance between the bodies decreases, and they rotate more rapidly. The overall angular momentum is reduced however. This reduction corresponds to the angular momentum carried off by gravitational radiation. The rate of decrease of distance between the bodies versus time is given by:[26]
\frac{\mathrm{d}r}{\mathrm{d}t} = - \frac{64}{5}\, \frac{G^3}{c^5}\, \frac{(m_1m_2)(m_1+m_2)}{r^3}\ ,
where the variables are the same as in the previous equation.

The orbit decays at a rate proportional to the inverse third power of the radius. When the radius has shrunk to half its initial value, it is shrinking eight times faster than before. By Kepler's Third Law, the new rotation rate at this point will be faster by \sqrt{8}=2.828, or nearly three times the previous orbital frequency. As the radius decreases, the power lost to gravitational radiation increases even more. As can be seen from the previous equation, power radiated varies as the inverse fifth power of the radius, or 32 times more in this case.

If we use the previous values for the Sun and the Earth, we find that the Earth's orbit shrinks by 1.1×1020 meter per second. This is 3.5×1013 m per year, which is about 1/300 the diameter of a hydrogen atom. The effect of gravitational radiation on the size of the Earth's orbit is negligible over the age of the universe. This is not true for closer orbits.

A more practical example is the orbit of a Sun-like star around a heavy black hole. Our Milky Way has a, potential, 4 million M black hole at its center in Sagittarius A. Such supermassive black holes are being found in the center of almost all galaxies. For this example take a 2 million M black hole with a solar-mass star orbiting it at a radius of 1.89×1010 m (63 light-seconds). The mass of the black hole will be 4×1036 kg and its gravitational radius will be 6×109 m. The orbital period will be 1,000 seconds, or a little under 17 minutes. The solar-mass star will draw closer to the black hole by 7.4 meters per second or 7.4 km per orbit. A collision will not be long in coming.

Assume that a pair of 1 M neutron stars are in circular orbits at a distance of 1.89×108 m (189,000 km). This is a little less than 1/7 the diameter of the Sun or 0.63 light-seconds. Their orbital period would be 1,000 seconds. Substituting the new mass and radius in the above formula gives a rate of orbit decrease of 3.7×106 m/s or 3.7 mm per orbit. This is 116 meters per year and is not negligible over cosmic time scales.

Suppose instead that these two neutron stars were orbiting at a distance of 1.89×106 m (1890 km). Their period would be 1 second and their orbital velocity would be about 1/50 of the speed of light. Their orbit would now shrink by 3.7 meters per orbit. A collision is imminent. A runaway loss of energy from the orbit results in an ever more rapid decrease in the distance between the stars. They will eventually merge to form a black hole and cease to radiate gravitational waves. This is referred to as the inspiral.

The above equation can not be applied directly for calculating the lifetime of the orbit, because the rate of change in radius depends on the radius itself, and is thus non-constant with time. The lifetime can be computed by integration of this equation (see next section).

Orbital lifetime limits from gravitational radiation

Orbital lifetime is one of the most important properties of gravitational radiation sources. It determines the average number of binary stars in the universe that are close enough to be detected. Short lifetime binaries are strong sources of gravitational radiation but are few in number. Long lifetime binaries are more plentiful but they are weak sources of gravitational waves. LIGO is most sensitive in the frequency band where two neutron stars are about to merge.
This time frame is only a few seconds. It takes luck for the detector to see this blink in time out of a million year orbital lifetime. It is predicted that such a merger will only be seen once per decade or so.

The lifetime of an orbit is given by:[26]
t= \frac{5}{256}\, \frac{c^5}{G^3}\, \frac{r^4}{(m_1m_2)(m_1+m_2)}\ ,
where r is the initial distance between the orbiting bodies. This equation can be derived by integrating the previous equation for the rate of radius decrease. It predicts the time for the radius of the orbit to shrink to zero. As the orbital speed becomes a significant fraction of the speed of light, this equation becomes inaccurate. It is useful for inspirals until the last few milliseconds before the merger of the objects.

Substituting the values for the mass of the Sun and Earth as well as the orbital radius gives a very large lifetime of 3.44×1030 seconds or 1.09×1023 years (that is approximately 1013 times larger than the age of the universe). The actual figure would be slightly less than that. The Earth will break apart from tidal forces if it orbits closer than a few radii from the Sun. This would form a ring around the Sun and instantly stop the emission of gravitational waves.

If we use a 2 million M black hole with a solar mass star orbiting it at 1.89×1010 meters, we get a lifetime of 6.50×108 seconds or 20.7 years.

Assume that a pair of solar mass neutron stars with a diameter of 10 kilometers are in circular orbits at a distance of 1.89×108 m (189,000 km). Their lifetime is 1.30×1013 seconds or about 414,000 years. Their orbital period will be 1,000 seconds and it could be observed by LISA if they were not too far away. A far greater number of white dwarf binaries exist with orbital periods in this range. White dwarf binaries have masses on the order of our Sun and diameters on the order of our Earth. They cannot get much closer together than 10,000 km before they will merge and cease to radiate gravitational waves. This results in the creation of either a neutron star or a black hole. Until then, their gravitational radiation will be comparable to that of a neutron star binary. LISA is the only gravitational wave experiment that is likely to succeed in detecting such types of binaries.

If the orbit of a neutron star binary has decayed to 1.89×106m (1890 km), its remaining lifetime is 130,000 seconds or about 36 hours. The orbital frequency will vary from 1 revolution per second at the start and 918 revolutions per second when the orbit has shrunk to 20 km at merger. The gravitational radiation emitted will be at twice the orbital frequency. Just before merger, the inspiral can be observed by LIGO if the binary is close enough. LIGO has only a few minutes to observe this merger out of a total orbital lifetime that may have been billions of years. The chance of success with LIGO as initially constructed is quite low despite the large number of such mergers occurring in the universe, because the sensitivity of the instrument does not 'reach' out to enough systems to see events frequently.
No mergers have been seen in the few years that initial LIGO has been in operation, and it is thought that a merger should be seen about once per several tens of years of observing time with initial LIGO.[27] The upgraded Advanced LIGO detector, with a ten times greater sensitivity, 'reaches' out 10 times further—encompassing a volume 1000 times greater, and seeing 1000 times as many candidate sources. Thus, the expectation is that detections will be made at the rate of tens per year.

Wave amplitudes from the Earth–Sun system

We can also think in terms of the amplitude of the wave from a system in circular orbits. Let \theta be the angle between the perpendicular to the plane of the orbit and the line of sight of the observer. Suppose that an observer is outside the system at a distance R from its center of mass. If R is much greater than a wavelength, the two polarizations of the wave will be
h_{+} = -\frac{1}{R}\, \frac{G^2}{c^4}\, \frac{2 m_1 m_2}{r} (1+\cos^2\theta) \cos\left[2\omega(t - R)\right],
h_{\times} = -\frac{1}{R}\, \frac{G^2}{c^4}\, \frac{4 m_1 m_2}{r}\, (\cos{\theta})\sin \left[2\omega(t-R)\right].
Here, we use the constant angular velocity of a circular orbit in Newtonian physics:
\omega=\sqrt{G(m_1+m_2)/r^3}.
For example, if the observer is in the x-y plane then \theta=\pi/2, and \cos (\theta) = 0, so the h_\times polarization is always zero. We also see that the frequency of the wave given off is twice the rotation frequency. If we put in numbers for the Earth-Sun system, we find:
h_{+} =-\frac{1}{R}\, \frac{G^2}{c^4}\, \frac{4m_1 m_2}{r} = -\frac{1}{R}\, 1.7\times 10^{-10}\, \mathrm{m}.
In this case, the minimum distance to find waves is R ≈ 1 light-year, so typical amplitudes will be h ≈ 10−26. That is, a ring of particles would stretch or squeeze by just one part in 1026. This is well under the detectability limit of all conceivable detectors.

Radiation from other sources

Although the waves from the Earth-Sun system are minuscule, astronomers can point to other sources for which the radiation should be substantial. One important example is the Hulse-Taylor binary — a pair of stars, one of which is a pulsar.[28] The characteristics of their orbit can be deduced from the Doppler shifting of radio signals given off by the pulsar. Each of the stars are about 1.4 M and the size of their orbit is about 1/75 of the Earth-Sun orbit. This means the distance between the two stars is just a few times larger than the diameter of our own Sun. The combination of greater masses and smaller separation means that the energy given off by the Hulse-Taylor binary will be far greater than the energy given off by the Earth-Sun system — roughly 1022 times as much.

The information about the orbit can be used to predict just how much energy (and angular momentum) should be given off in the form of gravitational waves. As the energy is carried off, the stars should draw closer to each other. This effect is called an inspiral, and it can be observed in the pulsar's signals. The measurements on the Hulse-Taylor system have been carried out over more than 30 years. It has been shown that the gravitational radiation predicted by general relativity allows these observations to be matched within 0.2 percent. In 1993, Russell Hulse and Joe Taylor were awarded the Nobel Prize in Physics for this work, which was the first indirect evidence for gravitational waves. The orbital lifetime of this binary system before merger is a few hundred million years.[29]

Inspirals are very important sources of gravitational waves. Any time two compact objects (white dwarfs, neutron stars, or black holes) are in close orbits, they send out intense gravitational waves. As they spiral closer to each other, these waves become more intense. At some point they should become so intense that direct detection by their effect on objects on Earth or in space is possible. This direct detection is the goal of several large scale experiments.[30]

The only difficulty is that most systems like the Hulse-Taylor binary are so far away. The amplitude of waves given off by the Hulse-Taylor binary as seen on Earth would be roughly h ≈ 10−26. There are some sources, however, that astrophysicists expect to find with much larger amplitudes of h ≈ 10−20. At least eight other binary pulsars have been discovered.[31]

Astrophysics and gravitational waves


Two-dimensional representation of gravitational waves generated by two neutron stars orbiting each other.

During the past century, astronomy has been revolutionized by the use of new methods for observing the universe.
Astronomical observations were originally made using visible light. Galileo Galilei pioneered the use of telescopes to enhance these observations. However, visible light is only a small portion of the electromagnetic spectrum, and not all objects in the distant universe shine strongly in this particular band. More useful information may be found, for example, in radio wavelengths. Using radio telescopes, astronomers have found pulsars, quasars, and other extreme objects that push the limits of our understanding of physics. Observations in the microwave band have opened our eyes to the faint imprints of the Big Bang, a discovery Stephen Hawking called the "greatest discovery of the century, if not all time". Similar advances in observations using gamma rays, x-rays, ultraviolet light, and infrared light have also brought new insights to astronomy. As each of these regions of the spectrum has opened, new discoveries have been made that could not have been made otherwise. Astronomers hope that the same holds true of gravitational waves.

Gravitational waves have two important and unique properties. First, there is no need for any type of matter to be present nearby in order for the waves to be generated by a binary system of uncharged black holes, which would emit no electromagnetic radiation. Second, gravitational waves can pass through any intervening matter without being scattered significantly. Whereas light from distant stars may be blocked out by interstellar dust, for example, gravitational waves will pass through essentially unimpeded. These two features allow gravitational waves to carry information about astronomical phenomena never before observed by humans.

The sources of gravitational waves described above are in the low-frequency end of the gravitational-wave spectrum (10−7 to 105 Hz). An astrophysical source at the high-frequency end of the gravitational-wave spectrum (above 105 Hz and probably 1010 Hz) generates[clarification needed] relic gravitational waves that are theorized to be faint imprints of the Big Bang like the cosmic microwave background (see gravitational wave background).[32] At these high frequencies it is potentially possible that the sources may be "man made"[23] that is, gravitational waves generated and detected in the laboratory.[33][34]

Energy, momentum, and angular momentum carried by gravitational waves

Waves familiar from other areas of physics such as water waves, sound waves, and electromagnetic waves are able to carry energy, momentum, and angular momentum. By carrying these away from a source, waves are able to rob that source of its energy as well as its linear and angular momentum. Gravitational waves perform the same function. Thus, for example, a binary system loses angular momentum as the two orbiting objects spiral towards each other—the angular momentum is radiated away by gravitational waves.

The waves can also carry off linear momentum, a possibility that has some interesting implications for astrophysics.[35] After two supermassive black holes coalesce, emission of linear momentum can produce a "kick" with amplitude as large as 4000 km/s. This is fast enough to eject the coalesced black hole completely from its host galaxy. Even if the kick is too small to eject the black hole completely, it can remove it temporarily from the nucleus of the galaxy, after which it will oscillate about the center, eventually coming to rest.[36] A kicked black hole can also carry a star cluster with it, forming a hyper-compact stellar system.[37] Or it may carry gas, allowing the recoiling black hole to appear temporarily as a "naked quasar". The quasar SDSS J092712.65+294344.0 is believed to contain a recoiling supermassive black hole.[38]

Detecting gravitational waves

Difficulties in detection


Evidence of gravitational waves in the infant universe may have been uncovered by the BICEP2 radio telescope. The microscopic examination of the focal plane of the BICEP2 detector is shown here.[6][7][8][9][11]

Gravitational waves are not easily detectable. This knowledge gap is primarily due to the massive presence of noise in the low frequencies where antennas currently operate. Gravitational waves are expected to have frequencies 10^{-16}\, \mathrm{Hz}<f<10^4\, \mathrm{Hz}.[39]

Ground-based interferometers

Though the Hulse-Taylor observations were very important, they give only indirect evidence for gravitational waves. A more conclusive observation would be a direct measurement of the effect of a passing gravitational wave, which could also provide more information about the system that generated it. Any such direct detection is complicated by the extraordinarily small effect the waves would produce on a detector. The amplitude of a spherical wave will fall off as the inverse of the distance from the source (the 1/R term in the formulas for h above). Thus, even waves from extreme systems like merging binary black holes die out to very small amplitude by the time they reach the Earth. Astrophysicists expect that some gravitational waves passing the Earth may be as large as h ≈ 10−20, but generally no bigger.[40]
A simple device theorised to detect the expected wave motion is called a Weber bar — a large, solid bar of metal isolated from outside vibrations. This type of instrument was the first type of gravitational wave detector. Strains in space due to an incident gravitational wave excite the bar's resonant frequency and could thus be amplified to detectable levels. Conceivably, a nearby supernova might be strong enough to be seen without resonant amplification. With this instrument, Joseph Weber claimed to have detected daily signals of gravitational waves. His results, however, were contested in 1974 by physicists Richard Garwin and David Douglass. Modern forms of the Weber bar are still operated, cryogenically cooled, with superconducting quantum interference devices to detect vibration. Weber bars are not sensitive enough to detect anything but extremely powerful gravitational waves.[41]
MiniGRAIL is a spherical gravitational wave antenna using this principle. It is based at Leiden University, consisting of an exactingly machined 1150 kg sphere cryogenically cooled to 20 mK.[42] The spherical configuration allows for equal sensitivity in all directions, and is somewhat experimentally simpler than larger linear devices requiring high vacuum. Events are detected by measuring deformation of the detector sphere. MiniGRAIL is highly sensitive in the 2–4 kHz range, suitable for detecting gravitational waves from rotating neutron star instabilities or small black hole mergers.[43]

A schematic diagram of a laser interferometer
A more sensitive class of detector uses laser interferometry to measure gravitational-wave induced motion between separated 'free' masses.[44] This allows the masses to be separated by large distances (increasing the signal size); a further advantage is that it is sensitive to a wide range of frequencies (not just those near a resonance as is the case for Weber bars). Ground-based interferometers are now operational. Currently, the most sensitive is LIGO — the Laser Interferometer Gravitational Wave Observatory. LIGO has three detectors: one in Livingston, Louisiana; the other two (in the same vacuum tubes) at the Hanford site in Richland, Washington. Each consists of two light storage arms that are 2 to 4 kilometers in length. These are at 90 degree angles to each other, with the light passing through 1m diameter vacuum tubes running the entire 4 kilometers. A passing gravitational wave will slightly stretch one arm as it shortens the other. This is precisely the motion to which an interferometer is most sensitive.

Even with such long arms, the strongest gravitational waves will only change the distance between the ends of the arms by at most roughly 10−18 meters. LIGO should be able to detect gravitational waves as small as h \sim 5\times 10^{-20}. Upgrades to LIGO and other detectors such as Virgo, GEO 600, and TAMA 300 should increase the sensitivity still further; the next generation of instruments (Advanced LIGO and Advanced Virgo) will be more than ten times more sensitive. Another highly sensitive interferometer (LCGT) is currently in the design phase. A key point is that a tenfold increase in sensitivity (radius of 'reach') increases the volume of space accessible to the instrument by one thousand times. This increases the rate at which detectable signals should be seen from one per tens of years of observation, to tens per year.[27]

Interferometric detectors are limited at high frequencies by shot noise, which occurs because the lasers produce photons randomly; one analogy is to rainfall—the rate of rainfall, like the laser intensity, is measurable, but the raindrops, like photons, fall at random times, causing fluctuations around the average value. This leads to noise at the output of the detector, much like radio static. In addition, for sufficiently high laser power, the random momentum transferred to the test masses by the laser photons shakes the mirrors, masking signals at low frequencies. Thermal noise (e.g., Brownian motion) is another limit to sensitivity. In addition to these 'stationary' (constant) noise sources, all ground-based detectors are also limited at low frequencies by seismic noise and other forms of environmental vibration, and other 'non-stationary' noise sources; creaks in mechanical structures, lightning or other large electrical disturbances, etc. may also create noise masking an event or may even imitate an event. All these must be taken into account and excluded by analysis before a detection may be considered a true gravitational wave event.

Space-based interferometers, such as LISA and DECIGO, are also being developed. LISA's design calls for three test masses forming an equilateral triangle, with lasers from each spacecraft to each other spacecraft forming two independent interferometers. LISA is planned to occupy a solar orbit trailing the Earth, with each arm of the triangle being five million kilometers. This puts the detector in an excellent vacuum far from Earth-based sources of noise, though it will still be susceptible to shot noise, as well as artifacts caused by cosmic rays and solar wind.

There are currently two detectors focusing on detection at the higher end of the gravitational wave spectrum (10−7 to 105 Hz): one at University of Birmingham, England, and the other at INFN Genoa, Italy. A third is under development at Chongqing University, China. The Birmingham detector measures changes in the polarization state of a microwave beam circulating in a closed loop about one meter across. Two have been fabricated and they are currently expected to be sensitive to periodic spacetime strains of h\sim{2 \times 10^{-13}/\sqrt{\mathrm{Hz}}} , given as an amplitude spectral density. The INFN Genoa detector is a resonant antenna consisting of two coupled spherical superconducting harmonic oscillators a few centimeters in diameter. The oscillators are designed to have (when uncoupled) almost equal resonant frequencies. The system is currently expected to have a sensitivity to periodic spacetime strains of h\sim{2 \times 10^{-17}/\sqrt{\mathrm{Hz}}} , with an expectation to reach a sensitivity of h\sim{2 \times 10^{-20}/\sqrt{\mathrm{Hz}}} . The Chongqing University detector is planned to detect relic high-frequency gravitational waves with the predicted typical parameters ?g ~1010 Hz (10 GHz) and h ~10−30-10−31.

Using pulsar timing arrays

Pulsars are rapidly rotating stars. A pulsar emits beams of radio waves that, like lighthouse beams, sweep through the sky as the pulsar rotates. The signal from a pulsar can be detected by radio telescopes as a series of regularly spaced pulses, essentially like the ticks of a clock. Gravitational waves affect the time it takes the pulses to travel from the pulsar to a telescope on Earth. A pulsar timing array uses millisecond pulsars to seek out perturbations due to gravitational waves in measurements of pulse arrival times at a telescope, in other words, to look for deviations in the clock ticks. In particular, pulsar timing arrays can search for a distinct pattern of correlation and anti-correlation between the signals over an array of different pulsars (resulting in the name "pulsar timing array"). Although pulsar pulses travel through space for hundreds or thousands of years to reach us, pulsar timing arrays are sensitive to perturbations in their travel time of much less than a millionth of a second.

Globally there are three active pulsar timing array projects. The North American Nanohertz Gravitational Wave Observatory uses data collected by the Arecibo Radio Telescope and Green Bank Telescope. The Parkes Pulsar Timing Array at the Parkes radio-telescope has been collecting data since March 2005. The European Pulsar Timing Array uses data from the four largest telescopes in Europe: the Lovell Telescope, the Westerbork Synthesis Radio Telescope, the Effelsberg Telescope and the Nancay Radio Telescope. (Upon completion the Sardinia Radio Telescope will be added to the EPTA also.) These three projects have begun collaborating under the title of the International Pulsar Timing Array project.

Einstein@Home

In some sense, the easiest signals to detect should be constant sources. Supernovae and neutron star or black hole mergers should have larger amplitudes and be more interesting, but the waves generated will be more complicated. 
The waves given off by a spinning, aspherical neutron star would be "monochromatic"—like a pure tone in acoustics. It would not change very much in amplitude or frequency.
The Einstein@Home project is a distributed computing project similar to SETI@home intended to detect this type of simple gravitational wave. By taking data from LIGO and GEO, and sending it out in little pieces to thousands of volunteers for parallel analysis on their home computers, Einstein@Home can sift through the data far more quickly than would be possible otherwise.[45]

Primordial gravitational waves

Primordial gravitational waves are gravitational waves observed in the cosmic microwave background. They were allegedly detected by the BICEP2 instrument, an announcement being made on 17 March 2014.

Mathematics

Einstein's equations form the fundamental law of general relativity. The curvature of spacetime can be expressed mathematically using the metric tensor — denoted g_{\mu \nu} \,. The metric holds information regarding how distances are measured in the space under consideration. Because the propagation of gravitational waves through space and time change distances, we will need to use this to find the solution to the wave equation.

Spacetime curvature is also expressed with respect to a covariant derivative, \nabla \,, in the form of the Einstein tensor, G_{\mu \nu}. This curvature is related to the stress–energy tensor, T_{\mu\nu}, by the key equation
G_{\mu \nu} = \frac{8\pi G_N}{c^4} T_{\mu \nu},
where G_N is Newton's gravitational constant, and c is the speed of light. We assume geometrized units, so G_N = 1 = c.

With some simple assumptions, Einstein's equations can be rewritten to show explicitly that they are wave equations. To begin with, we adopt some coordinate system, like (t,r,\theta,\phi) \,. We define the "flat-space metric" \eta_{\mu\nu} \, to be the quantity that — in this coordinate system — has the components we would expect for the flat space metric. For example, in these spherical coordinates, we have

\eta_{\mu \nu} =
\begin{bmatrix}
-1 & 0 & 0 & 0 \\
0  & 1 & 0 & 0 \\
0  & 0 & r^2 & 0 \\
0  & 0 & 0 & r^2 \sin^2\theta
\end{bmatrix}.
This flat-space metric has no physical significance; it is a purely mathematical device necessary for the analysis.
Tensor indices are raised and lowered using this "flat-space metric".

Now, we can also think of the physical metric g_{\mu \nu} as a matrix, and find its determinant, \det g. Finally, we define a quantity
\bar{h}^{\alpha \beta} \equiv \eta^{\alpha \beta} - \sqrt{|\det g|} g^{\alpha \beta} \, .
This is the crucial field, which will represent the radiation. It is possible (at least in an asymptotically flat spacetime) to choose the coordinates in such a way that this quantity satisfies the "de Donder" gauge conditions (conditions on the coordinates):
\nabla_\beta\, \bar{h}^{\alpha \beta} = 0,
where \nabla represents the flat-space derivative operator. These equations say that the divergence of the field is zero. The linear Einstein equations can now be written[46] as
\Box \bar{h}^{\alpha \beta} = -16\pi \tau^{\alpha \beta} \, ,
where \Box = -\partial_t^2 + \Delta \, represents the flat-space d'Alembertian operator, and \tau^{\alpha \beta} \, represents the stress–energy tensor plus quadratic terms involving \bar{h}^{\alpha \beta} \,. This is just a wave equation for the field with a source, despite the fact that the source involves terms quadratic in the field itself. That is, it can be shown that solutions to this equation are waves traveling with velocity 1 in these coordinates.

Linear approximation

The equations above are valid everywhere — near a black hole, for instance. However, because of the complicated source term, the solution is generally too difficult to find analytically. We can often assume that space is nearly flat, so the metric is nearly equal to the \eta^{\alpha \beta} \, tensor. In this case, we can neglect terms quadratic in \bar{h}^{\alpha \beta} \,, which means that the \tau^{\alpha \beta} \, field reduces to the usual stress–energy tensor T^{\alpha \beta} \,. That is, Einstein's equations become
\Box \bar{h}^{\alpha \beta} = -16\pi T^{\alpha \beta} \, .
If we are interested in the field far from a source, however, we can treat the source as a point source; everywhere else, the stress–energy tensor would be zero, so
\Box \bar{h}^{\alpha \beta} = 0 \, .
Now, this is the usual homogeneous wave equation — one for each component of \bar{h}^{\alpha \beta} \,. Solutions to this equation are well known. For a wave moving away from a point source, the radiated part (meaning the part that dies off as 1/r \, far from the source) can always be written in the form A(t-r,\theta,\phi)/r \,, where A \, is just some function.
It can be shown[47] that — to a linear approximation — it is always possible to make the field traceless. Now, if we further assume that the source is positioned at r=0, the general solution to the wave equation in spherical coordinates is

\begin{array}{lcl}
\bar{h}^{\alpha \beta} & = &
\frac{1}{r}\, \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & A_{+}(t-r,\theta,\phi) & A_{\times}(t-r,\theta,\phi) \\
0 & 0 & A_{\times}(t-r,\theta,\phi) & -A_{+}(t-r,\theta,\phi)
\end{bmatrix} \\
\\
& \equiv &
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & h_{+}(t-r,r,\theta,\phi) & h_{\times}(t-r,r,\theta,\phi) \\
0 & 0 & h_{\times}(t-r,r,\theta,\phi) & -h_{+}(t-r,r,\theta,\phi)
\end{bmatrix}
\end{array}
 \,
where we now see the origin of the two polarizations.

Relation to the source

If we know the details of a source — for instance, the parameters of the orbit of a binary — we can relate the source's motion to the gravitational radiation observed far away. With the relation
\Box \bar{h}^{\alpha \beta} = -16\pi \tau^{\alpha \beta} \, ,
we can write the solution in terms of the tensorial Green's function for the d'Alembertian operator:[46]

\bar{h}^{\alpha \beta} (t,\vec{x}) =
-16\pi \int\, G^{\alpha \beta}_{\gamma \delta} (t,\vec{x};t',\vec{x}')\, \tau^{\gamma \delta}(t',\vec{x}')\, \mathrm{d}t'\, \mathrm{d}^3x'
.
Though it is possible to expand the Green function in tensor spherical harmonics, it is easier to simply use the form
G^{\alpha \beta}_{\gamma \delta} (t,\vec{x};t',\vec{x}') = \frac{1}{4\pi} \delta_{\gamma}^\alpha\, \delta_{\delta}^\beta\, \frac{\delta(t\pm|\vec{x}-\vec{x}'|-t')} {|\vec{x}-\vec{x}'|} ,
where the positive and negative signs correspond to ingoing and outgoing solutions, respectively. Generally, we are interested in the outgoing solutions, so

\bar{h}^{\alpha \beta} (t,\vec{x}) =
-4 \int\, \frac{\tau^{\alpha \beta}(t-|\vec{x}-\vec{x}'|,\vec{x}')}{|\vec{x}-\vec{x}'|}\, \mathrm{d}^3x'
.
If the source is confined to a small region very far away, to an excellent approximation we have:

\bar{h}^{\alpha \beta} (t,\vec{x}) \approx
-\frac{4}{r}\, \int\, \tau^{\alpha \beta}(t-r,\vec{x}')\, \mathrm{d}^3x'
,
where r=|\vec{x}| .

Now, because we will eventually only be interested in the spatial components of this equation (time components can be set to zero with a coordinate transformation), and we are integrating this quantity — presumably over a region of which there is no boundary — we can put this in a different form. Ignoring divergences with the help of Stokes' theorem and an empty boundary, we can see that

\int\, \tau^{i j}(t-r,\vec{x}')\, \mathrm{d}^3x'
=
\int\, x'^i x'^j \nabla_k \nabla_l \tau^{k l} (t-r,\vec{x}')\, \mathrm{d}^3x'
,
Inserting this into the above equation, we arrive at

\bar{h}^{i j} (t,\vec{x}) \approx
-\frac{4}{r}\, \int\, x'^i x'^j \nabla_k \nabla_l \tau^{k l} (t-r,\vec{x}')\, \mathrm{d}^3x'
,
Finally, because we have chosen to work in coordinates for which \nabla_\beta\, \bar{h}^{\alpha \beta} = 0, we know that \nabla_\beta\, \tau^{\alpha \beta} = 0.
With a few simple manipulations, we can use this to prove that
\nabla_0 \nabla_0 \tau^{00} = \nabla_j \nabla_k \tau^{jk} .
With this relation, the expression for the radiated field is

\bar{h}^{i j} (t,\vec{x}) \approx
-\frac{4}{r}\, \frac{\mathrm{d}^2}{\mathrm{d}t^2}\, \int\, x'^i x'^j \tau^{0 0} (t-r,\vec{x}')\, \mathrm{d}^3x'
.
In the linear case, \tau^{00} = \rho, the density of mass-energy.

To a very good approximation, the density of a simple binary can be described by a pair of delta-functions, which eliminates the integral. Explicitly, if the masses of the two objects are M_1 and M_2, and the positions are \vec{x}_1 and \vec{x}_2, then
\rho(t-r,\vec{x}') = M_1 \delta^3(\vec{x}'-\vec{x}_1(t-r)) + M_2 \delta^3(\vec{x}'-\vec{x}_2(t-r)) .
We can use this expression to do the integral above:

\bar{h}^{i j} (t,\vec{x}) \approx
-\frac{4}{r}\, \frac{\mathrm{d}^2}{\mathrm{d}t^2}\, \left\{ M_1 x_1^i(t-r) x_1^j(t-r) + M_2 x_2^i(t-r) x_2^j(t-r) \right\}
.
Using mass-centered coordinates, and assuming a circular binary, this is

\bar{h}^{i j} (t,\vec{x}) \approx
-\frac{4}{r}\, \frac{M_1 M_2}{R}\, n^i(t-r) n^j(t-r)
,
where \vec{n} = \vec{x}_1 / |\vec{x}_1|. Plugging in the known values of \vec{x}_1(t-r), we obtain the expressions given above for the radiation from a simple binary.

Quantum gravity


From Wikipedia, the free encyclopedia

Quantum gravity (QG) is a field of theoretical physics that seeks to describe the force of gravity according to the principles of quantum mechanics.

The current understanding of gravity is based on Albert Einstein's general theory of relativity, which is formulated within the framework of classical physics. On the other hand, the nongravitational forces are described within the framework of quantum mechanics, a radically different formalism for describing physical phenomena based on probability.[1] The necessity of a quantum mechanical description of gravity follows from the fact that one cannot consistently couple a classical system to a quantum one.[2]

Although a quantum theory of gravity is needed in order to reconcile general relativity with the principles of quantum mechanics, difficulties arise when one attempts to apply the usual prescriptions of quantum field theory to the force of gravity.[3] From a technical point of view, the problem is that the theory one gets in this way is not renormalizable and therefore cannot be used to make meaningful physical predictions. As a result, theorists have taken up more radical approaches to the problem of quantum gravity, the most popular approaches being string theory and loop quantum gravity.[4] A recent development is the theory of causal fermion systems which gives quantum mechanics, general relativity and quantum field theory as limiting cases.[5][6][7][8][9][10]

Strictly speaking, the aim of quantum gravity is only to describe the quantum behavior of the gravitational field and should not be confused with the objective of unifying all fundamental interactions into a single mathematical framework. Although some quantum gravity theories such as string theory try to unify gravity with the other fundamental forces, others such as loop quantum gravity make no such attempt; instead, they make an effort to quantize the gravitational field while it is kept separate from the other forces. A theory of quantum gravity that is also a grand unification of all known interactions is sometimes referred to as a theory of everything (TOE).

One of the difficulties of quantum gravity is that quantum gravitational effects are only expected to become apparent near the Planck scale, a scale far smaller in distance (equivalently, far larger in energy) than what is currently accessible at high energy particle accelerators. As a result, quantum gravity is a mainly theoretical enterprise, although there are speculations about how quantum gravity effects might be observed in existing experiments.[11]

Overview


Diagram showing where quantum gravity sits in the hierarchy of physics theories

Much of the difficulty in meshing these theories at all energy scales comes from the different assumptions that these theories make on how the universe works. Quantum field theory depends on particle fields embedded in the flat space-time of special relativity. General relativity models gravity as a curvature within space-time that changes as a gravitational mass moves. Historically, the most obvious way of combining the two (such as treating gravity as simply another particle field) ran quickly into what is known as the renormalization problem. In the old-fashioned understanding of renormalization, gravity particles would attract each other and adding together all of the interactions results in many infinite values which cannot easily be cancelled out mathematically to yield sensible, finite results. This is in contrast with quantum electrodynamics where, given that the series still do not converge, the interactions sometimes evaluate to infinite results, but those are few enough in number to be removable via renormalization.

Effective field theories

Quantum gravity can be treated as an effective field theory. Effective quantum field theories come with some high-energy cutoff, beyond which we do not expect that the theory provides a good description of nature. The "infinities" then become large but finite quantities depending on this finite cutoff scale, and correspond to processes that involve very high energies near the fundamental cutoff. These quantities can then be absorbed into an infinite collection of coupling constants, and at energies well below the fundamental cutoff of the theory, to any desired precision; only a finite number of these coupling constants need to be measured in order to make legitimate quantum-mechanical predictions. This same logic works just as well for the highly successful theory of low-energy pions as for quantum gravity. Indeed, the first quantum-mechanical corrections to graviton-scattering and Newton's law of gravitation have been explicitly computed[12] (although they are so astronomically small that we may never be able to measure them). In fact, gravity is in many ways a much better quantum field theory than the Standard Model, since it appears to be valid all the way up to its cutoff at the Planck scale.

While confirming that quantum mechanics and gravity are indeed consistent at reasonable energies, it is clear that near or above the fundamental cutoff of our effective quantum theory of gravity (the cutoff is generally assumed to be of the order of the Planck scale), a new model of nature will be needed. Specifically, the problem of combining quantum mechanics and gravity becomes an issue only at very high energies, and may well require a totally new kind of model.

Quantum gravity theory for the highest energy scales

The general approach to deriving a quantum gravity theory that is valid at even the highest energy scales is to assume that such a theory will be simple and elegant and, accordingly, to study symmetries and other clues offered by current theories that might suggest ways to combine them into a comprehensive, unified theory. One problem with this approach is that it is unknown whether quantum gravity will actually conform to a simple and elegant theory, as it should resolve the dual conundrums of special relativity with regard to the uniformity of acceleration and gravity, and general relativity with regard to spacetime curvature.

Such a theory is required in order to understand problems involving the combination of very high energy and very small dimensions of space, such as the behavior of black holes, and the origin of the universe.

Quantum mechanics and general relativity


Gravity Probe B (GP-B) has measured spacetime curvature near Earth to test related models in application of Einstein's general theory of relativity.

The graviton

At present, one of the deepest problems in theoretical physics is harmonizing the theory of general relativity, which describes gravitation, and applications to large-scale structures (stars, planets, galaxies), with quantum mechanics, which describes the other three fundamental forces acting on the atomic scale. This problem must be put in the proper context, however. In particular, contrary to the popular claim that quantum mechanics and general relativity are fundamentally incompatible, one can demonstrate that the structure of general relativity essentially follows inevitably from the quantum mechanics of interacting theoretical spin-2 massless particles (called gravitons).[13][14][15][16][17]
While there is no concrete proof of the existence of gravitons, quantized theories of matter may necessitate their existence.[citation needed] Supporting this theory is the observation that all fundamental forces except gravity have one or more known messenger particles, leading researchers to believe that at least one most likely does exist; they have dubbed this hypothetical particle the graviton. The predicted find would result in the classification of the graviton as a "force particle" similar to the photon of the electromagnetic field. Many of the accepted notions of a unified theory of physics since the 1970s assume, and to some degree depend upon, the existence of the graviton. These include string theory, superstring theory, M-theory, and loop quantum gravity. Detection of gravitons is thus vital to the validation of various lines of research to unify quantum mechanics and relativity theory.

The dilaton

The dilaton made its first appearance in Kaluza–Klein theory, a five-dimensional theory that combined gravitation and electromagnetism. Generally, it appears in string theory. More recently, it has appeared in the lower-dimensional many-bodied gravity problem[18] based on the field theoretic approach of Roman Jackiw. The impetus arose from the fact that complete analytical solutions for the metric of a covariant N-body system have proven elusive in general relativity. To simplify the problem, the number of dimensions was lowered to (1+1), i.e. one spatial dimension and one temporal dimension. This model problem, known as R=T theory[19] (as opposed to the general G=T theory) was amenable to exact solutions in terms of a generalization of the Lambert W function. It was also found that the field equation governing the dilaton (derived from differential geometry) was the Schrödinger equation and consequently amenable to quantization.[20]
Thus, one had a theory which combined gravity, quantization and even the electromagnetic interaction, promising ingredients of a fundamental physical theory. It is worth noting that the outcome revealed a previously unknown and already existing natural link between general relativity and quantum mechanics. However, this theory needs to be generalized in (2+1) or (3+1) dimensions although, in principle, the field equations are amenable to such generalization as shown with the inclusion of a one-graviton process[21] and yielding the correct Newtonian limit in d dimensions if a dilaton is included. However, it is not yet clear what the fully generalized field equation governing the dilaton in (3+1) dimensions should be. This is further complicated by the fact that gravitons can propagate in (3+1) dimensions and consequently that would imply gravitons and dilatons exist in the real world. Moreover, detection of the dilaton is expected to be even more elusive than the graviton. However, since this approach allows for the combination of gravitational, electromagnetic and quantum effects, their coupling could potentially lead to a means of vindicating the theory, through cosmology and perhaps even experimentally.

Nonrenormalizability of gravity

General relativity, like electromagnetism, is a classical field theory. One might expect that, as with electromagnetism, there should be a corresponding quantum field theory.
However, gravity is perturbatively nonrenormalizable.[22][23] For a quantum field theory to be well-defined according to this understanding of the subject, it must be asymptotically free or asymptotically safe. The theory must be characterized by a choice of finitely many parameters, which could, in principle, be set by experiment. For example, in quantum electrodynamics, these parameters are the charge and mass of the electron, as measured at a particular energy scale.

On the other hand, in quantizing gravity, there are infinitely many independent parameters (counterterm coefficients) needed to define the theory. For a given choice of those parameters, one could make sense of the theory, but since we can never do infinitely many experiments to fix the values of every parameter, we do not have a meaningful physical theory:
  • At low energies, the logic of the renormalization group tells us that, despite the unknown choices of these infinitely many parameters, quantum gravity will reduce to the usual Einstein theory of general relativity.
  • On the other hand, if we could probe very high energies where quantum effects take over, then every one of the infinitely many unknown parameters would begin to matter, and we could make no predictions at all.
As explained below, there is a way around this problem by treating QG as an effective field theory.

Any meaningful theory of quantum gravity that makes sense and is predictive at all energy scales must have some deep principle that reduces the infinitely many unknown parameters to a finite number that can then be measured.
  • One possibility is that normal perturbation theory is not a reliable guide to the renormalizability of the theory, and that there really is a UV fixed point for gravity. Since this is a question of non-perturbative quantum field theory, it is difficult to find a reliable answer, but some people still pursue this option.
  • Another possibility is that there are new symmetry principles that constrain the parameters and reduce them to a finite set. This is the route taken by string theory, where all of the excitations of the string essentially manifest themselves as new symmetries.

QG as an effective field theory

In an effective field theory, all but the first few of the infinite set of parameters in a non-renormalizable theory are suppressed by huge energy scales and hence can be neglected when computing low-energy effects. Thus, at least in the low-energy regime, the model is indeed a predictive quantum field theory.[12] (A very similar situation occurs for the very similar effective field theory of low-energy pions.) Furthermore, many theorists agree that even the Standard Model should really be regarded as an effective field theory as well, with "nonrenormalizable" interactions suppressed by large energy scales and whose effects have consequently not been observed experimentally.
Recent work[12] has shown that by treating general relativity as an effective field theory, one can actually make legitimate predictions for quantum gravity, at least for low-energy phenomena. An example is the well-known calculation of the tiny first-order quantum-mechanical correction to the classical Newtonian gravitational potential between two masses.

Spacetime background dependence

A fundamental lesson of general relativity is that there is no fixed spacetime background, as found in Newtonian mechanics and special relativity; the spacetime geometry is dynamic. While easy to grasp in principle, this is the hardest idea to understand about general relativity, and its consequences are profound and not fully explored, even at the classical level. To a certain extent, general relativity can be seen to be a relational theory,[24] in which the only physically relevant information is the relationship between different events in space-time.
On the other hand, quantum mechanics has depended since its inception on a fixed background (non-dynamic) structure. In the case of quantum mechanics, it is time that is given and not dynamic, just as in Newtonian classical mechanics. In relativistic quantum field theory, just as in classical field theory, Minkowski spacetime is the fixed background of the theory.

String theory


Interaction in the subatomic world: world lines of point-like particles in the Standard Model or a world sheet swept up by closed strings in string theory

String theory can be seen as a generalization of quantum field theory where instead of point particles, string-like objects propagate in a fixed spacetime background, although the interactions among closed strings give rise to space-time in a dynamical way. Although string theory had its origins in the study of quark confinement and not of quantum gravity, it was soon discovered that the string spectrum contains the graviton, and that "condensation" of certain vibration modes of strings is equivalent to a modification of the original background. In this sense, string perturbation theory exhibits exactly the features one would expect of a perturbation theory that may exhibit a strong dependence on asymptotics (as seen, for example, in the AdS/CFT correspondence) which is a weak form of background dependence.

Background independent theories

Loop quantum gravity is the fruit of an effort to formulate a background-independent quantum theory.

Topological quantum field theory provided an example of background-independent quantum theory, but with no local degrees of freedom, and only finitely many degrees of freedom globally. This is inadequate to describe gravity in 3+1 dimensions, which has local degrees of freedom according to general relativity. In 2+1 dimensions, however, gravity is a topological field theory, and it has been successfully quantized in several different ways, including spin networks.

Semi-classical quantum gravity

Quantum field theory on curved (non-Minkowskian) backgrounds, while not a full quantum theory of gravity, has shown many promising early results. In an analogous way to the development of quantum electrodynamics in the early part of the 20th century (when physicists considered quantum mechanics in classical electromagnetic fields), the consideration of quantum field theory on a curved background has led to predictions such as black hole radiation.

Phenomena such as the Unruh effect, in which particles exist in certain accelerating frames but not in stationary ones, do not pose any difficulty when considered on a curved background (the Unruh effect occurs even in flat Minkowskian backgrounds). The vacuum state is the state with the least energy (and may or may not contain particles). See Quantum field theory in curved spacetime for a more complete discussion.

Points of tension

There are other points of tension between quantum mechanics and general relativity.
  • First, classical general relativity breaks down at singularities, and quantum mechanics becomes inconsistent with general relativity in the neighborhood of singularities (however, no one is certain that classical general relativity applies near singularities in the first place).
  • Second, it is not clear how to determine the gravitational field of a particle, since under the Heisenberg uncertainty principle of quantum mechanics its location and velocity cannot be known with certainty. The resolution of these points may come from a better understanding of general relativity.[25]
  • Third, there is the problem of time in quantum gravity. Time has a different meaning in quantum mechanics and general relativity and hence there are subtle issues to resolve when trying to formulate a theory which combines the two.[26]

Candidate theories

There are a number of proposed quantum gravity theories.[27] Currently, there is still no complete and consistent quantum theory of gravity, and the candidate models still need to overcome major formal and conceptual problems. They also face the common problem that, as yet, there is no way to put quantum gravity predictions to experimental tests, although there is hope for this to change as future data from cosmological observations and particle physics experiments becomes available.[28][29]

String theory

Projection of a Calabi–Yau manifold, one of the ways of compactifying the extra dimensions posited by string theory

One suggested starting point is ordinary quantum field theories which, after all, are successful in describing the other three basic fundamental forces in the context of the standard model of elementary particle physics. However, while this leads to an acceptable effective (quantum) field theory of gravity at low energies,[30] gravity turns out to be much more problematic at higher energies. Where, for ordinary field theories such as quantum electrodynamics, a technique known as renormalization is an integral part of deriving predictions which take into account higher-energy contributions,[31] gravity turns out to be nonrenormalizable: at high energies, applying the recipes of ordinary quantum field theory yields models that are devoid of all predictive power.[32]

One attempt to overcome these limitations is to replace ordinary quantum field theory, which is based on the classical concept of a point particle, with a quantum theory of one-dimensional extended objects: string theory.[33] At the energies reached in current experiments, these strings are indistinguishable from point-like particles, but, crucially, different modes of oscillation of one and the same type of fundamental string appear as particles with different (electric and other) charges. In this way, string theory promises to be a unified description of all particles and interactions.[34] The theory is successful in that one mode will always correspond to a graviton, the messenger particle of gravity; however, the price to pay are unusual features such as six extra dimensions of space in addition to the usual three for space and one for time.[35]

In what is called the second superstring revolution, it was conjectured that both string theory and a unification of general relativity and supersymmetry known as supergravity[36] form part of a hypothesized eleven-dimensional model known as M-theory, which would constitute a uniquely defined and consistent theory of quantum gravity.[37][38] As presently understood, however, string theory admits a very large number (10500 by some estimates) of consistent vacua, comprising the so-called "string landscape". Sorting through this large family of solutions remains a major challenge.

Loop quantum gravity

Simple spin network of the type used in loop quantum gravity

Loop quantum gravity is based first of all on the idea to take seriously the insight of general relativity that spacetime is a dynamical field and therefore is a quantum object. The second idea is that the quantum discreteness that determines the particle-like behavior of other field theories (for instance, the photons of the electromagnetic field) also affects the structure of space.

The main result of loop quantum gravity is the derivation of a granular structure of space at the Planck length. This is derived as follows. In the case of electromagnetism, the quantum operator representing the energy of each frequency of the field has discrete spectrum. Therefore the energy of each frequency is quantized, and the quanta are the photons. In the case of gravity, the operators representing the area and the volume of each surface or space region have discrete spectrum. Therefore area and volume of any portion of space are quantized, and the quanta are elementary quanta of space. It follows that spacetime has an elementary quantum granular structure at the Planck scale, which cuts-off the ultraviolet infinities of quantum field theory.

The quantum state of spacetime is described in the theory by means of a mathematical structure called spin networks. Spin networks were initially introduced by Roger Penrose in abstract form, and later shown by Carlo Rovelli and Lee Smolin to derive naturally from a non perturbative quantization of general relativity. Spin networks do not represent quantum states of a field in spacetime: they represent directly quantum states of spacetime.

The theory is based on the reformulation of general relativity known as Ashtekar variables, which represent geometric gravity using mathematical analogues of electric and magnetic fields.[39][40] In the quantum theory space is represented by a network structure called a spin network, evolving over time in discrete steps.[41][42][43][44]

The dynamics of the theory is today constructed in several versions. One version starts with the canonical quantization of general relativity. The analogue of the Schrödinger equation is a Wheeler–DeWitt equation, which can be defined in the theory.[45] In the covariant, or spinfoam formulation of the theory, the quantum dynamics is obtained via a sum over discrete versions of spacetime, called spinfoams. These represent histories of spin networks.

Other approaches

There are a number of other approaches to quantum gravity. The approaches differ depending on which features of general relativity and quantum theory are accepted unchanged, and which features are modified.[46][47] Examples include:

Weinberg–Witten theorem

In quantum field theory, the Weinberg–Witten theorem places some constraints on theories of composite gravity/emergent gravity. However, recent developments attempt to show that if locality is only approximate and the holographic principle is correct, the Weinberg–Witten theorem would not be valid[citation needed].

Experimental tests

As was emphasized above, quantum gravitational effects are extremely weak and therefore difficult to test. For this reason, the possibility of experimentally testing quantum gravity had not received much attention prior to the late 1990s. However, in the past decade, physicists have realized that evidence for quantum gravitational effects can guide the development of the theory. Since theoretical development has been slow, the field of phenomenological quantum gravity, which studies the possibility of experimental tests, has obtained increased attention.[54][55]

The most widely pursued possibilities for quantum gravity phenomenology include violations of Lorentz invariance, imprints of quantum gravitational effects in the cosmic microwave background (in particular its polarization), and decoherence induced by fluctuations in the space-time foam.

The BICEP2 experiment detected what was initially thought to be primordial B-mode polarization caused by gravitational waves in the early universe. If truly primordial, these waves were born as quantum fluctuations in gravity itself. Cosmologist Ken Olum (Tufts University) stated: "I think this is the only observational evidence that we have that actually shows that gravity is quantized....It's probably the only evidence of this that we will ever have."[56]

Documentarian Scott Hamilton Kennedy explores why activists block GMO solution to African banana wilt crisis


| May 5, 2015 |
 
Original link:  http://www.geneticliteracyproject.org/2015/05/05/documentarian-scott-hamilton-kennedy-explores-why-activists-block-gmo-solution-to-african-banana-wilt-crisis/
 
Burning infected banana plants. 
Burning infected banana plants.

Scott Hamilton Kennedy, a multi-talented producer and director of the Academy Award nominated The Garden, a documentary that featured the inspiring story of how a community garden arose out of the ashes of the Los Angeles riots, is at work on examining the plight of the poor and disenfranchised. But this time his focus is in Africa.

Working with Trace Sheehan of the Grace and Mercy documentary that recounts the relief and recovery efforts in Haiti after the 2010 earthquake, Kennedy is shooting Food Evolution, which looks at food challenges over the next 35 years and how what we eat may be transformed by science and nature. It too stresses the themes of liberty, justice and fairness for the vulnerable and how the poor can mobilize and organize in response to a state of helplessness and hopelessness.
Scott Hamilton and Trace Sheehan in the company of Farmers, scientist and the Writer

During the filming, the duo witnessed how merciless the banana bacterial wilt is to African farmers and their families who are now relying on God’s Grace to find solutions. Farmers have been told to uproot and burn diseased plants which they did. They were also told to cut the male buds, and instructed to always sterilize the farm implements. They complied but the disease still persisted and the burden to manage it became too heavy for them to bear. Yet barely 30 kilometers away were fields of transgenic bananas under cultivation in field trails by scientists that are 100% resistant to the wilt. These farmers did not even know the GMO bananas even existed. When told about them, they eagerly went to see the healthy bananas, and they immediately said they wanted this variety.

But they couldn’t have them. The scientists told them they could not because they had not yet been approved, even though all the safety testing had been done. Because the solution is transgenic, the anti-GMO activists did they best to ensure the bananas would not make their way to desperate farmers.

Farmers like the ones Scott and Trace visited are losing the battle with banana bacteria wilt. They work throughout the day trying to manage the disease and they’ve been told there is no known solution, and yet in less than an hour’s ride there is a solution. It’s maddening to them. Rather than just using the technology, they see healthy GM banana plants guarded and locked all the time. The guards watch from outside. These farmers cannot access these banana because they were bred using a gene from sweet pepper, a pepper they use daily to spice their sauce–and activists call that a ‘dangerous’ Frankenfood.

Food in 2050-Fiction or reality

Food Evolution, produced in conjunction with the nonprofit, Institute of Food Technologists (IFT), aims to explore the global food security and sustainability issues that lie ahead, specifically, feeding 9+ billion people by 2050 and the interconnected challenges of population growth, limited environmental resources, inequality, shifting diets, climate change and health and nutrition. Populations are increasing at a faster rate than food production, people are becoming more affluent and demanding more calories and people are leaving longer, which puts an additional strain on limited food supplies.

Currently, Africa’s major staples like cassava and banana are being attacked by virulent crop diseases that if not brought under control could lead to the abandonment of these beloved staples. Conventional crop breeders have not been able to come up with resistant varieties. The only viable solution appears to lie in tweaking the genes to inoculate these crops against deadly viruses.

In the case of the banana, the wilt resistance trait was sourced from sweet pepper. It offers 100% resistance to the Xanthomonas bacteria that is devastating farmers’ fields. In case of cassava, scientists have used a RNA interference approach known as gene silencing to stop the virus from expressing itself. But tweaking the genes can do more than just prevent diseases. Nutritionists  believe that Africa’s reliance on these staples, which are generally low in important micro-nutrients like beta-carotene and iron, masks hunger, creating what they call “hidden hunger”. There are therefore efforts to bio-fortify these staples using both conventional and genetic engineering approaches.

In 2050, there is a possibility that countries like Uganda that are experiencing the full wrath of these crops’ diseases may see their banana and cassava crops destroyed forever–assuming nothing is done to address the diseases.
Another possibility is that, if genetically engineered products are accepted, most cassava and banana varieties will be transgenic–and healthy–by 2050. There is a third possibility, scientists say. Diseased resistant transgenic crops may be introduced that will break the disease cycle and there will be a mix of genetically engineered and traditional bananas and cassava.

Dilemma: Anti genetic engineering activists protest by offer no solutions

Despite the promising solutions to the disease scourge offered by biotech scientists, outside activists who claim to represent the interests of these very same farmers are doing everything they can to sabotage the introduction of these disease preventing varieties. Most tragically, these activists are offering no alternative solutions for farmers.
The African farmers that the anti-GMO groups claim to speak for are only interested in solutions; they are not ideological and do not care whether the solution comes through genetic engineering or conventional breeding.

The plight of the poor and the farmers in Africa mirrors what Kennedy portrayed in his documentary filmed in South Central Los Angeles. In that case, the Los Angeles City council told the urban farmers that their garden was wonderful, but this is a city after all and they could not save the garden from developers and others who wanted to destroy what they had grown.

The African garden is also wonderful with beautiful bananas wilting away under the pressure from banana bacterial wilt. They keep the garden, weed it and mulch it to keep water from evaporating recklessly and yet they end up with low yields and sometimes even no yield. The solution is transgenic. The moviemakers wondered loudly as to why the European activists opt for rehearsed communications strategies designed to kill this technology while farmers see their reliable source of food wilt and rot away and know that a solution is fenced off just few kilometers afar, but fully out of their reach.

Will we see African farmers stand up to oppose the activists who are preaching ‘no’ to GMO and yet offering no solutions? These are questions that puzzled Scott and I hope he gets to witness such scenarios unfold.

Is there a non transgenic solution?

Crop breeders normally address the issue of diseases by crossing a susceptible variety with available resistant variety with the resultant crop acquiring resistance. This time round, scientists searched, researched and looked into all the available global species of bananas both domesticated and wild and not a single one of them showed resistance to this devastating bacteria. They could have given up, saying, “…there is nothing more we can do.” But scientists did something, they found the resistant properties they have been looking for in sweet pepper. Without a solution, more than 20 million Ugandans could lose their food and income. The only known way currently possible to transfer resistance between non species is through the process of genetic engineering which they have done and done successfully.

Will science prevail over ideology and fanaticism? In Africa, crop improvements that will help protect crop yields from diseases could go a long way to ensuring Africa feeds its growing population and activists who block solutions without providing alternative ways to address problems are an impediment to the global effort to feed the growing hordes of the hungry.

Isaac Ongu is an agriculturist, science writer and an advocate on science based interventions in solving agricultural challenges in developing countries. Follow Isaac on twitter @onguisaac.

Heisenberg Uncertainty Principle Might be Wrong

Original post:  http://www.physics-astronomy.com/2014/07/heisenberg-uncertainty-principle-might.html#.VUoGrpNavDc

The Heisenberg Uncertainty Principle has been an essential principle and also an annoyance in quantum mechanics since Heisenberg wrote down that annoying formula in the initial years 20th century. In brief, it states that you cannot find both the position and the momentum of particles. The more definite you are about one, the less definite you are about the other. 

Currently, with the researchers making leaps in quantum technology, knowing correctly how accurate a measurement you can acquire is very significant. It looks like Heisenberg might have been incorrect. It is essential to know that it still relates, just not as toughly as Heisenberg initially stated.

Image Credit: Dylan Mahler, University of Toronto















As an alternative of taking one huge measurement of a particle, which disturbs the system and makes a ton of uncertainty, a group of researchers from the University of Toronto took a bunch of minor measurements in an effort to relate with the system as slight as probable. Their outcomes were extraordinary, when their measurements were arranged together, these researchers were able to acquire a more precise measurement of their test subject than the Heisenberg uncertainty principle permits. Their study indicates a new mathematical measurement-disturbance ratio generated by Dr. Masanao Ozawa in 2003 is more precise. Their results were issued in the journal “Physical Review Letters” and also offered at the Optical Society’s Annual Meeting in September 2013. Now, only time can tell if Heisenberg’s original formula pass the test of study as researchers from around the world effort to repeat these results.

(If you find any error or miscalculation in this article then please feel free to share in comment and if you want to expand this article then comment below)

Inbreeding depression

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inb...