Search This Blog

Friday, May 5, 2017

Algae fuel

From Wikipedia, the free encyclopedia
A conical flask of "green" jet fuel made from algae

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to common known biofuel sources, such as corn and sugarcane.[1][2] Several companies and government agencies are funding efforts to reduce capital and operating costs and make algae fuel production commercially viable.[3] Like fossil fuel, algae fuel releases CO2 when burnt, but unlike fossil fuel, algae fuel and other biofuels only release CO2 recently removed from the atmosphere via photosynthesis as the algae or plant grew. The energy crisis and the world food crisis have ignited interest in algaculture (farming algae) for making biodiesel and other biofuels using land unsuitable for agriculture. Among algal fuels' attractive characteristics are that they can be grown with minimal impact on fresh water resources,[4][5] can be produced using saline and wastewater, have a high flash point,[6] and are biodegradable and relatively harmless to the environment if spilled.[7][8] Algae cost more per unit mass than other second-generation biofuel crops due to high capital and operating costs,[9] but are claimed to yield between 10 and 100 times more fuel per unit area.[10] The United States Department of Energy estimates that if algae fuel replaced all the petroleum fuel in the United States, it would require 15,000 square miles (39,000 km2), which is only 0.42% of the U.S. map,[11] or about half of the land area of Maine. This is less than 17 the area of corn harvested in the United States in 2000.[12]
According to the head of the Algal Biomass Organization, algae fuel can reach price parity with oil in 2018 if granted production tax credits.[13] However, in 2013, Exxon Mobil Chairman and CEO Rex Tillerson said that after committing to spend up to $600 million over 10 years on development in a joint venture with J. Craig Venter’s Synthetic Genomics in 2009, Exxon pulled back after four years (and $100 million) when it realized that algae fuel is "probably further" than 25 years away from commercial viability.[14] On the other hand, Solazyme,[15] Sapphire Energy,[16] and Algenol,[17] among others have begun commercial sale of algal biofuel in 2012 and 2013, and 2015, respectively.

History

In 1942 Harder and Von Witsch were the first to propose that microalgae be grown as a source of lipids for food or fuel.[18][19] Following World War II, research began in the US,[20][21][22] Germany,[23] Japan,[24] England,[25] and Israel[26] on culturing techniques and engineering systems for growing microalgae on larger scales, particularly species in the genus Chlorella. Meanwhile, H. G. Aach showed that Chlorella pyrenoidosa could be induced via nitrogen starvation to accumulate as much as 70% of its dry weight as lipids.[27] Since the need for alternative transportation fuel had subsided after World War II, research at this time focused on culturing algae as a food source or, in some cases, for wastewater treatment.[28]

Interest in the application of algae for biofuels was rekindled during the oil embargo and oil price surges of the 1970s, leading the US Department of Energy to initiate the Aquatic Species Program in 1978.[29] The Aquatic Species Program spent $25 million over 18 years with the goal of developing liquid transportation fuel from algae that would be price competitive with petroleum-derived fuels.[30] The research program focused on the cultivation of microalgae in open outdoor ponds, systems which are low in cost but vulnerable to environmental disturbances like temperature swings and biological invasions. 3,000 algal strains were collected from around the country and screened for desirable properties such as high productivity, lipid content, and thermal tolerance, and the most promising strains were included in the SERI microalgae collection at the Solar Energy Research Institute (SERI) in Golden, Colorado and used for further research.[30] Among the program’s most significant findings were that rapid growth and high lipid production were "mutually exclusive," since the former required high nutrients and the latter required low nutrients.[30] The final report suggested that genetic engineering may be necessary to be able to overcome this and other natural limitations of algal strains, and that the ideal species might vary with place and season.[30] Although it was successfully demonstrated that large-scale production of algae for fuel in outdoor ponds was feasible, the program failed to do so at a cost that would be competitive with petroleum, especially as oil prices sank in the 1990s. Even in the best case scenario, it was estimated that unextracted algal oil would cost $59–186 per barrel,[30] while petroleum cost less than $20 per barrel in 1995.[29] Therefore, under budget pressure in 1996, the Aquatic Species Program was abandoned.[30]

Other contributions to algal biofuels research have come indirectly from projects focusing on different applications of algal cultures. For example, in the 1990s Japan’s Research Institute of Innovative Technology for the Earth (RITE) implemented a research program with the goal of developing systems to fix CO
2
using microalgae.[31] Although the goal was not energy production, several studies produced by RITE demonstrated that algae could be grown using flue gas from power plants as a CO
2
source,[32][33] an important development for algal biofuel research. Other work focusing on harvesting hydrogen gas, methane, or ethanol from algae, as well as nutritional supplements and pharmaceutical compounds, has also helped inform research on biofuel production from algae.[28]

Following the disbanding of the Aquatic Species Program in 1996, there was a relative lull in algal biofuel research. Still, various projects were funded in the US by the Department of Energy, Department of Defense, National Science Foundation, Department of Agriculture, National Laboratories, state funding, and private funding, as well as in other countries.[29] More recently, rising oil prices in the 2000s spurred a revival of interest in algal biofuels and US federal funding has increased,[29] numerous research projects are being funded in Australia, New Zealand, Europe, the Middle East, and other parts of the world,[34] and a wave of private companies has entered the field[35] (see Companies). In November 2012, Solazyme and Propel Fuels made the first retail sales of algae-derived fuel,[15] and in March 2013 Sapphire Energy began commercial sales of algal biofuel to Tesoro.[16]

Food supplementation

Algal oil is used as a source of fatty acid supplementation in food products, particularly milk, as it is heavy in mono- and polyunsaturated fats, in particular EPA and DHA. Beyond this, the supplement is also compatible with a vegetarian diet.[36][37] Its DHA content is roughly equivalent to that of salmon based fish oil.[38]

Fuels

Algae can be converted into various types of fuels, depending on the technique and the part of the cells used. The lipid, or oily part of the algae biomass can be extracted and converted into biodiesel through a process similar to that used for any other vegetable oil, or converted in a refinery into "drop-in" replacements for petroleum-based fuels. Alternatively or following lipid extraction, the carbohydrate content of algae can be fermented into bioethanol or butanol fuel.[39]

Biodiesel

Biodiesel is a diesel fuel derived from animal or plant lipids (oils and fats). Studies have shown that some species of algae can produce 60% or more of their dry weight in the form of oil.[27][30][40][41][42] Because the cells grow in aqueous suspension, where they have more efficient access to water, CO2 and dissolved nutrients, microalgae are capable of producing large amounts of biomass and usable oil in either high rate algal ponds or photobioreactors. This oil can then be turned into biodiesel which could be sold for use in automobiles. Regional production of microalgae and processing into biofuels will provide economic benefits to rural communities.[43]
As they do not have to produce structural compounds such as cellulose for leaves, stems, or roots, and because they can be grown floating in a rich nutritional medium, microalgae can have faster growth rates than terrestrial crops. Also, they can convert a much higher fraction of their biomass to oil than conventional crops, e.g. 60% versus 2-3% for soybeans.[40] The per unit area yield of oil from algae is estimated to be from 58,700 to 136,900 L/ha/year, depending on lipid content, which is 10 to 23 times as high as the next highest yielding crop, oil palm, at 5,950 L/ha/year.[44]

The U.S. Department of Energy's Aquatic Species Program, 1978–1996, focused on biodiesel from microalgae. The final report suggested that biodiesel could be the only viable method by which to produce enough fuel to replace current world diesel usage.[45] If algae-derived biodiesel were to replace the annual global production of 1.1bn tons of conventional diesel then a land mass of 57.3 million hectares would be required, which would be highly favorable compared to other biofuels.[46]

Biobutanol

Butanol can be made from algae or diatoms using only a solar powered biorefinery. This fuel has an energy density 10% less than gasoline, and greater than that of either ethanol or methanol. In most gasoline engines, butanol can be used in place of gasoline with no modifications. In several tests, butanol consumption is similar to that of gasoline, and when blended with gasoline, provides better performance and corrosion resistance than that of ethanol or E85.[47]
The green waste left over from the algae oil extraction can be used to produce butanol. In addition, it has been shown that macroalgae (seaweeds) can be fermented by Clostridia genus bacteria to butanol and other solvents.[48]

Biogasoline

Biogasoline is gasoline produced from biomass. Like traditionally produced gasoline, it contains between 6 (hexane) and 12 (dodecane) carbon atoms per molecule and can be used in internal-combustion engines.[49]

Methane

Methane,[50] the main constituent of natural gas can be produced from algae in various methods, namely Gasification, Pyrolysis and Anaerobic Digestion. In Gasification and Pyrolysis methods methane is extracted under high temperature and pressure. Anaerobic Digestion[51] is a straightforward method involved in decomposition of algae into simple components then transforming it into fatty acids using microbes like acidific bacteria followed by removing any solid particles and finally adding methanogenic bacteria to release a gas mixture containing methane. A number of studies have successfully shown that biomass from microalgae can be converted into biogas via anaerobic digestion.[52][53][54][55][56] Therefore, in order to improve the overall energy balance of microalgae cultivation operations, it has been proposed to recover the energy contained in waste biomass via anaerobic digestion to methane for generating electricity.[57]

Ethanol

The Algenol system which is being commercialized by BioFields in Puerto Libertad, Sonora, Mexico utilizes seawater and industrial exhaust to produce ethanol. Porphyridium cruentum also have shown to be potentially suitable for ethanol production due to its capacity for accumulating large amount of carbohydrates.[58]

Green Diesel

Algae can be used to produce 'green diesel' (also known as renewable diesel, hydrotreating vegetable oil[59] or hydrogen-derived renewable diesel)[60] through a hydrotreating refinery process that breaks molecules down into shorter hydrocarbon chains used in diesel engines.[59][61] It has the same chemical properties as petroleum-based diesel[59] meaning that it does not require new engines, pipelines or infrastructure to distribute and use. It has yet to be produced at a cost that is competitive with petroleum.[60] While hydrotreating is currently the most common pathway to produce fuel-like hydrocarbons via decarboxylation/decarbonylation, there is an alternative process offering a number of important advantages over hydrotreating. In this regard, the work of Crocker et al.[62] and Lercher et al.[63] is particularly noteworthy. for of oil refining, research is underway for catalytic conversion of renewable fuels by decarboxylation.[64] As the oxygen is present in crude oil at rather low levels, of the order of 0.5%, deoxygenation in petroleum refining is not of much concern, and no catalysts are specifically formulated for oxygenates hydrotreating. Hence, one of the critical technical challenges to make the hydrodeoxygenation of algae oil process economically feasible is related to the research and development of effective catalysts.[65][66]

Jet fuel

Rising jet fuel prices are putting severe pressure on airline companies,[67] creating an incentive for algal jet fuel research. The International Air Transport Association, for example, supports research, development and deployment of algal fuels. IATA's goal is for its members to be using 10% alternative fuels by 2017.[68]
Trials have been carried with aviation biofuel by Air New Zealand,[69] Lufthansa, and Virgin Airlines.[70]

In February 2010, the Defense Advanced Research Projects Agency announced that the U.S. military was about to begin large-scale oil production from algal ponds into jet fuel. After extraction at a cost of $2 per gallon, the oil will be refined at less than $3 a gallon. A larger-scale refining operation, producing 50 million gallons a year, is expected to go into production in 2013, with the possibility of lower per gallon costs so that algae-based fuel would be competitive with fossil fuels. The projects, run by the companies SAIC and General Atomics, are expected to produce 1,000 gallons of oil per acre per year from algal ponds.[71]

Species

Research into algae for the mass-production of oil focuses mainly on microalgae (organisms capable of photosynthesis that are less than 0.4 mm in diameter, including the diatoms and cyanobacteria) as opposed to macroalgae, such as seaweed. The preference for microalgae has come about due largely to their less complex structure, fast growth rates, and high oil-content (for some species). However, some research is being done into using seaweeds for biofuels, probably due to the high availability of this resource.[72][73]

As of 2012 researchers across various locations worldwide have started investigating the following species for their suitability as a mass oil-producers:[74][75][76]
The amount of oil each strain of algae produces varies widely. Note the following microalgae and their various oil yields:
  • Ankistrodesmus TR-87: 28–40% dry weight
  • Botryococcus braunii: 29–75% dw
  • Chlorella sp.: 29%dw
  • Chlorella protothecoides(autotrophic/ heterothrophic): 15–55% dw
  • Crypthecodinium cohnii: 20%dw
  • Cyclotella DI- 35: 42%dw
  • Dunaliella tertiolecta : 36–42%dw
  • Hantzschia DI-160: 66%dw
  • Nannochloris: 31(6–63)%dw
  • Nannochloropsis : 46(31–68)%dw
  • Neochloris oleoabundans: 35–54%dw
  • Nitzschia TR-114: 28–50%dw
  • Phaeodactylum tricornutum: 31%dw
  • Scenedesmus TR-84: 45%dw
  • Schizochytrium 50–77%dw[79]
  • Stichococcus: 33(9–59)%dw
  • Tetraselmis suecica: 15–32%dw
  • Thalassiosira pseudonana: (21–31)%dw
In addition, due to its high growth-rate, Ulva[80] has been investigated as a fuel for use in the SOFT cycle, (SOFT stands for Solar Oxygen Fuel Turbine), a closed-cycle power-generation system suitable for use in arid, subtropical regions.[81]

Other species used include Clostridium saccharoperbutylacetonicum,[82] Sargassum, Glacilaria, Prymnesium parvum, and Euglena gracilis[83]

Algae Nutrients and Growth Inputs

Light is what algae primarily needs for growth as it is the most limiting factor. Many companies are investing for developing systems and technologies for providing artificial light. One of them is OriginOil that has developed a Helix BioReactorTM that features a rotating vertical shaft with low-energy lights arranged in a helix pattern.[84] Water temperature also influences the metabolic and reproductive rates of algae. Although most algae species grow at low rate when the water temperature gets lower, the biomass of algal communities can get large due to the absence of grazing organisms.[84] The modest increases in water current velocity may also affect rates of algae growth since the rate of nutrient uptake and boundary layer diffusion increases with current velocity.[84]
Other than light and water, phosphorus, nitrogen, and certain micronutrients are also useful and essential in growing algae. Nitrogen and phosphorus are the two most significant nutrients required for algal productivity, but other nutrients such as carbon and silica are additionally required.[85] Of the nutrients required, phosphorus is one of the most essential ones as it is used in numerous metabolic processes. The microalgae D. tertiolecta was analyzed to see which nutrient affects its growth the most.[86] The concentrations of phosphorus (P), iron (Fe), cobalt (Co), zinc (Zn), manganese (Mn) and molybdenum (Mo), magnesium (Mg), calcium (Ca), silicon (Si) and sulfur (S) concentrations were measured daily using inductively coupled plasma (ICP) analysis. Among all these elements being measured, phosphorus resulted in the most dramatic decrease, with a reduction of 84% over the course of the culture.[86] This result indicates that phosphorus, in the form of phosphate, is required in high amounts by all organisms for metabolism.

There are two enrichment media that have been extensively used to grow most of the algae species: Walne medium and the Guillard’s F/2 medium.[87] These commercially available nutrient solutions may reduce time for preparing all the nutrients required to grow algae. However, due to their complexity in the process of generation and high cost, they are not used for large-scale culture operations.[87] Therefore, enrichment media used for mass production of algae contain only the most important nutrients with agriculture-grade fertilizers rather than laboratory-grade fertilizers.[87]

Algae cultivation

Photobioreactor from glass tubes
Design of a race-way open pond commonly used for algal culture

Algae grow much faster than food crops, and can produce hundreds of times more oil per unit area than conventional crops such as rapeseed, palms, soybeans, or jatropha.[44] As algae have a harvesting cycle of 1–10 days, their cultivation permits several harvests in a very short time-frame, a strategy differing from that associated with annual crops.[41] In addition, algae can be grown on land unsuitable for terrestrial crops, including arid land and land with excessively saline soil, minimizing competition with agriculture.[88] Most research on algae cultivation has focused on growing algae in clean but expensive photobioreactors, or in open ponds, which are cheap to maintain but prone to contamination.[89]

Closed-loop system

The lack of equipment and structures needed to begin growing algae in large quantities has inhibited widespread mass-production of algae for biofuel production. Maximum use of existing agriculture processes and hardware is the goal.[90]

Closed systems (not exposed to open air) avoid the problem of contamination by other organisms blown in by the air. The problem for a closed system is finding a cheap source of sterile CO
2
. Several experimenters have found the CO
2
from a smokestack works well for growing algae.[91][92] For reasons of economy, some experts think that algae farming for biofuels will have to be done as part of cogeneration, where it can make use of waste heat and help soak up pollution.[93][94]

Photobioreactors

Most companies pursuing algae as a source of biofuels pump nutrient-rich water through plastic or borosilicate glass tubes (called "bioreactors" ) that are exposed to sunlight (and so-called photobioreactors or PBR).

Running a PBR is more difficult than using an open pond, and costlier, but may provide a higher level of control and productivity.[41] In addition, a photobioreactor can be integrated into a closed loop cogeneration system much more easily than ponds or other methods.

Open pond

Raceway pond used for the cultivation of microalgae

Open-pond systems for the most part have been given up for the cultivation of algae with especially high oil content.[95] Many[who?] believe that a major flaw of the Aquatic Species Program was the decision to focus their efforts exclusively on open-ponds; this makes the entire effort dependent upon the hardiness of the strain chosen, requiring it to be unnecessarily resilient in order to withstand wide swings in temperature and pH, and competition from invasive algae and bacteria. Open systems using a monoculture are also vulnerable to viral infection. The energy that a high-oil strain invests into the production of oil is energy that is not invested into the production of proteins or carbohydrates, usually resulting in the species being less hardy, or having a slower growth rate. Algal species with a lower oil content, not having to divert their energies away from growth, can be grown more effectively in the harsher conditions of an open system.[41]

Some open sewage-ponds trial production has taken place in Marlborough, New Zealand.[96]

Algal turf scrubber

2.5 acre ATS system, installed by Hydromentia on a farm creek in Florida

The algal turf scrubber (ATS) is a system designed primarily for cleaning nutrients and pollutants out of water using algal turfs. ATS mimics the algal turfs of a natural coral reef by taking in nutrient rich water from waste streams or natural water sources, and pulsing it over a sloped surface.[97] This surface is coated with a rough plastic membrane or a screen, which allows naturally occurring algal spores to settle and colonize the surface. Once the algae has been established, it can be harvested every 5–15 days,[98] and can produce 18 metric tons of algal biomass per hectare per year.[99] In contrast to other methods, which focus primarily on a single high yielding species of algae, this method focuses on naturally occurring polycultures of algae. As such, the lipid content of the algae in an ATS system is usually lower, which makes it more suitable for a fermented fuel product, such as ethanol, methane, or butanol.[99] Conversely, the harvested algae could be treated with a hydrothermal liquefaction process, which would make possible biodiesel, gasoline, and jet fuel production.[100]

There are three major advantages of ATS over other systems. The first advantage is documented higher productivity over open pond systems.[101] The second is lower operating and fuel production costs. The third is the elimination of contamination issues due to the reliance on naturally occurring algae species. The projected costs for energy production in an ATS system are $0.75/kg, compared to a photobioreactor which would cost $3.50/kg.[99] Furthermore, due to the fact that the primary purpose of ATS is removing nutrients and pollutants out of water, and these costs have been shown to be lower than other methods of nutrient removal, this may incentivize the use of this technology for nutrient removal as the primary function, with biofuel production as an added benefit.[102]
Algae being harvested and dried from an ATS system

Fuel production

After harvesting the algae, the biomass is typically processed in a series of steps, which can differ based on the species and desired product; this is an active area of research[41] and also is the bottleneck of this technology: the cost of extraction is higher than those obtained. One of the solutions is to use filter feeders to "eat" them. Improved animals can provide both foods and fuels. An alternative method to extract the algae is to grow the algae with specific types of fungi. This causes bio-flocculation of the algae which allows for easier extraction.[103]

Dehydration

Often, the algae is dehydrated, and then a solvent such as hexane is used to extract energy-rich compounds like triglycerides from the dried material.[1] Then, the extracted compounds can be processed into fuel using standard industrial procedures. For example, the extracted triglycerides are reacted with methanol to create biodiesel via transesterification.[1] The unique composition of fatty acids of each species influences the quality of the resulting biodiesel and thus must be taken into account when selecting algal species for feedstock.[41]

Hydrothermal liquefaction

An alternative approach called Hydrothermal liquefaction employs a continuous process that subjects harvested wet algae to high temperatures and pressures—350 °C (662 °F) and 3,000 pounds per square inch (21,000 kPa).[104][105][106]

Products include crude oil, which can be further refined into aviation fuel, gasoline, or diesel fuel using one or many upgrading processes.[107] The test process converted between 50 and 70 percent of the algae’s carbon into fuel. Other outputs include clean water, fuel gas and nutrients such as nitrogen, phosphorus, and potassium.[104]

Nutrients

Nutrients like nitrogen (N), phosphorus (P), and potassium (K), are important for plant growth and are essential parts of fertilizer. Silica and iron, as well as several trace elements, may also be considered important marine nutrients as the lack of one can limit the growth of, or productivity in, an area.[108]

Carbon dioxide

Bubbling CO
2
through algal cultivation systems can greatly increase productivity and yield (up to a saturation point). Typically, about 1.8 tonnes of CO
2
will be utilised per tonne of algal biomass (dry) produced, though this varies with algae species.[109] The Glenturret Distillery in Perthshire, UK – home to The Famous Grouse Whisky – percolate CO
2
made during the whisky distillation through a microalgae bioreactor. Each tonne of microalgae absorbs two tonnes of CO
2
. Scottish Bioenergy, who run the project, sell the microalgae as high value, protein-rich food for fisheries. In the future, they will use the algae residues to produce renewable energy through anaerobic digestion.[110]

Nitrogen

Nitrogen is a valuable substrate that can be utilized in algal growth. Various sources of nitrogen can be used as a nutrient for algae, with varying capacities. Nitrate was found to be the preferred source of nitrogen, in regards to amount of biomass grown. Urea is a readily available source that shows comparable results, making it an economical substitute for nitrogen source in large scale culturing of algae.[111] Despite the clear increase in growth in comparison to a nitrogen-less medium, it has been shown that alterations in nitrogen levels affect lipid content within the algal cells. In one study[112] nitrogen deprivation for 72 hours caused the total fatty acid content (on a per cell basis) to increase by 2.4-fold. 65% of the total fatty acids were esterified to triacylglycerides in oil bodies, when compared to the initial culture, indicating that the algal cells utilized de novo synthesis of fatty acids. It is vital for the lipid content in algal cells to be of high enough quantity, while maintaining adequate cell division times, so parameters that can maximize both are under investigation.

Wastewater

A possible nutrient source is waste water from the treatment of sewage, agricultural, or flood plain run-off, all currently major pollutants and health risks. However, this waste water cannot feed algae directly and must first be processed by bacteria, through anaerobic digestion. If waste water is not processed before it reaches the algae, it will contaminate the algae in the reactor, and at the very least, kill much of the desired algae strain. In biogas facilities, organic waste is often converted to a mixture of carbon dioxide, methane, and organic fertilizer. Organic fertilizer that comes out of the digester is liquid, and nearly suitable for algae growth, but it must first be cleaned and sterilized.[113]
The utilization of wastewater and ocean water instead of freshwater is strongly advocated due to the continuing depletion of freshwater resources. However, heavy metals, trace metals, and other contaminants in wastewater can decrease the ability of cells to produce lipids biosynthetically and also impact various other workings in the machinery of cells. The same is true for ocean water, but the contaminants are found in different concentrations. Thus, agricultural-grade fertilizer is the preferred source of nutrients, but heavy metals are again a problem, especially for strains of algae that are susceptible to these metals. In open pond systems the use of strains of algae that can deal with high concentrations of heavy metals could prevent other organisms from infesting these systems.[88] In some instances it has even been shown that strains of algae can remove over 90% of nickel and zinc from industrial wastewater in relatively short periods of time.[114]

Environmental impact

In comparison with terrestrial-based biofuel crops such as corn or soybeans, microalgal production results in a much less significant land footprint due to the higher oil productivity from the microalgae than all other oil crops.[115] Algae can also be grown on marginal lands useless for ordinary crops and with low conservation value, and can use water from salt aquifers that is not useful for agriculture or drinking.[93][116] Algae can also grow on the surface of the ocean in bags or floating screens.[117] Thus microalgae could provide a source of clean energy with little impact on the provisioning of adequate food and water or the conservation of biodiversity.[118] Algae cultivation also requires no external subsidies of insecticides or herbicides, removing any risk of generating associated pesticide waste streams. In addition, algal biofuels are much less toxic, and degrade far more readily than petroleum-based fuels.[119][120][121] However, due to the flammable nature of any combustible fuel, there is potential for some environmental hazards if ignited or spilled, as may occur in a train derailment or a pipeline leak.[122] This hazard is reduced compared to fossil fuels, due to the ability for algal biofuels to be produced in a much more localized manner, and due to the lower toxicity overall, but the hazard is still there nonetheless. Therefore, algal biofuels should be treated in a similar manner to petroleum fuels in transportation and use, with sufficient safety measures in place at all times.

Studies have determined that replacing fossil fuels with renewable energy sources, such as biofuels, have the capability of reducing CO
2
emissions by up to 80%.[123] An algae-based system could capture approximately 80% of the CO
2
emitted from a power plant when sunlight is available. Although this CO
2
will later be released into the atmosphere when the fuel is burned, this CO
2
would have entered the atmosphere regardless.[116] The possibility of reducing total CO
2
emissions therefore lies in the prevention of the release of CO
2
from fossil fuels. Furthermore, compared to fuels like diesel and petroleum, and even compared to other sources of biofuels, the production and combustion of algal biofuel does not produce any sulfur oxides or nitrous oxides, and produces a reduced amount of carbon monoxide, unburned hydrocarbons, and reduced emission of other harmful pollutants.[124] Since terrestrial plant sources of biofuel production simply do not have the production capacity to meet current energy requirements, microalgae may be one of the only options to approach complete replacement of fossil fuels.

Microalgae production also includes the ability to use saline waste or waste CO
2
streams as an energy source. This opens a new strategy to produce biofuel in conjunction with waste water treatment, while being able to produce clean water as a byproduct.[124] When used in a microalgal bioreactor, harvested microalgae will capture significant quantities of organic compounds as well as heavy metal contaminants absorbed from wastewater streams that would otherwise be directly discharged into surface and ground-water.[115] Moreover, this process also allows the recovery of phosphorus from waste, which is an essential but scarce element in nature – the reserves of which are estimated to have depleted in the last 50 years.[125] Another possibility is the use of algae production systems to clean up non-point source pollution, in a system known as an algal turf scrubber (ATS). This has been demonstrated to reduce nitrogen and phosphorus levels in rivers and other large bodies of water affected by eutrophication, and systems are being built that will be capable of processing up to 110 million liters of water per day. ATS can also be used for treating point source pollution, such as the waste water mentioned above, or in treating livestock effluent.[99][126][127]

Polycultures

Nearly all research in algal biofuels has focused on culturing single species, or monocultures, of microalgae. However, ecological theory and empirical studies have demonstrated that plant and algae polycultures, i.e. groups of multiple species, tend to produce larger yields than monocultures.[128][129][130][131] Experiments have also shown that more diverse aquatic microbial communities tend to be more stable through time than less diverse communities.[132][133][134][135] Recent studies found that polycultures of microalgae produced significantly higher lipid yields than monocultures.[136][137] Polycultures also tend to be more resistant to pest and disease outbreaks, as well as invasion by other plants or algae.[138] Thus culturing microalgae in polyculture may not only increase yields and stability of yields of biofuel, but also reduce the environmental impact of an algal biofuel industry.[118]

Economic viability

There is clearly a demand for sustainable biofuel production, but whether a particular biofuel will be used ultimately depends not on sustainability but cost efficiency. Therefore, research is focusing on cutting the cost of algal biofuel production to the point where it can compete with conventional petroleum.[41][139] The production of several products from algae has been mentioned[weasel words] as the most important factor for making algae production economically viable. Other factors are the improving of the solar energy to biomass conversion efficiency (currently 3%, but 5 to 7% is theoretically attainable[140])and making the oil extraction from the algae easier.[141]

In a 2007 report[41] a formula was derived estimating the cost of algal oil in order for it to be a viable substitute to petroleum diesel:
C(algal oil) = 25.9 × 10−3 C(petroleum)
where: C(algal oil) is the price of microalgal oil in dollars per gallon and C(petroleum) is the price of crude oil in dollars per barrel. This equation assumes that algal oil has roughly 80% of the caloric energy value of crude petroleum.[142]

With current technology available, it is estimated that the cost of producing microalgal biomass is $2.95/kg for photobioreactors and $3.80/kg for open-ponds. These estimates assume that carbon dioxide is available at no cost.[143] If the annual biomass production capacity is increased to 10,000 tonnes, the cost of production per kilogram reduces to roughly $0.47 and $0.60, respectively. Assuming that the biomass contains 30% oil by weight, the cost of biomass for providing a liter of oil would be approximately $1.40 ($5.30/gal) and $1.81 ($6.85/gal) for photobioreactors and raceways, respectively. Oil recovered from the lower cost biomass produced in photobioreactors is estimated to cost $2.80/L, assuming the recovery process contributes 50% to the cost of the final recovered oil.[41] If existing algae projects can achieve biodiesel production price targets of less than $1 per gallon, the United States may realize its goal of replacing up to 20% of transport fuels by 2020 by using environmentally and economically sustainable fuels from algae production.[144]

Whereas technical problems, such as harvesting, are being addressed successfully by the industry, the high up-front investment of algae-to-biofuels facilities is seen by many as a major obstacle to the success of this technology. Only few studies on the economic viability are publicly available, and must often rely on the little data (often only engineering estimates) available in the public domain. Dmitrov[145] examined the GreenFuel's photobioreactor and estimated that algae oil would only be competitive at an oil price of $800 per barrel. A study by Alabi et al.[146] examined raceways, photobioreactors and anaerobic fermenters to make biofuels from algae and found that photobioreactors are too expensive to make biofuels. Raceways might be cost-effective in warm climates with very low labor costs, and fermenters may become cost-effective subsequent to significant process improvements. The group found that capital cost, labor cost and operational costs (fertilizer, electricity, etc.) by themselves are too high for algae biofuels to be cost-competitive with conventional fuels. Similar results were found by others,[147][148][149] suggesting that unless new, cheaper ways of harnessing algae for biofuels production are found, their great technical potential may never become economically accessible. Recently, Rodrigo E. Teixeira[150] demonstrated a new reaction and proposed a process for harvesting and extracting raw materials for biofuel and chemical production that requires a fraction of the energy of current methods, while extracting all cell constituents.

Use of Byproducts

Many of the byproducts produced in the processing of microalgae can be used in various applications, many of which have a longer history of production than algal biofuel. Some of the products not used in the production of biofuel include natural dyes and pigments, antioxidants, and other high-value bio-active compounds.[89][151][152] These chemicals and excess biomass have found numerous use in other industries. For example, the dyes and oils have found a place in cosmetics, commonly as thickening and water-binding agents.[153] Discoveries within the pharmaceutical industry include antibiotics and antifungals derived from microalgae, as well as natural health products, which have been growing in popularity over the past few decades. For instance Spirulina contains numerous polyunsaturated fats (Omega 3 and 6), amino acids, and vitamins,[154] as well as pigments that may be beneficial, such as beta-carotene and chlorophyll.[155]

Advantages

Ease of growth

One of the main advantages that using microalgae as the feedstock when compared to more traditional crops is that it can be grown much more easily.[156] Algae can be grown in land that would not be considered suitable for the growth of the regularly used crops.[89] In addition to this, wastewater that would normally hinder plant growth has been shown to be very effective in growing algae.[156] Because of this, algae can be grown without taking up arable land that would otherwise be used for producing food crops, and the better resources can be reserved for normal crop production. Microalgae also require fewer resources to grow and little attention is needed, allowing the growth and cultivation of algae to be a very passive process.[89]

Impact on food

Many traditional feedstocks for biodiesel, such as corn and palm, are also used as feed for livestock on farms, as well as a valuable source of food for humans. Because of this, using them as biofuel reduces the amount of food available for both, resulting in an increased cost for both the food and the fuel produced. Using algae as a source of biodiesel can alleviate this problem in a number of ways. First, algae is not used as a primary food source for humans, meaning that it can be used solely for fuel and there would be little impact in the food industry.[157] Second, many of the waste-product extracts produced during the processing of algae for biofuel can be used as a sufficient animal feed. This is an effective way to minimize waste and a much cheaper alternative to the more traditional corn- or grain-based feeds.[158]

Minimization of waste

Growing algae as a source of biofuel has also been shown to have numerous environmental benefits, and has presented itself as a much more environmentally friendly alternative to current biofuels. For one, it is able to utilize run-off, water contaminated with fertilizers and other nutrients that are a by-product of farming, as its primary source of water and nutrients.[156] Because of this, it prevents this contaminated water from mixing with the lakes and rivers that currently supply our drinking water. In addition to this, the ammonia, nitrates, and phosphates that would normally render the water unsafe actually serve as excellent nutrients for the algae, meaning that fewer resources are needed to grow the algae.[89] Many algae species used in biodiesel production are excellent bio-fixers, meaning they are able to remove carbon dioxide from the atmosphere to use as a form of energy for themselves. Because of this, they have found use in industry as a way to treat flue gases and reduce GHG emissions.[89]

Disadvantages

Commercial Viability

Algae biodiesel is still a fairly new technology. Despite the fact that research began over 30 years ago, it was put on hold during the mid-1990s, mainly due to a lack of funding and a relatively low petroleum cost.[34] For the next few years algae biofuels saw little attention; it was not until the gas peak of the early 2000s that it eventually had a revitalization in the search for alternative fuel sources.[34] While the technology exists to harvest and convert algae into a usable source of biodiesel, it still hasn't been implemented into a large enough scale to support the current energy needs. Further research will be required to make the production of algae biofuels more efficient, and at this point it is currently being held back by lobbyists in support of alternative biofuels, like those produced from corn and grain.[34] In 2013, Exxon Mobil Chairman and CEO Rex Tillerson said that after originally committing to spending up to $600 million on development in a joint venture with J. Craig Venter’s Synthetic Genomics, algae is "probably further" than "25 years away" from commercial viability,[14] although Solazyme[15] and Sapphire Energy[16] already began small-scale commercial sales in 2012 and 2013, respectively. By 2017, most efforts had been abandoned or changed to other applications, with only a few remaining.[159]

Stability

The biodiesel produced from the processing of microalgae differs from other forms of biodiesel in the content of polyunsaturated fats.[156] Polyunsaturated fats are known for their ability to retain fluidity at lower temperatures. While this may seem like an advantage in production during the colder temperatures of the winter, the polyunsaturated fats result in lower stability during regular seasonal temperatures.[157]

Research

Current projects

United States

The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. This program is involved in the production of renewable energies and energy efficiency. One of its most current divisions is the biomass program which is involved in biomass characterization, biochemical and thermochemical conversion technologies in conjunction with biomass process engineering and analysis. The program aims at producing energy efficient, cost-effective and environmentally friendly technologies that support rural economies, reduce the nations dependency in oil and improve air quality.[160]
At the Woods Hole Oceanographic Institution and the Harbor Branch Oceanographic Institution the wastewater from domestic and industrial sources contain rich organic compounds that are being used to accelerate the growth of algae.[39] The Department of Biological and Agricultural Engineering at University of Georgia is exploring microalgal biomass production using industrial wastewater.[161] Algaewheel, based in Indianapolis, Indiana, presented a proposal to build a facility in Cedar Lake, Indiana that uses algae to treat municipal wastewater, using the sludge byproduct to produce biofuel.[162][163] A similar approach is being followed by Algae Systems, a company based in Daphne, Alabama.[164]

Sapphire Energy (San Diego) has produced green crude from algae.

Solazyme (South San Francisco, California) has produced a fuel suitable for powering jet aircraft from algae.[165]

The Marine Research station in Ketch Harbour, Nova Scotia, has been involved in growing algae for 50 years. The National Research Council (Canada) (NRC) and National Byproducts Program have provided $5 million to fund this project. The aim of the program has been to build a 50 000 litre cultivation pilot plant at the Ketch harbor facility. The station has been involved in assessing how best to grow algae for biofuel and is involved in investigating the utilization of numerous algae species in regions of North America. NRC has joined forces with the United States Department of Energy, the National Renewable Energy Laboratory in Colorado and Sandia National Laboratories in New Mexico.[160]

Europe

Universities in the United Kingdom which are working on producing oil from algae include: University of Manchester, University of Sheffield, University of Glasgow, University of Brighton, University of Cambridge, University College London, Imperial College London, Cranfield University and Newcastle University. In Spain, it is also relevant the research carried out by the CSIC´s Instituto de Bioquímica Vegetal y Fotosíntesis (Microalgae Biotechnology Group, Seville).[166]
The European Algae Biomass Association (EABA) is the European association representing both research and industry in the field of algae technologies, currently with 79 members. The association is headquartered in Florence, Italy. The general objective of the EABA is to promote mutual interchange and cooperation in the field of biomass production and use, including biofuels uses and all other utilisations. It aims at creating, developing and maintaining solidarity and links between its Members and at defending their interests at European and international level. Its main target is to act as a catalyst for fostering synergies among scientists, industrialists and decision makers to promote the development of research, technology and industrial capacities in the field of Algae.

CMCL innovations and the University of Cambridge are carrying out a detailed design study of a C-FAST[167] (Carbon negative Fuels derived from Algal and Solar Technologies) plant. The main objective is to design a pilot plant which can demonstrate production of hydrocarbon fuels (including diesel and gasoline) as sustainable carbon-negative energy carriers and raw materials for the chemical commodity industry. This project will report in June 2013.

Ukraine plans to produce biofuel using a special type of algae.[168]

The European Commission's Algae Cluster Project, funded through the Seventh Framework Programme, is made up of three algae biofuel projects, each looking to design and build a different algae biofuel facility covering 10ha of land. The projects are BIOFAT, All-Gas and InteSusAl.[169]

Since various fuels and chemicals can be produced from algae, it has been suggested to investigate the feasibility of various production processes( conventional extraction/separation, hydrothermal liquefaction, gasification and pyrolysis) for application in an integrated algal biorefinery.[170]

India

Reliance industries in collaboration with Algenol, USA commissioned a pilot project to produce algal bio-oil in the year 2014.[171] Spirulina which is an alga rich in proteins content has been commercially cultivated in India. Algae is used in India for treating the sewage in open/natural oxidation ponds This reduces the Biological Oxygen Demand (BOD) of the sewage and also provides algal biomass which can be converted to fuel.[172]

Other

The Algae Biomass Organization (ABO)[173] is a non-profit organization whose mission is "to promote the development of viable commercial markets for renewable and sustainable commodities derived from algae".

The National Algae Association (NAA) is a non-profit organization of algae researchers, algae production companies and the investment community who share the goal of commercializing algae oil as an alternative feedstock for the biofuels markets. The NAA gives its members a forum to efficiently evaluate various algae technologies for potential early stage company opportunities.

Pond Biofuels Inc.[174] in Ontario, Canada has a functioning pilot plant where algae is grown directly off of smokestack emissions from a cement plant, and dried using waste heat.[94] In May 2013, Pond Biofuels announced a partnership with the National Research Council of Canada and Canadian Natural Resources Limited to construct a demonstration-scale algal biorefinery at an oil sands site near Bonnyville, Alberta.[175]

Ocean Nutrition Canada in Halifax, Nova Scotia, Canada has found a new strain of algae that appears capable of producing oil at a rate 60 times greater than other types of algae being used for the generation of biofuels.[176]

VG Energy, a subsidiary of Viral Genetics Incorporated,[177] claims to have discovered a new method of increasing algal lipid production by disrupting the metabolic pathways that would otherwise divert photosynthetic energy towards carbohydrate production. Using these techniques, the company states that lipid production could be increased several-fold, potentially making algal biofuels cost-competitive with existing fossil fuels.

Algae production from the warm water discharge of a nuclear power plant has been piloted by Patrick C. Kangas at Peach Bottom Nuclear Power Station, owned by Exelon Corporation. This process takes advantage of the relatively high temperature water to sustain algae growth even during winter months.[178]

Companies such as Sapphire Energy and Bio Solar Cells[179] are using genetic engineering to make algae fuel production more efficient. According to Klein Lankhorst of Bio Solar Cells, genetic engineering could vastly improve algae fuel efficiency as algae can be modified to only build short carbon chains instead of long chains of carbohydrates.[180] Sapphire Energy also uses chemically induced mutations to produce algae suitable for use as a crop.[181]

Some commercial interests into large-scale algal-cultivation systems are looking to tie into existing infrastructures, such as cement factories,[94] coal power plants, or sewage treatment facilities. This approach changes wastes into resources to provide the raw materials, CO
2
and nutrients, for the system.[182]

A feasibility study using marine microalgae in a photobioreactor is being done by The International Research Consortium on Continental Margins at the Jacobs University Bremen.[183]

The Department of Environmental Science at Ateneo de Manila University in the Philippines, is working on producing biofuel from a local species of algae.[184]

Genetic engineering

Genetic engineering algae has been used to increase lipid production or growth rates. Current research in genetic engineering includes either the introduction or removal of enzymes. In 2007 Oswald et al. introduced a monoterpene synthase from sweet basil into Saccharomyces cerevisiae, a strain of yeast.[185] This particular monoterpene synthase causes the de novo synthesis of large amounts of geraniol, while also secreting it into the medium. Geraniol is a primary component in rose oil, palmarosa oil, and citronella oil as well as essential oils, making it a viable source of triacylglycerides for biodiesel production.[186]

The enzyme ADP-glucose pyrophosphorylase is vital in starch production, but has no connection to lipid synthesis. Removal of this enzyme resulted in the sta6 mutant, which showed increased lipid content. After 18 hours of growth in nitrogen deficient medium the sta6 mutants had on average 17 ng triacylglycerides/1000 cells, compared to 10 ng/1000 cells in WT cells. This increase in lipid production was attributed to reallocation of intracellular resources, as the algae diverted energy from starch production.[187]

In 2013 researchers used a "knock-down" of fat-reducing enzymes (multifunctional lipase/phospholipase/acyltransferase) to increase lipids (oils) without compromising growth. The study also introduced an efficient screening process. Antisense-expressing knockdown strains 1A6 and 1B1 contained 2.4- and 3.3-fold higher lipid content during exponential growth, and 4.1- and 3.2-fold higher lipid content after 40 h of silicon starvation.[188][189]

Funding programs

Numerous Funding programs have been created with aims of promoting the use of Renewable Energy. In Canada, the ecoAgriculture biofuels capital initiative (ecoABC) provides $25 million per project to assist farmers in constructing and expanding a renewable fuel production facility. The program has $186 million set aside for these projects. The sustainable development (SDTC) program has also applied $500 millions over 8 years to assist with the construction of next-generation renewable fuels. In addition, over the last 2 years $10 million has been made available for renewable fuel research and analysis[190]

In Europe, the Seventh Framework Programme (FP7) is the main instrument for funding research. Similarly, the NER 300 is an unofficial, independent portal dedicated to renewable energy and grid integration projects. Another program includes the Horizon 2020 program which will start 1 January, and will bring together the framework program and other EC innovation and research funding into a new integrated funding system[191]

The American NBB's Feedstock Development program is addressing production of algae on the horizon to expand available material for biodiesel in a sustainable manner.[192]

International policies

Canada

Numerous policies have been put in place since the 1975 oil crisis in order to promote the use of Renewable Fuels in the United States, Canada and Europe. In Canada, these included the implementation of excise taxes exempting propane and natural gas which was extended to ethanol made from biomass and methanol in 1992. The federal government also announced their renewable fuels strategy in 2006 which proposed four components: increasing availability of renewable fuels through regulation, supporting the expansion of Canadian production of renewable fuels, assisting farmers to seize new opportunities in this sector and accelerating the commercialization of new technologies. These mandates were quickly followed by the Canadian provinces:

BC introduced a 5% ethanol and 5% renewable diesel requirement which was effective by January 2010. It also introduced a low carbon fuel requirement for 2012 to 2020.

Alberta introduced a 5% ethanol and 2% renewable diesel requirement implemented April 2011. The province also introduced a minimum 25% GHG emission reduction requirement for qualifying renewable fuels.

Saskatchewan implemented a 2% renewable diesel requirement in 2009.[193]

Additionally, in 2006, the Canadian Federal Government announced its commitment to using its purchasing power to encourage the biofuel industry. Section three of the 2006 alternative fuels act stated that when it is economically feasible to do so-75% per cent of all federal bodies and crown corporation will be motor vehicles.[190]

The National Research Council of Canada has established research on Algal Carbon Conversion as one of its flagship programs.[194] As part of this program, the NRC made an announcement in May 2013 that they are partnering with Canadian Natural Resources Limited and Pond Biofuels to construct a demonstration-scale algal biorefinery near Bonnyville, Alberta.[175]

United States

Policies in the United States have included a decrease in the subsidies provided by the federal and state governments to the oil industry which have usually included $2.84 billion. This is more than what is actually set aside for the biofuel industry. The measure was discussed at the G20 in Pittsburgh where leaders agreed that "inefficient fossil fuel subsidies encourage wasteful consumption, reduce our energy security, impede investment in clean sources and undermine efforts to deal with the threat of climate change". If this commitment is followed through and subsidies are removed, a fairer market in which algae biofuels can compete will be created. In 2010, the U.S. House of Representatives passed a legislation seeking to give algae-based biofuels parity with cellulose biofuels in federal tax credit programs. The algae-based renewable fuel promotion act (HR 4168) was implemented to give biofuel projects access to a $1.01 per gal production tax credit and 50% bonus depreciation for biofuel plant property. The U.S Government also introduced the domestic Fuel for Enhancing National Security Act implemented in 2011. This policy constitutes an amendment to the Federal property and administrative services act of 1949 and federal defense provisions in order to extend to 15 the number of years that the Department of Defense (DOD) multiyear contract may be entered into the case of the purchase of advanced biofuel. Federal and DOD programs are usually limited to a 5-year period[195]

Other

The European Union (EU) has also responded by quadrupling the credits for second-generation algae biofuels which was established as an amendment to the Biofuels and Fuel Quality Directives[191]

Companies

With algal biofuel being a relatively new alternative to conventional petroleum products, it leaves numerous opportunities for drastic advances in all aspects of the technology. Producing algae biofuel is not yet a cost-effective replacement for gasoline, but alterations to current methodologies can change this. The two most common targets for advancements are the growth medium (open pond vs. photobioreactor) and methods to remove the intracellular components of the algae. Below are companies that are currently innovating algal biofuel technologies.

Algenol Biofuels

Founded in 2006, Algenol Biofuels is a global, industrial biotechnology company that is commercializing its patented algae technology for production of ethanol and other fuels. Based in Southwest Florida, Algenol’s patented technology enables the production of the four most important fuels (ethanol, gasoline, jet, and diesel fuel) using proprietary algae, sunlight, carbon dioxide and saltwater for around $1.27 per gallon and at production levels of 8,000 total gallons of liquid fuel per acre per year. Algenol's technology produces high yields and relies on patented photobioreactors and proprietary downstream techniques for low-cost fuel production using carbon dioxide from industrial sources.[196] The company originally intended on producing commercially by 2014, but was set back when Florida Governor Rick Scott signed a bill in 2013 eliminating the state's mandate of a minimum of 10% ethanol in commercial gasoline.[197] This caused Algenol CEO Paul Woods to scrap a plan for a US $500 million plant to produce commercial amounts of algae biofuels and pursue other job sites. Currently, Algenol is a partner of the US Department of Energy's Bioenergy Technologies Office, and in 2015 began smaller-scale commercial sales of E15 and E85 ethanol blends to Protec Fuel, a Florida-based fuel distributor.[198]

Blue Marble Production

Blue Marble Production is a Seattle-based company that is dedicated to removing algae from algae-infested water. This in turn cleans up the environment and allows this company to produce biofuel. Rather than just focusing on the mass production of algae, this company focuses on what to do with the byproducts. This company recycles almost 100% of its water via reverse osmosis, saving about 26,000 gallons of water every month. This water is then pumped back into their system. The gas produced as a byproduct of algae will also be recycled by being placed into a photobioreactor system that holds multiple strains of algae. Whatever gas remains is then made into pyrolysis oil by thermochemical processes. Not only does this company seek to produce biofuel, but it also wishes to use algae for a variety of other purposes such as fertilizer, food flavoring, anti-inflammatory, and anti-cancer drugs.[199]

Solazyme

Solazyme is one of a handful of companies which is supported by oil companies such as Chevron. Additionally, this company is also backed by Imperium Renewables, Blue Crest Capital Finance, and The Roda Group. Solazyme has developed a way to use up to 80% percent of dry algae as oil.[200] This process requires the algae to grow in a dark fermentation vessel and be fed by carbon substrates within their growth media. The effect is the production of triglycerides that are almost identical to vegetable oil. Solazyme's production method is said to produce more oil than those algae cultivated photosynthetically or made to produce ethanol. Oil refineries can then take this algal oil and turn it into biodiesel, renewable diesel or jet fuels.

Part of Solazyme's testing, in collaboration with Maersk Line and the US Navy, placed 30 tons of Soladiesel(RD) algae fuel into the 98,000-tonne, 300-meter container ship Maersk Kalmar. This fuel was used at blends from 7% to 100% in an auxiliary engine on a month-long trip from Bremerhaven, Germany to Pipavav, India in Dec 2011. In Jul 2012, The US Navy used 700,000 gallons of HRD76 biodiesel in three ships of the USS Nimitz "Green Strike Group" during the 2012 RIMPAC exercise in Hawaii. The Nimitz also used 200,000 gallons of HRJ5 jet biofuel. The 50/50 biofuel blends were provided by Solazyme and Dynamic Fuels.[201][202][203]

Sapphire Energy

Sapphire Energy is a leader in the algal biofuel industry backed by the Wellcome Trust, Bill Gates' Cascade Investment, Monsanto, and other large donors.[204] After experimenting with production of various algae fuels beginning in 2007, the company now focuses on producing what it calls "green crude" from algae in open raceway ponds. After receiving more than $100 million in federal funds in 2012, Sapphire built the first commercial demonstration algae fuel facility in New Mexico and has continuously produced biofuel since completion of the facility in that year.[204] In 2013, Sapphire began commercial sales of algal biofuel to Tesoro, making it one of the first companies, along with Solazyme, to sell algae fuel on the market.[16]

Diversified Technologies Inc.

Diversified Technologies Inc. has created a patent pending pre-treatment option to reduce costs of oil extraction from algae. This technology, called Pulsed Electric Field (PEF) technology, is a low cost, low energy process that applies high voltage electric pulses to a slurry of algae.[205] The electric pulses enable the algal cell walls to be ruptured easily, increasing the availability of all cell contents (Lipids, proteins and carbohydrates), allowing the separation into specific components downstream. This alternative method to intracellular extraction has shown the capability to be both integrated in-line as well as scalable into high yield assemblies. The Pulse Electric Field subjects the algae to short, intense bursts of electromagnetic radiation in a treatment chamber, electroporating the cell walls. The formation of holes in the cell wall allows the contents within to flow into the surrounding solution for further separation. PEF technology only requires 1-10 microsecond pulses, enabling a high-throughput approach to algal extraction.

Preliminary calculations have shown that utilization of PEF technology would only account for $0.10 per gallon of algae derived biofuel produced. In comparison, conventional drying and solvent-based extractions account for $1.75 per gallon. This inconsistency between costs can be attributed to the fact that algal drying generally accounts for 75% of the extraction process.[206] Although a relatively new technology, PEF has been successfully used in both food decomtamination processes as well as waste water treatments.[207]

Origin Oils Inc.

Origin Oils Inc. has been researching a revolutionary method called the Helix Bioreactor,[208] altering the common closed-loop growth system. This system utilizes low energy lights in a helical pattern, enabling each algal cell to obtain the required amount of light.[209] Sunlight can only penetrate a few inches through algal cells, making light a limiting reagent in open-pond algae farms. Each lighting element in the bioreactor is specially altered to emit specific wavelengths of light, as a full spectrum of light is not beneficial to algae growth. In fact, ultraviolet irradiation is actually detrimental as it inhibits photosynthesis, photoreduction, and the 520 nm light-dark absorbance change of algae.[210]
This bioreactor also addresses another key issue in algal cell growth; introducing CO2 and nutrients to the algae without disrupting or over-aerating the algae. Origin Oils Inc. combats this issues through the creation of their Quantum Fracturing technology. This process takes the CO2 and other nutrients, fractures them at extremely high pressures and then deliver the micron sized bubbles to the algae. This allows the nutrients to be delivered at a much lower pressure, maintaining the integrity of the cells.[209]

Proviron

Proviron is a Belgian microalgae company that also operates in the United States. The company has been working on a new type of reactor (using flat plates) which reduces the cost of algae cultivation. At AlgaePARC similar research is being conducted using 4 grow systems (1 open pond system and 3 types of closed systems). According to René Wijffels the current systems do not yet allow algae fuel to be produced competitively. However using new (closed) systems, and by scaling up the production it would be possible to reduce costs by 10X, up to a price of 0,4 € per kg of algae.[211] Currently, Proviron focuses primarily on alternative uses of algae cultures, such as environmentally-conscious plastics, esterification processes, and de-icing processes.[212]

Genifuels

Genifuel Corporation has licensed the high temperature/pressure fuel extraction process and has been working with the team at the lab since 2008. The company intends to team with some industrial partners to create a pilot plant using this process to make biofuel in industrial quantities.[104] Genifuel process combines hydrothermal liquefaction with catalytic hydrothermal gasification in reactor running at 350 Celsius (662 Fahrenheit) and pressure of 3000 PSI.[213]

Qeshm Microalgae Biorefinery Co. (QMAB)

QMAB is an Iran-based biofuels company operating solely on the island of Iranian island of Qeshm in the Strait of Hormuz. QMAB's original pilot plant has been operating since 2009, and has a 25,000 Liter capacity.[214] In 2014, QMAB released BAYA Biofuel, a biofuel deriving from the algae Nannochloropsis, and has since specified that its unique strain is up to 68% lipids by dry weight volume.[214] Development of the farm mainly focuses on 2 phases, production of nutraceutical products and green crude oil to produce biofuel. The main product of their microalgae culture is crude oil, which can be fractioned into the same kinds of fuels and chemical compounds.[2

Thursday, May 4, 2017

Omega-3 fatty acid

From Wikipedia, the free encyclopedia

Omega-3 fatty acids—also called ω-3 fatty acids or n-3 fatty acids[1]—are polyunsaturated fatty acids (PUFAs) with a double bond (C=C) at the third carbon atom from the end of the carbon chain.[2] The fatty acids have two ends, the carboxylic acid (-COOH) end, which is considered the beginning of the chain, thus "alpha", and the methyl (-CH3) end, which is considered the "tail" of the chain, thus "omega"; the double bond is at omega minus 3 (not dash 3). One way in which a fatty acid is named is determined by the location of the first double bond, counted from the methyl end, that is, the omega (ω-) or the n- end. However, the standard (IUPAC) chemical nomenclature system starts from the carbonyl end.

The three types of omega-3 fatty acids involved in human physiology are α-linolenic acid (ALA) (found in plant oils), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) (both commonly found in marine oils). Marine algae and phytoplankton are primary sources of omega-3 fatty acids. Common sources of plant oils containing the omega-3 ALA fatty acid include walnut, edible seeds, clary sage seed oil, algal oil, flaxseed oil, Sacha Inchi oil, Echium oil, and hemp oil, while sources of animal omega-3 EPA and DHA fatty acids include fish, fish oils, eggs from chickens fed EPA and DHA, squid oils, and krill oil. Dietary supplementation with omega-3 fatty acids does not appear to affect the risk of death, cancer or heart disease.[3][4] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes.[5]

Omega-3 fatty acids are important for normal metabolism.[6] Mammals are unable to synthesize omega-3 fatty acids, but can obtain the shorter-chain omega-3 fatty acid ALA (18 carbons and 3 double bonds) through diet and use it to form the more important long-chain omega-3 fatty acids, EPA (20 carbons and 5 double bonds) and then from EPA, the most crucial, DHA (22 carbons and 6 double bonds).[6] The ability to make the longer-chain omega-3 fatty acids from ALA may be impaired in aging.[7][8] In foods exposed to air, unsaturated fatty acids are vulnerable to oxidation and rancidity.[9]

Health effects

Supplementation does not appear to be associated with a lower risk of all-cause mortality.[3]

Cancer

The evidence linking the consumption of fish to the risk of cancer is poor.[10] Supplementation with omega-3 fatty acids does not appear to affect this either.[4]

A 2006 review concluded that there was no link between omega-3 fatty acids consumption and
cancer.[4] This is similar to the findings of a review of studies up to February 2002 that failed to find clear effects of long and shorter chain omega-3 fats on total risk of death, combined cardiovascular events and cancer.[11][12] In those with advanced cancer and cachexia, omega-3 fatty acids supplements may be of benefit, improving appetite, weight, and quality of life.[13] There is tentative evidence that marine omega-3 polyunsaturated fatty acids reduce the risk of breast cancer but this is not conclusive.[14][15]

The effect of consumption on prostate cancer is not conclusive.[15] There is a decreased risk with higher blood levels of DPA, but an increased risk of more aggressive prostate cancer with higher blood levels of combined EPA and DHA (found in fatty fish oil).[16]

Cardiovascular disease

Evidence, in the population generally, does not support a beneficial role for omega-3 fatty acid supplementation in preventing cardiovascular disease (including myocardial infarction and sudden cardiac death) or stroke.[3][17][18] However, omega-3 fatty acid supplementation greater than one gram daily for at least a year may be protective against cardiac death, sudden death, and myocardial infarction in people who have a history of cardiovascular disease.[19] No protective effect against the development of stroke or all-cause mortality was seen in this population.[19] Eating a diet high in fish that contain long chain omega-3 fatty acids does appear to decrease the risk of stroke.[20] Fish oil supplementation has not been shown to benefit revascularization or abnormal heart rhythms and has no effect on heart failure hospital admission rates.[21] Furthermore, fish oil supplement studies have failed to support claims of preventing heart attacks or strokes.[5]

Evidence suggests that omega-3 fatty acids modestly lower blood pressure (systolic and diastolic) in people with hypertension and in people with normal blood pressure.[22] Some evidence suggests that people with certain circulatory problems, such as varicose veins, may benefit from the consumption of EPA and DHA, which may stimulate blood circulation and increase the breakdown of fibrin, a protein involved in blood clotting and scar formation.[23][24] Omega-3 fatty acids reduce blood triglyceride levels but do not significantly change the level of LDL cholesterol or HDL cholesterol in the blood.[25][26] The American Heart Association position (2011) is that borderline elevated triglycerides, defined as 150–199 mg/dL, can be lowered by 0.5-1.0 grams of EPA and DHA per day; high triglycerides 200–499 mg/dL benefit from 1-2 g/day; and >500 mg/dL be treated under a physician's supervision with 2-4 g/day using a prescription product.[27]

ALA does not confer the cardiovascular health benefits of EPA and DHAs.[28]

The effect of omega-3 polyunsaturated fatty acids on stroke is unclear, with a possible benefit in women.[29]

Inflammation

Some research suggests that the anti-inflammatory activity of long-chain omega-3 fatty acids may translate into clinical effects.[30] A 2013 systematic review found tentative evidence of benefit.[31] Consumption of omega-3 fatty acids from marine sources lowers markers of inflammation in the blood such as C-reactive protein, interleukin 6, and TNF alpha.[32]

For rheumatoid arthritis (RA), one systematic review found consistent, but modest, evidence for the effect of marine n-3 PUFAs on symptoms such as "joint swelling and pain, duration of morning stiffness, global assessments of pain and disease activity" as well as the use of non-steroidal anti-inflammatory drugs.[33] The American College of Rheumatology (ACR) has stated that there may be modest benefit from the use of fish oils, but that it may take months for effects to be seen, and cautions for possible gastrointestinal side effects and the possibility of the supplements containing mercury or vitamin A at toxic levels. The National Center for Complementary and Integrative Health has concluded that "[n]o dietary supplement has shown clear benefits for RA", but that there is preliminary evidence that fish oil may be beneficial, and called for further study.[34]

Developmental disabilities

Although not supported by current scientific evidence as a primary treatment for ADHD, autism, and other developmental disabilities,[35][36] omega-3 fatty acid supplements are being given to children with these conditions.[35]

One meta-analysis concluded that omega-3 fatty acid supplementation demonstrated a modest effect for improving ADHD symptoms.[37] A Cochrane review of PUFA (not necessarily omega-3) supplementation found "there is little evidence that PUFA supplementation provides any benefit for the symptoms of ADHD in children and adolescents",[38] while a different review found "insufficient evidence to draw any conclusion about the use of PUFAs for children with specific learning disorders".[39] Another review concluded that the evidence is inconclusive for the use of omega-3 fatty acids in behavior and non-neurodegenerative neuropsychiatric disorders such ADHD and depression.[40]

Fish oil has only a small benefit on the risk of early birth.[41][42] A 2015 meta-analysis of the effect of omega-3 supplementation during pregnancy did not demonstrate a decrease in the rate of preterm birth or improve outcomes in women with singleton pregnancies with no prior preterm births.[43] A systematic review and meta-analysis published the same year reached the opposite conclusion, specifically, that omega-3 fatty acids were effective in "preventing early and any preterm delivery".[44]

Mental health

There is some evidence that omega-3 fatty acids are related to mental health,[45] including that they may tentatively be useful as an add-on for the treatment of depression associated with bipolar disorder.[46] Significant benefits due to EPA supplementation were only seen, however, when treating depressive symptoms and not manic symptoms suggesting a link between omega-3 and depressive mood.[46] There is also preliminary evidence that EPA supplementation is helpful in cases of depression.[47] The link between omega-3 and depression has been attributed to the fact that many of the products of the omega-3 synthesis pathway play key roles in regulating inflammation such as prostaglandin E3 which have been linked to depression.[48] This link to inflammation regulation has been supported in both in vitro [49] and in vivo studies as well as in meta-analysis studies.[31] The exact mechanism in which omega-3 acts upon the inflammatory system is still controversial as it was commonly believed to have anti-inflammatory effects.[50]

There is, however, significant difficulty in interpreting the literature due to participant recall and systematic differences in diets.[51] There is also controversy as to the efficacy of omega-3, with many meta-analysis papers finding heterogeneity among results which can be explained mostly by publication bias.[52][53] A significant correlation between shorter treatment trials was associated with increased omega-3 efficacy for treating depressed symptoms further implicating bias in publication.[53]

Very low quality evidence finds that omega-3 fatty acids might prevent psychosis.[54]

Cognitive aging

Epidemiological studies are inconclusive about an effect of omega-3 fatty acids on the mechanisms of Alzheimer's disease.[55] There is preliminary evidence of effect on mild cognitive problems, but none supporting an effect in healthy people or those with dementia.[56][57][58]

Brain and visual functions

Brain function and vision rely on dietary intake of DHA to support a broad range of cell membrane properties, particularly in grey matter, which is rich in membranes.[59][60] A major structural component of the mammalian brain, DHA is the most abundant omega-3 fatty acid in the brain.[61] It is under study as a candidate essential nutrient with roles in neurodevelopment, cognition and neurodegenerative disorders.[59]

Atopic diseases

Results of studies investigating the role of LCPUFA supplementation and LCPUFA status in the prevention and therapy of atopic diseases (allergic rhinoconjunctivitis, atopic dermatitis and allergic asthma) are controversial; therefore, at the present stage of our knowledge we cannot state either that the nutritional intake of n-3 fatty acids has a clear preventive or therapeutic role, or that the intake of n-6 fatty acids has a promoting role in context of atopic diseases.[62]

Risk of deficiency

People with PKU often have low intake of omega-3 fatty acids, because nutrients rich in omega-3 fatty acids are excluded from their diet due to high protein content.[63]

Chemistry

Chemical structure of alpha-linolenic acid (ALA), an essential omega-3 fatty acid, (18:3Δ9c,12c,15c, which means a chain of 18 carbons with 3 double bonds on carbons numbered 9, 12, and 15). Although chemists count from the carbonyl carbon (blue numbering), biologists count from the n (ω) carbon (red numbering). Note that, from the n end (diagram right), the first double bond appears as the third carbon-carbon bond (line segment), hence the name "n-3". This is explained by the fact that the n end is almost never changed during physiological transformations in the human body, as it is more energy-stable, and other compounds can be synthesized from the other carbonyl end, for example in glycerides, or from double bonds in the middle of the chain.
Chemical structure of eicosapentaenoic acid (EPA)
Chemical structure of docosahexaenoic acid (DHA)

Omega-3 fatty acids that are important in human physiology[64] are α-linolenic acid (18:3, n-3; ALA), eicosapentaenoic acid (20:5, n-3; EPA), and docosahexaenoic acid (22:6, n-3; DHA). These three polyunsaturates have either 3, 5, or 6 double bonds in a carbon chain of 18, 20, or 22 carbon atoms, respectively. As with most naturally-produced fatty acids, all double bonds are in the cis-configuration, in other words, the two hydrogen atoms are on the same side of the double bond; and the double bonds are interrupted by methylene bridges (-CH
2
-), so that there are two single bonds between each pair of adjacent double bonds.

List of omega-3 fatty acids

This table lists several different names for the most common omega-3 fatty acids found in nature.

Common name Lipid name Chemical name
Hexadecatrienoic acid (HTA) 16:3 (n-3) all-cis-7,10,13-hexadecatrienoic acid
α-Linolenic acid (ALA) 18:3 (n-3) all-cis-9,12,15-octadecatrienoic acid
Stearidonic acid (SDA) 18:4 (n-3) all-cis-6,9,12,15-octadecatetraenoic acid
Eicosatrienoic acid (ETE) 20:3 (n-3) all-cis-11,14,17-eicosatrienoic acid
Eicosatetraenoic acid (ETA) 20:4 (n-3) all-cis-8,11,14,17-eicosatetraenoic acid
Eicosapentaenoic acid (EPA) 20:5 (n-3) all-cis-5,8,11,14,17-eicosapentaenoic acid
Heneicosapentaenoic acid (HPA) 21:5 (n-3) all-cis-6,9,12,15,18-heneicosapentaenoic acid
Docosapentaenoic acid (DPA),
Clupanodonic acid
22:5 (n-3) all-cis-7,10,13,16,19-docosapentaenoic acid
Docosahexaenoic acid (DHA) 22:6 (n-3) all-cis-4,7,10,13,16,19-docosahexaenoic acid
Tetracosapentaenoic acid 24:5 (n-3) all-cis-9,12,15,18,21-tetracosapentaenoic acid
Tetracosahexaenoic acid (Nisinic acid) 24:6 (n-3) all-cis-6,9,12,15,18,21-tetracosahexaenoic acid

Forms

Triglycerides

Marine fish oils naturally contain triglycerides with omega-3 fatty acids. There are processes by which the fatty acids can be separated from glycerol, concentrated to a higher EPA and DHA content and reassembled into high omega-3 triglycerides. There are no prescription products of this nature, only dietary supplements. There are disputed claims for superiority - absorption and function - of natural marine oil triglycerides, omega-3 enriched triglycerides, ethyl ester products and free fatty acid products.[citation needed]

Ethyl esters

Omega-3 acid ethyl esters are created by starting with a marine oil, converting the triglycerides to free fatty acids, concentrating the omega-3 fatty acids, and attaching an ethanol molecule to each FA. Available in U.S. as prescription product and dietary supplement. Prescription product brand names Lovaza (had been Omacor),[65] OMTRYG,[66] four generic versions [67] and Ethyl eicosapentaenoic acid (Vascepa)[68] A review compares the prescription products.[69]

Free fatty acids

Omega-3 carboxylic acids are created by starting with a marine oil, disassociating the triglycerides into free fatty acids and concentrating the omega-3 fatty acids. The product is free fatty acids.Prescribed use at 2 or 4 grams per day.[70] The prescription product is named Epanova.[71]

Phospholipids

Phospholipid omega-3 is composed of two fatty acids attached to a phosphate and choline, versus the three fatty acids attached to glycerol in triglycerides. There are no prescription products of this nature, only dietary supplements. One source of phospholipid omega-3 is krill oil.

Biochemistry

Transporters

DHA in the form of lysophosphatidylcholine is transported into the brain by a membrane transport protein, MFSD2A, which is exclusively expressed in the endothelium of the blood–brain barrier.[72][73]

Mechanism of action

The 'essential' fatty acids were given their name when researchers found that they are essential to normal growth in young children and animals. The omega-3 fatty acid DHA, also known as docosahexaenoic acid, is found in high abundance in the human brain.[74] It is produced by a desaturation process, but humans lack the desaturase enzyme, which acts to insert double bonds at the ω6 and ω3 position.[74] Therefore, the ω6 and ω3 polyunsaturated fatty acids cannot be synthesized and are appropriately called essential fatty acids.[74]

In 1964 it was discovered that enzymes found in sheep tissues convert omega-6 arachidonic acid into the inflammatory agent called prostaglandin E2[75] which both causes the sensation of pain and expedites healing and immune response in traumatized and infected tissues.[76] By 1979 more of what are now known as eicosanoids were discovered: thromboxanes, prostacyclins, and the leukotrienes.[76] The eicosanoids, which have important biological functions, typically have a short active lifetime in the body, starting with synthesis from fatty acids and ending with metabolism by enzymes. If the rate of synthesis exceeds the rate of metabolism, the excess eicosanoids may, however, have deleterious effects.[76] Researchers found that certain omega-3 fatty acids are also converted into eicosanoids, but at a much slower rate. Eicosanoids made from omega-3 fatty acids are often referred to as anti-inflammatory, but in fact they are just less inflammatory than those made from omega-6 fats. If both omega-3 and omega-6 fatty acids are present, they will "compete" to be transformed,[76] so the ratio of long-chain omega-3:omega-6 fatty acids directly affects the type of eicosanoids that are produced.[76]

Interconversion

Conversion efficiency of ALA to EPA and DHA

Humans can convert short-chain omega-3 fatty acids to long-chain forms (EPA, DHA) with an efficiency below 5%.[77][78] The omega-3 conversion efficiency is greater in women than in men, but less-studied.[79] Higher ALA and DHA values found in plasma phospholipids of women may be due to the higher activity of desaturases, especially that of delta-6-desaturase.[80]

These conversions occur competitively with omega-6 fatty acids, which are essential closely related chemical analogues that are derived from linoleic acid. They both utilize the same desaturase and elongase proteins in order to synthesize inflammatory regulatory proteins.[48] The products of both pathways are vital for growth making a balanced diet of omega-3 and omega-6 important to an individual’s health.[81] A balanced intake ratio of 1:1 was believed to be ideal in order for proteins to be able to synthesize both pathways sufficiently, but this has been controversial as of recent research.[82]

The conversion of ALA to EPA and further to DHA in humans has been reported to be limited, but varies with individuals.[83][84] Women have higher ALA conversion efficiency than men, which is presumed[85] to be due to the lower rate of use of dietary ALA for beta-oxidation. This suggests that biological engineering of ALA conversion efficiency is possible. Goyens et al. argue that the absolute amounts of ALA and LA each influence conversion rates separately, rather than simply the ratio between the two.[86]

Omega-6 to omega-3 ratio

Human diet has changed rapidly in recent centuries resulting in a reported increased diet of omega-6 in comparison to omega-3.[87] The rapid evolution of human diet away from a 1:1 omega-3 and omega-6 ratio, such as during the Neolithic Agricultural Revolution, has presumably been too fast for humans to have adapted to biological profiles adept at balancing omega-3 and omega-6 ratios of 1:1.[88] This is commonly believed to be the reason why modern diets are correlated with many inflammatory disorders.[87] While omega-3 polyunsaturated fatty acids may be beneficial in preventing heart disease in humans, the level of omega-6 polyunsaturated fatty acids (and, therefore, the ratio) does not matter.[82][89]
Both omega-6 and omega-3 fatty acids are essential: humans must consume them in their diet. Omega-6 and omega-3 eighteen-carbon polyunsaturated fatty acids compete for the same metabolic enzymes, thus the omega-6:omega-3 ratio of ingested fatty acids has significant influence on the ratio and rate of production of eicosanoids, a group of hormones intimately involved in the body's inflammatory and homeostatic processes, which include the prostaglandins, leukotrienes, and thromboxanes, among others. Altering this ratio can change the body's metabolic and inflammatory state.[11] In general, grass-fed animals accumulate more omega-3 than do grain-fed animals, which accumulate relatively more omega-6.[90] Metabolites of omega-6 are more inflammatory (esp. arachidonic acid) than those of omega-3. This necessitates that omega-6 and omega-3 be consumed in a balanced proportion; healthy ratios of omega-6:omega-3, according to some authors, range from 1:1 to 1:4.[91] Other authors believe that a ratio of 4:1 (4 times as much omega-6 as omega-3) is already healthy.[92][93] Studies suggest the evolutionary human diet, rich in game animals, seafood, and other sources of omega-3, may have provided such a ratio.[94][95]

Typical Western diets provide ratios of between 10:1 and 30:1 (i.e., dramatically higher levels of omega-6 than omega-3).[96] The ratios of omega-6 to omega-3 fatty acids in some common vegetable oils are: canola 2:1, hemp 2-3:1,[97] soybean 7:1, olive 3–13:1, sunflower (no omega-3), flax 1:3,[98] cottonseed (almost no omega-3), peanut (no omega-3), grapeseed oil (almost no omega-3) and corn oil 46:1 ratio of omega-6 to omega-3.[99]

History

Although omega-3 fatty acids have been known as essential to normal growth and health since the 1930s, awareness of their health benefits has dramatically increased since the 1980s.[100][101]

On September 8, 2004, the U.S. Food and Drug Administration gave "qualified health claim" status to EPA and DHA omega-3 fatty acids, stating, "supportive but not conclusive research shows that consumption of EPA and DHA [omega-3] fatty acids may reduce the risk of coronary heart disease".[102] This updated and modified their health risk advice letter of 2001 (see below).

The Canadian Food Inspection Agency has recognized the importance of DHA omega-3 and permits the following claim for DHA: "DHA, an omega-3 fatty acid, supports the normal physical development of the brain, eyes and nerves primarily in children under two years of age."[103]

Dietary sources

Grams of omega-3 per 3oz (85g) serving[104] [105]
Common name grams omega-3
Flax 11.4 [106]
Hemp 11.0
Herring, sardines 1.3–2
Mackerel: Spanish/Atlantic/Pacific 1.1–1.7
Salmon 1.1–1.9
Halibut 0.60–1.12
Tuna 0.21–1.1
Swordfish 0.97
Greenshell/lipped mussels 0.95[106]
Tilefish 0.9
Tuna (canned, light) 0.17–0.24
Pollock 0.45
Cod 0.15–0.24
Catfish 0.22–0.3
Flounder 0.48
Grouper 0.23
Mahi mahi 0.13
Orange roughy 0.028
Red snapper 0.29
Shark 0.83
King mackerel 0.36
Hoki (blue grenadier) 0.41[106]
Gemfish 0.40[106]
Blue eye cod 0.31[106]
Sydney rock oysters 0.30[106]
Tuna, canned 0.23[106]
Snapper 0.22[106]
Mutton 0.12[107]
Eggs, large regular 0.109[106]
Strawberry or Kiwifruit 0.10-0.20
Broccoli 0.10-0.20
Barramundi, saltwater 0.100[106]
Giant tiger prawn 0.100[106]
Lean red meat 0.031[106]
Turkey 0.030[106]
Cereals, rice, pasta, etc. 0.00[106]
Fruit 0.00[106]
Milk, regular 0.00[106]
Bread, regular 0.00[106]
Vegetables 0.00[106]

Daily values

In the United States, the Institute of Medicine publishes a system of Dietary Reference Intakes, which includes Recommended Dietary Allowances (RDAs) for individual nutrients, and Acceptable Macronutrient Distribution Ranges (AMDRs) for certain groups of nutrients, such as fats. When there is insufficient evidence to determine an RDA, the institute may publish an Adequate Intake (AI) instead, which has a similar meaning, but is less certain. The AI for α-linolenic acid is 1.6 grams/day for men and 1.1 grams/day for women, while the AMDR is 0.6% to 1.2% of total energy.Because the physiological potency of EPA and DHA is much greater than that of ALA, it is not possible to estimate one AMDR for all omega-3 fatty acids. Approximately 10 percent of the AMDR can be consumed as EPA and/or DHA.[108] The Institute of Medicine has not established a RDA or AI for EPA, DHA or the combination, so there is no Daily Value (DVs are derived from RDAs), no labeling of foods or supplements as providing a DV percentage of these fatty acids per serving, and no labeling a food or supplement as an excellent source, or "High in..."[citation needed] As for safety, there was insufficient evidence as of 2005 to set an upper tolerable limit for omega-3 fatty acids,[108] although the FDA has advised that adults can safely consume up to a total of 3 grams per day of combined DHA and EPA, with no more than 2 g from dietary supplements.[6]

Recommendations

The American Heart Association (AHA) has made recommendations for EPA and DHA due to their cardiovascular benefits: individuals with no history of coronary heart disease or myocardial infarction should consume oily fish two times per week; and "Treatment is reasonable" for those having been diagnosed with coronary heart disease. For the latter the AHA does not recommend a specific amount of EPA + DHA, although it notes that most trials were at or close to 1000 mg/day. The benefit appears to be on the order of a 9% decrease in relative risk.[109] The European Food Safety Authority (EFSA) approved a claim "EPA and DHA contributes to the normal function of the heart" for products that contain at least 250 mg EPA + DHA. The report did not address the issue of people with pre-existing heart disease. The World Health Organization recommends regular fish consumption (1-2 servings per week, equivalent to 200 to 500 mg/day EPA + DHA) as protective against coronary heart disease and ischaemic stroke.

Contamination

Heavy metal poisoning by the body's accumulation of traces of heavy metals, in particular mercury, lead, nickel, arsenic, and cadmium, is a possible risk from consuming fish oil supplements.[medical citation needed] Also, other contaminants (PCBs, furans, dioxins, and PBDEs) might be found, especially in less-refined fish oil supplements.[citation needed] However, heavy metal toxicity from consuming fish oil supplements is highly unlikely, because heavy metals selectively bind with protein in the fish flesh rather than accumulate in the oil. An independent test in 2005 of 44 fish oils on the US market found all of the products passed safety standards for potential contaminants.[110][unreliable source?]

Throughout their history, the Council for Responsible Nutrition and the World Health Organization have published acceptability standards regarding contaminants in fish oil. The most stringent current standard is the International Fish Oils Standard.[111][non-primary source needed] Fish oils that are molecularly distilled under vacuum typically make this highest-grade; levels of contaminants are stated in parts per billion per trillion.[citation needed]

Fish

The most widely available dietary source of EPA and DHA is oily fish, such as salmon, herring, mackerel, anchovies, menhaden, and sardines. Oils from these fish have a profile of around seven times as much omega-3 as omega-6. Other oily fish, such as tuna, also contain n-3 in somewhat lesser amounts. Consumers of oily fish should be aware of the potential presence of heavy metals and fat-soluble pollutants like PCBs and dioxins, which are known to accumulate up the food chain. After extensive review, researchers from Harvard's School of Public Health in the Journal of the American Medical Association (2006) reported that the benefits of fish intake generally far outweigh the potential risks. Although fish are a dietary source of omega-3 fatty acids, fish do not synthesize them; they obtain them from the algae (microalgae in particular) or plankton in their diets.[112]

Fish oil

Fish oil capsules

Marine and freshwater fish oil vary in content of arachidonic acid, EPA and DHA.[113] They also differ in their effects on organ lipids.[113] Not all forms of fish oil may be equally digestible. Of four studies that compare bioavailability of the glyceryl ester form of fish oil vs. the ethyl ester form, two have concluded the natural glyceryl ester form is better, and the other two studies did not find a significant difference. No studies have shown the ethyl ester form to be superior, although it is cheaper to manufacture.[114][115]

Krill

Krill oil is a source of omega-3 fatty acids.[116] The effect of krill oil, at a lower dose of EPA + DHA (62.8%), was demonstrated to be similar to that of fish oil on blood lipid levels and markers of inflammation in healthy humans.[117] While not an endangered species, krill are a mainstay of the diets of many ocean-based species including whales, causing environmental and scientific concerns about their sustainability.[118][119][120]

Plant sources

Chia is grown commercially for its seeds rich in ALA.
Flax seeds contain linseed oil which has high ALA content
Table 1. ALA content as the percentage of the seed oil.[121]

Common name Alternative name Linnaean name % ALA
Kiwifruit seed oil Chinese gooseberry Actinidia deliciosa 63[122]
Perilla shiso Perilla frutescens 61
Chia seed chia sage Salvia hispanica 58
Flax linseed Linum usitatissimum 53[87] – 59[123]
Lingonberry Cowberry Vaccinium vitis-idaea 49
Fig seed oil Common Fig Ficus carica 47.7[124]
Camelina Gold-of-pleasure Camelina sativa 36
Purslane Portulaca Portulaca oleracea 35
Black raspberry
Rubus occidentalis 33
Hemp
Cannabis sativa 19
Canola
mostly Brassica napus   9[87] – 11

Table 2. ALA content as the percentage of the whole food.[87][125]
 
Common name Linnaean name % ALA
Flaxseed Linum usitatissimum 18.1
Hempseed Cannabis sativa 8.7
Butternuts Juglans cinerea 8.7
Persian walnuts Juglans regia 6.3
Pecan nuts Carya illinoinensis 0.6
Hazel nuts Corylus avellana 0.1

Flaxseed (or linseed) (Linum usitatissimum) and its oil are perhaps the most widely available botanical source of the omega-3 fatty acid ALA. Flaxseed oil consists of approximately 55% ALA, which makes it six times richer than most fish oils in omega-3 fatty acids.[126] A portion of this is converted by the body to EPA and DHA, though the actual converted percentage may differ between men and women.[127]

In 2013 Rothamsted Research in the UK reported they had developed a genetically modified form of the plant Camelina that produced EPA and DHA. Oil from the seeds of this plant contained on average 11% EPA and 8% DHA in one development and 24% EPA in another.[128][129]

Eggs

Eggs produced by hens fed a diet of greens and insects contain higher levels of omega-3 fatty acids than those produced by chickens fed corn or soybeans.[130] In addition to feeding chickens insects and greens, fish oils may be added to their diets to increase the omega-3 fatty acid concentrations in eggs.[131]

The addition of flax and canola seeds to the diets of chickens, both good sources of alpha-linolenic acid, increases the omega-3 content of the eggs, predominantly DHA.[132]

The addition of green algae or seaweed to the diets boosts the content of DHA and EPA, which are the forms of omega-3 approved by the FDA for medical claims. A common consumer complaint is "Omega-3 eggs can sometimes have a fishy taste if the hens are fed marine oils".[133]

Meat

Omega-3 fatty acids are formed in the chloroplasts of green leaves and algae. While seaweeds and algae are the source of omega-3 fatty acids present in fish, grass is the source of omega-3 fatty acids present in grass fed animals.[134] When cattle are taken off omega-3 fatty acid rich grass and shipped to a feedlot to be fattened on omega-3 fatty acid deficient grain, they begin losing their store of this beneficial fat. Each day that an animal spends in the feedlot, the amount of omega-3 fatty acids in its meat is diminished.[135]

The omega-6:omega-3 ratio of grass-fed beef is about 2:1, making it a more useful source of omega-3 than grain-fed beef, which usually has a ratio of 4:1.[90]

In a 2009 joint study by the USDA and researchers at Clemson University in South Carolina, grass-fed beef was compared with grain-finished beef. The researchers found that grass-finished beef is higher in moisture content, 42.5% lower total lipid content, 54% lower in total fatty acids, 54% higher in beta-carotene, 288% higher in vitamin E (alpha-tocopherol), higher in the B-vitamins thiamin and riboflavin, higher in the minerals calcium, magnesium, and potassium, 193% higher in total omega-3s, 117% higher in CLA (cis-9 trans-11, which is a potential cancer fighter), 90% higher in vaccenic acid (which can be transformed into CLA), lower in the saturated fats linked with heart disease, and has a healthier ratio of omega-6 to omega-3 fatty acids (1.65 vs 4.84). Protein and cholesterol content were equal.[90]

In most countries, commercially available lamb is typically grass-fed, and thus higher in omega-3 than other grain-fed or grain-finished meat sources. In the United States, lamb is often finished (i.e., fattened before slaughter) with grain, resulting in lower omega-3.[136]

The omega-3 content of chicken meat may be enhanced by increasing the animals' dietary intake of grains high in omega-3, such as flax, chia, and canola.[137]

Kangaroo meat is also a source of omega-3, with fillet and steak containing 74 mg per 100 g of raw meat.[138]

Seal oil

Seal oil is a source of EPA, DPA, and DHA. According to Health Canada, it helps to support the development of the brain, eyes, and nerves in children up to 12 years of age.[139] Like all seal products, it is not allowed to be imported into the European Union.[140]

Other sources

A recent trend has been to fortify food with omega-3 fatty acid supplements. Global food companies have launched omega-3 fatty acid fortified bread, mayonnaise, pizza, yogurt, orange juice, children's pasta, milk, eggs, popcorn, confections, and infant formula.[citation needed]

The microalgae Crypthecodinium cohnii and Schizochytrium are rich sources of DHA but not EPA, and can be produced commercially in bioreactors. Oil from brown algae (kelp) is a source of EPA.[141] The alga Nannochloropsis also has high levels of EPA.[142]

In 2006 the Journal of Dairy Science published a study which found that butter made from the milk of grass-fed cows contains substantially more α-linolenic acid than butter made from the milk of cows that have limited access to pasture.[143]

Classical radicalism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cla...