Search This Blog

Thursday, June 28, 2018

3D printing

From Wikipedia, the free encyclopedia

A MakerBot three-dimensional printer

3D printing is any of various processes in which material is joined or solidified under computer control to create a three-dimensional object,[1] with material being added together (such as liquid molecules or powder grains being fused together). 3D printing is used in both rapid prototyping and additive manufacturing (AM). Objects can be of almost any shape or geometry and typically are produced using digital model data from a 3D model or another electronic data source such as an Additive Manufacturing File (AMF) file (usually in sequential layers). There are many different technologies, like stereolithography (STL) or fused deposit modeling (FDM). Thus, unlike material removed from a stock in the conventional machining process, 3D printing or AM builds a three-dimensional object from computer-aided design (CAD) model or AMF file, usually by successively adding material layer by layer.[2]

The term "3D printing" originally referred to a process that deposits a binder material onto a powder bed with inkjet printer heads layer by layer. More recently, the term is being used in popular vernacular to encompass a wider variety of additive manufacturing techniques. United States and global technical standards use the official term additive manufacturing for this broader sense.

Terminology

The umbrella term additive manufacturing (AM) gained wide currency in the 2000s,[3] inspired by the theme of material being added together (in any of various ways). In contrast, the term subtractive manufacturing appeared as a retronym for the large family of machining processes with material removal as their common theme. The term 3D printing still referred only to the polymer technologies in most minds, and the term AM was likelier to be used in metalworking and end use part production contexts than among polymer, inkjet, or stereolithography enthusiasts.

By the early 2010s, the terms 3D printing and additive manufacturing evolved senses in which they were alternate umbrella terms for AM technologies, one being used in popular vernacular by consumer-maker communities and the media, and the other used more formally by industrial AM end-use part producers, AM machine manufacturers, and global technical standards organizations. Until recently, the term 3D printing has been associated with machines low-end in price or in capability.[4] Both terms reflect that the technologies share the theme of material addition or joining throughout a 3D work envelope under automated control. Peter Zelinski, the editor-in-chief of Additive Manufacturing magazine, pointed out in 2017 that the terms are still often synonymous in casual usage[5] but that some manufacturing industry experts are increasingly making a sense distinction whereby AM comprises 3D printing plus other technologies or other aspects of a manufacturing process.[5]

Other terms that have been used as AM synonyms or hypernyms have included desktop manufacturing, rapid manufacturing (as the logical production-level successor to rapid prototyping), and on-demand manufacturing (which echoes on-demand printing in the 2D sense of printing). That such application of the adjectives rapid and on-demand to the noun manufacturing was novel in the 2000s reveals the prevailing mental model of the long industrial era in which almost all production manufacturing involved long lead times for laborious tooling development. Today, the term subtractive has not replaced the term machining, instead complementing it when a term that covers any removal method is needed. Agile tooling is the use of modular means to design tooling that is produced by additive manufacturing or 3D printing methods, to enable quick prototyping and responses to tooling and fixture needs. Agile tooling uses a cost effective and high quality method to quickly respond to customer and market needs, and it can be used in hydro-forming, stamping, injection molding and other manufacturing processes.

History

1981 : Early additive manufacturing equipment and materials were developed in the 1980s.[6] In 1981, Hideo Kodama of Nagoya Municipal Industrial Research Institute invented two additive methods for fabricating three-dimensional plastic models with photo-hardening thermoset polymer, where the UV exposure area is controlled by a mask pattern or a scanning fiber transmitter.[7][8]

1984 : On 16 July 1984, Alain Le Méhauté, Olivier de Witte, and Jean Claude André filed their patent for the stereolithography process.[9] The application of the French inventors was abandoned by the French General Electric Company (now Alcatel-Alsthom) and CILAS (The Laser Consortium).[10] The claimed reason was "for lack of business perspective".[11]

1984: Three weeks later in 1984, Chuck Hull of 3D Systems Corporation[12] filed his own patent for a stereolithography fabrication system, in which layers are added by curing photopolymers with ultraviolet light lasers. Hull defined the process as a "system for generating three-dimensional objects by creating a cross-sectional pattern of the object to be formed,".[13][14] Hull's contribution was the STL (Stereolithography) file format and the digital slicing and infill strategies common to many processes today.

1988 : The technology used by most 3D printers to date—especially hobbyist and consumer-oriented models—is fused deposition modeling, a special application of plastic extrusion, developed in 1988 by S. Scott Crump and commercialized by his company Stratasys, which marketed its first FDM machine in 1992.

1993 : The term 3D printing originally referred to a powder bed process employing standard and custom inkjet print heads, developed at MIT in 1993 and commercialized by Soligen Technologies, Extrude Hone Corporation, and Z Corporation.

1993 :The year 1993 also saw the start of a company called Solidscape, introducing a high-precision polymer jet fabrication system with soluble support structures, (categorized as a "dot-on-dot" technique).

1995: In 1995 the Fraunhofer Institute developed the selective laser melting process.
AM processes for metal sintering or melting (such as selective laser sintering, direct metal laser sintering, and selective laser melting) usually went by their own individual names in the 1980s and  

1990s. At the time, all metalworking was done by processes that we now call non-additive (casting, fabrication, stamping, and machining); although plenty of automation was applied to those technologies (such as by robot welding and CNC), the idea of a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape with a toolpath was associated in metalworking only with processes that removed metal (rather than adding it), such as CNC milling, CNC EDM, and many others. But the automated techniques that added metal, which would later be called additive manufacturing, were beginning to challenge that assumption. By the mid-1990s, new techniques for material deposition were developed at Stanford and Carnegie Mellon University, including microcasting[15] and sprayed materials.[16] Sacrificial and support materials had also become more common, enabling new object geometries.[17]

As the various additive processes matured, it became clear that soon metal removal would no longer be the only metalworking process done through a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape layer by layer. The 2010s were the first decade in which metal end use parts such as engine brackets[18] and large nuts[19] would be grown (either before or instead of machining) in job production rather than obligately being machined from bar stock or plate. It is still the case that casting, fabrication, stamping, and machining are more prevalent than AM in metalworking, but AM is now beginning to make significant inroads, and with the advantages of design for additive manufacturing, it is clear to engineers that much more is to come.

As technology matured, several authors had begun to speculate that 3D printing could aid in sustainable development in the developing world.[20][21]

2009: Fused Deposition Modeling (FDM) printing process patents expired in 2009.[22]

General principles

Modeling


CAD model used for 3D printing

3D models are generated from 2D pictures taken at the Fantasitron 3D photo booth at Madurodam

3D printable models may be created with a computer-aided design (CAD) package, via a 3D scanner, or by a plain digital camera and photogrammetry software. 3D printed models created with CAD result in reduced errors and can be corrected before printing, allowing verification in the design of the object before it is printed.[23] The manual modeling process of preparing geometric data for 3D computer graphics is similar to plastic arts such as sculpting. 3D scanning is a process of collecting digital data on the shape and appearance of a real object, creating a digital model based on it.

Printing

Timelapse video of a hyperboloid object (designed by George W. Hart) made of PLA using a RepRap "Prusa Mendel" 3D printer for molten polymer deposition

Before printing a 3D model from an STL file, it must first be examined for errors. Most CAD applications produce errors in output STL files,[24][25] of the following types:
  1. holes;
  2. faces normals;
  3. self-intersections;
  4. noise shells;
  5. manifold errors.[26]
A step in the STL generation known as "repair" fixes such problems in the original model.[27][28] Generally STLs that have been produced from a model obtained through 3D scanning often have more of these errors.[29] This is due to how 3D scanning works-as it is often by point to point acquisition, reconstruction will include errors in most cases.[30]

Once completed, the STL file needs to be processed by a piece of software called a "slicer," which converts the model into a series of thin layers and produces a G-code file containing instructions tailored to a specific type of 3D printer (FDM printers).[citation needed] This G-code file can then be printed with 3D printing client software (which loads the G-code, and uses it to instruct the 3D printer during the 3D printing process).

Printer resolution describes layer thickness and X–Y resolution in dots per inch (dpi) or micrometers (µm). Typical layer thickness is around 100 μm (250 DPI), although some machines can print layers as thin as 16 μm (1,600 DPI).[31] X–Y resolution is comparable to that of laser printers. The particles (3D dots) are around 50 to 100 μm (510 to 250 DPI) in diameter.[citation needed] For that printer resolution, specifying a mesh resolution of 0.01–0.03 mm and a chord length ≤ 0.016 mm generate an optimal STL output file for a given model input file.[32] Specifying higher resolution results in larger files without increase in print quality.

Construction of a model with contemporary methods can take anywhere from several hours to several days, depending on the method used and the size and complexity of the model. Additive systems can typically reduce this time to a few hours, although it varies widely depending on the type of machine used and the size and number of models being produced simultaneously.[33]

Traditional techniques like injection moulding can be less expensive for manufacturing polymer products in high quantities, but additive manufacturing can be faster, more flexible and less expensive when producing relatively small quantities of parts. 3D printers give designers and concept development teams the ability to produce parts and concept models using a desktop size printer.[34]

Seemingly paradoxic, more complex objects can be cheaper for 3D printing production than less complex objects.[citation needed]

Finishing

Though the printer-produced resolution is sufficient for many applications, printing a slightly oversized version of the desired object in standard resolution and then removing material[35] with a higher-resolution subtractive process can achieve greater precision.

The layered structure of all AM processes leads involuntarily to a strain-stepping effect on part surfaces which are curved or tilted in respect to the building platform. The effects strongly depend on the orientation of a part surface inside the building process.[36]

Some printable polymers such as ABS, allow the surface finish to be smoothed and improved using chemical vapor processes[37] based on acetone or similar solvents.

Some additive manufacturing techniques are capable of using multiple materials in the course of constructing parts. These techniques are able to print in multiple colors and color combinations simultaneously, and would not necessarily require painting.

Some printing techniques require internal supports to be built for overhanging features during construction. These supports must be mechanically removed or dissolved upon completion of the print.

All of the commercialized metal 3D printers involve cutting the metal component off the metal substrate after deposition. A new process for the GMAW 3D printing allows for substrate surface modifications to remove aluminum[38] or steel.[39]

Processes and printers


Schematic representation of the 3D printing technique known as Fused Filament Fabrication; a filament a) of plastic material is fed through a heated moving head b) that melts and extrudes it depositing it, layer after layer, in the desired shape c). A moving platform e) lowers after each layer is deposited. For this kind of technology additional vertical support structures d) are needed to sustain overhanging parts
A timelapse video of a robot model (logo of Make magazine) being printed using FDM on a RepRapPro Fisher printer.

A large number of additive processes are available. The main differences between processes are in the way layers are deposited to create parts and in the materials that are used. Each method has its own advantages and drawbacks, which is why some companies offer a choice of powder and polymer for the material used to build the object.[40] Others sometimes use standard, off-the-shelf business paper as the build material to produce a durable prototype. The main considerations in choosing a machine are generally speed, costs of the 3D printer, of the printed prototype, choice and cost of the materials, and color capabilities.[41] Printers that work directly with metals are generally expensive. However less expensive printers can be used to make a mold, which is then used to make metal parts.[42]

ISO/ASTM52900-15 defines seven categories of Additive Manufacturing (AM) processes within its meaning: binder jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, and vat photopolymerization.[43]

Some methods melt or soften the material to produce the layers. In Fused filament fabrication, also known as Fused deposition modeling (FDM), the model or part is produced by extruding small beads or streams of material which harden immediately to form layers. A filament of thermoplastic, metal wire, or other material is fed into an extrusion nozzle head (3D printer extruder), which heats the material and turns the flow on and off. FDM is somewhat restricted in the variation of shapes that may be fabricated. Another technique fuses parts of the layer and then moves upward in the working area, adding another layer of granules and repeating the process until the piece has built up. This process uses the unfused media to support overhangs and thin walls in the part being produced, which reduces the need for temporary auxiliary supports for the piece.[44]

Laser sintering techniques include selective laser sintering, with both metals and polymers, and direct metal laser sintering.[45] Selective laser melting does not use sintering for the fusion of powder granules but will completely melt the powder using a high-energy laser to create fully dense materials in a layer-wise method that has mechanical properties similar to those of conventional manufactured metals. Electron beam melting is a similar type of additive manufacturing technology for metal parts (e.g. titanium alloys). EBM manufactures parts by melting metal powder layer by layer with an electron beam in a high vacuum.[46][47] Another method consists of an inkjet 3D printing system, which creates the model one layer at a time by spreading a layer of powder (plaster, or resins) and printing a binder in the cross-section of the part using an inkjet-like process. With laminated object manufacturing, thin layers are cut to shape and joined together.


Schematic representation of Stereolithography; a light-emitting device a) (laser or DLP) selectively illuminate the transparent bottom c) of a tank b) filled with a liquid photo-polymerizing resin; the solidified resin d) is progressively dragged up by a lifting platform e)

Other methods cure liquid materials using different sophisticated technologies, such as stereolithography. Photopolymerization is primarily used in stereolithography to produce a solid part from a liquid. Inkjet printer systems like the Objet PolyJet system spray photopolymer materials onto a build tray in ultra-thin layers (between 16 and 30 µm) until the part is completed. Each photopolymer layer is cured with UV light after it is jetted, producing fully cured models that can be handled and used immediately, without post-curing. Ultra-small features can be made with the 3D micro-fabrication technique used in multiphoton photopolymerisation. Due to the nonlinear nature of photo excitation, the gel is cured to a solid only in the places where the laser was focused while the remaining gel is then washed away. Feature sizes of under 100 nm are easily produced, as well as complex structures with moving and interlocked parts.[48] Yet another approach uses a synthetic resin that is solidified using LEDs.[49]

In Mask-image-projection-based stereolithography, a 3D digital model is sliced by a set of horizontal planes. Each slice is converted into a two-dimensional mask image. The mask image is then projected onto a photocurable liquid resin surface and light is projected onto the resin to cure it in the shape of the layer.[50] Continuous liquid interface production begins with a pool of liquid photopolymer resin. Part of the pool bottom is transparent to ultraviolet light (the "window"), which causes the resin to solidify. The object rises slowly enough to allow resin to flow under and maintain contact with the bottom of the object.[51] In powder-fed directed-energy deposition, a high-power laser is used to melt metal powder supplied to the focus of the laser beam. The powder fed directed energy process is similar to Selective Laser Sintering, but the metal powder is applied only where material is being added to the part at that moment.[52][53]

As of December 2017, additive manufacturing systems were on the market that ranged from $99 to $500,000 in price and were employed in industries including aerospace, architecture, automotive, defense, and medical replacements, among many others. For example, General Electric uses the high-end model to build parts for turbines.[54] Many of these systems are used for rapid prototyping, before mass production methods are employed. Higher education has proven to be a major buyer of desktop and professional 3D printers which industry experts generally view as a positive indicator.[55] Libraries around the world have also become locations to house smaller 3D printers for educational and community access.[56] Several projects and companies are making efforts to develop affordable 3D printers for home desktop use. Much of this work has been driven by and targeted at DIY/Maker/enthusiast/early adopter communities, with additional ties to the academic and hacker communities.[57]

Applications


The Audi RSQ was made with rapid prototyping industrial KUKA robots.

A 3D selfie in 1:20 scale printed by Shapeways using gypsum-based printing.

A Jet Engine turbine printed from the Howard Community College Makerbot.

Ergonomic 3D printed nylon cockrings with arms to rub the perineum.

3D printed enamelled pottery.

3D printed sculpture of the Egyptian Pharaoh Merankhre Mentuhotep shown at Threeding.
In the current scenario, 3D printing or AM has been used in manufacturing, medical, industry and sociocultural sectors which facilitate 3D printing or AM to become successful commercial technology.[58] The earliest application of additive manufacturing was on the toolroom end of the manufacturing spectrum. For example, rapid prototyping was one of the earliest additive variants, and its mission was to reduce the lead time and cost of developing prototypes of new parts and devices, which was earlier only done with subtractive toolroom methods such as CNC milling, turning, and precision grinding.[59] In the 2010s, additive manufacturing entered production to a much greater extent.

Additive manufacturing of food is being developed by squeezing out food, layer by layer, into three-dimensional objects. A large variety of foods are appropriate candidates, such as chocolate and candy, and flat foods such as crackers, pasta,[60] and pizza.[61][62]

3D printing has entered the world of clothing, with fashion designers experimenting with 3D-printed bikinis, shoes, and dresses.[63] In commercial production Nike is using 3D printing to prototype and manufacture the 2012 Vapor Laser Talon football shoe for players of American football, and New Balance is 3D manufacturing custom-fit shoes for athletes.[63][64] 3D printing has come to the point where companies are printing consumer grade eyewear with on-demand custom fit and styling (although they cannot print the lenses). On-demand customization of glasses is possible with rapid prototyping.[65]

Vanessa Friedman, fashion director and chief fashion critic at The New York Times, says 3D printing will have a significant value for fashion companies down the road, especially if it transforms into a print-it-yourself tool for shoppers. "There's real sense that this is not going to happen anytime soon," she says, "but it will happen, and it will create dramatic change in how we think both about intellectual property and how things are in the supply chain." She adds: "Certainly some of the fabrications that brands can use will be dramatically changed by technology."[66]

In cars, trucks, and aircraft, AM is beginning to transform both (1) unibody and fuselage design and production and (2) powertrain design and production. For example:
AM's impact on firearms involves two dimensions: new manufacturing methods for established companies, and new possibilities for the making of do-it-yourself firearms. In 2012, the US-based group Defense Distributed disclosed plans to design a working plastic 3D printed firearm "that could be downloaded and reproduced by anybody with a 3D printer."[75][76] After Defense Distributed released their plans, questions were raised regarding the effects that 3D printing and widespread consumer-level CNC machining[77][78] may have on gun control effectiveness.[79][80][81][82]
Surgical uses of 3D printing-centric therapies have a history beginning in the mid-1990s with anatomical modeling for bony reconstructive surgery planning. Patient-matched implants were a natural extension of this work, leading to truly personalized implants that fit one unique individual.[83] Virtual planning of surgery and guidance using 3D printed, personalized instruments have been applied to many areas of surgery including total joint replacement and craniomaxillofacial reconstruction with great success.[84] One example of this is the bioresorbable trachial splint to treat newborns with tracheobronchomalacia [85] developed at the University of Michigan. The use of additive manufacturing for serialized production of orthopedic implants (metals) is also increasing due to the ability to efficiently create porous surface structures that facilitate osseointegration. The hearing aid and dental industries are expected to be the biggest area of future development using the custom 3D printing technology.[86]

In March 2014, surgeons in Swansea used 3D printed parts to rebuild the face of a motorcyclist who had been seriously injured in a road accident.[87] In May 2018, 3D printing has been used for the kidney transplant to save a three-year-old boy.[88] As of 2012, 3D bio-printing technology has been studied by biotechnology firms and academia for possible use in tissue engineering applications in which organs and body parts are built using inkjet techniques. In this process, layers of living cells are deposited onto a gel medium or sugar matrix and slowly built up to form three-dimensional structures including vascular systems.[89] Recently, a heart-on-chip has been created which matches properties of cells.[90]

In 2005, academic journals had begun to report on the possible artistic applications of 3D printing technology.[91] As of 2017, domestic 3D printing was reaching a consumer audience beyond hobbyists and enthusiasts. Off the shelf machines were incerasingly capable of producing practical household applications, for example, ornamental objects. Some practical examples include a working clock[92] and gears printed for home woodworking machines among other purposes.[93] Web sites associated with home 3D printing tended to include backscratchers, coat hooks, door knobs, etc.[94]
3D printing, and open source 3D printers in particular, are the latest technology making inroads into the classroom.[95][96][97] Some authors have claimed that 3D printers offer an unprecedented "revolution" in STEM education.[98] The evidence for such claims comes from both the low cost ability for rapid prototyping in the classroom by students, but also the fabrication of low-cost high-quality scientific equipment from open hardware designs forming open-source labs.[99] Future applications for 3D printing might include creating open-source scientific equipment.[99][100]

In the last several years 3D printing has been intensively used by in the cultural heritage field for preservation, restoration and dissemination purposes.[101] Many Europeans and North American Museums have purchased 3D printers and actively recreate missing pieces of their relics.[102] The Metropolitan Museum of Art and the British Museum have started using their 3D printers to create museum souvenirs that are available in the museum shops.[103] Other museums, like the National Museum of Military History and Varna Historical Museum, have gone further and sell through the online platform Threeding digital models of their artifacts, created using Artec 3D scanners, in 3D printing friendly file format, which everyone can 3D print at home.[104]

3D printed soft actuators is a growing application of 3D printing technology which has found its place in the 3D printing applications. These soft actuators are being developed to deal with soft structures and organs especially in biomedical sectors and where the interaction between human and robot is inevitable. The majority of the existing soft actuators are fabricated by conventional methods that require manual fabrication of devices, post processing/assembly, and lengthy iterations until maturity in the fabrication is achieved. To avoid the tedious and time-consuming aspects of the current fabrication processes, researchers are exploring an appropriate manufacturing approach for effective fabrication of soft actuators. Thus, 3D printed soft actuators are introduced to revolutionise the design and fabrication of soft actuators with custom geometrical, functional, and control properties in a faster and inexpensive approach. They also enable incorporation of all actuator components into a single structure eliminating the need to use external joints, adhesives, and fasteners.[105]

Legal aspects

Intellectual property

3D printing has existed for decades within certain manufacturing industries where many legal regimes, including patents, industrial design rights, copyright, and trademark may apply. However, there is not much jurisprudence to say how these laws will apply if 3D printers become mainstream and individuals or hobbyist communities begin manufacturing items for personal use, for non-profit distribution, or for sale.

Any of the mentioned legal regimes may prohibit the distribution of the designs used in 3D printing, or the distribution or sale of the printed item. To be allowed to do these things, where an active intellectual property was involved, a person would have to contact the owner and ask for a licence, which may come with conditions and a price. However, many patent, design and copyright laws contain a standard limitation or exception for 'private', 'non-commercial' use of inventions, designs or works of art protected under intellectual property (IP). That standard limitation or exception may leave such private, non-commercial uses outside the scope of IP rights.

Patents cover inventions including processes, machines, manufactures, and compositions of matter and have a finite duration which varies between countries, but generally 20 years from the date of application. Therefore, if a type of wheel is patented, printing, using, or selling such a wheel could be an infringement of the patent.[106]

Copyright covers an expression[107] in a tangible, fixed medium and often lasts for the life of the author plus 70 years thereafter.[108] If someone makes a statue, they may have copyright on the look of that statue, so if someone sees that statue, they cannot then distribute designs to print an identical or similar statue.

When a feature has both artistic (copyrightable) and functional (patentable) merits, when the question has appeared in US court, the courts have often held the feature is not copyrightable unless it can be separated from the functional aspects of the item.[108] In other countries the law and the courts may apply a different approach allowing, for example, the design of a useful device to be registered (as a whole) as an industrial design on the understanding that, in case of unauthorized copying, only the non-functional features may be claimed under design law whereas any technical features could only be claimed if covered by a valid patent.

Gun legislation and administration

The US Department of Homeland Security and the Joint Regional Intelligence Center released a memo stating that "significant advances in three-dimensional (3D) printing capabilities, availability of free digital 3D printable files for firearms components, and difficulty regulating file sharing may present public safety risks from unqualified gun seekers who obtain or manufacture 3D printed guns" and that "proposed legislation to ban 3D printing of weapons may deter, but cannot completely prevent, their production. Even if the practice is prohibited by new legislation, online distribution of these 3D printable files will be as difficult to control as any other illegally traded music, movie or software files."[109]

Attempting to restrict the distribution of gun plans via the Internet has been likened to the futility of preventing the widespread distribution of DeCSS, which enabled DVD ripping. After the US government had Defense Distributed take down the plans, they were still widely available via the Pirate Bay and other file sharing sites.[114] Downloads of the plans from the UK, Germany, Spain, and Brazil were heavy.[115][116] Some US legislators have proposed regulations on 3D printers to prevent them from being used for printing guns.[117][118] 3D printing advocates have suggested that such regulations would be futile, could cripple the 3D printing industry, and could infringe on free speech rights, with early pioneer of 3D printing Professor Hod Lipson suggesting that gunpowder could be controlled instead.[119][120][121][122][123][124][125]

Internationally, where gun controls are generally stricter than in the United States, some commentators have said the impact may be more strongly felt since alternative firearms are not as easily obtainable.[126] Officials in the United Kingdom have noted that producing a 3D printed gun would be illegal under their gun control laws.[127] Europol stated that criminals have access to other sources of weapons but noted that as technology improves, the risks of an effect would increase.[128][129]

Aerospace regulation

In the United States, the FAA has anticipated a desire to use additive manufacturing techniques and has been considering how best to regulate this process.[130] The FAA has jurisdiction over such fabrication because all aircraft parts must be made under FAA production approval or under other FAA regulatory categories.[131] In December 2016, the FAA approved the production of a 3D printed fuel nozzle for the GE LEAP engine.[132] Aviation attorney Jason Dickstein has suggested that additive manufacturing is merely a production method, and should be regulated like any other production method.[133][134] He has suggested that the FAA's focus should be on guidance to explain compliance, rather than on changing the existing rules, and that existing regulations and guidance permit a company "to develop a robust quality system that adequately reflects regulatory needs for quality assurance."[133]

Health and safety

A video on research done on printer emissions

Research on the health and safety concerns of 3D printing is new and in development due to the recent proliferation of 3D printing devices. In 2017 the European Agency for Safety and Health at Work has published a discussion paper on the processes and materials involved in 3D printing, potential implications of this technology for occupational safety and health and avenues for controlling potential hazards.[135] Most concerns involve gas and material exposures, in particular nanomaterials, material handling, static electricity, moving parts and pressures.[136]

A National Institute for Occupational Safety and Health (NIOSH) study noted particle emissions from a fused filament peaked a few minutes after printing started and returned to baseline levels 100 minutes after printing ended.[137] Emissions from fused filament printers can include a large number of ultrafine particles and volatile organic compounds (VOCs).

The toxicity from emissions varies by source material due to differences in size, chemical properties, and quantity of emitted particles.[137] Excessive exposure to VOCs can lead to irritation of the eyes, nose, and throat, headache, loss of coordination, and nausea and some of the chemical emissions of fused filament printers have also been linked to asthma.[137][140] Based on animal studies, carbon nanotubes and carbon nanofibers sometimes used in fused filament printing can cause pulmonary effects including inflammation, granulomas, and pulmonary fibrosis when at the nanoparticle size.[141]

Carbon nanoparticle emissions and processes using powder metals are highly combustible and raise the risk of dust explosions.[142] At least one case of severe injury was noted from an explosion involved in metal powders used for fused filament printing.[143] Other general health and safety concerns include the hot surface of UV lamps and print head blocks, high voltage, ultraviolet radiation from UV lamps, and potential for mechanical injury from moving parts.[144]

The problems noted in the NIOSH report were reduced by using manufacturer-supplied covers and full enclosures, using proper ventilation, keeping workers away from the printer, using respirators, turning off the printer if it jammed, and using lower emission printers and filaments.[137] At least one case of severe injury was noted from an explosion involved in metal powders used for fused filament.[137] Personal protective equipment has been found to be the least desirable control method with a recommendation that it only be used to add further protection in combination with approved emissions protection.[137]

Hazards to health and safety also exist from post-processing activities done to finish parts after they have been printed. These post-processing activities can include chemical baths, sanding, polishing, or vapor exposure to refine surface finish, as well as general subtractive manufacturing techniques such as drilling, milling, or turning to modify the printed geometry.[145] Any technique that removes material from the printed part has the potential to generate particles that can be inhaled or cause eye injury if proper personal protective equipment is not used, such as respirators or safety glasses. Caustic baths are often used to dissolve support material used by some 3D printers that allows them to print more complex shapes. These baths require personal protective equipment to prevent injury to exposed skin.[144]

Health regulation

Although no occupational exposure limits specific to 3D printer emissions exist, certain source materials used in 3D printing, such as carbon nanofiber and carbon nanotubes, have established occupational exposure limits at the nanoparticle size.[146][137]

Impact

Additive manufacturing, starting with today's infancy period, requires manufacturing firms to be flexible, ever-improving users of all available technologies to remain competitive. Advocates of additive manufacturing also predict that this arc of technological development will counter globalization, as end users will do much of their own manufacturing rather than engage in trade to buy products from other people and corporations.[6] The real integration of the newer additive technologies into commercial production, however, is more a matter of complementing traditional subtractive methods rather than displacing them entirely.[147]

The futurologist Jeremy Rifkin[148] claimed that 3D printing signals the beginning of a third industrial revolution,[149] succeeding the production line assembly that dominated manufacturing starting in the late 19th century.

Social change

Since the 1950s, a number of writers and social commentators have speculated in some depth about the social and cultural changes that might result from the advent of commercially affordable additive manufacturing technology.[150] Amongst the more notable ideas to have emerged from these inquiries has been the suggestion that, as more and more 3D printers start to enter people's homes, the conventional relationship between the home and the workplace might get further eroded.[151] Likewise, it has also been suggested that, as it becomes easier for businesses to transmit designs for new objects around the globe, so the need for high-speed freight services might also become less.[152] Finally, given the ease with which certain objects can now be replicated, it remains to be seen whether changes will be made to current copyright legislation so as to protect intellectual property rights with the new technology widely available.

As 3D printers became more accessible to consumers, online social platforms have developed to support the community.[153] This includes websites that allow users to access information such as how to build a 3D printer, as well as social forums that discuss how to improve 3D print quality and discuss 3D printing news, as well as social media websites that are dedicated to share 3D models. RepRap is a wiki based website that was created to hold all information on 3d printing, and has developed into a community that aims to bring 3D printing to everyone. Furthermore, there are other sites such as Pinshape, Thingiverse and MyMiniFactory, which were created initially to allow users to post 3D files for anyone to print, allowing for decreased transaction cost of sharing 3D files. These websites have allowed greater social interaction between users, creating communities dedicated to 3D printing.

Some call attention to the conjunction of Commons-based peer production with 3D printing and other low-cost manufacturing techniques.[157][158][159] The self-reinforced fantasy of a system of eternal growth can be overcome with the development of economies of scope, and here, society can play an important role contributing to the raising of the whole productive structure to a higher plateau of more sustainable and customized productivity.[157] Further, it is true that many issues, problems, and threats arise due to the democratization of the means of production, and especially regarding the physical ones.[157] For instance, the recyclability of advanced nanomaterials is still questioned; weapons manufacturing could become easier; not to mention the implications for counterfeiting[160] and on IP.[161] It might be maintained that in contrast to the industrial paradigm whose competitive dynamics were about economies of scale, Commons-based peer production 3D printing could develop economies of scope. While the advantages of scale rest on cheap global transportation, the economies of scope share infrastructure costs (intangible and tangible productive resources), taking advantage of the capabilities of the fabrication tools.[157] And following Neil Gershenfeld[162] in that "some of the least developed parts of the world need some of the most advanced technologies," Commons-based peer production and 3D printing may offer the necessary tools for thinking globally but acting locally in response to certain needs.

Larry Summers wrote about the "devastating consequences" of 3D printing and other technologies (robots, artificial intelligence, etc.) for those who perform routine tasks. In his view, "already there are more American men on disability insurance than doing production work in manufacturing. And the trends are all in the wrong direction, particularly for the less skilled, as the capacity of capital embodying artificial intelligence to replace white-collar as well as blue-collar work will increase rapidly in the years ahead." Summers recommends more vigorous cooperative efforts to address the "myriad devices" (e.g., tax havens, bank secrecy, money laundering, and regulatory arbitrage) enabling the holders of great wealth to "avoid paying" income and estate taxes, and to make it more difficult to accumulate great fortunes without requiring "great social contributions" in return, including: more vigorous enforcement of anti-monopoly laws, reductions in "excessive" protection for intellectual property, greater encouragement of profit-sharing schemes that may benefit workers and give them a stake in wealth accumulation, strengthening of collective bargaining arrangements, improvements in corporate governance, strengthening of financial regulation to eliminate subsidies to financial activity, easing of land-use restrictions that may cause the real estate of the rich to keep rising in value, better training for young people and retraining for displaced workers, and increased public and private investment in infrastructure development—e.g., in energy production and transportation.[163]

Michael Spence wrote that "Now comes a … powerful, wave of digital technology that is replacing labor in increasingly complex tasks. This process of labor substitution and disintermediation has been underway for some time in service sectors—think of ATMs, online banking, enterprise resource planning, customer relationship management, mobile payment systems, and much more. This revolution is spreading to the production of goods, where robots and 3D printing are displacing labor." In his view, the vast majority of the cost of digital technologies comes at the start, in the design of hardware (e.g. 3D printers) and, more important, in creating the software that enables machines to carry out various tasks. "Once this is achieved, the marginal cost of the hardware is relatively low (and declines as scale rises), and the marginal cost of replicating the software is essentially zero. With a huge potential global market to amortize the upfront fixed costs of design and testing, the incentives to invest [in digital technologies] are compelling."[164]

Spence believes that, unlike prior digital technologies, which drove firms to deploy underutilized pools of valuable labor around the world, the motivating force in the current wave of digital technologies "is cost reduction via the replacement of labor." For example, as the cost of 3D printing technology declines, it is "easy to imagine" that production may become "extremely" local and customized. Moreover, production may occur in response to actual demand, not anticipated or forecast demand. Spence believes that labor, no matter how inexpensive, will become a less important asset for growth and employment expansion, with labor-intensive, process-oriented manufacturing becoming less effective, and that re-localization will appear in both developed and developing countries. In his view, production will not disappear, but it will be less labor-intensive, and all countries will eventually need to rebuild their growth models around digital technologies and the human capital supporting their deployment and expansion. Spence writes that "the world we are entering is one in which the most powerful global flows will be ideas and digital capital, not goods, services, and traditional capital. Adapting to this will require shifts in mindsets, policies, investments (especially in human capital), and quite possibly models of employment and distribution."[164]

Naomi Wu regards the usage of 3D printing in the Chinese classroom (where rote memorization is standard) to teach design principles and creativity as the most exciting recent development of the technology, and more generally regards 3D printing as being the next desktop publishing revolution.[165]

Molecular assembler

From Wikipedia, the free encyclopedia

A molecular assembler, as defined by K. Eric Drexler, is a "proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision". A molecular assembler is a kind of molecular machine. Some biological molecules such as ribosomes fit this definition. This is because they receive instructions from messenger RNA and then assemble specific sequences of amino acids to construct protein molecules. However, the term "molecular assembler" usually refers to theoretical human-made devices.



Beginning in 2007, the British Engineering and Physical Sciences Research Council has funded development of ribosome-like molecular assemblers. Clearly, molecular assemblers are possible in this limited sense. A technology roadmap project, led by the Battelle Memorial Institute and hosted by several U.S. National Laboratories has explored a range of atomically precise fabrication technologies, including both early-generation and longer-term prospects for programmable molecular assembly; the report was released in December, 2007.[1] In 2008 the Engineering and Physical Sciences Research Council provided funding of 1.5 million pounds over six years for research working towards mechanized mechanosynthesis, in partnership with the Institute for Molecular Manufacturing, amongst others.[2]

Likewise, the term "molecular assembler" has been used in science fiction and popular culture to refer to a wide range of fantastic atom-manipulating nanomachines, many of which may be physically impossible in reality. Much of the controversy regarding "molecular assemblers" results from the confusion in the use of the name for both technical concepts and popular fantasies. In 1992, Drexler introduced the related but better-understood term "molecular manufacturing," which he defined as the programmed "chemical synthesis of complex structures by mechanically positioning reactive molecules, not by manipulating individual atoms."[3]

This article mostly discusses "molecular assemblers" in the popular sense. These include hypothetical machines that manipulate individual atoms and machines with organism-like self-replicating abilities, mobility, ability to consume food, and so forth. These are quite different from devices that merely (as defined above) "guide chemical reactions by positioning reactive molecules with atomic precision".

Because synthetic molecular assemblers have never been constructed and because of the confusion regarding the meaning of the term, there has been much controversy as to whether "molecular assemblers" are possible or simply science fiction. Confusion and controversy also stem from their classification as nanotechnology, which is an active area of laboratory research which has already been applied to the production of real products; however, there had been, until recently, no research efforts into the actual construction of "molecular assemblers".

Nonetheless, a 2013 paper by David Leigh's group, published in the journal Science, details a new method of synthesizing a peptide in a sequence-specific manner by using an artificial molecular machine that is guided by a molecular strand.[4] This functions in the same way as a ribosome building proteins by assembling amino acids according to a messenger RNA blueprint. The structure of the machine is based on a rotaxane, which is a molecular ring sliding along a molecular axle. The ring carries a thiolate group which removes amino acids in sequence from the axle, transferring them to a peptide assembly site. In 2018, the same group published a more advanced version of this concept in which the molecular ring shuttles along a polymeric track to assemble an oligopeptide that can fold into a α-helix that can perform the enantioselective epoxidation of a chalcone derivative (in a way reminiscent to the ribosome assembling an enzyme).[5] In another paper published in Science in March 2015, chemists at the University of Illinois report a platform that automates the synthesis of 14 classes of small molecules, with thousands of compatible building blocks.[6]

In 2017 David Leigh's group reported a molecular robot that could be programmed to construct any one of four different stereoisomers of a molecular product by using a nanomechanical robotic arm to move a molecular substrate between different reactive sites of an artificial molecular machine.[7] An accompanying News and Views article, titled ‘A molecular assembler’, outlined the operation of the molecular robot as effectively a prototypical molecular assembler.[8]

Nanofactories

A nanofactory is a proposed system in which nanomachines (resembling molecular assemblers, or industrial robot arms) would combine reactive molecules via mechanosynthesis to build larger atomically precise parts. These, in turn, would be assembled by positioning mechanisms of assorted sizes to build macroscopic (visible) but still atomically-precise products.

A typical nanofactory would fit in a desktop box, in the vision of K. Eric Drexler published in Nanosystems: Molecular Machinery, Manufacturing and Computation (1992), a notable work of "exploratory engineering". During the 1990s, others have extended the nanofactory concept, including an analysis of nanofactory convergent assembly by Ralph Merkle, a systems design of a replicating nanofactory architecture by J. Storrs Hall, Forrest Bishop's "Universal Assembler", the patented exponential assembly process by Zyvex, and a top-level systems design for a 'primitive nanofactory' by Chris Phoenix (Director of Research at the Center for Responsible Nanotechnology). All of these nanofactory designs (and more) are summarized in Chapter 4 of Kinematic Self-Replicating Machines (2004) by Robert Freitas and Ralph Merkle. The Nanofactory Collaboration,[9] founded by Freitas and Merkle in 2000, is a focused ongoing effort involving 23 researchers from 10 organizations and 4 countries that is developing a practical research agenda[10] specifically aimed at positionally-controlled diamond mechanosynthesis and diamondoid nanofactory development.

In 2005, a computer-animated short film of the nanofactory concept was produced by John Burch, in collaboration with Drexler. Such visions have been the subject of much debate, on several intellectual levels. No one has discovered an insurmountable problem with the underlying theories and no one has proved that the theories can be translated into practice. However, the debate continues, with some of it being summarized in the molecular nanotechnology article.

If nanofactories could be built, severe disruption to the world economy would be one of many possible negative impacts, though it could be argued that this disruption would have little negative effect if everyone had such nanofactories. Great benefits also would be anticipated. Various works of science fiction have explored these and similar concepts. The potential for such devices was part of the mandate of a major UK study led by mechanical engineering professor Dame Ann Dowling.

Self-replication

"Molecular assemblers" have been confused with self-replicating machines. To produce a practical quantity of a desired product, the nanoscale size of a typical science fiction universal molecular assembler requires an extremely large number of such devices. However, a single such theoretical molecular assembler might be programmed to self-replicate, constructing many copies of itself. This would allow an exponential rate of production. Then after sufficient quantities of the molecular assemblers were available, they would then be re-programmed for production of the desired product. However, if self-replication of molecular assemblers were not restrained then it might lead to competition with naturally occurring organisms. This has been called ecophagy or the grey goo problem.[11]

One method to building molecular assemblers is to mimic evolutionary processes employed by biological systems. Biological evolution proceeds by random variation combined with culling of the less-successful variants and reproduction of the more-successful variants. Production of complex molecular assemblers might be evolved from simpler systems since "A complex system that works is invariably found to have evolved from a simple system that worked. . . . A complex system designed from scratch never works and can not be patched up to make it work. You have to start over, beginning with a system that works."[12] However, most published safety guidelines include "recommendations against developing ... replicator designs which permit surviving mutation or undergoing evolution".[13]

Most assembler designs keep the "source code" external to the physical assembler. At each step of a manufacturing process, that step is read from an ordinary computer file and "broadcast" to all the assemblers. If any assembler gets out of range of that computer, or when the link between that computer and the assemblers is broken, or when that computer is unplugged, the assemblers stop replicating. Such a "broadcast architecture" is one of the safety features recommended by the "Foresight Guidelines on Molecular Nanotechnology", and a map of the 137-dimensional replicator design space[14] recently published by Freitas and Merkle provides numerous practical methods by which replicators can be safely controlled by good design.

Drexler and Smalley debate

One of the most outspoken critics of some concepts of "molecular assemblers" was Professor Richard Smalley (1943–2005) who won the Nobel prize for his contributions to the field of nanotechnology. Smalley believed that such assemblers were not physically possible and introduced scientific objections to them. His two principal technical objections were termed the "fat fingers problem" and the "sticky fingers problem". He believed these would exclude the possibility of "molecular assemblers" that worked by precision picking and placing of individual atoms. Drexler and coworkers responded to these two issues[15] in a 2001 publication.

Smalley also believed that Drexler's speculations about apocalyptic dangers of self-replicating machines that have been equated with "molecular assemblers" would threaten the public support for development of nanotechnology. To address the debate between Drexler and Smalley regarding molecular assemblers Chemical & Engineering News published a point-counterpoint consisting of an exchange of letters that addressed the issues.[3]

Regulation

Speculation on the power of systems that have been called "molecular assemblers" has sparked a wider political discussion on the implication of nanotechnology. This is in part due to the fact that nanotechnology is a very broad term and could include "molecular assemblers." Discussion of the possible implications of fantastic molecular assemblers has prompted calls for regulation of current and future nanotechnology. There are very real concerns with the potential health and ecological impact of nanotechnology that is being integrated in manufactured products. Greenpeace for instance commissioned a report concerning nanotechnology in which they express concern into the toxicity of nanomaterials that have been introduced in the environment.[16] However, it makes only passing references to "assembler" technology. The UK Royal Society and Royal Academy of Engineering also commissioned a report entitled "Nanoscience and nanotechnologies: opportunities and uncertainties"[17] regarding the larger social and ecological implications on nanotechnology. This report does not discuss the threat posed by potential so-called "molecular assemblers."

Formal scientific review

In 2006, U.S. National Academy of Sciences released the report of a study of molecular manufacturing as part of a longer report, A Matter of Size: Triennial Review of the National Nanotechnology Initiative[18] The study committee reviewed the technical content of Nanosystems, and in its conclusion states that no current theoretical analysis can be considered definitive regarding several questions of potential system performance, and that optimal paths for implementing high-performance systems cannot be predicted with confidence. It recommends experimental research to advance knowledge in this area:
"Although theoretical calculations can be made today, the eventually attainable range of chemical reaction cycles, error rates, speed of operation, and thermodynamic efficiencies of such bottom-up manufacturing systems cannot be reliably predicted at this time. Thus, the eventually attainable perfection and complexity of manufactured products, while they can be calculated in theory, cannot be predicted with confidence. Finally, the optimum research paths that might lead to systems which greatly exceed the thermodynamic efficiencies and other capabilities of biological systems cannot be reliably predicted at this time. Research funding that is based on the ability of investigators to produce experimental demonstrations that link to abstract models and guide long-term vision is most appropriate to achieve this goal."

Grey goo

One potential scenario that has been envisioned is out-of-control self-replicating molecular assemblers in the form of grey goo which consumes carbon to continue its replication. If unchecked such mechanical replication could potentially consume whole ecoregions or the whole Earth (ecophagy), or it could simply outcompete natural lifeforms for necessary resources such as carbon, ATP, or UV light (which some nanomotor examples run on). However, the ecophagy and 'grey goo' scenarios, like synthetic molecular assemblers, are based upon still-hypothetical technologies that have not yet been demonstrated experimentally.

In fiction

Molecular assemblers are a popular topic in science fiction, for example, the matter compiler in The Diamond Age and the cornucopia machine in Singularity Sky. The replicator in Star Trek might also be considered a molecular assembler. A molecular assembler is also a key element of the plot of the computer game Deus Ex (called a "universal constructor" in the game).

In the political sci-fi comic series Transmetropolitan, written by Warren Ellis, machines called "Makers" are used to replicate and reform matter. Each morning, Makers sweep the streets for garbage, gathering the matter to recycle it into more useful objects. The main character also uses a Maker in his apartment to instantly produce a pair of glasses which take photos, as well as other objects such as clothing.

In Dead Money, a DLC of the video game Fallout: New Vegas, the player can obtain useful items from vending machines that use an unknown form of molecular assembly technology to transform casino chips that the player can find into any of several items.

In the cyberpunk visual novel Baldr Sky, a nano machine simply given the name "Assembler" is present for the purpose of cleaning the polluted atmosphere.

Molecular machine

From Wikipedia, the free encyclopedia

A molecular machine, nanite, or nanomachine,[1] refers to any discrete number of molecular components that produce quasi-mechanical movements (output) in response to specific stimuli (input).[2] The expression is often more generally applied to molecules that simply mimic functions that occur at the macroscopic level. The term is also common in nanotechnology where a number of highly complex molecular machines have been proposed that are aimed at the goal of constructing a molecular assembler.

For the last several decades, chemists and physicists alike have attempted, with varying degrees of success, to miniaturize machines found in the macroscopic world. Molecular machines research is currently at the forefront with the 2016 Nobel Prize in Chemistry being awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa for the design and synthesis of molecular machines.[3][4]

Types

Molecular machines can be divided into two broad categories; synthetic and biological. In general, synthetic molecular machines refer to molecules that are artificially designed and synthesized whereas biological molecular machines can commonly be found in nature.[5]

Synthetic

A wide variety of rather simple molecular machines have been synthesized by chemists. They can consist of a single molecule; however, they are often constructed for mechanically-interlocked molecular architectures, such as rotaxanes and catenanes. Carbon nanotube nanomotors have also been produced.[6]
  • Molecular motors are molecules that are capable of unidirectional rotation motion powered by external energy input. A number of molecular machines have been synthesized powered by light or reaction with other molecules.[7][8][9][10]
  • A molecular propeller is a molecule that can propel fluids when rotated, due to its special shape that is designed in analogy to macroscopic propellers. It has several molecular-scale blades attached at a certain pitch angle around the circumference of a nanoscale shaft. Also see molecular gyroscope.
  • A molecular switch is a molecule that can be reversibly shifted between two or more stable states.[11] The molecules may be shifted between the states in response to changes in pH, light, temperature, an electric current, microenvironment, or the presence of a ligand.
  • A molecular shuttle is a molecule capable of shuttling molecules or ions from one location to another. A common molecular shuttle consists of a rotaxane where the macrocycle can move between two sites or stations along the dumbbell backbone.[12]
  • A molecular balance[13][14] is a molecule that can interconvert between two and more conformational or configurational states in response to the dynamic of multiple intra- and intermolecular driving forces, such as hydrogen bonding, solvophobic/hydrophobic effects,[15] π interactions,[16] and steric and dispersion interactions.[17]
  • Molecular tweezers are host molecules capable of holding items between their two arms. The open cavity of the molecular tweezers binds items using non-covalent bonding including hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, π interactions, or electrostatic effects. Examples of molecular tweezers have been reported that are constructed from DNA and are considered DNA machines.
  • A molecular sensor is a molecule that interacts with an analyte to produce a detectable change.[18] Molecular sensors combine molecular recognition with some form of reporter, so the presence of the item can be observed.
Bird-looking analogy of a molecular hinge[19]
  • A molecular logic gate is a molecule that performs a logical operation on one or more logic inputs and produces a single logic output. Unlike a molecular sensor, the molecular logic gate will only output when a particular combination of inputs are present.
  • A molecular assembler is a molecular machine able to guide chemical reactions by positioning reactive molecules with precision.[20][21][22][23][24]
  • A molecular hinge is a molecule that can be selectively switched from one configuration to another in a reversible fashion.[11] Such configurations must have distinguishable geometries, for instance, Cis or Trans isomers[25] of a V-shape[26] molecule. Azo compounds perform Cis–trans isomerism upon receiving UV-Vis light.[11]

Biological

A ribosome translating a protein

The most complex molecular machines are proteins found within cells. These include motor proteins, such as myosin, which is responsible for muscle contraction, kinesin, which moves cargo inside cells away from the nucleus along microtubules, dynein, which produces the axonemal beating of motile cilia and flagella, and transmembrane ATPases such like ATP synthase.[27] These proteins and their nanoscale dynamics are far more complex than any molecular machines that have yet been artificially constructed.

Probably the most significant biological machine known is the ribosome. Other important examples include motile cilia. A high-level-abstraction summary is that, "[i]n effect, the [motile cilium] is a nanomachine composed of perhaps over 600 proteins in molecular complexes, many of which also function independently as nanomachines."[1] Flexible linker domains allow the connecting protein domains to recruit their binding partners and induce long-range allostery via protein domain dynamics.[28]

Some biological molecular machines

This protein flexibility allows the construction of biological machines. The first useful applications of these biological machines might be in nanomedicine. For example,[29] they could be used to identify and destroy cancer cells.[30][31] Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, biological machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.[32][33]

Research

The construction of more complex molecular machines is an active area of theoretical and experimental research. A number of molecules, such as molecular propellers, have been designed, although experimental studies of these molecules are inhibited by the lack of methods to construct these molecules.[citation needed] In this context, theoretical modeling can be extremely useful to understand the self-assembly/disassembly processes of rotaxanes, important for the construction of light-powered molecular machines.[34] This molecular-level knowledge may foster the realization of ever more complex, versatile, and effective molecular machines for the areas of nanotechnology, including molecular assemblers.

Although currently not feasible, some potential applications of molecular machines are transport at the molecular level, manipulation of nanostructures and chemical systems, high density solid-state informational processing and molecular prosthetics.[35] Many fundamental challenges need to be overcome before molecular machines can be used practically such as autonomous operation, complexity of machines, stability in the synthesis of the machines and the working conditions.[5]

Social privilege

From Wikipedia, the free encyclopedia https://en.wikipedi...