Search This Blog

Saturday, September 22, 2018

Genetic disorder

From Wikipedia, the free encyclopedia

Genetic disorder
Drill.jpg
A boy with Down syndrome, one of the most common genetic disorders
Classification and external resources
Specialty Medical genetics
DiseasesDB 28838
MeSH D030342

A genetic disorder is a genetic problem caused by one or more abnormalities in the genome. Most genetic disorders are quite rare and affect one person in every several thousands or millions.

Genetic disorders may be hereditary, meaning that they are passed down from the parents' genes. In other genetic disorders, defects may be caused by new mutations or changes to the DNA. In such cases, the defect will only be passed down if it occurs in the germline.

Some types of recessive gene disorders confer an advantage in certain environments when only one copy of the gene is present.

Prevalence of some single-gene disorders

Disorder prevalence (approximate)
Autosomal dominant
Familial hypercholesterolemia 1 in 500
Polycystic kidney disease 1 in 1250
Neurofibromatosis type I 1 in 2,500
Hereditary spherocytosis 1 in 5,000
Marfan syndrome 1 in 4,000
Huntington's disease 1 in 15,000

Autosomal recessive
Sickle cell anaemia 1 in 625
Cystic fibrosis 1 in 2,000
Tay-Sachs disease 1 in 3,000
Phenylketonuria 1 in 12,000
Mucopolysaccharidoses 1 in 25,000
Lysosomal acid lipase deficiency 1 in 40,000
Glycogen storage diseases 1 in 50,000
Galactosemia 1 in 57,000

X-linked
Duchenne muscular dystrophy 1 in 7,000
Hemophilia 1 in 10,000
Values are for liveborn infants



























 

Single-gene

A single-gene (or monogenic) disorder is the result of a single mutated gene. Over 6000 human diseases are caused by single-gene defects. Single-gene disorders can be passed on to subsequent generations in several ways. Genomic imprinting and uniparental disomy, however, may affect inheritance patterns. The divisions between recessive and dominant types are not "hard and fast", although the divisions between autosomal and X-linked types are (since the latter types are distinguished purely based on the chromosomal location of the gene). For example, achondroplasia is typically considered a dominant disorder, but children with two genes for achondroplasia have a severe skeletal disorder of which achondroplasics could be viewed as carriers. Sickle-cell anemia is also considered a recessive condition, but heterozygous carriers have increased resistance to malaria in early childhood, which could be described as a related dominant condition. When a couple where one partner or both are sufferers or carriers of a single-gene disorder wish to have a child, they can do so through in vitro fertilization, which enables preimplantation genetic diagnosis to occur to check whether the embryo has the genetic disorder.

Most congenital metabolic disorders known as inborn errors of metabolism result from single-gene defects.

Autosomal dominant

Only one mutated copy of the gene will be necessary for a person to be affected by an autosomal dominant disorder. Each affected person usually has one affected parent. The chance a child will inherit the mutated gene is 50%. Autosomal dominant conditions sometimes have reduced penetrance, which means although only one mutated copy is needed, not all individuals who inherit that mutation go on to develop the disease. Examples of this type of disorder are Huntington's disease, neurofibromatosis type 1, neurofibromatosis type 2, Marfan syndrome, hereditary nonpolyposis colorectal cancer, hereditary multiple exostoses (a highly penetrant autosomal dominant disorder), Tuberous sclerosis, Von Willebrand disease, and acute intermittent porphyria. Birth defects are also called congenital anomalies.

Autosomal recessive

Two copies of the gene must be mutated for a person to be affected by an autosomal recessive disorder. An affected person usually has unaffected parents who each carry a single copy of the mutated gene (and are referred to as carriers). Two unaffected people who each carry one copy of the mutated gene have a 25% risk with each pregnancy of having a child affected by the disorder. Examples of this type of disorder are Albinism, Medium-chain acyl-CoA dehydrogenase deficiency, cystic fibrosis, sickle-cell disease, Tay-Sachs disease, Niemann-Pick disease, spinal muscular atrophy, and Roberts syndrome. Certain other phenotypes, such as wet versus dry earwax, are also determined in an autosomal recessive fashion.

Human chromosome diseases set en.svg

X-linked dominant

X-linked dominant disorders are caused by mutations in genes on the X chromosome. Only a few disorders have this inheritance pattern, with a prime example being X-linked hypophosphatemic rickets. Males and females are both affected in these disorders, with males typically being more severely affected than females. Some X-linked dominant conditions, such as Rett syndrome, incontinentia pigmenti type 2, and Aicardi syndrome, are usually fatal in males either in utero or shortly after birth, and are therefore predominantly seen in females. Exceptions to this finding are extremely rare cases in which boys with Klinefelter syndrome (47,XXY) also inherit an X-linked dominant condition and exhibit symptoms more similar to those of a female in terms of disease severity. The chance of passing on an X-linked dominant disorder differs between men and women. The sons of a man with an X-linked dominant disorder will all be unaffected (since they receive their father's Y chromosome), and his daughters will all inherit the condition. A woman with an X-linked dominant disorder has a 50% chance of having an affected fetus with each pregnancy, although in cases such as incontinentia pigmenti, only female offspring are generally viable. In addition, although these conditions do not alter fertility per se, individuals with Rett syndrome or Aicardi syndrome rarely reproduce.

X-linked recessive

X-linked recessive conditions are also caused by mutations in genes on the X chromosome. Males are more frequently affected than females, and the chance of passing on the disorder differs between men and women. The sons of a man with an X-linked recessive disorder will not be affected, and his daughters will carry one copy of the mutated gene. A woman who is a carrier of an X-linked recessive disorder (XRXr) has a 50% chance of having sons who are affected and a 50% chance of having daughters who carry one copy of the mutated gene and are therefore carriers. X-linked recessive conditions include the serious diseases hemophilia A, Duchenne muscular dystrophy, and Lesch-Nyhan syndrome, as well as common and less serious conditions such as male pattern baldness and red-green color blindness. X-linked recessive conditions can sometimes manifest in females due to skewed X-inactivation or monosomy X (Turner syndrome).

Y-linked

Y-linked disorders are caused by mutations on the Y chromosome. These conditions may only be transmitted from the heterogametic sex (e.g. male humans) to offspring of the same sex. More simply, this means that Y-linked disorders in humans can only be passed from men to their sons; females can never be affected because they do not possess Y-allosomes.

Y-linked disorders are exceedingly rare but the most well-known examples typically cause infertility. Reproduction in such conditions is only possible through the circumvention of infertility by medical intervention.

Mitochondrial

This type of inheritance, also known as maternal inheritance, applies to genes encoded by mitochondrial DNA. Because only egg cells contribute mitochondria to the developing embryo, only mothers can pass on mitochondrial DNA conditions to their children. An example of this type of disorder is Leber's hereditary optic neuropathy. It is important to stress that the vast majority of mitochondrial disease (particularly when symptoms develop in early life) is actually caused by an underlying nuclear gene defect, and most often follows autosomal recessive inheritance.

Multiple genes

Genetic disorders may also be complex, multifactorial, or polygenic, meaning they are likely associated with the effects of multiple genes in combination with lifestyles and environmental factors. Multifactorial disorders include heart disease and diabetes. Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritance. This makes it difficult to determine a person’s risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat, because the specific factors that cause most of these disorders have not yet been identified. Studies which aim to identify the cause of complex disorders can use several methodological approaches to determine genotype-phenotype associations. One method, the genotype-first approach, starts by identifying genetic variants within patients and then determining the associated clinical manifestations. This is opposed to the more traditional phenotype-first approach, and may identify causal factors that have previously been obscured by clinical heterogeneity, penetrance, and expressivity.

On a pedigree, polygenic diseases do tend to "run in families", but the inheritance does not fit simple patterns as with Mendelian diseases. But this does not mean that the genes cannot eventually be located and studied. There is also a strong environmental component to many of them (e.g., blood pressure).

Diagnosis

Due to the wide range of genetic disorders that are known, diagnosis is widely varied and dependent of the disorder. Most genetic disorders are diagnosed at birth or during early childhood however some, such as Huntington's disease, can escape detection until the patient is well into adulthood. The basic aspects of a genetic disorder rests on the inheritance of genetic material. With an in depth family history, it is possible to anticipate possible disorders in children which direct medical professionals to specific tests depending on the disorder and allow parents the chance to prepare for potential lifestyle changes, anticipate the possibility of stillbirth, or contemplate termination. Prenatal diagnosis can detect the presence of characteristic abnormalities in fetal development through ultrasound, or detect the presence of characteristic substances via invasive procedures which involve inserting probes or needles into the uterus such as in amniocentesis.

Prognosis

Not all genetic disorders directly result in death; however, there are no known cures for genetic disorders. Many genetic disorders affect stages of development, such as Down syndrome, while others result in purely physical symptoms such as muscular dystrophy. Other disorders, such as Huntington's disease, show no signs until adulthood. During the active time of a genetic disorder, patients mostly rely on maintaining or slowing the degradation of quality of life and maintain patient autonomy. This includes physical therapy, pain management, and may include a selection of alternative medicine programs.

Treatment

From personal genomics to gene therapy

The treatment of genetic disorders is an ongoing battle with over 1800 gene therapy clinical trials having been completed, are ongoing, or have been approved worldwide. Despite this, most treatment options revolve around treating the symptoms of the disorders in an attempt to improve patient quality of life.

Gene therapy refers to a form of treatment where a healthy gene is introduced to a patient. This should alleviate the defect caused by a faulty gene or slow the progression of disease. A major obstacle has been the delivery of genes to the appropriate cell, tissue, and organ affected by the disorder. How does one introduce a gene into the potentially trillions of cells which carry the defective copy? This question has been the roadblock between understanding the genetic disorder and correcting the genetic disorder.

Tay–Sachs disease

From Wikipedia, the free encyclopedia
 
Tay–Sachs disease
Synonyms GM2 gangliosidosis, hexosaminidase A deficiency
Tay-sachsUMich.jpg
Cherry-red spot as seen in the retina in Tay–Sachs disease. The fovea's center appears bright red because it is surrounded by a whiter than usual area.
Specialty Medical genetics
Symptoms Initially: Decreased ability to turn over, sit, or crawl
Later: Seizures, hearing loss, inability to move
Usual onset Three to six months of age
Duration Long term
Types Infantile, juvenile, late-onset
Causes Genetic (autosomal recessive)
Diagnostic method Testing blood hexosaminidase A levels, genetic testing
Differential diagnosis Sandhoff disease, Leigh syndrome, neuronal ceroid lipofuscinoses
Treatment Supportive care, psychosocial support
Prognosis Death often occurs in early childhood
Frequency Rare in the general population

Tay–Sachs disease is a genetic disorder that results in the destruction of nerve cells in the brain and spinal cord. The most common type, known as infantile Tay–Sachs disease, becomes apparent around three to six months of age with the baby losing the ability to turn over, sit, or crawl. This is then followed by seizures, hearing loss, and inability to move. Death usually occurs in early childhood. Less commonly the disease may occur in later childhood or adulthood. These forms are generally milder in nature.

Tay–Sachs disease is caused by a genetic mutation in the HEXA genes on chromosome 15. It is inherited from a person's parents in an autosomal recessive manner. The mutation results in problems with an enzyme called beta-hexosaminidase A which results in the buildup of the molecule GM2 ganglioside within cells, leading to toxicity. Diagnosis is by measuring the blood hexosaminidase A level or genetic testing. It is a type of sphingolipidosis.

The treatment of Tay–Sachs disease is supportive in nature. This may involve multiple specialities as well as psychosocial support for the family. The disease is rare in the general population. In Ashkenazi Jews, French Canadians of southeastern Quebec, and Cajuns of southern Louisiana, the condition is more common. Approximately 1 in 3,600 Ashkenazi Jews at birth are affected.

The disease is named after Waren Tay, who in 1881 first described a symptomatic red spot on the retina of the eye; and Bernard Sachs, who described in 1887 the cellular changes and noted an increased rate of disease in Ashkenazi Jews. Carriers of a single Tay–Sachs allele are typically normal. It has been hypothesized that being a carrier may confer protection from another condition such as tuberculosis, explaining the persistence of the allele in certain populations. Researchers are looking at gene therapy or enzyme replacement therapy as possible treatments.

Signs and symptoms

Tay–Sachs disease is typically first noticed in infants around 6 months old displaying an abnormally strong response to sudden noises or other stimuli, known as the "startle response". There may also be listlessness or muscle stiffness (hypertonia). The disease is classified into several forms, which are differentiated based on the onset age of neurological symptoms.
  • Infantile Tay–Sachs disease. Infants with Tay–Sachs disease appear to develop normally for the first six months after birth. Then, as neurons become distended with gangliosides, a relentless deterioration of mental and physical abilities begins. The child may become blind, deaf, unable to swallow, atrophied, and paralytic. Death usually occurs before the age of four.
  • Juvenile Tay–Sachs disease. Juvenile Tay–Sachs disease is rarer than other forms of Tay–Sachs, and usually is initially seen in children between two and ten years old. People with Tay–Sachs disease develop cognitive and motor skill deterioration, dysarthria, dysphagia, ataxia, and spasticity. Death usually occurs between the age of five to fifteen years.
  • Adult/Late-Onset Tay–Sachs disease. A rare form of this disease, known as Adult-Onset or Late-Onset Tay–Sachs disease, usually has its first symptoms during the 30s or 40s. In contrast to the other forms, late-onset Tay–Sachs disease is usually not fatal as the effects can stop progressing. It is frequently misdiagnosed. It is characterized by unsteadiness of gait and progressive neurological deterioration. Symptoms of late-onset Tay–Sachs – which typically begin to be seen in adolescence or early adulthood – include speech and swallowing difficulties, unsteadiness of gait, spasticity, cognitive decline, and psychiatric illness, particularly a schizophrenia-like psychosis. People with late-onset Tay–Sachs may become full-time wheelchair users in adulthood.
Until the 1970s and 1980s, when the disease's molecular genetics became known, the juvenile and adult forms of the disease were not always recognized as variants of Tay–Sachs disease. Post-infantile Tay–Sachs was often misdiagnosed as another neurological disorder, such as Friedreich's ataxia.

Genetics

Tay–Sachs disease is inherited in the autosomal recessive pattern, depicted above.
 
The HEXA gene is located on the long (q) arm of human chromosome 15, between positions 23 and 24.

Tay–Sachs disease is an autosomal recessive genetic disorder, meaning that when both parents are carriers, there is a 25% risk of giving birth to an affected child with each pregnancy. The affected child would have received a mutated copy of the gene from each parent.

Tay–Sachs results from mutations in the HEXA gene on chromosome 15, which encodes the alpha-subunit of beta-N-acetylhexosaminidase A, a lysosomal enzyme. By 2000, more than 100 different mutations had been identified in the human HEXA gene. These mutations have included single base insertions and deletions, splice phase mutations, missense mutations, and other more complex patterns. Each of these mutations alters the gene's protein product (i.e., the enzyme), sometimes severely inhibiting its function. In recent years, population studies and pedigree analysis have shown how such mutations arise and spread within small founder populations. Initial research focused on several such founder populations:
  • Ashkenazi Jews. A four base pair insertion in exon 11 (1278insTATC) results in an altered reading frame for the HEXA gene. This mutation is the most prevalent mutation in the Ashkenazi Jewish population, and leads to the infantile form of Tay–Sachs disease.
  • Cajuns. The same 1278insTATC mutation found among Ashkenazi Jews occurs in the Cajun population of southern Louisiana. Researchers have traced the ancestry of carriers from Louisiana families back to a single founder couple – not known to be Jewish – who lived in France in the 18th century.
  • French Canadians. Two mutations, unrelated to the Ashkenazi/Cajun mutation, are absent in France but common among French Canadians living in eastern Quebec and Acadians from the Province of New Brunswick. Pedigree analysis suggests the mutations were uncommon before the late 17th century.
In the 1960s and early 1970s, when the biochemical basis of Tay–Sachs disease was first becoming known, no mutations had been sequenced directly for genetic diseases. Researchers of that era did not yet know how common polymorphisms would prove to be. The "Jewish Fur Trader Hypothesis," with its implication that a single mutation must have spread from one population into another, reflected the knowledge at the time. Subsequent research, however, has proven that a large variety of different HEXA mutations can cause the disease. Because Tay–Sachs was one of the first genetic disorders for which widespread genetic screening was possible, it is one of the first genetic disorders in which the prevalence of compound heterozygosity has been demonstrated.

Compound heterozygosity ultimately explains the disease's variability, including the late-onset forms. The disease can potentially result from the inheritance of two unrelated mutations in the HEXA gene, one from each parent. Classic infantile Tay–Sachs disease results when a child has inherited mutations from both parents that completely stop the biodegradation of gangliosides. Late onset forms occur due to the diverse mutation base – people with Tay–Sachs disease may technically be heterozygotes, with two differing HEXA mutations that both inactivate, alter, or inhibit enzyme activity. When a patient has at least one HEXA copy that still enables some level of hexosaminidase A activity, a later onset disease form occurs. When disease occurs because of two unrelated mutations, the patient is said to be a compound heterozygote.

Heterozygous carriers (individuals who inherit one mutant allele) show abnormal enzyme activity but manifest no disease symptoms. This phenomenon is called dominance; the biochemical reason for wild-type alleles' dominance over nonfunctional mutant alleles in inborn errors of metabolism comes from how enzymes function. Enzymes are protein catalysts for chemical reactions; as catalysts, they speed up reactions without being used up in the process, so only small enzyme quantities are required to carry out a reaction. Someone homozygous for a nonfunctional mutation in the enzyme-encoding gene has little or no enzyme activity, so will manifest the abnormal phenotype. A heterozygote (heterozygous individual) has at least half of the normal enzyme activity level, due to expression of the wild-type allele. This level is normally enough to enable normal function and thus prevent phenotypic expression.

Pathophysiology

Tay–Sachs disease is caused by insufficient activity of the enzyme hexosaminidase A. Hexosaminidase A is a vital hydrolytic enzyme, found in the lysosomes, that breaks down sphingolipids. When hexosaminidase A is no longer functioning properly, the lipids accumulate in the brain and interfere with normal biological processes. Hexosaminidase A specifically breaks down fatty acid derivatives called gangliosides; these are made and biodegraded rapidly in early life as the brain develops. Patients with and carriers of Tay–Sachs can be identified by a simple blood test that measures hexosaminidase A activity.

The hydrolysis of GM2-ganglioside requires three proteins. Two of them are subunits of hexosaminidase A; the third is a small glycolipid transport protein, the GM2 activator protein (GM2A), which acts as a substrate-specific cofactor for the enzyme. Deficiency in any one of these proteins leads to ganglioside storage, primarily in the lysosomes of neurons. Tay–Sachs disease (along with AB-variant GM2-gangliosidosis and Sandhoff disease) occurs because a mutation inherited from both parents deactivates or inhibits this process. Most Tay–Sachs mutations probably do not directly affect protein functional elements (e.g., the active site). Instead, they cause incorrect folding (disrupting function) or disable intracellular transport.

Diagnosis

In patients with a clinical suspicion for Tay–Sachs disease, with any age of onset, the initial testing involves an enzyme assay to measure the activity of hexosaminidase in serum, fibroblasts, or leukocytes. Total hexosaminidase enzyme activity is decreased in individuals with Tay-Sachs as is the percentage of hexosaminidase A. After confirmation of decreased enzyme activity in an individual, confirmation by molecular analysis can be pursued. All patients with infantile onset Tay–Sachs disease have a "cherry red" macula in the retina, easily observable by a physician using an ophthalmoscope. This red spot is a retinal area that appears red because of gangliosides in the surrounding retinal ganglion cells. The choroidal circulation is showing through "red" in this foveal region where all retinal ganglion cells are pushed aside to increase visual acuity. Thus, this cherry-red spot is the only normal part of the retina; it shows up in contrast to the rest of the retina. Microscopic analysis of the retinal neurons shows they are distended from excess ganglioside storage. Unlike other lysosomal storage diseases (e.g., Gaucher disease, Niemann–Pick disease, and Sandhoff disease), hepatosplenomegaly (liver and spleen enlargement) is not seen in Tay–Sachs.

Prevention

Three main approaches have been used to prevent or reduce the incidence of Tay–Sachs:
  • Prenatal diagnosis. If both parents are identified as carriers, prenatal genetic testing can determine whether the fetus has inherited a defective gene copy from both parents. Chorionic villus sampling (CVS), the most common form of prenatal diagnosis, can be performed between 10 and 14 weeks of gestation. Amniocentesis is usually performed at 15–18 weeks. These procedures have risks of miscarriage of 1% or less.
  • Preimplantation genetic diagnosis. By retrieving the mother's eggs for in vitro fertilization, it is possible to test the embryo for the disorder prior to implantation. Healthy embryos are then selected and transferred into the mother's womb, while unhealthy embryos are discarded. In addition to Tay–Sachs disease, preimplantation genetic diagnosis has been used to prevent cystic fibrosis and sickle cell anemia among other genetic disorders.
  • Mate selection. In Orthodox Jewish circles, the organization Dor Yeshorim carries out an anonymous screening program so that carrier couples for Tay–Sachs and other genetic disorders can avoid marriage.

Management

As of 2010 there was no treatment that addressed the cause of Tay–Sachs disease or could slow its progression; people receive supportive care to ease the symptoms and extend life by reducing the chance of contracting infections. Infants are given feeding tubes when they can no longer swallow. In late-onset Tay–Sachs, medication (e.g., lithium for depression) can sometimes control psychiatric symptoms and seizures, although some medications (e.g., tricyclic antidepressants, phenothiazines, haloperidol, and risperidone) are associated with significant adverse effects.

Outcomes

As of 2010, even with the best care, children with infantile Tay–Sachs disease usually die by the age of 4. Children with the juvenile form are likely to die from the ages 5-15, while those with the adult form will probably not be affected.

Epidemiology

Founder effects occur when a small number of individuals from a larger population establish a new population. In this illustration, the original population is on the left with three possible founder populations on the right. Two of the three founder populations are genetically distinct from the original population.

Ashkenazi Jews have a high incidence of Tay–Sachs and other lipid storage diseases. In the United States, about 1 in 27 to 1 in 30 Ashkenazi Jews is a recessive carrier. The disease incidence is about 1 in every 3,500 newborn among Ashkenazi Jews. French Canadians and the Cajun community of Louisiana have an occurrence similar to the Ashkenazi Jews. Irish Americans have a 1 in 50 chance of being a carrier. In the general population, the incidence of carriers as heterozygotes is about 1 in 300. The incidence is approximately 1 in 320,000 newborns in the general population in United States.

Three general classes of theories have been proposed to explain the high frequency of Tay–Sachs carriers in the Ashkenazi Jewish population:
  • Heterozygote advantage. When applied to a particular allele, this theory posits that mutation carriers have a selective advantage, perhaps in a particular environment.
  • Reproductive compensation. Parents who lose a child because of disease tend to "compensate" by having additional children to replace them. This phenomenon may maintain and possibly even increase the incidence of autosomal recessive disease.
  • Founder effect. This hypothesis states that the high incidence of the 1278insTATC chromosomes is the result of an elevated allele frequency that existed by chance in an early founder population.
Tay–Sachs disease was one of the first genetic disorders for which epidemiology was studied using molecular data. Studies of Tay–Sachs mutations using new molecular techniques such as linkage disequilibrium and coalescence analysis have brought an emerging consensus among researchers supporting the founder effect theory.

History

Waren Tay and Bernard Sachs, two physicians, described the disease's progression and provided differential diagnostic criteria to distinguish it from other neurological disorders with similar symptoms.

Both Tay and Sachs reported their first cases among Ashkenazi Jewish families. Tay reported his observations in 1881 in the first volume of the proceedings of the British Ophthalmological Society, of which he was a founding member. By 1884, he had seen three cases in a single family. Years later, Bernard Sachs, an American neurologist, reported similar findings when he reported a case of "arrested cerebral development" to other New York Neurological Society members.

Sachs, who recognized that the disease had a familial basis, proposed that the disease should be called amaurotic familial idiocy. However, its genetic basis was still poorly understood. Although Gregor Mendel had published his article on the genetics of peas in 1865, Mendel's paper was largely forgotten for more than a generation – not rediscovered by other scientists until 1899. Thus, the Mendelian model for explaining Tay–Sachs was unavailable to scientists and doctors of the time. The first edition of the Jewish Encyclopedia, published in 12 volumes between 1901 and 1906, described what was then known about the disease:
It is a curious fact that amaurotic family idiocy, a rare and fatal disease of children, occurs mostly among Jews. The largest number of cases has been observed in the United States—over thirty in number. It was at first thought that this was an exclusively Jewish disease because most of the cases at first reported were between Russian and Polish Jews; but recently there have been reported cases occurring in non-Jewish children. The chief characteristics of the disease are progressive mental and physical enfeeblement; weakness and paralysis of all the extremities; and marasmus, associated with symmetrical changes in the macula lutea. On investigation of the reported cases, they found that neither consanguinity nor syphilitic, alcoholic, or nervous antecedents in the family history are factors in the etiology of the disease. No preventive measures have as yet been discovered, and no treatment has been of benefit, all the cases having terminated fatally.
Jewish immigration to the United States peaked in the period 1880–1924, with the immigrants arriving from Russia and countries in Eastern Europe; this was also a period of nativism (hostility to immigrants) in the United States. Opponents of immigration often questioned whether immigrants from southern and eastern Europe could be assimilated into American society. Reports of Tay–Sachs disease contributed to a perception among nativists that Jews were an inferior race.

In 1969, Shintaro Okada and John S. O'Brien showed that Tay–Sachs disease was caused by an enzyme defect; he also proved that Tay–Sachs patients could be diagnosed by an assay of hexosaminidase A activity. The further development of enzyme assays demonstrated that levels of hexosaminidases A and B could be measured in patients and carriers, allowing the reliable detection of heterozygotes. During the early 1970s, researchers developed protocols for newborn testing, carrier screening, and pre-natal diagnosis. By the end of 1979, researchers had identified three variant forms of GM2 gangliosidosis, including Sandhoff disease and the AB variant of GM2-gangliosidosis, accounting for false negatives in carrier testing.

Society and culture

Since carrier testing for Tay–Sachs began in 1971, millions of Ashkenazi Jews have been screened as carriers. Jewish communities embraced the cause of genetic screening from the 1970s on. The success with Tay–Sachs disease has led Israel to become the first country that offers free genetic screening and counseling for all couples and opened discussions about the proper scope of genetic testing for other disorders in Israel.

Because Tay–Sachs disease was one of the first autosomal recessive genetic disorders for which there was an enzyme assay test (prior to polymerase chain reaction testing methods), it was intensely studied as a model for all such diseases, and researchers sought evidence of a selective process. A continuing controversy is whether heterozygotes (carriers) have or had a selective advantage. The presence of four different lysosomal storage disorders in the Ashkenazi Jewish population suggests a past selective advantage for heterozygous carriers of these conditions."

This controversy among researchers has reflected three debates among geneticists at large:

Research directions

Enzyme replacement therapy

Enzyme replacement therapy techniques have been investigated for lysosomal storage disorders, and could potentially be used to treat Tay–Sachs as well. The goal would be to replace the nonfunctional enzyme, a process similar to insulin injections for diabetes. However, in previous studies, the HEXA enzyme itself has been thought to be too large to pass through the specialized cell layer in the blood vessels that forms the blood–brain barrier in humans.

Researchers have also tried directly instilling the deficient enzyme hexosaminidase A into the cerebrospinal fluid (CSF) which bathes the brain. However, intracerebral neurons seem unable to take up this physically large molecule efficiently even when it is directly by them. Therefore, this approach to treatment of Tay–Sachs disease has also been ineffective so far.

Jacob sheep model

Tay–Sachs disease exists in Jacob sheep. The biochemical mechanism for this disease in the Jacob sheep is virtually identical to that in humans, wherein diminished activity of hexosaminidase A results in increased concentrations of GM2 ganglioside in the affected animal. Sequencing of the HEXA gene cDNA of affected Jacobs sheep reveal an identical number of nucleotides and exons as in the human HEXA gene, and 86% nucleotide sequence identity. A missense mutation (G444R) was found in the HEXA cDNA of the affected sheep. This mutation is a single nucleotide change at the end of exon 11, resulting in that exon's deletion (before translation) via splicing. The Tay–Sachs model provided by the Jacob sheep is the first to offer promise as a means for gene therapy clinical trials, which may prove useful for disease treatment in humans.

Substrate reduction therapy

Other experimental methods being researched involve substrate reduction therapy, which attempts to use alternative enzymes to increase the brain's catabolism of GM2 gangliosides to a point where residual degradative activity is sufficient to prevent substrate accumulation. One experiment has demonstrated that using the enzyme sialidase allows the genetic defect to be effectively bypassed, and as a consequence, GM2 gangliosides are metabolized so that their levels become almost inconsequential. If a safe pharmacological treatment can be developed – one that increases expression of lysosomal sialidase in neurons without other toxicity – then this new form of therapy could essentially cure the disease.

Another metabolic therapy under investigation for Tay–Sachs disease uses miglustat. This drug is a reversible inhibitor of the enzyme glucosylceramide synthase, which catalyzes the first step in synthesizing glucose-based glycosphingolipids like GM2 ganglioside.

Increasing β-hexosaminidase A activity

As Tay–Sachs disease is a deficiency of β-hexosaminidase A, by getting a substance that increases its activity, people affected will not be deteriorating as fast or not at all. While for infantile Tay–Sachs disease, there is no β-hexosaminidase A so then the treatment would be ineffective. However, for people affected by Late-Onset Tay–Sachs disease, they still have β-hexosaminidase A. The drug Pyrimethamine has been shown to increase activity of β-hexosaminidase A. However, the increased levels of β-hexosaminidase A still fall far short of the desired "10% of normal HEXA", above which the phenotypic symptoms begin to disappear.

Cord blood transplant

This is a harsh procedure, which involves killing the patient's blood system with chemo and administering cord blood. This procedure has been done before, with several people surviving the infantile form, to age 8 and on. Cord blood is immature, so it easily accepts its new host without rejecting it. As to date, the two hospitals that do this procedure are the University of Minnesota and Duke Medical Center.

Critics criticize its harsh nature, and that it is unapproved. It is also hard for it to cross the blood-brain barrier. The earlier treatment starts, the better. It is often very pricey, with $25000 per unit. Adults will need many units of cord blood.

Cystic fibrosis

From Wikipedia, the free encyclopedia
 
Cystic fibrosis
Synonyms Mucoviscidosis
ClubbingCF.JPG
Clubbing in the fingers of a person with cystic fibrosis
Specialty Medical genetics, pulmonology
Symptoms Difficulty breathing, coughing up mucus, poor growth, fatty stool
Usual onset Symptoms recognizable ~6 month
Duration Long term
Causes Genetic (autosomal recessive)
Diagnostic method Sweat test, genetic testing
Treatment Antibiotics, pancreatic enzyme replacement, lung transplantation
Prognosis Life expectancy between 42 and 50 years (developed world)
Frequency 1 in 3,000 (Northern European)

Cystic fibrosis (CF) is a genetic disorder that affects mostly the lungs, but also the pancreas, liver, kidneys, and intestine. Long-term issues include difficulty breathing and coughing up mucus as a result of frequent lung infections. Other signs and symptoms may include sinus infections, poor growth, fatty stool, clubbing of the fingers and toes, and infertility in most males.[1] Different people may have different degrees of symptoms.

CF is inherited in an autosomal recessive manner. It is caused by the presence of mutations in both copies of the gene for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Those with a single working copy are carriers and otherwise mostly normal. CFTR is involved in production of sweat, digestive fluids, and mucus. When the CFTR is not functional, secretions which are usually thin instead become thick. The condition is diagnosed by a sweat test and genetic testing. Screening of infants at birth takes place in some areas of the world.

There is no known cure for cystic fibrosis. Lung infections are treated with antibiotics which may be given intravenously, inhaled, or by mouth. Sometimes, the antibiotic azithromycin is used long term. Inhaled hypertonic saline and salbutamol may also be useful. Lung transplantation may be an option if lung function continues to worsen. Pancreatic enzyme replacement and fat-soluble vitamin supplementation are important, especially in the young. Airway clearance techniques such as chest physiotherapy have some short-term benefit, but long-term effects are unclear. The average life expectancy is between 42 and 50 years in the developed world. Lung problems are responsible for death in 80% of people with cystic fibrosis.

CF is most common among people of Northern European ancestry and affects about one out of every 3,000 newborns. About one in 25 people is a carrier. It is least common in Africans and Asians. It was first recognized as a specific disease by Dorothy Andersen in 1938, with descriptions that fit the condition occurring at least as far back as 1595. The name "cystic fibrosis" refers to the characteristic fibrosis and cysts that form within the pancreas.

Signs and symptoms

Health problems associated with cystic fibrosis

The main signs and symptoms of cystic fibrosis are salty-tasting skin, poor growth, and poor weight gain despite normal food intake, accumulation of thick, sticky mucus, frequent chest infections, and coughing or shortness of breath. Males can be infertile due to congenital absence of the vas deferens. Symptoms often appear in infancy and childhood, such as bowel obstruction due to meconium ileus in newborn babies. As the children grow, they exercise to release mucus in the alveoli. Epithelial cells in the person have a mutated protein that leads to abnormally viscous mucus production. The poor growth in children typically presents as an inability to gain weight or height at the same rate as their peers, and is occasionally not diagnosed until investigation is initiated for poor growth. The causes of growth failure are multifactorial and include chronic lung infection, poor absorption of nutrients through the gastrointestinal tract, and increased metabolic demand due to chronic illness.

In rare cases, cystic fibrosis can manifest itself as a coagulation disorder. Vitamin K is normally absorbed from breast milk, formula, and later, solid foods. This absorption is impaired in some cystic fibrosis patients. Young children are especially sensitive to vitamin K malabsorptive disorders because only a very small amount of vitamin K crosses the placenta, leaving the child with very low reserves and limited ability to absorb vitamin K from dietary sources after birth. Because factors II, VII, IX, and X (clotting factors) are vitamin K–dependent, low levels of vitamin K can result in coagulation problems. Consequently, when a child presents with unexplained bruising, a coagulation evaluation may be warranted to determine whether an underlying disease is present.

Lungs and sinuses

Respiratory infections in CF varies according to age.

Green = Pseudomonas aeruginosa
Brown = Staphylococcus aureus
Blue = Haemophilus influenzae
Red = Burkholderia cepacia complex

Lung disease results from clogging of the airways due to mucus build-up, decreased mucociliary clearance, and resulting inflammation. Inflammation and infection cause injury and structural changes to the lungs, leading to a variety of symptoms. In the early stages, incessant coughing, copious phlegm production, and decreased ability to exercise are common. Many of these symptoms occur when bacteria that normally inhabit the thick mucus grow out of control and cause pneumonia. In later stages, changes in the architecture of the lung, such as pathology in the major airways (bronchiectasis), further exacerbate difficulties in breathing. Other signs include coughing up blood (hemoptysis), high blood pressure in the lung (pulmonary hypertension), heart failure, difficulties getting enough oxygen to the body (hypoxia), and respiratory failure requiring support with breathing masks, such as bilevel positive airway pressure machines or ventilators. Staphylococcus aureus, Haemophilus influenzae, and Pseudomonas aeruginosa are the three most common organisms causing lung infections in CF patients. In addition to typical bacterial infections, people with CF more commonly develop other types of lung disease. Among these is allergic bronchopulmonary aspergillosis, in which the body's response to the common fungus Aspergillus fumigatus causes worsening of breathing problems. Another is infection with Mycobacterium avium complex, a group of bacteria related to tuberculosis, which can cause lung damage and does not respond to common antibiotics. People with CF are susceptible to getting a pneumothorax.

Mucus in the paranasal sinuses is equally thick and may also cause blockage of the sinus passages, leading to infection. This may cause facial pain, fever, nasal drainage, and headaches. Individuals with CF may develop overgrowth of the nasal tissue (nasal polyps) due to inflammation from chronic sinus infections. Recurrent sinonasal polyps can occur in 10% to 25% of CF patients. These polyps can block the nasal passages and increase breathing difficulties.

Cardiorespiratory complications are the most common cause of death (about 80%) in patients at most CF centers in the United States.

Gastrointestinal

Prior to prenatal and newborn screening, cystic fibrosis was often diagnosed when a newborn infant failed to pass feces (meconium). Meconium may completely block the intestines and cause serious illness. This condition, called meconium ileus, occurs in 5–10% of newborns with CF. In addition, protrusion of internal rectal membranes (rectal prolapse) is more common, occurring in as many as 10% of children with CF, and it is caused by increased fecal volume, malnutrition, and increased intra–abdominal pressure due to coughing.

The thick mucus seen in the lungs has a counterpart in thickened secretions from the pancreas, an organ responsible for providing digestive juices that help break down food. These secretions block the exocrine movement of the digestive enzymes into the duodenum and result in irreversible damage to the pancreas, often with painful inflammation (pancreatitis). The pancreatic ducts are totally plugged in more advanced cases, usually seen in older children or adolescents. This causes atrophy of the exocrine glands and progressive fibrosis.

The lack of digestive enzymes leads to difficulty absorbing nutrients with their subsequent excretion in the feces, a disorder known as malabsorption. Malabsorption leads to malnutrition and poor growth and development because of calorie loss. Resultant hypoproteinemia may be severe enough to cause generalized edema. Individuals with CF also have difficulties absorbing the fat-soluble vitamins A, D, E, and K.

In addition to the pancreas problems, people with cystic fibrosis experience more heartburn, intestinal blockage by intussusception, and constipation. Older individuals with CF may develop distal intestinal obstruction syndrome when thickened feces cause intestinal blockage.

Exocrine pancreatic insufficiency occurs in the majority (85% to 90%) of patients with CF. It is mainly associated with "severe" CFTR mutations, where both alleles are completely nonfunctional (e.g. ΔF508/ΔF508). It occurs in 10% to 15% of patients with one "severe" and one "mild" CFTR mutation where little CFTR activity still occurs, or where two "mild" CFTR mutations exist. In these milder cases, sufficient pancreatic exocrine function is still present so that enzyme supplementation is not required. Usually, no other GI complications occur in pancreas-sufficient phenotypes, and in general, such individuals usually have excellent growth and development. Despite this, idiopathic chronic pancreatitis can occur in a subset of pancreas-sufficient individuals with CF, and is associated with recurrent abdominal pain and life-threatening complications.

Thickened secretions also may cause liver problems in patients with CF. Bile secreted by the liver to aid in digestion may block the bile ducts, leading to liver damage. Over time, this can lead to scarring and nodularity (cirrhosis). The liver fails to rid the blood of toxins and does not make important proteins, such as those responsible for blood clotting. Liver disease is the third-most common cause of death associated with CF.

Endocrine

The pancreas contains the islets of Langerhans, which are responsible for making insulin, a hormone that helps regulate blood glucose. Damage of the pancreas can lead to loss of the islet cells, leading to a type of diabetes unique to those with the disease. This cystic fibrosis-related diabetes shares characteristics that can be found in type 1 and type 2 diabetics, and is one of the principal nonpulmonary complications of CF.

Vitamin D is involved in calcium and phosphate regulation. Poor uptake of vitamin D from the diet because of malabsorption can lead to the bone disease osteoporosis in which weakened bones are more susceptible to fractures. In addition, people with CF often develop clubbing of their fingers and toes due to the effects of chronic illness and low oxygen in their tissues.

Infertility

Infertility affects both men and women. At least 97% of men with cystic fibrosis are infertile, but not sterile and can have children with assisted reproductive techniques. The main cause of infertility in men with CF is congenital absence of the vas deferens (which normally connects the testes to the ejaculatory ducts of the penis), but potentially also by other mechanisms such as causing no sperm, abnormally shaped sperm, and few sperm with poor motility. Many men found to have congenital absence of the vas deferens during evaluation for infertility have a mild, previously undiagnosed form of CF. Around 20% of women with CF have fertility difficulties due to thickened cervical mucus or malnutrition. In severe cases, malnutrition disrupts ovulation and causes a lack of menstruation.

Causes

Cystic fibrosis has an autosomal recessive pattern of inheritance

CF is caused by a mutation in the gene cystic fibrosis transmembrane conductance regulator (CFTR). The most common mutation, ΔF508, is a deletion (Δ signifying deletion) of three nucleotides that results in a loss of the amino acid phenylalanine (F) at the 508th position on the protein. This mutation accounts for two-thirds (66–70%) of CF cases worldwide and 90% of cases in the United States; however, over 1500 other mutations can produce CF. Although most people have two working copies (alleles) of the CFTR gene, only one is needed to prevent cystic fibrosis. CF develops when neither allele can produce a functional CFTR protein. Thus, CF is considered an autosomal recessive disease.

The CFTR gene, found at the q31.2 locus of chromosome 7, is 230,000 base pairs long, and creates a protein that is 1,480 amino acids long. More specifically, the location is between base pair 117,120,016 and 117,308,718 on the long arm of chromosome 7, region 3, band 1, subband 2, represented as 7q31.2. Structurally, the CFTR is a type of gene known as an ABC gene. The product of this gene (the CFTR protein) is a chloride ion channel important in creating sweat, digestive juices, and mucus. This protein possesses two ATP-hydrolyzing domains, which allows the protein to use energy in the form of ATP. It also contains two domains comprising six alpha helices apiece, which allow the protein to cross the cell membrane. A regulatory binding site on the protein allows activation by phosphorylation, mainly by cAMP-dependent protein kinase. The carboxyl terminal of the protein is anchored to the cytoskeleton by a PDZ domain interaction. The majority of CFTR in the lung's passages is produced by rare ion-transporting cells that regulate mucus properties.

In addition, the evidence is increasing that genetic modifiers besides CFTR modulate the frequency and severity of the disease. One example is mannan-binding lectin, which is involved in innate immunity by facilitating phagocytosis of microorganisms. Polymorphisms in one or both mannan-binding lectin alleles that result in lower circulating levels of the protein are associated with a threefold higher risk of end-stage lung disease, as well as an increased burden of chronic bacterial infections.

Pathophysiology

The CFTR protein is a channel protein that controls the flow of H2O and Cl- ions in and out of cells inside the lungs. When the CFTR protein is working correctly, ions freely flow in and out of the cells. However, when the CFTR protein is malfunctioning, these ions cannot flow out of the cell due to a blocked channel. This causes cystic fibrosis, characterized by the buildup of thick mucus in the lungs.
 
Cysticfibrosis01.jpg

Several mutations in the CFTR gene can occur, and different mutations cause different defects in the CFTR protein, sometimes causing a milder or more severe disease. These protein defects are also targets for drugs which can sometimes restore their function. ΔF508-CFTR, which occurs in >90% of patients in the U.S., creates a protein that does not fold normally and is not appropriately transported to the cell membrane, resulting in its degradation. Other mutations result in proteins that are too short (truncated) because production is ended prematurely. Other mutations produce proteins that do not use energy (in the form of ATP) normally, do not allow chloride, iodide, and thiocyanate to cross the membrane appropriately, and degrade at a faster rate than normal. Mutations may also lead to fewer copies of the CFTR protein being produced.

The protein created by this gene is anchored to the outer membrane of cells in the sweat glands, lungs, pancreas, and all other remaining exocrine glands in the body. The protein spans this membrane and acts as a channel connecting the inner part of the cell (cytoplasm) to the surrounding fluid. This channel is primarily responsible for controlling the movement of halogens from inside to outside of the cell; however, in the sweat ducts, it facilitates the movement of chloride from the sweat duct into the cytoplasm. When the CFTR protein does not resorb ions in sweat ducts, chloride and thiocyanate released from sweat glands are trapped inside the ducts and pumped to the skin. Additionally hypothiocyanite, OSCN, cannot be produced by the immune defense system. Because chloride is negatively charged, this modifies the electrical potential inside and outside the cell that normally causes cations to cross into the cell. Sodium is the most common cation in the extracellular space. The excess chloride within sweat ducts prevents sodium resorption by epithelial sodium channels and the combination of sodium and chloride creates the salt, which is lost in high amounts in the sweat of individuals with CF. This lost salt forms the basis for the sweat test.

Most of the damage in CF is due to blockage of the narrow passages of affected organs with thickened secretions. These blockages lead to remodeling and infection in the lung, damage by accumulated digestive enzymes in the pancreas, blockage of the intestines by thick feces, etc. Several theories have been posited on how the defects in the protein and cellular function cause the clinical effects. The most current theory suggests that defective ion transport leads to dehydration in the airway epithelia, thickening mucus. In airway epithelial cells, the cilia exist in between the cell's apical surface and mucus in a layer known as airway surface liquid (ASL). The flow of ions from the cell and into this layer is determined by ion channels such as CFTR. CFTR not only allows chloride ions to be drawn from the cell and into the ASL, but it also regulates another channel called ENac, which allows sodium ions to leave the ASL and enter the respiratory epithelium. CFTR normally inhibits this channel, but if the CFTR is defective, then sodium flows freely from the ASL and into the cell. As water follows sodium, the depth of ASL will be depleted and the cilia will be left in the mucous layer. As cilia cannot effectively move in a thick, viscous environment, mucociliary clearance is deficient and a buildup of mucus occurs, clogging small airways. The accumulation of more viscous, nutrient-rich mucus in the lungs allows bacteria to hide from the body's immune system, causing repeated respiratory infections. The presence of the same CFTR proteins in the pancreatic duct and sweat glands in the skin also cause symptoms in these systems.

Chronic infections

The lungs of individuals with cystic fibrosis are colonized and infected by bacteria from an early age. These bacteria, which often spread among individuals with CF, thrive in the altered mucus, which collects in the small airways of the lungs. This mucus leads to the formation of bacterial microenvironments known as biofilms that are difficult for immune cells and antibiotics to penetrate. Viscous secretions and persistent respiratory infections repeatedly damage the lung by gradually remodeling the airways, which makes infection even more difficult to eradicate.

Over time, both the types of bacteria and their individual characteristics change in individuals with CF. In the initial stage, common bacteria such as S. aureus and H. influenzae colonize and infect the lungs. Eventually, Pseudomonas aeruginosa (and sometimes Burkholderia cepacia) dominates. By 18 years of age, 80% of patients with classic CF harbor P. aeruginosa, and 3.5% harbor B. cepacia. Once within the lungs, these bacteria adapt to the environment and develop resistance to commonly used antibiotics. Pseudomonas can develop special characteristics that allow the formation of large colonies, known as "mucoid" Pseudomonas, which are rarely seen in people who do not have CF. Scientific evidences suggest the interleukin 17 pathway plays a key role in resistance and modulation of the inflammatory response during P. aeruginosa infection in CF. In particular, interleukin 17-mediated immunity plays a double-edged activity during chronic airways infection; on one side, it contributes to the control of P. aeruginosa burden, while on the other, it propagates exacerbated pulmonary neutrophilia and tissue remodeling.

Infection can spread by passing between different individuals with CF. In the past, people with CF often participated in summer "CF camps" and other recreational gatherings. Hospitals grouped patients with CF into common areas and routine equipment (such as nebulizers) was not sterilized between individual patients. This led to transmission of more dangerous strains of bacteria among groups of patients. As a result, individuals with CF are now routinely isolated from one another in the healthcare setting, and healthcare providers are encouraged to wear gowns and gloves when examining patients with CF to limit the spread of virulent bacterial strains.

CF patients may also have their airways chronically colonized by filamentous fungi (such as Aspergillus fumigatus, Scedosporium apiospermum, Aspergillus terreus) and/or yeasts (such as Candida albicans); other filamentous fungi less commonly isolated include Aspergillus flavus and Aspergillus nidulans (occur transiently in CF respiratory secretions) and Exophiala dermatitidis and Scedosporium prolificans (chronic airway-colonizers); some filamentous fungi such as Penicillium emersonii and Acrophialophora fusispora are encountered in patients almost exclusively in the context of CF. Defective mucociliary clearance characterizing CF is associated with local immunological disorders. In addition, the prolonged therapy with antibiotics and the use of corticosteroid treatments may also facilitate fungal growth. Although the clinical relevance of the fungal airway colonization is still a matter of debate, filamentous fungi may contribute to the local inflammatory response and therefore to the progressive deterioration of the lung function, as often happens with allergic bronchopulmonary aspergillosis – the most common fungal disease in the context of CF, involving a Th2-driven immune response to Aspergillus species.

Diagnosis and monitoring

The location of the CFTR gene on chromosome 7

Cystic fibrosis may be diagnosed by many different methods, including newborn screening, sweat testing, and genetic testing. As of 2006 in the United States, 10% of cases are diagnosed shortly after birth as part of newborn screening programs. The newborn screen initially measures for raised blood concentration of immunoreactive trypsinogen. Infants with an abnormal newborn screen need a sweat test to confirm the CF diagnosis. In many cases, a parent makes the diagnosis because the infant tastes salty. Immunoreactive trypsinogen levels can be increased in individuals who have a single mutated copy of the CFTR gene (carriers) or, in rare instances, in individuals with two normal copies of the CFTR gene. Due to these false positives, CF screening in newborns can be controversial. Most U.S. states and countries do not screen for CF routinely at birth. Therefore, most individuals are diagnosed after symptoms (e.g. sinopulmonary disease and GI manifestations) prompt an evaluation for cystic fibrosis. The most commonly used form of testing is the sweat test. Sweat testing involves application of a medication that stimulates sweating (pilocarpine). To deliver the medication through the skin, iontophoresis is used, whereby one electrode is placed onto the applied medication and an electric current is passed to a separate electrode on the skin. The resultant sweat is then collected on filter paper or in a capillary tube and analyzed for abnormal amounts of sodium and chloride. People with CF have increased amounts of them in their sweat. In contrast, people with CF have less thiocyanate and hypothiocyanite in their saliva and mucus (Banfi et al.). In the case of milder forms of CF, transepithelial potential difference measurements can be helpful. CF can also be diagnosed by identification of mutations in the CFTR gene.

People with CF may be listed in a disease registry that allows researchers and doctors to track health results and identify candidates for clinical trials.

Prenatal

Women who are pregnant or couples planning a pregnancy can have themselves tested for the CFTR gene mutations to determine the risk that their child will be born with CF. Testing is typically performed first on one or both parents and, if the risk of CF is high, testing on the fetus is performed. The American College of Obstetricians and Gynecologists recommends all people thinking of becoming pregnant be tested to see if they are a carrier.

Because development of CF in the fetus requires each parent to pass on a mutated copy of the CFTR gene and because CF testing is expensive, testing is often performed initially on one parent. If testing shows that parent is a CFTR gene mutation carrier, the other parent is tested to calculate the risk that their children will have CF. CF can result from more than a thousand different mutations. As of 2016, typically only the most common mutations are tested for, such as ΔF508 Most commercially available tests look for 32 or fewer different mutations. If a family has a known uncommon mutation, specific screening for that mutation can be performed. Because not all known mutations are found on current tests, a negative screen does not guarantee that a child will not have CF.

During pregnancy, testing can be performed on the placenta (chorionic villus sampling) or the fluid around the fetus (amniocentesis). However, chorionic villus sampling has a risk of fetal death of one in 100 and amniocentesis of one in 200; a recent study has indicated this may be much lower, about one in 1,600.

Economically, for carrier couples of cystic fibrosis, when comparing preimplantation genetic diagnosis (PGD) with natural conception (NC) followed by prenatal testing and abortion of affected pregnancies, PGD provides net economic benefits up to a maternal age around 40 years, after which NC, prenatal testing, and abortion have higher economic benefit.

Management

While no cures for CF are known, several treatment methods are used. The management of CF has improved significantly over the past 70 years. While infants born with it 70 years ago would have been unlikely to live beyond their first year, infants today are likely to live well into adulthood. Recent advances in the treatment of cystic fibrosis have meant that individuals with cystic fibrosis can live a fuller life less encumbered by their condition. The cornerstones of management are the proactive treatment of airway infection, and encouragement of good nutrition and an active lifestyle. Pulmonary rehabilitation as a management of CF continues throughout a person's life, and is aimed at maximizing organ function, and therefore the quality of life. At best, current treatments delay the decline in organ function. Because of the wide variation in disease symptoms, treatment typically occurs at specialist multidisciplinary centers and is tailored to the individual. Targets for therapy are the lungs, gastrointestinal tract (including pancreatic enzyme supplements), the reproductive organs (including assisted reproductive technology), and psychological support.

The most consistent aspect of therapy in CF is limiting and treating the lung damage caused by thick mucus and infection, with the goal of maintaining quality of life. Intravenous, inhaled, and oral antibiotics are used to treat chronic and acute infections. Mechanical devices and inhalation medications are used to alter and clear the thickened mucus. These therapies, while effective, can be extremely time-consuming.

Antibiotics

Many people with CF are on one or more antibiotics at all times, even when healthy, to prophylactically suppress infection. Antibiotics are absolutely necessary whenever pneumonia is suspected or a noticeable decline in lung function is seen, and are usually chosen based on the results of a sputum analysis and the person's past response. This prolonged therapy often necessitates hospitalization and insertion of a more permanent IV such as a peripherally inserted central catheter or Port-a-Cath. Inhaled therapy with antibiotics such as tobramycin, colistin, and aztreonam is often given for months at a time to improve lung function by impeding the growth of colonized bacteria. Inhaled antibiotic therapy helps lung function by fighting infection, but also has significant drawbacks such as development of antibiotic resistance, tinnitus, and changes in the voice. Inhaled levofloxacin may be used to treat Pseudomonas aeruginosa in people with cystic fibrosis who are infected. The early management of Pseudomonas aeruginosa infection is easier and better, using nebulised antibiotics with or without oral antibiotics may sustain its eradication up to 2 years.

Antibiotics by mouth such as ciprofloxacin or azithromycin are given to help prevent infection or to control ongoing infection. The aminoglycoside antibiotics (e.g. tobramycin) used can cause hearing loss, damage to the balance system in the inner ear or kidney failure with long-term use. To prevent these side-effects, the amount of antibiotics in the blood is routinely measured and adjusted accordingly.

All these factors related to the antibiotics use, the chronicity of the disease, and the emergence of resistant bacteria demand more exploration for different strategies such as antibiotic adjuvant therapy.

Other medication

Aerosolized medications that help loosen secretions include dornase alfa and hypertonic saline. Dornase is a recombinant human deoxyribonuclease, which breaks down DNA in the sputum, thus decreasing its viscosity. Denufosol, an investigational drug, opens an alternative chloride channel, helping to liquefy mucus. Whether inhaled corticosteroids are useful is unclear, but stopping inhaled corticosteroid therapy is safe. There is weak evidence that corticosteroid treatment may cause harm by interfering with growth. Pneumococcal vaccination has not been studied as of 2014. As of 2014, there is no clear evidence from randomized controlled trials that the influenza vaccine is beneficial for people with cystic fibrosis.

Ivacaftor is a medication taken by mouth for the treatment of CF due to a number of specific mutations responsive to ivacaftor-induced CFTR protein enhancement. It improves lung function by about 10%; however, as of 2014 it is expensive. The first year it was on the market, the list price was over $300,000 per year in the United States. In July 2015, the U.S. Food and Drug Administration approved lumacaftor/ivacaftor. In 2018, the FDA approved the combination ivacaftor/tezacaftor; the manufacturer announced a list price of $292,000 per year. Tezacaftor helps move the CFTR protein to the correct position on the cell surface, and is designed to treat people with the F508del mutation.

A 2017 Cochrane review found that ursodeoxycholic acid, a bile salt, had insufficient data to show if it was useful.

Procedures

Several mechanical techniques are used to dislodge sputum and encourage its expectoration. One technique is chest physiotherapy where a respiratory therapist percusses an individual's chest by hand several times a day, to loosen up secretions. This "percussive effect" can be administered also through specific devices that device chest wall oscillation or intrapulmonary percussive ventilator. Other methods such as biphasic cuirass ventilation, and associated clearance mode available in such devices, integrate a cough assistance phase, as well as a vibration phase for dislodging secretions. These are portable and adapted for home use. Chest physiotherapy is beneficial for short-term airway clearance.

Another technique is positive expiratory pressure physiotherapy that consists of providing a back pressure to the airways during expiration. This effect is provided by devices that consists of a mask or a mouthpiece in which a resistance is applied only on the expiration phase. Operating principles of this technique seems to be the increase of gas pressure behind mucus through collateral ventilation along with a temporary increase in functional residual capacity preventing the early collapse of small airways during exhalation.

As lung disease worsens, mechanical breathing support may become necessary. Individuals with CF may need to wear special masks at night to help push air into their lungs. These machines, known as bilevel positive airway pressure (BiPAP) ventilators, help prevent low blood oxygen levels during sleep. Non-invasive ventilators may be used during physical therapy to improve sputum clearance. It is not known if this type of therapy has an impact on pulmonary exacerbations or disease progression. It is not known what role non-invasive ventilation therapy has for improving exercise capacity in people with cystic fibrosis. During severe illness, a tube may be placed in the throat (a procedure known as a tracheostomy) to enable breathing supported by a ventilator.

For children, preliminary studies show massage therapy may help people and their families' quality of life.

Some lung infections require surgical removal of the infected part of the lung. If this is necessary many times, lung function is severely reduced. The most effective treatment options for people with CF who have spontaneous or recurrent pneumothoraces is not clear.

Transplantation

Lung transplantation often becomes necessary for individuals with CF as lung function and exercise tolerance decline. Although single lung transplantation is possible in other diseases, individuals with CF must have both lungs replaced because the remaining lung might contain bacteria that could infect the transplanted lung. A pancreatic or liver transplant may be performed at the same time to alleviate liver disease and/or diabetes. Lung transplantation is considered when lung function declines to the point where assistance from mechanical devices is required or someone's survival is threatened.

Other aspects

Intracytoplasmic sperm injection can be used to provide fertility for men with cystic fibrosis

Newborns with intestinal obstruction typically require surgery, whereas adults with distal intestinal obstruction syndrome typically do not. Treatment of pancreatic insufficiency by replacement of missing digestive enzymes allows the duodenum to properly absorb nutrients and vitamins that would otherwise be lost in the feces. However, the best dosage and form of pancreatic enzyme replacement is unclear, as are the risks and long-term effectiveness of this treatment.

So far, no large-scale research involving the incidence of atherosclerosis and coronary heart disease in adults with cystic fibrosis has been conducted. This is likely because the vast majority of people with cystic fibrosis do not live long enough to develop clinically significant atherosclerosis or coronary heart disease.

Diabetes is the most common nonpulmonary complication of CF. It mixes features of type 1 and type 2 diabetes, and is recognized as a distinct entity, cystic fibrosis-related diabetes. While oral antidiabetic drugs are sometimes used, the recommended treatment is the use of insulin injections or an insulin pump, and, unlike in type 1 and 2 diabetes, dietary restrictions are not recommended.

There is no strong evidence that people with cystic fibrosis can prevent osteoporosis by increasing their intake of vitamin D. Bisphosphonates taken by mouth or intravenously can be used to improve the bone mineral density in people with cystic fibrosis. When taking bisphosphates intravenously, adverse effects such as pain and flu-like symptoms can be an issue. The adverse effects of bisphosphates taken by mouth on the gastrointestinal tract are not known.

Poor growth may be avoided by insertion of a feeding tube for increasing food energy through supplemental feeds or by administration of injected growth hormone.

Sinus infections are treated by prolonged courses of antibiotics. The development of nasal polyps or other chronic changes within the nasal passages may severely limit airflow through the nose, and over time reduce the person's sense of smell. Sinus surgery is often used to alleviate nasal obstruction and to limit further infections. Nasal steroids such as fluticasone are used to decrease nasal inflammation.

Female infertility may be overcome by assisted reproduction technology, particularly embryo transfer techniques. Male infertility caused by absence of the vas deferens may be overcome with testicular sperm extraction, collecting sperm cells directly from the testicles. If the collected sample contains too few sperm cells to likely have a spontaneous fertilization, intracytoplasmic sperm injection can be performed. Third party reproduction is also a possibility for women with CF. Whether taking antioxidants affects outcomes is unclear.

Physical exercise is usually part of outpatient care for people with cystic fibrosis. Aerobic exercise seems to be beneficial for aerobic exercise capacity, lung function and health-related quality of life; however, the quality of the evidence was poor.

Prognosis

The prognosis for cystic fibrosis has improved due to earlier diagnosis through screening and better treatment and access to health care. In 1959, the median age of survival of children with CF in the United States was six months. In 2010, survival is estimated to be 37 years for women and 40 for men. In Canada, median survival increased from 24 years in 1982 to 47.7 in 2007. In the United States those born with CF in 2016 have an expected life expectancy of 47.7 when cared for in specialty clinics.

In the US, of those with CF who are more than 18 years old as of 2009, 92% had graduated from high school, 67% had at least some college education, 15% were disabled, 9% were unemployed, 56% were single, and 39% were married or living with a partner.

Quality of life

Chronic illnesses can be very difficult to manage. CF is a chronic illness that affects the "digestive and respiratory tracts resulting in generalized malnutrition and chronic respiratory infections". The thick secretions clog the airways in the lungs, which often cause inflammation and severe lung infections. If it is compromised, it affects the quality of life (QOL) of someone with CF and their ability to complete such tasks as everyday chores. According to Schmitz and Goldbeck (2006), CF significantly increases emotional stress on both the individual and the family, "and the necessary time-consuming daily treatment routine may have further negative effects on quality of life". However, Havermans and colleagues (2006) have shown that young outpatients with CF who have participated in the Cystic Fibrosis Questionnaire-Revised "rated some QOL domains higher than did their parents". Consequently, outpatients with CF have a more positive outlook for themselves.  Furthermore, many ways can improve the QOL in CF patients. Exercise is promoted to increase lung function. Integrating an exercise regimen into the CF patient’s daily routine can significantly improve QOL. No definitive cure for CF is known, but diverse medications are used, such as mucolytics, bronchodilators, steroids, and antibiotics, that have the purpose of loosening mucus, expanding airways, decreasing inflammation, and fighting lung infections, respectively.

Epidemiology

Mutation Frequency
worldwide
ΔF508 66%–70%
G542X 2.4%
G551D 1.6%
N1303K 1.3%
W1282X 1.2%
All others 27.5%

Cystic fibrosis is the most common life-limiting autosomal recessive disease among people of European heritage. In the United States, about 30,000 individuals have CF; most are diagnosed by six months of age. In Canada, about 4,000 people have CF. Around 1 in 25 people of European descent, and one in 30 of Caucasian Americans, is a carrier of a CF mutation. Although CF is less common in these groups, roughly one in 46 Hispanics, one in 65 Africans, and one in 90 Asians carry at least one abnormal CFTR gene. Ireland has the world's highest prevalence of CF, at one in 1353.

Although technically a rare disease, CF is ranked as one of the most widespread life-shortening genetic diseases. It is most common among nations in the Western world. An exception is Finland, where only one in 80 people carries a CF mutation. The World Health Organization states, "In the European Union, one in 2000–3000 newborns is found to be affected by CF". In the United States, one in 3,500 children is born with CF. In 1997, about one in 3,300 Caucasian children in the United States was born with CF. In contrast, only one in 15,000 African American children suffered from it, and in Asian Americans, the rate was even lower at one in 32,000.

Cystic fibrosis is diagnosed in males and females equally. For reasons that remain unclear, data have shown that males tend to have a longer life expectancy than females, but recent studies suggest this gender gap may no longer exist perhaps due to improvements in health care facilities, while a recent study from Ireland identified a link between the female hormone estrogen and worse outcomes in CF.

The distribution of CF alleles varies among populations. The frequency of ΔF508 carriers has been estimated at one in 200 in northern Sweden, one in 143 in Lithuanians, and one in 38 in Denmark. No ΔF508 carriers were found among 171 Finns and 151 Saami people. ΔF508 does occur in Finland, but it is a minority allele there. CF is known to occur in only 20 families (pedigrees) in Finland.

Evolution

The ΔF508 mutation is estimated to be up to 52,000 years old. Numerous hypotheses have been advanced as to why such a lethal mutation has persisted and spread in the human population. Other common autosomal recessive diseases such as sickle-cell anemia have been found to protect carriers from other diseases, an evolutionary trade-off known as heterozygote advantage. Resistance to the following have all been proposed as possible sources of heterozygote advantage:
  • Cholera: With the discovery that cholera toxin requires normal host CFTR proteins to function properly, it was hypothesized that carriers of mutant CFTR genes benefited from resistance to cholera and other causes of diarrhea. Further studies have not confirmed this hypothesis.
  • Typhoid: Normal CFTR proteins are also essential for the entry of Salmonella Typhi into cells, suggesting that carriers of mutant CFTR genes might be resistant to typhoid fever. No in vivo study has yet confirmed this. In both cases, the low level of cystic fibrosis outside of Europe, in places where both cholera and typhoid fever are endemic, is not immediately explicable.
  • Diarrhea: The prevalence of CF in Europe might be connected with the development of cattle domestication. In this hypothesis, carriers of a single mutant CFTR had some protection from diarrhea caused by lactose intolerance, prior to the appearance of the mutations that created lactose tolerance.
  • Tuberculosis: Another possible explanation is that carriers of the gene could have some resistance to TB. This hypothesis is based on the thesis that CFTR gene mutation carriers have insufficient action in one of their enzymes – arylsulphatase - which is necessary for Mycobacterium tuberculosis virulence. As M. tuberculosis would use its host’s sources to affect the individual, and due to the lack of enzyme it could not presents its virulence, being a carrier of CFTR mutation could provide resistance against tuberculosis.

History

Dorothy Hansine Andersen first described cystic fibrosis in 1938.

CF is supposed to have appeared about 3,000 BC because of migration of peoples, gene mutations, and new conditions in nourishment. Although the entire clinical spectrum of CF was not recognized until the 1930s, certain aspects of CF were identified much earlier. Indeed, literature from Germany and Switzerland in the 18th century warned "Wehe dem Kind, das beim Kuß auf die Stirn salzig schmeckt, es ist verhext und muss bald sterben" or "Woe to the child who tastes salty from a kiss on the brow, for he is cursed and soon must die", recognizing the association between the salt loss in CF and illness.

In the 19th century, Carl von Rokitansky described a case of fetal death with meconium peritonitis, a complication of meconium ileus associated with CF. Meconium ileus was first described in 1905 by Karl Landsteiner. In 1936, Guido Fanconi described a connection between celiac disease, cystic fibrosis of the pancreas, and bronchiectasis.

In 1938, Dorothy Hansine Andersen published an article, "Cystic Fibrosis of the Pancreas and Its Relation to Celiac Disease: a Clinical and Pathological Study", in the American Journal of Diseases of Children. She was the first to describe the characteristic cystic fibrosis of the pancreas and to correlate it with the lung and intestinal disease prominent in CF. She also first hypothesized that CF was a recessive disease and first used pancreatic enzyme replacement to treat affected children. In 1952, Paul di Sant’Agnese discovered abnormalities in sweat electrolytes; a sweat test was developed and improved over the next decade.

The first linkage between CF and another marker (Paroxonase) was found in 1985 by Hans Eiberg, indicating that only one locus exists for CF. In 1988, the first mutation for CF, ΔF508 was discovered by Francis Collins, Lap-Chee Tsui, and John R. Riordan on the seventh chromosome. Subsequent research has found over 1,000 different mutations that cause CF.

Because mutations in the CFTR gene are typically small, classical genetics techniques had been unable to accurately pinpoint the mutated gene. Using protein markers, gene-linkage studies were able to map the mutation to chromosome 7. Chromosome-walking and -jumping techniques were then used to identify and sequence the gene. In 1989, Lap-Chee Tsui led a team of researchers at the Hospital for Sick Children in Toronto that discovered the gene responsible for CF. CF represents a classic example of how a human genetic disorder was elucidated strictly by the process of forward genetics.

Research

Gene therapy

Gene therapy has been explored as a potential cure for CF. Results from clinical trials have shown limited success as of 2016, and using gene therapy as routine therapy is not suggested. A small study published in 2015 found a small benefit.

The focus of much CF gene therapy research is aimed at trying to place a normal copy of the CFTR gene into affected cells. Transferring the normal CFTR gene into the affected epithelium cells would result in the production of functional CFTR protein in all target cells, without adverse reactions or an inflammation response. To prevent the lung manifestations of CF, only 5–10% the normal amount of CFTR gene expression is needed. Multiple approaches have been tested for gene transfer, such as liposomes and viral vectors in animal models and clinical trials. However, both methods were found to be relatively inefficient treatment options, mainly because very few cells take up the vector and express the gene, so the treatment has little effect. Additionally, problems have been noted in cDNA recombination, such that the gene introduced by the treatment is rendered unusable. There has been a functional repair in culture of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.

Phage therapy

Phage therapy is being studied for multidrug resistant bacteria in people with CF.

Small molecules

A number of small molecules that aim at compensating various mutations of the CFTR gene are under development. One approach is to develop drugs that get the ribosome to overcome the stop codon and synthesize a full-length CFTR protein. About 10% of CF results from a premature stop codon in the DNA, leading to early termination of protein synthesis and truncated proteins. These drugs target nonsense mutations such as G542X, which consists of the amino acid glycine in position 542 being replaced by a stop codon. Aminoglycoside antibiotics interfere with protein synthesis and error-correction. In some cases, they can cause the cell to overcome a premature stop codon by inserting a random amino acid, thereby allowing expression of a full-length protein. The aminoglycoside gentamicin has been used to treat lung cells from CF patients in the laboratory to induce the cells to grow full-length proteins. Another drug targeting nonsense mutations is ataluren, which is undergoing Phase III clinical trials as of October 2011.

Society and culture

• Every Breath I Take, Surviving and Thriving With Cystic Fibrosis by Claire Wineland

Neuropharmacology

From Wikipedia, the free encyclopedia ...