Search This Blog

Monday, April 1, 2019

Fruit

From Wikipedia, the free encyclopedia

In botany, a fruit is the seed-bearing structure in flowering plants (also known as angiosperms) formed from the ovary after flowering.

Fruits are the means by which angiosperms disseminate seeds. Edible fruits, in particular, have propagated with the movements of humans and animals in a symbiotic relationship as a means for seed dispersal and nutrition; in fact, humans and many animals have become dependent on fruits as a source of food. Accordingly, fruits account for a substantial fraction of the world's agricultural output, and some (such as the apple and the pomegranate) have acquired extensive cultural and symbolic meanings. 

In common language usage, "fruit" normally means the fleshy seed-associated structures of a plant that are sweet or sour, and edible in the raw state, such as apples, bananas, grapes, lemons, oranges, and strawberries. On the other hand, in botanical usage, "fruit" includes many structures that are not commonly called "fruits", such as bean pods, corn kernels, tomatoes, and wheat grains. The section of a fungus that produces spores is also called a fruiting body.

Botanic fruit and culinary fruit

Venn diagram representing the relationship between (culinary) vegetables and botanical fruits
 
Many common terms for seeds and fruit do not correspond to the botanical classifications. In culinary terminology, a fruit is usually any sweet-tasting plant part, especially a botanical fruit; a nut is any hard, oily, and shelled plant product; and a vegetable is any savory or less sweet plant product. However, in botany, a fruit is the ripened ovary or carpel that contains seeds, a nut is a type of fruit and not a seed, and a seed is a ripened ovule.

Examples of culinary "vegetables" and nuts that are botanically fruit include corn, cucurbits (e.g., cucumber, pumpkin, and squash), eggplant, legumes (beans, peanuts, and peas), sweet pepper, and tomato. In addition, some spices, such as allspice and chili pepper, are fruits, botanically speaking. In contrast, rhubarb is often referred to as a fruit, because it is used to make sweet desserts such as pies, though only the petiole (leaf stalk) of the rhubarb plant is edible, and edible gymnosperm seeds are often given fruit names, e.g., ginkgo nuts and pine nuts

Botanically, a cereal grain, such as corn, rice, or wheat, is also a kind of fruit, termed a caryopsis. However, the fruit wall is very thin and is fused to the seed coat, so almost all of the edible grain is actually a seed.

Structure

The outer, often edible layer, is the pericarp, formed from the ovary and surrounding the seeds, although in some species other tissues contribute to or form the edible portion. The pericarp may be described in three layers from outer to inner, the epicarp, mesocarp and endocarp

Fruit that bears a prominent pointed terminal projection is said to be beaked.

Development

The development sequence of a typical drupe, the nectarine (Prunus persica) over a 7.5 month period, from bud formation in early winter to fruit ripening in midsummer
 
A fruit results from maturation of one or more flowers, and the gynoecium of the flower(s) forms all or part of the fruit.

Inside the ovary/ovaries are one or more ovules where the megagametophyte contains the egg cell. After double fertilization, these ovules will become seeds. The ovules are fertilized in a process that starts with pollination, which involves the movement of pollen from the stamens to the stigma of flowers. After pollination, a tube grows from the pollen through the stigma into the ovary to the ovule and two sperm are transferred from the pollen to the megagametophyte. Within the megagametophyte one of the two sperm unites with the egg, forming a zygote, and the second sperm enters the central cell forming the endosperm mother cell, which completes the double fertilization process. Later the zygote will give rise to the embryo of the seed, and the endosperm mother cell will give rise to endosperm, a nutritive tissue used by the embryo. 

As the ovules develop into seeds, the ovary begins to ripen and the ovary wall, the pericarp, may become fleshy (as in berries or drupes), or form a hard outer covering (as in nuts). In some multiseeded fruits, the extent to which the flesh develops is proportional to the number of fertilized ovules. The pericarp is often differentiated into two or three distinct layers called the exocarp (outer layer, also called epicarp), mesocarp (middle layer), and endocarp (inner layer). In some fruits, especially simple fruits derived from an inferior ovary, other parts of the flower (such as the floral tube, including the petals, sepals, and stamens), fuse with the ovary and ripen with it. In other cases, the sepals, petals and/or stamens and style of the flower fall off. When such other floral parts are a significant part of the fruit, it is called an accessory fruit. Since other parts of the flower may contribute to the structure of the fruit, it is important to study flower structure to understand how a particular fruit forms.

There are three general modes of fruit development:
  1. Apocarpous fruits develop from a single flower having one or more separate carpels, and they are the simplest fruits.
  2. Syncarpous fruits develop from a single gynoecium having two or more carpels fused together.
  3. Multiple fruits form from many different flowers.
Plant scientists have grouped fruits into three main groups, simple fruits, aggregate fruits, and composite or multiple fruits. The groupings are not evolutionarily relevant, since many diverse plant taxa may be in the same group, but reflect how the flower organs are arranged and how the fruits develop.

Simple fruit

Dewberry flowers. Note the multiple pistils, each of which will produce a drupelet. Each flower will become a blackberry-like aggregate fruit.
 
Simple fruits can be either dry or fleshy, and result from the ripening of a simple or compound ovary in a flower with only one pistil. Dry fruits may be either dehiscent (they open to discharge seeds), or indehiscent (they do not open to discharge seeds). Types of dry, simple fruits, and examples of each, include:
Fruits in which part or all of the pericarp (fruit wall) is fleshy at maturity are simple fleshy fruits. Types of simple, fleshy, fruits (with examples) include:
An aggregate fruit, or etaerio, develops from a single flower with numerous simple pistils.
The pome fruits of the family Rosaceae, (including apples, pears, rosehips, and saskatoon berry) are a syncarpous fleshy fruit, a simple fruit, developing from a half-inferior ovary.

Schizocarp fruits form from a syncarpous ovary and do not really dehisce, but rather split into segments with one or more seeds; they include a number of different forms from a wide range of families. Carrot seed is an example. 

Lilium unripe capsule fruit

Aggregate fruit

Detail of raspberry flower
 
Aggregate fruits form from single flowers that have multiple carpels which are not joined together, i.e. each pistil contains one carpel. Each pistil forms a fruitlet, and collectively the fruitlets are called an etaerio. Four types of aggregate fruits include etaerios of achenes, follicles, drupelets, and berries. Ranunculaceae species, including Clematis and Ranunculus have an etaerio of achenes, Calotropis has an etaerio of follicles, and Rubus species like raspberry, have an etaerio of drupelets. Annona have an etaerio of berries.

The raspberry, whose pistils are termed drupelets because each is like a small drupe attached to the receptacle. In some bramble fruits (such as blackberry) the receptacle is elongated and part of the ripe fruit, making the blackberry an aggregate-accessory fruit. The strawberry is also an aggregate-accessory fruit, only one in which the seeds are contained in achenes. In all these examples, the fruit develops from a single flower with numerous pistils.

Multiple fruits

A multiple fruit is one formed from a cluster of flowers (called an inflorescence). Each flower produces a fruit, but these mature into a single mass. Examples are the pineapple, fig, mulberry, osage-orange, and breadfruit

In some plants, such as this noni, flowers are produced regularly along the stem and it is possible to see together examples of flowering, fruit development, and fruit ripening.
 
In the photograph on the right, stages of flowering and fruit development in the noni or Indian mulberry (Morinda citrifolia) can be observed on a single branch. First an inflorescence of white flowers called a head is produced. After fertilization, each flower develops into a drupe, and as the drupes expand, they become connate (merge) into a multiple fleshy fruit called a syncarp.

Berries

Berries are another type of fleshy fruit; they are simple fruit created from a single ovary. The ovary may be compound, with several carpels. Types include (examples follow in the table below):

Accessory fruit

The fruit of a pineapple includes tissue from the sepals as well as the pistils of many flowers. It is an accessory fruit and a multiple fruit.

Some or all of the edible part of accessory fruit is not generated by the ovary. Accessory fruit can be simple, aggregate, or multiple, i.e., they can include one or more pistils and other parts from the same flower, or the pistils and other parts of many flowers.

Table of fruit examples

Types of fleshy fruits
True berry Pepo Hesperidium Aggregate fruit Multiple fruit Accessory fruit
Blackcurrant, Blueberry, Chili pepper, Cranberry, Eggplant, Gooseberry, Grape, Guava, Kiwifruit, Lucuma, Pomegranate, Redcurrant, Tomato Cucumber, Gourd, Melon, Pumpkin Grapefruit, Lemon, Lime, Orange Blackberry, Boysenberry, Raspberry Fig, Hedge apple, Mulberry, Pineapple Apple, Pineapple, Rose hip, Stone fruit, Strawberry

Seedless fruits

Some seedless fruits
 
An arrangement of fruits commonly thought of as vegetables, including tomatoes and various squash
 
Seedlessness is an important feature of some fruits of commerce. Commercial cultivars of bananas and pineapples are examples of seedless fruits. Some cultivars of citrus fruits (especially grapefruit, mandarin oranges, navel oranges), satsumas, table grapes, and watermelons are valued for their seedlessness. In some species, seedlessness is the result of parthenocarpy, where fruits set without fertilization. Parthenocarpic fruit set may or may not require pollination, but most seedless citrus fruits require a stimulus from pollination to produce fruit. 

Seedless bananas and grapes are triploids, and seedlessness results from the abortion of the embryonic plant that is produced by fertilization, a phenomenon known as stenospermocarpy, which requires normal pollination and fertilization.

Seed dissemination

Variations in fruit structures largely depend on their seeds' mode of dispersal. This dispersal can be achieved by animals, explosive dehiscence, water, or wind.

Some fruits have coats covered with spikes or hooked burrs, either to prevent themselves from being eaten by animals, or to stick to the feathers, hairs, or legs of animals, using them as dispersal agents. Examples include cocklebur and unicorn plant.

The sweet flesh of many fruits is "deliberately" appealing to animals, so that the seeds held within are eaten and "unwittingly" carried away and deposited (i.e., defecated) at a distance from the parent. Likewise, the nutritious, oily kernels of nuts are appealing to rodents (such as squirrels), which hoard them in the soil to avoid starving during the winter, thus giving those seeds that remain uneaten the chance to germinate and grow into a new plant away from their parent.

Other fruits are elongated and flattened out naturally, and so become thin, like wings or helicopter blades, e.g., elm, maple, and tuliptree. This is an evolutionary mechanism to increase dispersal distance away from the parent, via wind. Other wind-dispersed fruit have tiny "parachutes", e.g., dandelion, milkweed, salsify.

Coconut fruits can float thousands of miles in the ocean to spread seeds. Some other fruits that can disperse via water are nipa palm and screw pine.

Some fruits fling seeds substantial distances (up to 100 m in sandbox tree) via explosive dehiscence or other mechanisms, e.g., impatiens and squirting cucumber.

Uses

Many hundreds of fruits, including fleshy fruits (like apple, kiwifruit, mango, peach, pear, and watermelon) are commercially valuable as human food, eaten both fresh and as jams, marmalade and other preserves. Fruits are also used in manufactured foods (e.g., cakes, cookies, ice cream, muffins, or yogurt) or beverages, such as fruit juices (e.g., apple juice, grape juice, or orange juice) or alcoholic beverages (e.g., brandy, fruit beer, or wine). Fruits are also used for gift giving, e.g., in the form of Fruit Baskets and Fruit Bouquets

Many "vegetables" in culinary parlance are botanical fruits, including bell pepper, cucumber, eggplant, green bean, okra, pumpkin, squash, tomato, and zucchini. Olive fruit is pressed for olive oil. Spices like allspice, black pepper, paprika, and vanilla are derived from berries.

Nutritional value

Each point refers to a 100 g serving of the fresh fruit, the daily recommended allowance of vitamin C is on the X axis and mg of Potassium (K) on the Y (offset by 100 mg which every fruit has) and the size of the disk represents amount of fiber (key in upper right). Watermelon, which has almost no fiber, and low levels of vitamin C and potassium, comes in last place.
 
Fresh fruits are generally high in fiber, vitamin C, and water.

Regular consumption of fruit is generally associated with reduced risks of several diseases and functional declines associated with aging.

Nonfood uses

Because fruits have been such a major part of the human diet, various cultures have developed many different uses for fruits they do not depend on for food. For example:

Safety

For food safety, the CDC recommends proper fruit handling and preparation to reduce the risk of food contamination and foodborne illness. Fresh fruits and vegetables should be carefully selected; at the store, they should not be damaged or bruised; and precut pieces should be refrigerated or surrounded by ice. 

All fruits and vegetables should be rinsed before eating. This recommendation also applies to produce with rinds or skins that are not eaten. It should be done just before preparing or eating to avoid premature spoilage. 

Fruits and vegetables should be kept separate from raw foods like meat, poultry, and seafood, as well as from utensils that have come in contact with raw foods. Fruits and vegetables that are not going to be cooked should be thrown away if they have touched raw meat, poultry, seafood, or eggs. 

All cut, peeled, or cooked fruits and vegetables should be refrigerated within two hours. After a certain time, harmful bacteria may grow on them and increase the risk of foodborne illness.

Allergies

Fruit allergies make up about 10 percent of all food related allergies.

Storage

All fruits benefit from proper post harvest care, and in many fruits, the plant hormone ethylene causes ripening. Therefore, maintaining most fruits in an efficient cold chain is optimal for post harvest storage, with the aim of extending and ensuring shelf life.

Plant physiology

From Wikipedia, the free encyclopedia

A germination rate experiment
 
Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants. Closely related fields include plant morphology (structure of plants), plant ecology (interactions with the environment), phytochemistry (biochemistry of plants), cell biology, genetics, biophysics and molecular biology

Fundamental processes such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed germination, dormancy and stomata function and transpiration, both parts of plant water relations, are studied by plant physiologists.

Aims

The field of plant physiology includes the study of all the internal activities of plants—those chemical and physical processes associated with life as they occur in plants. This includes study at many levels of scale of size and time. At the smallest scale are molecular interactions of photosynthesis and internal diffusion of water, minerals, and nutrients. At the largest scale are the processes of plant development, seasonality, dormancy, and reproductive control. Major subdisciplines of plant physiology include phytochemistry and phytopathology (the study of disease in plants). The scope of plant physiology as a discipline may be divided into several major areas of research.

Five key areas of study within plant physiology.
 
First, the study of phytochemistry (plant chemistry) is included within the domain of plant physiology. To function and survive, plants produce a wide array of chemical compounds not found in other organisms. Photosynthesis requires a large array of pigments, enzymes, and other compounds to function. Because they cannot move, plants must also defend themselves chemically from herbivores, pathogens and competition from other plants. They do this by producing toxins and foul-tasting or smelling chemicals. Other compounds defend plants against disease, permit survival during drought, and prepare plants for dormancy, while other compounds are used to attract pollinators or herbivores to spread ripe seeds. 

Secondly, plant physiology includes the study of biological and chemical processes of individual plant cells. Plant cells have a number of features that distinguish them from cells of animals, and which lead to major differences in the way that plant life behaves and responds differently from animal life. For example, plant cells have a cell wall which restricts the shape of plant cells and thereby limits the flexibility and mobility of plants. Plant cells also contain chlorophyll, a chemical compound that interacts with light in a way that enables plants to manufacture their own nutrients rather than consuming other living things as animals do. 

Thirdly, plant physiology deals with interactions between cells, tissues, and organs within a plant. Different cells and tissues are physically and chemically specialized to perform different functions. Roots and rhizoids function to anchor the plant and acquire minerals in the soil. Leaves catch light in order to manufacture nutrients. For both of these organs to remain living, minerals that the roots acquire must be transported to the leaves, and the nutrients manufactured in the leaves must be transported to the roots. Plants have developed a number of ways to achieve this transport, such as vascular tissue, and the functioning of the various modes of transport is studied by plant physiologists. 

Fourthly, plant physiologists study the ways that plants control or regulate internal functions. Like animals, plants produce chemicals called hormones which are produced in one part of the plant to signal cells in another part of the plant to respond. Many flowering plants bloom at the appropriate time because of light-sensitive compounds that respond to the length of the night, a phenomenon known as photoperiodism. The ripening of fruit and loss of leaves in the winter are controlled in part by the production of the gas ethylene by the plant. 

Finally, plant physiology includes the study of plant response to environmental conditions and their variation, a field known as environmental physiology. Stress from water loss, changes in air chemistry, or crowding by other plants can lead to changes in the way a plant functions. These changes may be affected by genetic, chemical, and physical factors.

Biochemistry of plants

Latex being collected from a tapped rubber tree.

The chemical elements of which plants are constructed—principally carbon, oxygen, hydrogen, nitrogen, phosphorus, sulfur, etc.—are the same as for all other life forms animals, fungi, bacteria and even viruses. Only the details of the molecules into which they are assembled differs. 

Despite this underlying similarity, plants produce a vast array of chemical compounds with unique properties which they use to cope with their environment. Pigments are used by plants to absorb or detect light, and are extracted by humans for use in dyes. Other plant products may be used for the manufacture of commercially important rubber or biofuel. Perhaps the most celebrated compounds from plants are those with pharmacological activity, such as salicylic acid from which aspirin is made, morphine, and digoxin. Drug companies spend billions of dollars each year researching plant compounds for potential medicinal benefits.

Constituent elements

Plants require some nutrients, such as carbon and nitrogen, in large quantities to survive. Some nutrients are termed macronutrients, where the prefix macro- (large) refers to the quantity needed, not the size of the nutrient particles themselves. Other nutrients, called micronutrients, are required only in trace amounts for plants to remain healthy. Such micronutrients are usually absorbed as ions dissolved in water taken from the soil, though carnivorous plants acquire some of their micronutrients from captured prey.

The following tables list element nutrients essential to plants. Uses within plants are generalized.

Macronutrients – necessary in large quantities
Element Form of uptake Notes
Nitrogen NO3, NH4+ Nucleic acids, proteins, hormones, etc.
Oxygen O2 H2O Cellulose, starch, other organic compounds
Carbon CO2 Cellulose, starch, other organic compounds
Hydrogen H2O Cellulose, starch, other organic compounds
Potassium K+ Cofactor in protein synthesis, water balance, etc.
Calcium Ca2+ Membrane synthesis and stabilization
Magnesium Mg2+ Element essential for chlorophyll
Phosphorus H2PO4 Nucleic acids, phospholipids, ATP
Sulfur SO42− Constituent of proteins

Micronutrients – necessary in small quantities
Element Form of uptake Notes
Chlorine Cl Photosystem II and stomata function
Iron Fe2+, Fe3+ Chlorophyll formation and nitrogen fixation
Boron HBO3 Crosslinking pectin
Manganese Mn2+ Activity of some enzymes and photosystem II
Zinc Zn2+ Involved in the synthesis of enzymes and chlorophyll
Copper Cu+ Enzymes for lignin synthesis
Molybdenum MoO42− Nitrogen fixation, reduction of nitrates
Nickel Ni2+ Enzymatic cofactor in the metabolism of nitrogen compounds

Pigments

Space-filling model of the chlorophyll molecule.
 
Anthocyanin gives these pansies their dark purple pigmentation.

Among the most important molecules for plant function are the pigments. Plant pigments include a variety of different kinds of molecules, including porphyrins, carotenoids, and anthocyanins. All biological pigments selectively absorb certain wavelengths of light while reflecting others. The light that is absorbed may be used by the plant to power chemical reactions, while the reflected wavelengths of light determine the color the pigment appears to the eye.

Chlorophyll is the primary pigment in plants; it is a porphyrin that absorbs red and blue wavelengths of light while reflecting green. It is the presence and relative abundance of chlorophyll that gives plants their green color. All land plants and green algae possess two forms of this pigment: chlorophyll a and chlorophyll b. Kelps, diatoms, and other photosynthetic heterokonts contain chlorophyll c instead of b, red algae possess chlorophyll a. All chlorophylls serve as the primary means plants use to intercept light to fuel photosynthesis.

Carotenoids are red, orange, or yellow tetraterpenoids. They function as accessory pigments in plants, helping to fuel photosynthesis by gathering wavelengths of light not readily absorbed by chlorophyll. The most familiar carotenoids are carotene (an orange pigment found in carrots), lutein (a yellow pigment found in fruits and vegetables), and lycopene (the red pigment responsible for the color of tomatoes). Carotenoids have been shown to act as antioxidants and to promote healthy eyesight in humans.

Anthocyanins (literally "flower blue") are water-soluble flavonoid pigments that appear red to blue, according to pH. They occur in all tissues of higher plants, providing color in leaves, stems, roots, flowers, and fruits, though not always in sufficient quantities to be noticeable. Anthocyanins are most visible in the petals of flowers, where they may make up as much as 30% of the dry weight of the tissue. They are also responsible for the purple color seen on the underside of tropical shade plants such as Tradescantia zebrina. In these plants, the anthocyanin catches light that has passed through the leaf and reflects it back towards regions bearing chlorophyll, in order to maximize the use of available light.

Betalains are red or yellow pigments. Like anthocyanins they are water-soluble, but unlike anthocyanins they are indole-derived compounds synthesized from tyrosine. This class of pigments is found only in the Caryophyllales (including cactus and amaranth), and never co-occur in plants with anthocyanins. Betalains are responsible for the deep red color of beets, and are used commercially as food-coloring agents. Plant physiologists are uncertain of the function that betalains have in plants which possess them, but there is some preliminary evidence that they may have fungicidal properties.

Signals and regulators

A mutation that stops Arabidopsis thaliana responding to auxin causes abnormal growth (right)
 
Plants produce hormones and other growth regulators which act to signal a physiological response in their tissues. They also produce compounds such as phytochrome that are sensitive to light and which serve to trigger growth or development in response to environmental signals.

Plant hormones

Plant hormones, known as plant growth regulators (PGRs) or phytohormones, are chemicals that regulate a plant's growth. According to a standard animal definition, hormones are signal molecules produced at specific locations, that occur in very low concentrations, and cause altered processes in target cells at other locations. Unlike animals, plants lack specific hormone-producing tissues or organs. Plant hormones are often not transported to other parts of the plant and production is not limited to specific locations. 

Plant hormones are chemicals that in small amounts promote and influence the growth, development and differentiation of cells and tissues. Hormones are vital to plant growth; affecting processes in plants from flowering to seed development, dormancy, and germination. They regulate which tissues grow upwards and which grow downwards, leaf formation and stem growth, fruit development and ripening, as well as leaf abscission and even plant death.

The most important plant hormones are abscissic acid (ABA), auxins, ethylene, gibberellins, and cytokinins, though there are many other substances that serve to regulate plant physiology.

Photomorphogenesis

While most people know that light is important for photosynthesis in plants, few realize that plant sensitivity to light plays a role in the control of plant structural development (morphogenesis). The use of light to control structural development is called photomorphogenesis, and is dependent upon the presence of specialized photoreceptors, which are chemical pigments capable of absorbing specific wavelengths of light. 

Plants use four kinds of photoreceptors: phytochrome, cryptochrome, a UV-B photoreceptor, and protochlorophyllide a. The first two of these, phytochrome and cryptochrome, are photoreceptor proteins, complex molecular structures formed by joining a protein with a light-sensitive pigment. Cryptochrome is also known as the UV-A photoreceptor, because it absorbs ultraviolet light in the long wave "A" region. The UV-B receptor is one or more compounds not yet identified with certainty, though some evidence suggests carotene or riboflavin as candidates. Protochlorophyllide a, as its name suggests, is a chemical precursor of chlorophyll

The most studied of the photoreceptors in plants is phytochrome. It is sensitive to light in the red and far-red region of the visible spectrum. Many flowering plants use it to regulate the time of flowering based on the length of day and night (photoperiodism) and to set circadian rhythms. It also regulates other responses including the germination of seeds, elongation of seedlings, the size, shape and number of leaves, the synthesis of chlorophyll, and the straightening of the epicotyl or hypocotyl hook of dicot seedlings.

Photoperiodism

The poinsettia is a short-day plant, requiring two months of long nights prior to blooming.


Many flowering plants use the pigment phytochrome to sense seasonal changes in day length, which they take as signals to flower. This sensitivity to day length is termed photoperiodism. Broadly speaking, flowering plants can be classified as long day plants, short day plants, or day neutral plants, depending on their particular response to changes in day length. Long day plants require a certain minimum length of daylight to starts flowering, so these plants flower in the spring or summer. Conversely, short day plants flower when the length of daylight falls below a certain critical level. Day neutral plants do not initiate flowering based on photoperiodism, though some may use temperature sensitivity (vernalization) instead. 

Although a short day plant cannot flower during the long days of summer, it is not actually the period of light exposure that limits flowering. Rather, a short day plant requires a minimal length of uninterrupted darkness in each 24-hour period (a short daylength) before floral development can begin. It has been determined experimentally that a short day plant (long night) does not flower if a flash of phytochrome activating light is used on the plant during the night. 

Plants make use of the phytochrome system to sense day length or photoperiod. This fact is utilized by florists and greenhouse gardeners to control and even induce flowering out of season, such as the Poinsettia.

Environmental physiology

Phototropism in Arabidopsis thaliana is regulated by blue to UV light.

Paradoxically, the subdiscipline of environmental physiology is on the one hand a recent field of study in plant ecology and on the other hand one of the oldest. Environmental physiology is the preferred name of the subdiscipline among plant physiologists, but it goes by a number of other names in the applied sciences. It is roughly synonymous with ecophysiology, crop ecology, horticulture and agronomy. The particular name applied to the subdiscipline is specific to the viewpoint and goals of research. Whatever name is applied, it deals with the ways in which plants respond to their environment and so overlaps with the field of ecology.

Environmental physiologists examine plant response to physical factors such as radiation (including light and ultraviolet radiation), temperature, fire, and wind. Of particular importance are water relations (which can be measured with the Pressure bomb) and the stress of drought or inundation, exchange of gases with the atmosphere, as well as the cycling of nutrients such as nitrogen and carbon

Environmental physiologists also examine plant response to biological factors. This includes not only negative interactions, such as competition, herbivory, disease and parasitism, but also positive interactions, such as mutualism and pollination.

Tropisms and nastic movements

Plants may respond both to directional and non-directional stimuli. A response to a directional stimulus, such as gravity or sunlight, is called a tropism. A response to a nondirectional stimulus, such as temperature or humidity, is a nastic movement. 

Tropisms in plants are the result of differential cell growth, in which the cells on one side of the plant elongates more than those on the other side, causing the part to bend toward the side with less growth. Among the common tropisms seen in plants is phototropism, the bending of the plant toward a source of light. Phototropism allows the plant to maximize light exposure in plants which require additional light for photosynthesis, or to minimize it in plants subjected to intense light and heat. Geotropism allows the roots of a plant to determine the direction of gravity and grow downwards. Tropisms generally result from an interaction between the environment and production of one or more plant hormones. 

Nastic movements results from differential cell growth (e.g. epinasty and hiponasty), or from changes in turgor pressure within plant tissues (e.g., nyctinasty), which may occur rapidly. A familiar example is thigmonasty (response to touch) in the Venus fly trap, a carnivorous plant. The traps consist of modified leaf blades which bear sensitive trigger hairs. When the hairs are touched by an insect or other animal, the leaf folds shut. This mechanism allows the plant to trap and digest small insects for additional nutrients. Although the trap is rapidly shut by changes in internal cell pressures, the leaf must grow slowly to reset for a second opportunity to trap insects.

Plant disease

Powdery mildew on crop leaves

Economically, one of the most important areas of research in environmental physiology is that of phytopathology, the study of diseases in plants and the manner in which plants resist or cope with infection. Plant are susceptible to the same kinds of disease organisms as animals, including viruses, bacteria, and fungi, as well as physical invasion by insects and roundworms

Because the biology of plants differs with animals, their symptoms and responses are quite different. In some cases, a plant can simply shed infected leaves or flowers to prevent the spread of disease, in a process called abscission. Most animals do not have this option as a means of controlling disease. Plant diseases organisms themselves also differ from those causing disease in animals because plants cannot usually spread infection through casual physical contact. Plant pathogens tend to spread via spores or are carried by animal vectors

One of the most important advances in the control of plant disease was the discovery of Bordeaux mixture in the nineteenth century. The mixture is the first known fungicide and is a combination of copper sulfate and lime. Application of the mixture served to inhibit the growth of downy mildew that threatened to seriously damage the French wine industry.

History

Early history

Sir Francis Bacon published one of the first plant physiology experiments in 1627 in the book, Sylva Sylvarum. Bacon grew several terrestrial plants, including a rose, in water and concluded that soil was only needed to keep the plant upright. Jan Baptist van Helmont published what is considered the first quantitative experiment in plant physiology in 1648. He grew a willow tree for five years in a pot containing 200 pounds of oven-dry soil. The soil lost just two ounces of dry weight and van Helmont concluded that plants get all their weight from water, not soil. In 1699, John Woodward published experiments on growth of spearmint in different sources of water. He found that plants grew much better in water with soil added than in distilled water. 

Stephen Hales is considered the Father of Plant Physiology for the many experiments in the 1727 book; though Julius von Sachs unified the pieces of plant physiology and put them together as a discipline. His Lehrbuch der Botanik was the plant physiology bible of its time.

Researchers discovered in the 1800s that plants absorb essential mineral nutrients as inorganic ions in water. In natural conditions, soil acts as a mineral nutrient reservoir but the soil itself is not essential to plant growth. When the mineral nutrients in the soil are dissolved in water, plant roots absorb nutrients readily, soil is no longer required for the plant to thrive. This observation is the basis for hydroponics, the growing of plants in a water solution rather than soil, which has become a standard technique in biological research, teaching lab exercises, crop production and as a hobby.

Current research

One of the leading journals in the field is Plant Physiology, started in 1926. All its back issues are available online for free. Many other journals often carry plant physiology articles, including Physiologia Plantarum, Journal of Experimental Botany, American Journal of Botany, Annals of Botany, Journal of Plant Nutrition and Proceedings of the National Academy of Sciences.

Economic applications

Food production

In horticulture and agriculture along with food science, plant physiology is an important topic relating to fruits, vegetables, and other consumable parts of plants. Topics studied include: climatic requirements, fruit drop, nutrition, ripening, fruit set. The production of food crops also hinges on the study of plant physiology covering such topics as optimal planting and harvesting times and post harvest storage of plant products for human consumption and the production of secondary products like drugs and cosmetics.

Computer-aided software engineering

From Wikipedia, the free encyclopedia ...