Search This Blog

Tuesday, May 21, 2019

Radioactive waste

From Wikipedia, the free encyclopedia

TINT low-level radioactive waste barrels.
 
Radioactive waste is waste that contains radioactive material. Radioactive waste is usually a by-product of nuclear power generation and other applications of nuclear fission or nuclear technology, such as research and medicine. Radioactive waste is hazardous to all forms of life and the environment, and is regulated by government agencies in order to protect human health and the environment.

Radioactivity naturally decays over time, so radioactive waste has to be isolated and confined in appropriate disposal facilities for a sufficient period until it no longer poses a threat. The time radioactive waste must be stored for depends on the type of waste and radioactive isotopes. Current approaches to managing radioactive waste have been segregation and storage for short-lived waste, near-surface disposal for low and some intermediate level waste, and deep burial or partitioning / transmutation for the high-level waste.

A summary of the amounts of radioactive waste and management approaches for most developed countries are presented and reviewed periodically as part of the International Atomic Energy Agency (IAEA) Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

Nature and significance

Radioactive waste typically comprises a number of radionuclides: unstable configurations of elements that decay, emitting ionizing radiation which can be harmful to humans and the environment. These isotopes emit different types and levels of radiation, which last for different periods of time.

Physics

The radioactivity of all radioactive waste weakens with time. All radionuclides contained in the waste have a half-life — the time it takes for half of the atoms to decay into another nuclide — and eventually, all radioactive waste decays into non-radioactive elements (i.e., stable nuclides). Since radioactive decay follows the half-life rule, the rate of decay is inversely proportional to the duration of decay. In other words, the radiation from a long-lived isotope like iodine-129 will be much less intense than that of a short-lived isotope like iodine-131. The two tables show some of the major radioisotopes, their half-lives, and their radiation yield as a proportion of the yield of fission of uranium-235. 

The energy and the type of the ionizing radiation emitted by a radioactive substance are also important factors in determining its threat to humans. The chemical properties of the radioactive element will determine how mobile the substance is and how likely it is to spread into the environment and contaminate humans. This is further complicated by the fact that many radioisotopes do not decay immediately to a stable state but rather to radioactive decay products within a decay chain before ultimately reaching a stable state.

Pharmacokinetics

Exposure to radioactive waste may cause health impacts due to ionizing radiation exposure. In humans, a dose of 1 sievert carries a 5.5% risk of developing cancer, and regulatory agencies assume the risk is linearly proportional to dose even for low doses. Ionizing radiation can cause deletions in chromosomes. If a developing organism such as a fetus is irradiated, it is possible a birth defect may be induced, but it is unlikely this defect will be in a gamete or a gamete-forming cell. The incidence of radiation-induced mutations in humans is small, as in most mammals, because of natural cellular-repair mechanisms, many just now coming to light. These mechanisms range from DNA, mRNA and protein repair, to internal lysosomic digestion of defective proteins, and even induced cell suicide—apoptosis.

Depending on the decay mode and the pharmacokinetics of an element (how the body processes it and how quickly), the threat due to exposure to a given activity of a radioisotope will differ. For instance iodine-131 is a short-lived beta and gamma emitter, but because it concentrates in the thyroid gland, it is more able to cause injury than caesium-137 which, being water soluble, is rapidly excreted through urine. In a similar way, the alpha emitting actinides and radium are considered very harmful as they tend to have long biological half-lives and their radiation has a high relative biological effectiveness, making it far more damaging to tissues per amount of energy deposited. Because of such differences, the rules determining biological injury differ widely according to the radioisotope, time of exposure and sometimes also the nature of the chemical compound which contains the radioisotope.

Sources

Radioactive waste comes from a number of sources. In countries with nuclear power plants, nuclear armament, or nuclear fuel treatment plants, the majority of waste originates from the nuclear fuel cycle and nuclear weapons reprocessing. Other sources include medical and industrial wastes, as well as naturally occurring radioactive materials (NORM) that can be concentrated as a result of the processing or consumption of coal, oil and gas, and some minerals, as discussed below.

Nuclear fuel cycle

Front end

Waste from the front end of the nuclear fuel cycle is usually alpha-emitting waste from the extraction of uranium. It often contains radium and its decay products. 

Uranium dioxide (UO2) concentrate from mining is a thousand or so times as radioactive as the granite used in buildings. It is refined from yellowcake (U3O8), then converted to uranium hexafluoride gas (UF6). As a gas, it undergoes enrichment to increase the U-235 content from 0.7% to about 4.4% (LEU). It is then turned into a hard ceramic oxide (UO2) for assembly as reactor fuel elements.

The main by-product of enrichment is depleted uranium (DU), principally the U-238 isotope, with a U-235 content of ~0.3%. It is stored, either as UF6 or as U3O8. Some is used in applications where its extremely high density makes it valuable such as anti-tank shells, and on at least one occasion even a sailboat keel. It is also used with plutonium for making mixed oxide fuel (MOX) and to dilute, or downblend, highly enriched uranium from weapons stockpiles which is now being redirected to become reactor fuel.

Back end

The back-end of the nuclear fuel cycle, mostly spent fuel rods, contains fission products that emit beta and gamma radiation, and actinides that emit alpha particles, such as uranium-234 (half-life 245 thousand years), neptunium-237 (2.144 million years), plutonium-238 (87.7 years) and americium-241 (432 years), and even sometimes some neutron emitters such as californium (half-life of 898 years for Cf-251). These isotopes are formed in nuclear reactors

It is important to distinguish the processing of uranium to make fuel from the reprocessing of used fuel. Used fuel contains the highly radioactive products of fission (see high level waste below). Many of these are neutron absorbers, called neutron poisons in this context. These eventually build up to a level where they absorb so many neutrons that the chain reaction stops, even with the control rods completely removed. At that point the fuel has to be replaced in the reactor with fresh fuel, even though there is still a substantial quantity of uranium-235 and plutonium present. In the United States, this used fuel is usually "stored", while in other countries such as Russia, the United Kingdom, France, Japan and India, the fuel is reprocessed to remove the fission products, and the fuel can then be re-used. The fission products removed from the fuel are a concentrated form of high-level waste as are the chemicals used in the process. While these countries reprocess the fuel carrying out single plutonium cycles, India is the only country known to be planning multiple plutonium recycling schemes.

Fuel composition and long term radioactivity

Activity of U-233 for three fuel types. In the case of MOX, the U-233 increases for the first 650 thousand years as it is produced by decay of Np-237 which was created in the reactor by absorption of neutrons by U-235.
 
Total activity for three fuel types. In region 1 we have radiation from short-lived nuclides, and in region 2 from Sr-90 and Cs-137. On the far right we see the decay of Np-237 and U-233.
 
The use of different fuels in nuclear reactors results in different spent nuclear fuel (SNF) composition, with varying activity curves.

Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. 

An example of this effect is the use of nuclear fuels with thorium. Th-232 is a fertile material that can undergo a neutron capture reaction and two beta minus decays, resulting in the production of fissile U-233. The SNF of a cycle with thorium will contain U-233. Its radioactive decay will strongly influence the long-term activity curve of the SNF around a million years. A comparison of the activity associated to U-233 for three different SNF types can be seen in the figure on the top right. The burnt fuels are thorium with reactor-grade plutonium (RGPu), thorium with weapons-grade plutonium (WGPu) and Mixed Oxide fuel (MOX, no thorium). For RGPu and WGPu, the initial amount of U-233 and its decay around a million years can be seen. This has an effect in the total activity curve of the three fuel types. The initial absence of U-233 and its daughter products in the MOX fuel results in a lower activity in region 3 of the figure on the bottom right, whereas for RGPu and WGPu the curve is maintained higher due to the presence of U-233 that has not fully decayed. Nuclear reprocessing can remove the actinides from the spent fuel so they can be used or destroyed.

Proliferation concerns

Since uranium and plutonium are nuclear weapons materials, there have been proliferation concerns. Ordinarily (in spent nuclear fuel), plutonium is reactor-grade plutonium. In addition to plutonium-239, which is highly suitable for building nuclear weapons, it contains large amounts of undesirable contaminants: plutonium-240, plutonium-241, and plutonium-238. These isotopes are extremely difficult to separate, and more cost-effective ways of obtaining fissile material exist (e.g., uranium enrichment or dedicated plutonium production reactors).

High-level waste is full of highly radioactive fission products, most of which are relatively short-lived. This is a concern since if the waste is stored, perhaps in deep geological storage, over many years the fission products decay, decreasing the radioactivity of the waste and making the plutonium easier to access. The undesirable contaminant Pu-240 decays faster than the Pu-239, and thus the quality of the bomb material increases with time (although its quantity decreases during that time as well). Thus, some have argued, as time passes, these deep storage areas have the potential to become "plutonium mines", from which material for nuclear weapons can be acquired with relatively little difficulty. Critics of the latter idea have pointed out the difficulty of recovering useful material from sealed deep storage areas makes other methods preferable. Specifically, the high radioactivity and heat (80 C in surrounding rock) greatly increases the difficulty of mining a storage area, and the enrichment methods required have high capital costs.

Pu-239 decays to U-235 which is suitable for weapons and which has a very long half-life (roughly 109 years). Thus plutonium may decay and leave uranium-235. However, modern reactors are only moderately enriched with U-235 relative to U-238, so the U-238 continues to serve as a denaturation agent for any U-235 produced by plutonium decay.

One solution to this problem is to recycle the plutonium and use it as a fuel e.g. in fast reactors. In pyrometallurgical fast reactors, the separated plutonium and uranium are contaminated by actinides and cannot be used for nuclear weapons.

Nuclear weapons decommissioning

Waste from nuclear weapons decommissioning is unlikely to contain much beta or gamma activity other than tritium and americium. It is more likely to contain alpha-emitting actinides such as Pu-239 which is a fissile material used in bombs, plus some material with much higher specific activities, such as Pu-238 or polonium. 

In the past the neutron trigger for an atomic bomb tended to be beryllium and a high activity alpha emitter such as polonium; an alternative to polonium is Pu-238. For reasons of national security, details of the design of modern bombs are normally not released to the open literature.

Some designs might contain a radioisotope thermoelectric generator using Pu-238 to provide a long lasting source of electrical power for the electronics in the device. 

It is likely that the fissile material of an old bomb which is due for refitting will contain decay products of the plutonium isotopes used in it, these are likely to include U-236 from Pu-240 impurities, plus some U-235 from decay of the Pu-239; due to the relatively long half-life of these Pu isotopes, these wastes from radioactive decay of bomb core material would be very small, and in any case, far less dangerous (even in terms of simple radioactivity) than the Pu-239 itself.

The beta decay of Pu-241 forms Am-241; the in-growth of americium is likely to be a greater problem than the decay of Pu-239 and Pu-240 as the americium is a gamma emitter (increasing external-exposure to workers) and is an alpha emitter which can cause the generation of heat. The plutonium could be separated from the americium by several different processes; these would include pyrochemical processes and aqueous/organic solvent extraction. A truncated PUREX type extraction process would be one possible method of making the separation. Naturally occurring uranium is not fissile because it contains 99.3% of U-238 and only 0.7% of U-235.

Legacy waste

Due to historic activities typically related to radium industry, uranium mining, and military programs, numerous sites contain or are contaminated with radioactivity. In the United States alone, the Department of Energy states there are "millions of gallons of radioactive waste" as well as "thousands of tons of spent nuclear fuel and material" and also "huge quantities of contaminated soil and water." Despite copious quantities of waste, the DOE has stated a goal of cleaning all presently contaminated sites successfully by 2025. The Fernald, Ohio site for example had "31 million pounds of uranium product", "2.5 billion pounds of waste", "2.75 million cubic yards of contaminated soil and debris", and a "223 acre portion of the underlying Great Miami Aquifer had uranium levels above drinking standards." The United States has at least 108 sites designated as areas that are contaminated and unusable, sometimes many thousands of acres. DOE wishes to clean or mitigate many or all by 2025, using the recently developed method of geomelting, however the task can be difficult and it acknowledges that some may never be completely remediated. In just one of these 108 larger designations, Oak Ridge National Laboratory, there were for example at least "167 known contaminant release sites" in one of the three subdivisions of the 37,000-acre (150 km2) site. Some of the U.S. sites were smaller in nature, however, cleanup issues were simpler to address, and DOE has successfully completed cleanup, or at least closure, of several sites.

Medicine

Radioactive medical waste tends to contain beta particle and gamma ray emitters. It can be divided into two main classes. In diagnostic nuclear medicine a number of short-lived gamma emitters such as technetium-99m are used. Many of these can be disposed of by leaving it to decay for a short time before disposal as normal waste. Other isotopes used in medicine, with half-lives in parentheses, include:

Industry

Industrial source waste can contain alpha, beta, neutron or gamma emitters. Gamma emitters are used in radiography while neutron emitting sources are used in a range of applications, such as oil well logging.

Naturally occurring radioactive material

Annual release of uranium and thorium radioisotopes from coal combustion, predicted by ORNL to cumulatively amount to 2.9 million tons over the 1937–2040 period, from the combustion of an estimated 637 billion tons of coal worldwide.
 
Substances containing natural radioactivity are known as NORM (Naturally occurring radioactive material). After human processing that exposes or concentrates this natural radioactivity (such as mining bringing coal to the surface or burning it to produce concentrated ash), it becomes technologically enhanced naturally occurring radioactive material (TENORM). A lot of this waste is alpha particle-emitting matter from the decay chains of uranium and thorium. The main source of radiation in the human body is potassium-40 (40K), typically 17 milligrams in the body at a time and 0.4 milligrams/day intake. Most rocks, due to their components, have a low level of radioactivity. Usually ranging from 1 millisievert (mSv) to 13 mSv annually depending on location, average radiation exposure from natural radioisotopes is 2.0 mSv per person a year worldwide. This makes up the majority of typical total dosage (with mean annual exposure from other sources amounting to 0.6 mSv from medical tests averaged over the whole populace, 0.4 mSv from cosmic rays, 0.005 mSv from the legacy of past atmospheric nuclear testing, 0.005 mSv occupational exposure, 0.002 mSv from the Chernobyl disaster, and 0.0002 mSv from the nuclear fuel cycle).

TENORM is not regulated as restrictively as nuclear reactor waste, though there are no significant differences in the radiological risks of these materials.

Coal

Coal contains a small amount of radioactive uranium, barium, thorium and potassium, but, in the case of pure coal, this is significantly less than the average concentration of those elements in the Earth's crust. The surrounding strata, if shale or mudstone, often contain slightly more than average and this may also be reflected in the ash content of 'dirty' coals. The more active ash minerals become concentrated in the fly ash precisely because they do not burn well. The radioactivity of fly ash is about the same as black shale and is less than phosphate rocks, but is more of a concern because a small amount of the fly ash ends up in the atmosphere where it can be inhaled. According to U.S. NCRP reports, population exposure from 1000-MWe power plants amounts to 490 person-rem/year for coal power plants, 100 times as great as nuclear power plants (4.8 person-rem/year). (The exposure from the complete nuclear fuel cycle from mining to waste disposal is 136 person-rem/year; the corresponding value for coal use from mining to waste disposal is "probably unknown".)

Oil and gas

Residues from the oil and gas industry often contain radium and its decay products. The sulfate scale from an oil well can be very radium rich, while the water, oil and gas from a well often contain radon. The radon decays to form solid radioisotopes which form coatings on the inside of pipework. In an oil processing plant the area of the plant where propane is processed is often one of the more contaminated areas of the plant as radon has a similar boiling point to propane.

Classification

Classifications of radioactive waste varies by country. The IAEA, which publishes the Radioactive Waste Safety Standards (RADWASS), also plays a significant role.

Mill tailings

Removal of very low-level waste
 
Uranium tailings are waste by-product materials left over from the rough processing of uranium-bearing ore. They are not significantly radioactive. Mill tailings are sometimes referred to as 11(e)2 wastes, from the section of the Atomic Energy Act of 1946 that defines them. Uranium mill tailings typically also contain chemically hazardous heavy metal such as lead and arsenic. Vast mounds of uranium mill tailings are left at many old mining sites, especially in Colorado, New Mexico, and Utah.

Although mill tailings are not very radioactive, they have long half-lives. Mill tailings often contain radium, thorium and trace amounts of uranium.

Low-level waste

Low level waste (LLW) is generated from hospitals and industry, as well as the nuclear fuel cycle. Low-level wastes include paper, rags, tools, clothing, filters, and other materials which contain small amounts of mostly short-lived radioactivity. Materials that originate from any region of an Active Area are commonly designated as LLW as a precautionary measure even if there is only a remote possibility of being contaminated with radioactive materials. Such LLW typically exhibits no higher radioactivity than one would expect from the same material disposed of in a non-active area, such as a normal office block. Example LLW includes wiping rags, mops, medical tubes, laboratory animal carcasses, and more.

Some high-activity LLW requires shielding during handling and transport but most LLW is suitable for shallow land burial. To reduce its volume, it is often compacted or incinerated before disposal. Low-level waste is divided into four classes: class A, class B, class C, and Greater Than Class C (GTCC).

Intermediate-level waste

Spent fuel flasks are transported by railway in the United Kingdom. Each flask is constructed of 14 in (360 mm) thick solid steel and weighs in excess of 50 tons
 
Intermediate-level waste (ILW) contains higher amounts of radioactivity and in general require shielding, but not cooling. Intermediate-level wastes includes resins, chemical sludge and metal nuclear fuel cladding, as well as contaminated materials from reactor decommissioning. It may be solidified in concrete or bitumen for disposal. As a general rule, short-lived waste (mainly non-fuel materials from reactors) is buried in shallow repositories, while long-lived waste (from fuel and fuel reprocessing) is deposited in geological repository. U.S. regulations do not define this category of waste; the term is used in Europe and elsewhere.

High-level waste

High-level waste (HLW) is produced by nuclear reactors. The exact definition of HLW differs internationally. After a nuclear fuel rod serves one fuel cycle and is removed from the core, it is considered HLW. Fuel rods contain fission products and transuranic elements generated in the reactor core. Spent fuel is highly radioactive and often hot. HLW accounts for over 95 percent of the total radioactivity produced in the process of nuclear electricity generation. The amount of HLW worldwide is currently increasing by about 12,000 metric tons every year, which is the equivalent to about 100 double-decker buses (~200 single-decker buses) or a two-story structure with a footprint the size of a basketball court. A 1000-MW nuclear power plant produces about 27 tonnes of spent nuclear fuel (unreprocessed) every year. In 2010, there was very roughly estimated to be stored some 250,000 tons of nuclear HLW, that does not include amounts that have escaped into the environment from accidents or tests. Japan estimated to hold 17,000 tons of HLW in storage in 2015. HLW have been shipped to other countries to be stored or reprocessed, and in some cases, shipped back as active fuel. 

The radioactive waste from spent fuel rods consist primarily of cesium-137 and strontium-90, but it may also include plutonium, which can be considered a transuranic waste. The half-lives of these radioactive elements can differ quite extremely. Some elements, such as cesium-137 and strontium-90 have half-lives of approximately 30 years. Meanwhile, plutonium has a half-life of that can stretch to as long as 24,000 years.

The ongoing controversy over high-level radioactive waste disposal is a major constraint on the nuclear power's global expansion. Most scientists agree that the main proposed long-term solution is deep geological burial, either in a mine or a deep borehole. However, almost six decades after commercial nuclear energy began, no government has succeeded in opening such a repository for civilian high-level nuclear waste, although Finland is in the advanced stage of the construction of such facility, the Onkalo spent nuclear fuel repository. Reprocessing or recycling spent nuclear fuel options already available or under active development still generate waste and so are not a total solution, but can reduce the sheer quantity of waste, and there are many such active programs worldwide. Deep geological burial remains the only responsible way to deal with high-level nuclear waste. The Morris Operation is currently the only de facto high-level radioactive waste storage site in the United States.

Transuranic waste

Transuranic waste (TRUW) as defined by U.S. regulations is, without regard to form or origin, waste that is contaminated with alpha-emitting transuranic radionuclides with half-lives greater than 20 years and concentrations greater than 100 nCi/g (3.7 MBq/kg), excluding high-level waste. Elements that have an atomic number greater than uranium are called transuranic ("beyond uranium"). Because of their long half-lives, TRUW is disposed more cautiously than either low- or intermediate-level waste. In the U.S., it arises mainly from weapons production, and consists of clothing, tools, rags, residues, debris and other items contaminated with small amounts of radioactive elements (mainly plutonium). 

Under U.S. law, transuranic waste is further categorized into "contact-handled" (CH) and "remote-handled" (RH) on the basis of the radiation dose rate measured at the surface of the waste container. CH TRUW has a surface dose rate not greater than 200 mrem per hour (2 mSv/h), whereas RH TRUW has a surface dose rate of 200 mrem/h (2 mSv/h) or greater. CH TRUW does not have the very high radioactivity of high-level waste, nor its high heat generation, but RH TRUW can be highly radioactive, with surface dose rates up to 1,000,000  mrem/h (10,000 mSv/h). The U.S. currently disposes of TRUW generated from military facilities at the Waste Isolation Pilot Plant (WIPP) in a deep salt formation in New Mexico.

Prevention

A theoretical way to reduce waste accumulation is to phase out current reactors in favour of Generation IV Reactors, which output less waste per power generated. Fast reactors can theoretically consume some existing waste. The UK's Nuclear Decommissioning Authority published a position paper in 2014 on the progress on approaches to the management of separated plutonium, which summarises the conclusions of the work that NDA shared with UK government.

Management

Modern medium to high level transport container for nuclear waste

Of particular concern in nuclear waste management are two long-lived fission products, Tc-99 (half-life 220,000 years) and I-129 (half-life 15.7 million years), which dominate spent fuel radioactivity after a few thousand years. The most troublesome transuranic elements in spent fuel are Np-237 (half-life two million years) and Pu-239 (half-life 24,000 years). Nuclear waste requires sophisticated treatment and management to successfully isolate it from interacting with the biosphere. This usually necessitates treatment, followed by a long-term management strategy involving storage, disposal or transformation of the waste into a non-toxic form. Governments around the world are considering a range of waste management and disposal options, though there has been limited progress toward long-term waste management solutions.

In the second half of the 20th century, several methods of disposal of radioactive waste were investigated by nuclear nations, which are :
  • "Long term above ground storage", not implemented.
  • "Disposal in outer space" (for instance, inside the Sun), not implemented - as it would be currently too expensive.
  • "Deep borehole disposal", not implemented.
  • "Rock-melting", not implemented.
  • "Disposal at subduction zones", not implemented.
  • "Ocean disposal", used to be done by the USSR, the United Kingdom, Switzerland, the United States, Belgium, France, The Netherlands, Japan, Sweden, Russia, Germany, Italy and South Korea. (1954–93) This is no longer permitted by international agreements.
  • "Sub seabed disposal", not implemented, not permitted by international agreements.
  • "Disposal in ice sheets", rejected in Antarctic Treaty
  • "Direct injection", done by USSR and USA.
  • Nuclear transmutation, using lasers to cause beta decay to convert the unstable atoms to those with shorter half-lives.
In the US, waste management policy completely broke down with the ending of work on the incomplete Yucca Mountain Repository. At present there are 70 nuclear power plant sites where spent fuel is stored. A Blue Ribbon Commission was appointed by President Obama to look into future options for this and future waste. A deep geological repository seems to be favored.

Initial treatment

Vitrification

Long-term storage of radioactive waste requires the stabilization of the waste into a form which will neither react nor degrade for extended periods. It is theorized that one way to do this might be through vitrification. Currently at Sellafield the high-level waste (PUREX first cycle raffinate) is mixed with sugar and then calcined. Calcination involves passing the waste through a heated, rotating tube. The purposes of calcination are to evaporate the water from the waste, and de-nitrate the fission products to assist the stability of the glass produced.

The 'calcine' generated is fed continuously into an induction heated furnace with fragmented glass. The resulting glass is a new substance in which the waste products are bonded into the glass matrix when it solidifies. As a melt, this product is poured into stainless steel cylindrical containers ("cylinders") in a batch process. When cooled, the fluid solidifies ("vitrifies") into the glass. After being formed, the glass is highly resistant to water.

After filling a cylinder, a seal is welded onto the cylinder head. The cylinder is then washed. After being inspected for external contamination, the steel cylinder is stored, usually in an underground repository. In this form, the waste products are expected to be immobilized for thousands of years.

The glass inside a cylinder is usually a black glossy substance. All this work (in the United Kingdom) is done using hot cell systems. Sugar is added to control the ruthenium chemistry and to stop the formation of the volatile RuO4 containing radioactive ruthenium isotopes. In the West, the glass is normally a borosilicate glass (similar to Pyrex), while in the former Soviet bloc it is normal to use a phosphate glass. The amount of fission products in the glass must be limited because some (palladium, the other Pt group metals, and tellurium) tend to form metallic phases which separate from the glass. Bulk vitrification uses electrodes to melt soil and wastes, which are then buried underground. In Germany a vitrification plant is in use; this is treating the waste from a small demonstration reprocessing plant which has since been closed down.

Ion exchange

It is common for medium active wastes in the nuclear industry to be treated with ion exchange or other means to concentrate the radioactivity into a small volume. The much less radioactive bulk (after treatment) is often then discharged. For instance, it is possible to use a ferric hydroxide floc to remove radioactive metals from aqueous mixtures. After the radioisotopes are absorbed onto the ferric hydroxide, the resulting sludge can be placed in a metal drum before being mixed with cement to form a solid waste form. In order to get better long-term performance (mechanical stability) from such forms, they may be made from a mixture of fly ash, or blast furnace slag, and Portland cement, instead of normal concrete (made with Portland cement, gravel and sand).

Synroc

The Australian Synroc (synthetic rock) is a more sophisticated way to immobilize such waste, and this process may eventually come into commercial use for civil wastes (it is currently being developed for US military wastes). Synroc was invented by Prof Ted Ringwood (a geochemist) at the Australian National University. The Synroc contains pyrochlore and cryptomelane type minerals. The original form of Synroc (Synroc C) was designed for the liquid high level waste (PUREX raffinate) from a light water reactor. The main minerals in this Synroc are hollandite (BaAl2Ti6O16), zirconolite (CaZrTi2O7) and perovskite (CaTiO3). The zirconolite and perovskite are hosts for the actinides. The strontium and barium will be fixed in the perovskite. The caesium will be fixed in the hollandite.

Long term management

The time frame in question when dealing with radioactive waste ranges from 10,000 to 1,000,000 years, according to studies based on the effect of estimated radiation doses. Researchers suggest that forecasts of health detriment for such periods should be examined critically. Practical studies only consider up to 100 years as far as effective planning and cost evaluations are concerned. Long term behavior of radioactive wastes remains a subject for ongoing research projects in geoforecasting.

Above-ground disposal

Dry cask storage typically involves taking waste from a spent fuel pool and sealing it (along with an inert gas) in a steel cylinder, which is placed in a concrete cylinder which acts as a radiation shield. It is a relatively inexpensive method which can be done at a central facility or adjacent to the source reactor. The waste can be easily retrieved for reprocessing.

Geologic disposal

Diagram of an underground low-level radioactive waste disposal site
 
On Feb. 14, 2014, radioactive materials at the Waste Isolation Pilot Plant leaked from a damaged storage drum due to the use of incorrect packing material. Analysis showed the lack of a "safety culture" at the plant since its successful operation for 15 years had bred complacency.
 
The process of selecting appropriate deep final repositories for high level waste and spent fuel is now under way in several countries with the first expected to be commissioned some time after 2010. The basic concept is to locate a large, stable geologic formation and use mining technology to excavate a tunnel, or large-bore tunnel boring machines (similar to those used to drill the Channel Tunnel from England to France) to drill a shaft 500 metres (1,600 ft) to 1,000 metres (3,300 ft) below the surface where rooms or vaults can be excavated for disposal of high-level radioactive waste. The goal is to permanently isolate nuclear waste from the human environment. Many people remain uncomfortable with the immediate stewardship cessation of this disposal system, suggesting perpetual management and monitoring would be more prudent. 

Because some radioactive species have half-lives longer than one million years, even very low container leakage and radionuclide migration rates must be taken into account. Moreover, it may require more than one half-life until some nuclear materials lose enough radioactivity to cease being lethal to living things. A 1983 review of the Swedish radioactive waste disposal program by the National Academy of Sciences found that country's estimate of several hundred thousand years—perhaps up to one million years—being necessary for waste isolation "fully justified."

Ocean floor disposal of radioactive waste has been suggested by the finding that deep waters in the North Atlantic Ocean do not present an exchange with shallow waters for about 140 years based on oxygen content data recorded over a period of 25 years. They include burial beneath a stable abyssal plain, burial in a subduction zone that would slowly carry the waste downward into the Earth's mantle, and burial beneath a remote natural or human-made island. While these approaches all have merit and would facilitate an international solution to the problem of disposal of radioactive waste, they would require an amendment of the Law of the Sea.

Article 1 (Definitions), 7., of the 1996 Protocol to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, (the London Dumping Convention) states:
"'Sea' means all marine waters other than the internal waters of States, as well as the seabed and the subsoil thereof; it does not include sub-seabed repositories accessed only from land."
The proposed land-based subductive waste disposal method disposes of nuclear waste in a subduction zone accessed from land and therefore is not prohibited by international agreement. This method has been described as the most viable means of disposing of radioactive waste, and as the state-of-the-art as of 2001 in nuclear waste disposal technology. Another approach termed Remix & Return would blend high-level waste with uranium mine and mill tailings down to the level of the original radioactivity of the uranium ore, then replace it in inactive uranium mines. This approach has the merits of providing jobs for miners who would double as disposal staff, and of facilitating a cradle-to-grave cycle for radioactive materials, but would be inappropriate for spent reactor fuel in the absence of reprocessing, due to the presence of highly toxic radioactive elements such as plutonium within it.

Deep borehole disposal is the concept of disposing of high-level radioactive waste from nuclear reactors in extremely deep boreholes. Deep borehole disposal seeks to place the waste as much as 5 kilometres (3.1 mi) beneath the surface of the Earth and relies primarily on the immense natural geological barrier to confine the waste safely and permanently so that it should never pose a threat to the environment. The Earth's crust contains 120 trillion tons of thorium and 40 trillion tons of uranium (primarily at relatively trace concentrations of parts per million each adding up over the crust's 3 * 1019 ton mass), among other natural radioisotopes. Since the fraction of nuclides decaying per unit of time is inversely proportional to an isotope's half-life, the relative radioactivity of the lesser amount of human-produced radioisotopes (thousands of tons instead of trillions of tons) would diminish once the isotopes with far shorter half-lives than the bulk of natural radioisotopes decayed.

In January 2013, Cumbria county council rejected UK central government proposals to start work on an underground storage dump for nuclear waste near to the Lake District National Park. "For any host community, there will be a substantial community benefits package and worth hundreds of millions of pounds" said Ed Davey, Energy Secretary, but nonetheless, the local elected body voted 7–3 against research continuing, after hearing evidence from independent geologists that "the fractured strata of the county was impossible to entrust with such dangerous material and a hazard lasting millennia."

Transmutation

There have been proposals for reactors that consume nuclear waste and transmute it to other, less-harmful or shorter-lived, nuclear waste. In particular, the Integral Fast Reactor was a proposed nuclear reactor with a nuclear fuel cycle that produced no transuranic waste and in fact, could consume transuranic waste. It proceeded as far as large-scale tests, but was then canceled by the US Government. Another approach, considered safer but requiring more development, is to dedicate subcritical reactors to the transmutation of the left-over transuranic elements.

An isotope that is found in nuclear waste and that represents a concern in terms of proliferation is Pu-239. The large stock of plutonium is a result of its production inside uranium-fueled reactors and of the reprocessing of weapons-grade plutonium during the weapons program. An option for getting rid of this plutonium is to use it as a fuel in a traditional Light Water Reactor (LWR). Several fuel types with differing plutonium destruction efficiencies are under study. 

Transmutation was banned in the US in April 1977 by President Carter due to the danger of plutonium proliferation, but President Reagan rescinded the ban in 1981. Due to the economic losses and risks, construction of reprocessing plants during this time did not resume. Due to high energy demand, work on the method has continued in the EU. This has resulted in a practical nuclear research reactor called Myrrha in which transmutation is possible. Additionally, a new research program called ACTINET has been started in the EU to make transmutation possible on a large, industrial scale. According to President Bush's Global Nuclear Energy Partnership (GNEP) of 2007, the US is now actively promoting research on transmutation technologies needed to markedly reduce the problem of nuclear waste treatment.

There have also been theoretical studies involving the use of fusion reactors as so called "actinide burners" where a fusion reactor plasma such as in a tokamak, could be "doped" with a small amount of the "minor" transuranic atoms which would be transmuted (meaning fissioned in the actinide case) to lighter elements upon their successive bombardment by the very high energy neutrons produced by the fusion of deuterium and tritium in the reactor. A study at MIT found that only 2 or 3 fusion reactors with parameters similar to that of the International Thermonuclear Experimental Reactor (ITER) could transmute the entire annual minor actinide production from all of the light water reactors presently operating in the United States fleet while simultaneously generating approximately 1 gigawatt of power from each reactor.

Re-use

Another option is to find applications for the isotopes in nuclear waste so as to re-use them. Already, caesium-137, strontium-90 and a few other isotopes are extracted for certain industrial applications such as food irradiation and radioisotope thermoelectric generators. While re-use does not eliminate the need to manage radioisotopes, it can reduce the quantity of waste produced. 

The Nuclear Assisted Hydrocarbon Production Method, Canadian patent application 2,659,302, is a method for the temporary or permanent storage of nuclear waste materials comprising the placing of waste materials into one or more repositories or boreholes constructed into an unconventional oil formation. The thermal flux of the waste materials fracture the formation and alters the chemical and/or physical properties of hydrocarbon material within the subterranean formation to allow removal of the altered material. A mixture of hydrocarbons, hydrogen, and/or other formation fluids is produced from the formation. The radioactivity of high-level radioactive waste affords proliferation resistance to plutonium placed in the periphery of the repository or the deepest portion of a borehole.
Breeder reactors can run on U-238 and transuranic elements, which comprise the majority of spent fuel radioactivity in the 1,000–100,000-year time span.

Space disposal

Space disposal is attractive because it removes nuclear waste from the planet. It has significant disadvantages, such as the potential for catastrophic failure of a launch vehicle, which could spread radioactive material into the atmosphere and around the world. A high number of launches would be required because no individual rocket would be able to carry very much of the material relative to the total amount that needs to be disposed of. This makes the proposal impractical economically and it increases the risk of at least one or more launch failures. To further complicate matters, international agreements on the regulation of such a program would need to be established. Costs and inadequate reliability of modern rocket launch systems for space disposal has been one of the motives for interest in non-rocket space launch systems such as mass drivers, space elevators, and other proposals.

National management plans

Most countries are considerably ahead of the United States in developing plans for high-level radioactive waste disposal. Sweden and Finland are furthest along in committing to a particular disposal technology, while many others reprocess spent fuel or contract with France or Great Britain to do it, taking back the resulting plutonium and high-level waste. "An increasing backlog of plutonium from reprocessing is developing in many countries... It is doubtful that reprocessing makes economic sense in the present environment of cheap uranium."

In many European countries (e.g., Britain, Finland, the Netherlands, Sweden and Switzerland) the risk or dose limit for a member of the public exposed to radiation from a future high-level nuclear waste facility is considerably more stringent than that suggested by the International Commission on Radiation Protection or proposed in the United States. European limits are often more stringent than the standard suggested in 1990 by the International Commission on Radiation Protection by a factor of 20, and more stringent by a factor of ten than the standard proposed by the US Environmental Protection Agency (EPA) for Yucca Mountain nuclear waste repository for the first 10,000 years after closure.

The U.S. EPA's proposed standard for greater than 10,000 years is 250 times more permissive than the European limit. The U.S. EPA proposed a legal limit of a maximum of 3.5 millisieverts (350 millirem) each annually to local individuals after 10,000 years, which would be up to several percent of the exposure currently received by some populations in the highest natural background regions on Earth, though the U.S. DOE predicted that received dose would be much below that limit. Over a timeframe of thousands of years, after the most active short half-life radioisotopes decayed, burying U.S. nuclear waste would increase the radioactivity in the top 2000 feet of rock and soil in the United States (10 million km2) by 1 part in 10 million over the cumulative amount of natural radioisotopes in such a volume, but the vicinity of the site would have a far higher concentration of artificial radioisotopes underground than such an average.

Mongolia

After serious opposition had arisen about plans and negotiations between Mongolia with Japan and the United States of America to build nuclear-waste facilities in Mongolia, Mongolia stopped all negotiations in September 2011. These negotiations had started after U.S. Deputy Secretary of Energy Daniel B. Poneman visited Mongolia in September, 2010. Talks took place in Washington DC between officials of Japan, the United States and Mongolia in February 2011. After this the United Arab Emirates (UAE), which wanted to buy nuclear fuel from Mongolia, joined in the negotiations. The talks were kept secret, and although The Mainichi Daily News reported on them in May, Mongolia officially denied the existence of these negotiations. However, alarmed by this news, Mongolian citizens protested against the plans, and demanded the government withdraw the plans and disclose information. The Mongolian President Tsakhiagiin Elbegdorj issued a presidential order on September 13 banning all negotiations with foreign governments or international organizations on nuclear-waste storage plans in Mongolia. The Mongolian government has accused the newspaper of distributing false claims around the world. After the presidential order, the Mongolian president fired the individual who was supposedly involved in these conversations.

Illegal dumping

Authorities in Italy are investigating a 'Ndrangheta mafia clan accused of trafficking and illegally dumping nuclear waste. According to a whistleblower, a manager of the Italy's state energy research agency Enea paid the clan to get rid of 600 drums of toxic and radioactive waste from Italy, Switzerland, France, Germany, and the US, with Somalia as the destination, where the waste was buried after buying off local politicians. Former employees of Enea are suspected of paying the criminals to take waste off their hands in the 1980s and 1990s. Shipments to Somalia continued into the 1990s, while the 'Ndrangheta clan also blew up shiploads of waste, including radioactive hospital waste, sending them to the sea bed off the Calabrian coast. According to the environmental group Legambiente, former members of the 'Ndrangheta have said that they were paid to sink ships with radioactive material for the last 20 years.

Accidents

A few incidents have occurred when radioactive material was disposed of improperly, shielding during transport was defective, or when it was simply abandoned or even stolen from a waste store. In the Soviet Union, waste stored in Lake Karachay was blown over the area during a dust storm after the lake had partly dried out. At Maxey Flat, a low-level radioactive waste facility located in Kentucky, containment trenches covered with dirt, instead of steel or cement, collapsed under heavy rainfall into the trenches and filled with water. The water that invaded the trenches became radioactive and had to be disposed of at the Maxey Flat facility itself. In other cases of radioactive waste accidents, lakes or ponds with radioactive waste accidentally overflowed into the rivers during exceptional storms. In Italy, several radioactive waste deposits let material flow into river water, thus contaminating water for domestic use. In France, in the summer of 2008 numerous incidents happened; in one, at the Areva plant in Tricastin, it was reported that during a draining operation, liquid containing untreated uranium overflowed out of a faulty tank and about 75 kg of the radioactive material seeped into the ground and, from there, into two rivers nearby; in another case, over 100 staff were contaminated with low doses of radiation.

Scavenging of abandoned radioactive material has been the cause of several other cases of radiation exposure, mostly in developing nations, which may have less regulation of dangerous substances (and sometimes less general education about radioactivity and its hazards) and a market for scavenged goods and scrap metal. The scavengers and those who buy the material are almost always unaware that the material is radioactive and it is selected for its aesthetics or scrap value. Irresponsibility on the part of the radioactive material's owners, usually a hospital, university or military, and the absence of regulation concerning radioactive waste, or a lack of enforcement of such regulations, have been significant factors in radiation exposures. For an example of an accident involving radioactive scrap originating from a hospital see the Goiânia accident.

Transportation accidents involving spent nuclear fuel from power plants are unlikely to have serious consequences due to the strength of the spent nuclear fuel shipping casks.

On 15 December 2011, top government spokesman Osamu Fujimura of the Japanese government admitted that nuclear substances were found in the waste of Japanese nuclear facilities. Although Japan did commit itself in 1977 to these inspections in the safeguard agreement with the IAEA, the reports were kept secret for the inspectors of the International Atomic Energy Agency. Japan did start discussions with the IAEA about the large quantities of enriched uranium and plutonium that were discovered in nuclear waste cleared away by Japanese nuclear operators. At the press conference Fujimura said: "Based on investigations so far, most nuclear substances have been properly managed as waste, and from that perspective, there is no problem in safety management," But according to him, the matter was at that moment still being investigated.

Associated hazard warning signs

Marine pollution

From Wikipedia, the free encyclopedia

While marine pollution can be obvious, as with the marine debris shown above, it is often the pollutants that cannot be seen that cause most harm.
 
Marine pollution occurs when harmful effects result from the entry into the ocean of chemicals, particles, industrial, agricultural, and residential waste, noise, or the spread of invasive organisms. Eighty percent of marine pollution comes from land. Air pollution is also a contributing factor by carrying off pesticides or dirt into the ocean. Land and air pollution have proven to be harmful to marine life and its habitats.

The pollution often comes from nonpoint sources such as agricultural runoff, wind-blown debris, and dust. Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters, in which excess nutrients, usually nitrates or phosphates, stimulate algae growth. Many potentially toxic chemicals adhere to tiny particles which are then taken up by plankton and benthic animals, most of which are either deposit feeders or filter feeders. In this way, the toxins are concentrated upward within ocean food chains. Many particles combine chemically in a manner highly depletive of oxygen, causing estuaries to become anoxic

When pesticides are incorporated into the marine ecosystem, they quickly become absorbed into marine food webs. Once in the food webs, these pesticides can cause mutations, as well as diseases, which can be harmful to humans as well as the entire food web. Toxic metals can also be introduced into marine food webs. These can cause a change to tissue matter, biochemistry, behaviour, reproduction, and suppress growth in marine life. Also, many animal feeds have a high fish meal or fish hydrolysate content. In this way, marine toxins can be transferred to land animals, and appear later in meat and dairy products.

In order to protect the ocean from marine pollution, policies have been developed internationally. There are different ways for the ocean to get polluted, therefore there have been multiple laws, policies, and treaties put into place throughout history.

History

Parties to the MARPOL 73/78 convention on marine pollution
 
Although marine pollution has a long history, significant international laws to counter it were not enacted until the twentieth century. Marine pollution was a concern during several United Nations Conventions on the Law of the Sea beginning in the 1950s. Most scientists believed that the oceans were so vast that they had unlimited ability to dilute, and thus render pollution harmless. 

In the late 1950s and early 1960s, there were several controversies about dumping radioactive waste off the coasts of the United States by companies licensed by the Atomic Energy Commission, into the Irish Sea from the British reprocessing facility at Windscale, and into the Mediterranean Sea by the French Commissariat à l'Energie Atomique. After the Mediterranean Sea controversy, for example, Jacques Cousteau became a worldwide figure in the campaign to stop marine pollution. Marine pollution made further international headlines after the 1967 crash of the oil tanker Torrey Canyon, and after the 1969 Santa Barbara oil spill off the coast of California. 

Marine pollution was a major area of discussion during the 1972 United Nations Conference on the Human Environment, held in Stockholm. That year also saw the signing of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, sometimes called the London Convention. The London Convention did not ban marine pollution, but it established black and gray lists for substances to be banned (black) or regulated by national authorities (gray). Cyanide and high-level radioactive waste, for example, were put on the black list. The London Convention applied only to waste dumped from ships, and thus did nothing to regulate waste discharged as liquids from pipelines.

Pathways of pollution

Septic river.
 
There are many ways to categorize and examine the inputs of pollution into our marine ecosystems. Patin (n.d.) notes that generally there are three main types of inputs of pollution into the ocean: direct discharge of waste into the oceans, runoff into the waters due to rain, and pollutants released from the atmosphere.

One common path of entry by contaminants to the sea are rivers. The evaporation of water from oceans exceeds precipitation. The balance is restored by rain over the continents entering rivers and then being returned to the sea. The Hudson in New York State and the Raritan in New Jersey, which empty at the northern and southern ends of Staten Island, are a source of mercury contamination of zooplankton (copepods) in the open ocean. The highest concentration in the filter-feeding copepods is not at the mouths of these rivers but 70 miles (110 km) south, nearer Atlantic City, because water flows close to the coast. It takes a few days before toxins are taken up by the plankton.

Pollution is often classed as point source or nonpoint source pollution. Point source pollution occurs when there is a single, identifiable, localized source of the pollution. An example is directly discharging sewage and industrial waste into the ocean. Pollution such as this occurs particularly in developing nations. Nonpoint source pollution occurs when the pollution comes from ill-defined and diffuse sources. These can be difficult to regulate. Agricultural runoff and wind blown debris are prime examples.

Direct discharge

Acid mine drainage in the Rio Tinto River.
 
Pollutants enter rivers and the sea directly from urban sewerage and industrial waste discharges, sometimes in the form of hazardous and toxic wastes

Inland mining for copper, gold, etc., is another source of marine pollution. Most of the pollution is simply soil, which ends up in rivers flowing to the sea. However, some minerals discharged in the course of the mining can cause problems, such as copper, a common industrial pollutant, which can interfere with the life history and development of coral polyps. Mining has a poor environmental track record. For example, according to the United States Environmental Protection Agency, mining has contaminated portions of the headwaters of over 40% of watersheds in the western continental US. Much of this pollution finishes up in the sea.

Land runoff

Surface runoff from farming, as well as urban runoff and runoff from the construction of roads, buildings, ports, channels, and harbours, can carry soil and particles laden with carbon, nitrogen, phosphorus, and minerals. This nutrient-rich water can cause fleshy algae and phytoplankton to thrive in coastal areas; known as algal blooms, which have the potential to create hypoxic conditions by using all available oxygen. In the coast of southwest Florida, harmful algal blooms have existed for over 100 years. These algal blooms have been a cause of species of fish, turtles, dolphins, and shrimp to die and cause harmful effects on humans who swim in the water.

Polluted runoff from roads and highways can be a significant source of water pollution in coastal areas. About 75% of the toxic chemicals that flow into Puget Sound are carried by stormwater that runs off paved roads and driveways, rooftops, yards and other developed land. In California, there are many rainstorms that runoff into the ocean. These rainstorms occur from October to March, and these runoff waters contain petroleum, heavy metals, pollutants from emissions, etc.

In China, there is a large coastal population that pollutes the ocean through land runoff. This includes sewage discharge and pollution from urbanization and land use. In 2001, more than 66,795 mi² of the Chinese coastal ocean waters were rated less than Class I of the Sea Water Quality Standard of China. Much of this pollution came from Ag, Cu, Cd, Pb, As, DDT, PCBs, etc., which occurred from contamination through land runoff.

Ship pollution

A cargo ship pumps ballast water over the side.
 
Ships can pollute waterways and oceans in many ways. Oil spills can have devastating effects. While being toxic to marine life, polycyclic aromatic hydrocarbons (PAHs), found in crude oil, are very difficult to clean up, and last for years in the sediment and marine environment.

Oil spills are probably the most emotive of marine pollution events. However, while a tanker wreck may result in extensive newspaper headlines, much of the oil in the world's seas comes from other smaller sources, such as tankers discharging ballast water from oil tanks used on return ships, leaking pipelines or engine oil disposed of down sewers.

Discharge of cargo residues from bulk carriers can pollute ports, waterways, and oceans. In many instances vessels intentionally discharge illegal wastes despite foreign and domestic regulation prohibiting such actions. An absence of national standards provides an incentive for some cruise liners to dump waste in places where the penalties are inadequate. It has been estimated that container ships lose over 10,000 containers at sea each year (usually during storms). Ships also create noise pollution that disturbs natural wildlife, and water from ballast tanks can spread harmful algae and other invasive species.

Ballast water taken up at sea and released in port is a major source of unwanted exotic marine life. The invasive freshwater zebra mussels, native to the Black, Caspian, and Azov seas, were probably transported to the Great Lakes via ballast water from a transoceanic vessel. Meinesz believes that one of the worst cases of a single invasive species causing harm to an ecosystem can be attributed to a seemingly harmless jellyfish. Mnemiopsis leidyi, a species of comb jellyfish that spread so it now inhabits estuaries in many parts of the world. It was first introduced in 1982, and thought to have been transported to the Black Sea in a ship's ballast water. The population of the jellyfish grew exponentially and, by 1988, it was wreaking havoc upon the local fishing industry. "The anchovy catch fell from 204,000 tons in 1984 to 200 tons in 1993; sprat from 24,600 tons in 1984 to 12,000 tons in 1993; horse mackerel from 4,000 tons in 1984 to zero in 1993." Now that the jellyfish have exhausted the zooplankton, including fish larvae, their numbers have fallen dramatically, yet they continue to maintain a stranglehold on the ecosystem.

Invasive species can take over once occupied areas, facilitate the spread of new diseases, introduce new genetic material, alter underwater seascapes, and jeopardize the ability of native species to obtain food. Invasive species are responsible for about $138 billion annually in lost revenue and management costs in the US alone.

Atmospheric pollution

A graph linking atmospheric dust to various coral deaths across the Caribbean Sea and Florida.
 
Another pathway of pollution occurs through the atmosphere. Wind-blown dust and debris, including plastic bags, are blown seaward from landfills and other areas. Dust from the Sahara moving around the southern periphery of the subtropical ridge moves into the Caribbean and Florida during the warm season as the ridge builds and moves northward through the subtropical Atlantic. Dust can also be attributed to a global transport from the Gobi and Taklamakan deserts across Korea, Japan, and the Northern Pacific to the Hawaiian Islands.

Since 1970, dust outbreaks have worsened due to periods of drought in Africa. There is a large variability in dust transport to the Caribbean and Florida from year to year; however, the flux is greater during positive phases of the North Atlantic Oscillation. The USGS links dust events to a decline in the health of coral reefs across the Caribbean and Florida, primarily since the 1970s.

Climate change is raising ocean temperatures and raising levels of carbon dioxide in the atmosphere. These rising levels of carbon dioxide are acidifying the oceans. This, in turn, is altering aquatic ecosystems and modifying fish distributions, with impacts on the sustainability of fisheries and the livelihoods of the communities that depend on them. Healthy ocean ecosystems are also important for the mitigation of climate change.

Deep sea mining

Deep sea mining is a relatively new mineral retrieval process that takes place on the ocean floor. Ocean mining sites are usually around large areas of polymetallic nodules or active and extinct hydrothermal vents at about 1,400 – 3,700 meters below the ocean's surface. The vents create sulfide deposits, which contain precious metals such as silver, gold, copper, manganese, cobalt, and zinc. The deposits are mined using either hydraulic pumps or bucket systems that take ore to the surface to be processed. As with all mining operations, deep sea mining raises questions about environmental damages to the surrounding areas.

Because deep sea mining is a relatively new field, the complete consequences of full-scale mining operations are unknown. However, experts are certain that removal of parts of the sea floor will result in disturbances to the benthic layer, increased toxicity of the water column, and sediment plumes from tailings. Removing parts of the sea floor disturbs the habitat of benthic organisms, possibly, depending on the type of mining and location, causing permanent disturbances. Aside from direct impact of mining the area, leakage, spills, and corrosion would alter the mining area's chemical makeup.

Among the impacts of deep sea mining, sediment plumes could have the greatest impact. Plumes are caused when the tailings from mining (usually fine particles) are dumped back into the ocean, creating a cloud of particles floating in the water. Two types of plumes occur: near-bottom plumes and surface plumes. Near-bottom plumes occur when the tailings are pumped back down to the mining site. The floating particles increase the turbidity, or cloudiness, of the water, clogging filter-feeding apparatuses used by benthic organisms. Surface plumes cause a more serious problem. Depending on the size of the particles and water currents the plumes could spread over vast areas. The plumes could impact zooplankton and light penetration, in turn affecting the food web of the area.

Types of pollution

Acidification

An island with a fringing reef in the Maldives. Coral reefs are dying around the world.
 
The oceans are normally a natural carbon sink, absorbing carbon dioxide from the atmosphere. Because the levels of atmospheric carbon dioxide are increasing, the oceans are becoming more acidic. The potential consequences of ocean acidification are not fully understood, but there are concerns that structures made of calcium carbonate may become vulnerable to dissolution, affecting corals and the ability of shellfish to form shells.

Oceans and coastal ecosystems play an important role in the global carbon cycle and have removed about 25% of the carbon dioxide emitted by human activities between 2000 and 2007 and about half the anthropogenic CO2 released since the start of the industrial revolution. Rising ocean temperatures and ocean acidification means that the capacity of the ocean carbon sink will gradually get weaker, giving rise to global concerns expressed in the Monaco and Manado Declarations. 

A report from NOAA scientists published in the journal Science in May 2008 found that large amounts of relatively acidified water are upwelling to within four miles of the Pacific continental shelf area of North America. This area is a critical zone where most local marine life lives or is born. While the paper dealt only with areas from Vancouver to northern California, other continental shelf areas may be experiencing similar effects.

A related issue is the methane clathrate reservoirs found under sediments on the ocean floors. These trap large amounts of the greenhouse gas methane, which ocean warming has the potential to release. In 2004 the global inventory of ocean methane clathrates was estimated to occupy between one and five million cubic kilometres. If all these clathrates were to be spread uniformly across the ocean floor, this would translate to a thickness between three and fourteen metres. This estimate corresponds to 500–2500 gigatonnes carbon (Gt C), and can be compared with the 5000 Gt C estimated for all other fossil fuel reserves.

Eutrophication

A polluted lagoon.
 
The effect of eutrophication on marine benthic life.
 
Eutrophication is an increase in chemical nutrients, typically compounds containing nitrogen or phosphorus, in an ecosystem. It can result in an increase in the ecosystem's primary productivity (excessive plant growth and decay), and further effects including lack of oxygen and severe reductions in water quality, fish, and other animal populations.

The biggest culprit are rivers that empty into the ocean, and with it the many chemicals used as fertilizers in agriculture as well as waste from livestock and humans. An excess of oxygen-depleting chemicals in the water can lead to hypoxia and the creation of a dead zone.

Estuaries tend to be naturally eutrophic because land-derived nutrients are concentrated where runoff enters the marine environment in a confined channel. The World Resources Institute has identified 375 hypoxic coastal zones around the world, concentrated in coastal areas in Western Europe, the Eastern and Southern coasts of the US, and East Asia, particularly in Japan. In the ocean, there are frequent red tide algae blooms that kill fish and marine mammals and cause respiratory problems in humans and some domestic animals when the blooms reach close to shore.

In addition to land runoff, atmospheric anthropogenic fixed nitrogen can enter the open ocean. A study in 2008 found that this could account for around one third of the ocean's external (non-recycled) nitrogen supply and up to three per cent of the annual new marine biological production. It has been suggested that accumulating reactive nitrogen in the environment may have consequences as serious as putting carbon dioxide in the atmosphere.

One proposed solution to eutrophication in estuaries is to restore shellfish populations, such as oysters. Oyster reefs remove nitrogen from the water column and filter out suspended solids, subsequently reducing the likelihood or extent of harmful algal blooms or anoxic conditions. Filter feeding activity is considered beneficial to water quality by controlling phytoplankton density and sequestering nutrients, which can be removed from the system through shellfish harvest, buried in the sediments, or lost through denitrification. Foundational work toward the idea of improving marine water quality through shellfish cultivation to was conducted by Odd Lindahl et al., using mussels in Sweden.

Plastic debris

A mute swan builds a nest using plastic garbage.
 
Marine debris is mainly discarded human rubbish which floats on, or is suspended in the ocean. Eighty percent of marine debris is plastic – a component that has been rapidly accumulating since the end of World War II. The mass of plastic in the oceans may be as high as 100,000,000 tonnes (98,000,000 long tons; 110,000,000 short tons).

Discarded plastic bags, six pack rings, cigarette butts and other forms of plastic waste which finish up in the ocean present dangers to wildlife and fisheries. Aquatic life can be threatened through entanglement, suffocation, and ingestion. Fishing nets, usually made of plastic, can be left or lost in the ocean by fishermen. Known as ghost nets, these entangle fish, dolphins, sea turtles, sharks, dugongs, crocodiles, seabirds, crabs, and other creatures, restricting movement, causing starvation, laceration, infection, and, in those that need to return to the surface to breathe, suffocation.

The remains of an albatross containing ingested flotsam.
 
Many animals that live on or in the sea consume flotsam by mistake, as it often looks similar to their natural prey. Plastic debris, when bulky or tangled, is difficult to pass, and may become permanently lodged in the digestive tracts of these animals. Especially when evolutionary adaptions make it impossible for the likes of turtles to reject plastic bags, which resemble jellyfish when immersed in water, as they have a system in their throat to stop slippery foods from otherwise escaping. Thereby blocking the passage of food and causing death through starvation or infection.

Plastics accumulate because they don't biodegrade in the way many other substances do. They will photodegrade on exposure to the sun, but they do so properly only under dry conditions, and water inhibits this process. In marine environments, photodegraded plastic disintegrates into ever-smaller pieces while remaining polymers, even down to the molecular level. When floating plastic particles photodegrade down to zooplankton sizes, jellyfish attempt to consume them, and in this way the plastic enters the ocean food chain.

Many of these long-lasting pieces end up in the stomachs of marine birds and animals, including sea turtles, and black-footed albatross. In a 2008 Pacific Gyre voyage, Algalita Marine Research Foundation researchers began finding that fish are ingesting plastic fragments and debris. Of the 672 fish caught during that voyage, 35% had ingested plastic pieces.

Plastic debris tends to accumulate at the centre of ocean gyres. The North Pacific Gyre, for example, has collected the so-called "Great Pacific Garbage Patch", which is now estimated to be one to twenty times the size of Texas (approximately from 700,000 to 15,000,000 square kilometers). There could be as much plastic as fish in the sea. It has a very high level of plastic particulate suspended in the upper water column. In samples taken in 1999, the mass of plastic exceeded that of zooplankton (the dominant animal life in the area) by a factor of six.

Midway Atoll, in common with all the Hawaiian Islands, receives substantial amounts of debris from the garbage patch. Ninety percent plastic, this debris accumulates on the beaches of Midway where it becomes a hazard to the bird population of the island. Midway Atoll is home to two-thirds (1.5 million) of the global population of Laysan albatross. Nearly all of these albatross have plastic in their digestive system and one-third of their chicks die.

Toxic additives used in the manufacture of plastic materials can leach out into their surroundings when exposed to water. Waterborne hydrophobic pollutants collect and magnify on the surface of plastic debris, thus making plastic far more deadly in the ocean than it would be on land. Hydrophobic contaminants are also known to bioaccumulate in fatty tissues, biomagnifying up the food chain and putting pressure on apex predators. Some plastic additives are known to disrupt the endocrine system when consumed, others can suppress the immune system or decrease reproductive rates.

Floating debris can also absorb persistent organic pollutants from seawater, including PCBs, DDT, and PAHs. Aside from toxic effects, when ingested some of these affect animal brain cells similarly to estradiol, causing hormone disruption in the affected wildlife. Saido, a chemist with the College of Pharmacy, conducted a study in Nihon University, Chiba, Japan, that discovered, when plastics eventually decompose, they produce potentially toxic bisphenol A (BPA) and PS oligomer into the water. These toxins are believed to bring harm to the marine life living in the area. 

A growing concern regarding plastic pollution in the marine ecosystem is the use of microplastics. Microplastics are little beads of plastic less than 5 millimeters wide, and they are commonly found in hand soaps, face cleansers, and other exfoliators. When these products are used, the microplastics go through the water filtration system and into the ocean, but because of their small size they are likely to escape capture by the preliminary treatment screens on wastewater plants. These beads are harmful to the organisms in the ocean, especially filter feeders, because they can easily ingest the plastic and become sick. The microplastics are such a concern because it is difficult to clean them up due to their size, so humans can try to avoid using these harmful plastics by purchasing products that use environmentally safe exfoliates.

Toxins

Apart from plastics, there are particular problems with other toxins that do not disintegrate rapidly in the marine environment. Examples of persistent toxins are PCBs, DDT, TBT, pesticides, furans, dioxins, phenols, and radioactive waste. Heavy metals are metallic chemical elements that have a relatively high density and are toxic or poisonous at low concentrations. Examples are mercury, lead, nickel, arsenic, and cadmium. Such toxins can accumulate in the tissues of many species of aquatic life in a process called bioaccumulation. They are also known to accumulate in benthic environments, such as estuaries and bay muds: a geological record of human activities of the last century.
Specific examples

  • Chinese and Russian industrial pollution such as phenols and heavy metals in the Amur River have devastated fish stocks and damaged its estuary soil.
  • Wabamun Lake in Alberta, Canada, once the best whitefish lake in the area, now has unacceptable levels of heavy metals in its sediment and fish.
  • Acute and chronic pollution events have been shown to impact southern California kelp forests, though the intensity of the impact seems to depend on both the nature of the contaminants and duration of exposure.
  • Due to their high position in the food chain and the subsequent accumulation of heavy metals from their diet, mercury levels can be high in larger species such as bluefin and albacore. As a result, in March 2004 the United States FDA issued guidelines recommending that pregnant women, nursing mothers and children limit their intake of tuna and other types of predatory fish.
  • Some shellfish and crabs can survive polluted environments, accumulating heavy metals or toxins in their tissues. For example, mitten crabs have a remarkable ability to survive in highly modified aquatic habitats, including polluted waters. The farming and harvesting of such species needs careful management if they are to be used as a food.
  • Surface runoff of pesticides can alter the gender of fish species genetically, transforming male into female fish.
  • Heavy metals enter the environment through oil spills – such as the Prestige oil spill on the Galician coast and Gulf of Mexico which unleashed an estimated 3.19 million barrels of oil – or from other natural or anthropogenic sources.
  • In 2005, the 'Ndrangheta, an Italian mafia syndicate, was accused of sinking at least 30 ships loaded with toxic waste, much of it radioactive. This has led to widespread investigations into radioactive waste disposal rackets.
  • Since the end of World War II, various nations, including the Soviet Union, the United Kingdom, the United States, and Germany, have disposed of chemical weapons in the Baltic Sea, raising concerns of environmental contamination.
  • The damaging of the Fukushima Dai-ichi Nuclear Power Plant in 2011 caused radioactive toxins to leak into the air and ocean. There are still many isotopes in the ocean, which directly affects the benthic food web and also affects the whole food chain. The concentration of 137Cs in the bottom sediment that was contaminated by water with high concentrations in April–May 2011 remains quite high and is showing signs of very slow decrease with time.

Underwater noise

Marine life can be susceptible to noise or the sound pollution from sources such as passing ships, oil exploration seismic surveys, and naval low-frequency active sonar. Sound travels more rapidly and over larger distances in the sea than in the atmosphere. Marine animals, such as cetaceans, often have weak eyesight, and live in a world largely defined by acoustic information. This applies also to many deeper sea fish, who live in a world of darkness. Between 1950 and 1975, ambient noise at one location in the Pacific Ocean increased by about ten decibels (that is a tenfold increase in intensity).

Noise also makes species communicate louder, which is called the Lombard vocal response. Whale songs are longer when submarine-detectors are on. If creatures don't "speak" loud enough, their voice can be masked by anthropogenic sounds. These unheard voices might be warnings, finding of prey, or preparations of net-bubbling. When one species begins speaking louder, it will mask other species voices, causing the whole ecosystem to eventually speak louder.

According to the oceanographer Sylvia Earle, "Undersea noise pollution is like the death of a thousand cuts. Each sound in itself may not be a matter of critical concern, but taken all together, the noise from shipping, seismic surveys, and military activity is creating a totally different environment than existed even 50 years ago. That high level of noise is bound to have a hard, sweeping impact on life in the sea."

Noise from ships and human activity can damage Cnidarians and Ctenophora, which are very important organisms in the marine ecosystem. They promote high diversity and they are used as models for ecology and biology because of their simple structures. When there is underwater noise, the vibrations in the water damage the cilia hairs in the Coelenterates. In a study, the organisms were exposed to sound waves for different numbers of times and the results showed that damaged hair cells were extruded or missing or presented bent, flaccid or missed kinocilia and stereocilia.

Adaptation and mitigation

Aerosol cans pollute beaches.
 
Much anthropogenic pollution ends up in the ocean. The 2011 edition of the United Nations Environment Programme Year Book identifies as the main emerging environmental issues the loss to the oceans of massive amounts of phosphorus, "a valuable fertilizer needed to feed a growing global population", and the impact billions of pieces of plastic waste are having globally on the health of marine environments.

Bjorn Jennssen (2003) notes in his article, "Anthropogenic pollution may reduce biodiversity and productivity of marine ecosystems, resulting in reduction and depletion of human marine food resources". There are two ways the overall level of this pollution can be mitigated: either the human population is reduced, or a way is found to reduce the ecological footprint left behind by the average human. If the second way is not adopted, then the first way may be imposed as the world ecosystems falter. 

The second way is for humans, individually, to pollute less. That requires social and political will, together with a shift in awareness so more people respect the environment and are less disposed to abuse it. At an operational level, regulations, and international government participation is needed. It is often very difficult to regulate marine pollution because pollution spreads over international barriers, thus making regulations hard to create as well as enforce.

Without appropriate awareness of marine pollution, the necessary global will to effectively address the issues may prove inadequate. Balanced information on the sources and harmful effects of marine pollution need to become part of general public awareness, and ongoing research is required to fully establish, and keep current, the scope of the issues. As expressed in Daoji and Dag's research, one of the reasons why environmental concern is lacking among the Chinese is because the public awareness is low and therefore should be targeted. 

The amount of awareness on marine pollution is vital to the support of keeping the prevention of trash from entering waterways and ending up in our oceans. The EPA reports that in 2014 Americans generated about 258 million tons of waste, and only a third was recycled or composted. In 2015, there was over 8 million tons of plastic that made it into the ocean. Through more sustainable packing this could lead to; eliminating toxic constituents, using fewer materials, making more readily available recyclable plastic. However, awareness can only take these initiatives so far. The most abundant plastic is PET (Polyethylene terephthalate) and is the most resistant to biodegradables. Researchers have been making great strides in combating this problem. In one way has been by adding a special polymer called a tetrablock copolymer. The tetrablock copolymer acts as a laminate between the PE and iPP which enables for an easier breakdown but still be tough. Through more awareness, individuals will become more cognizant of their carbon footprints. Also, from research and technology, more strides can be made to aid in the plastic pollution problem.

In 2018 a survey of Global Oceanic Environmental Survey (GOES) Foundation find that the ecosystem in seas and oceans can collapse in the next 25 years what would fail the terrestrial ecosystem and end the life on earth as we know them. The main causes: Plastic pollution, Ocean acidification, Ocean pollution. For prevent that scenario from happen, we need a total single use plastic ban, ban on wood burning, planting as many trees as possible, " pollution-free recycling of electronics and by 2030 all industries to be zero toxic discharge." "special protection and perservation of peat bogs, wetlands, marshlands and mangrove swamps to ensure carbon dioxide is absorbed from the atmosphere."

Laws and policies

  • In 1948, Harry Truman signed a law formerly known as the Federal Water Pollution Control Act that allowed the federal government to control marine pollution in United States of America.
  • In 1972, the Marine Protection, Research, and Sanctuaries Act of 1972 was passed by the Council on Environmental Quality which controls ocean dumping.
  • In 1973 and 1978, MARPOL 73/78 was a treaty written to control vessel pollution, especially regarding oil. In 1983, the International Convention for the Prevention of Pollution from Ships enforced the MARPOL 73/78 treaty internationally.
  • The 1982 United Nations Convention on the Law of the Sea (UNCLOS) was established to protect the marine environment by governing states to control their pollution to the ocean. It put restrictions on the amount of toxins and pollutants that come from all ships internationally.

Computer-aided software engineering

From Wikipedia, the free encyclopedia ...