Search This Blog

Saturday, December 7, 2019

Debunked: the number of phytoplankton in the oceans have decreased by 40% - out of date research from 2010

Virtual particle (updated)

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Virtual_particle
 
In physics, a virtual particle is a transient quantum fluctuation that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in perturbation theory of quantum field theory where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines.

Virtual particles do not necessarily carry the same mass as the corresponding real particle, although they always conserve energy and momentum. The longer the virtual particle exists, the closer its characteristics come to those of ordinary particles. They are important in the physics of many processes, including particle scattering and Casimir forces. In quantum field theory, even classical forces—such as the electromagnetic repulsion or attraction between two charges—can be thought of as due to the exchange of many virtual photons between the charges. Virtual photons are the exchange particle for the electromagnetic interaction.

The term is somewhat loose and vaguely defined, in that it refers to the view that the world is made up of "real particles": it is not; rather, "real particles" are better understood to be excitations of the underlying quantum fields. Virtual particles are also excitations of the underlying fields, but are "temporary" in the sense that they appear in calculations of interactions, but never as asymptotic states or indices to the scattering matrix. The accuracy and use of virtual particles in calculations is firmly established, but as they cannot be detected in experiments, deciding how to precisely describe them is a topic of debate.

Properties

The concept of virtual particles arises in the perturbation theory of quantum field theory, an approximation scheme in which interactions (in essence, forces) between actual particles are calculated in terms of exchanges of virtual particles. Such calculations are often performed using schematic representations known as Feynman diagrams, in which virtual particles appear as internal lines. By expressing the interaction in terms of the exchange of a virtual particle with four-momentum q, where q is given by the difference between the four-momenta of the particles entering and leaving the interaction vertex, both momentum and energy are conserved at the interaction vertices of the Feynman diagram.

A virtual particle does not precisely obey the energy–momentum relation m2c4 = E2p2c2. Its kinetic energy may not have the usual relationship to velocity–indeed, it can be negative. This is expressed by the phrase off mass shell. The probability amplitude for a virtual particle to exist tends to be canceled out by destructive interference over longer distances and times. As a consequence, a real photon is massless and thus has only two polarization states, whereas a virtual one, being effectively massive, has three polarization states.

Quantum tunnelling may be considered a manifestation of virtual particle exchanges. The range of forces carried by virtual particles is limited by the uncertainty principle, which regards energy and time as conjugate variables; thus, virtual particles of larger mass have more limited range.

Written in the usual mathematical notations, in the equations of physics, there is no mark of the distinction between virtual and actual particles. The amplitude that a virtual particle exists interferes with the amplitude for its non-existence, whereas for an actual particle the cases of existence and non-existence cease to be coherent with each other and do not interfere any more. In the quantum field theory view, actual particles are viewed as being detectable excitations of underlying quantum fields. Virtual particles are also viewed as excitations of the underlying fields, but appear only as forces, not as detectable particles. They are "temporary" in the sense that they appear in calculations, but are not detected as single particles. Thus, in mathematical terms, they never appear as indices to the scattering matrix, which is to say, they never appear as the observable inputs and outputs of the physical process being modelled.

There are two principal ways in which the notion of virtual particles appears in modern physics. They appear as intermediate terms in Feynman diagrams; that is, as terms in a perturbative calculation. They also appear as an infinite set of states to be summed or integrated over in the calculation of a semi-non-perturbative effect. In the latter case, it is sometimes said that virtual particles contribute to a mechanism that mediates the effect, or that the effect occurs through the virtual particles. 

Manifestations

There are many observable physical phenomena that arise in interactions involving virtual particles. For bosonic particles that exhibit rest mass when they are free and actual, virtual interactions are characterized by the relatively short range of the force interaction produced by particle exchange. Examples of such short-range interactions are the strong and weak forces, and their associated field bosons. 

For the gravitational and electromagnetic forces, the zero rest-mass of the associated boson particle permits long-range forces to be mediated by virtual particles. However, in the case of photons, power and information transfer by virtual particles is a relatively short-range phenomenon (existing only within a few wavelengths of the field-disturbance, which carries information or transferred power), as for example seen in the characteristically short range of inductive and capacitative effects in the near field zone of coils and antennas.

Some field interactions which may be seen in terms of virtual particles are:
  • The Coulomb force (static electric force) between electric charges. It is caused by the exchange of virtual photons. In symmetric 3-dimensional space this exchange results in the inverse square law for electric force. Since the photon has no mass, the coulomb potential has an infinite range.
  • The magnetic field between magnetic dipoles. It is caused by the exchange of virtual photons. In symmetric 3-dimensional space, this exchange results in the inverse cube law for magnetic force. Since the photon has no mass, the magnetic potential has an infinite range.
  • Electromagnetic induction. This phenomenon transfers energy to and from a magnetic coil via a changing (electro)magnetic field.
  • The strong nuclear force between quarks is the result of interaction of virtual gluons. The residual of this force outside of quark triplets (neutron and proton) holds neutrons and protons together in nuclei, and is due to virtual mesons such as the pi meson and rho meson.
  • The weak nuclear force—it is the result of exchange by virtual W and Z bosons.
  • The spontaneous emission of a photon during the decay of an excited atom or excited nucleus; such a decay is prohibited by ordinary quantum mechanics and requires the quantization of the electromagnetic field for its explanation.
  • The Casimir effect, where the ground state of the quantized electromagnetic field causes attraction between a pair of electrically neutral metal plates.
  • The van der Waals force, which is partly due to the Casimir effect between two atoms.
  • Vacuum polarization, which involves pair production or the decay of the vacuum, which is the spontaneous production of particle-antiparticle pairs (such as electron-positron).
  • Lamb shift of positions of atomic levels.
  • The Impedance of free space, which defines the ratio between the electric field strength | E | and the magnetic field strength | H |: Z0 = | E | / | H |.
  • Much of the so-called near-field of radio antennas, where the magnetic and electric effects of the changing current in the antenna wire and the charge effects of the wire's capacitive charge may be (and usually are) important contributors to the total EM field close to the source, but both of which effects are dipole effects that decay with increasing distance from the antenna much more quickly than do the influence of "conventional" electromagnetic waves that are "far" from the source. ["Far" in terms of ratio of antenna length or diameter, to wavelength]. These far-field waves, for which E is (in the limit of long distance) equal to cB, are composed of actual photons. Actual and virtual photons are mixed near an antenna, with the virtual photons responsible only for the "extra" magnetic-inductive and transient electric-dipole effects, which cause any imbalance between E and cB. As distance from the antenna grows, the near-field effects (as dipole fields) die out more quickly, and only the "radiative" effects that are due to actual photons remain as important effects. Although virtual effects extend to infinity, they drop off in field strength as 1/r2 rather than the field of EM waves composed of actual photons, which drop 1/r (the powers, respectively, decrease as 1/r4 and 1/r2). See near and far field for a more detailed discussion. See near field communication for practical communications applications of near fields.
Most of these have analogous effects in solid-state physics; indeed, one can often gain a better intuitive understanding by examining these cases. In semiconductors, the roles of electrons, positrons and photons in field theory are replaced by electrons in the conduction band, holes in the valence band, and phonons or vibrations of the crystal lattice. A virtual particle is in a virtual state where the probability amplitude is not conserved. Examples of macroscopic virtual phonons, photons, and electrons in the case of the tunneling process were presented by Günter Nimtz and Alfons A. Stahlhofen.

Feynman diagrams

One particle exchange scattering diagram
 
The calculation of scattering amplitudes in theoretical particle physics requires the use of some rather large and complicated integrals over a large number of variables. These integrals do, however, have a regular structure, and may be represented as Feynman diagrams. The appeal of the Feynman diagrams is strong, as it allows for a simple visual presentation of what would otherwise be a rather arcane and abstract formula. In particular, part of the appeal is that the outgoing legs of a Feynman diagram can be associated with actual, on-shell particles. Thus, it is natural to associate the other lines in the diagram with particles as well, called the "virtual particles". In mathematical terms, they correspond to the propagators appearing in the diagram.

In the adjacent image, the solid lines correspond to actual particles (of momentum p1 and so on), while the dotted line corresponds to a virtual particle carrying momentum k. For example, if the solid lines were to correspond to electrons interacting by means of the electromagnetic interaction, the dotted line would correspond to the exchange of a virtual photon. In the case of interacting nucleons, the dotted line would be a virtual pion. In the case of quarks interacting by means of the strong force, the dotted line would be a virtual gluon, and so on.

One-loop diagram with fermion propagator
 
Virtual particles may be mesons or vector bosons, as in the example above; they may also be fermions. However, in order to preserve quantum numbers, most simple diagrams involving fermion exchange are prohibited. The image to the right shows an allowed diagram, a one-loop diagram. The solid lines correspond to a fermion propagator, the wavy lines to bosons. 

Vacuums

In formal terms, a particle is considered to be an eigenstate of the particle number operator aa, where a is the particle annihilation operator and a the particle creation operator (sometimes collectively called ladder operators). In many cases, the particle number operator does not commute with the Hamiltonian for the system. This implies the number of particles in an area of space is not a well-defined quantity but, like other quantum observables, is represented by a probability distribution. Since these particles do not have a permanent existence, they are called virtual particles or vacuum fluctuations of vacuum energy. In a certain sense, they can be understood to be a manifestation of the time-energy uncertainty principle in a vacuum.

An important example of the "presence" of virtual particles in a vacuum is the Casimir effect. Here, the explanation of the effect requires that the total energy of all of the virtual particles in a vacuum can be added together. Thus, although the virtual particles themselves are not directly observable in the laboratory, they do leave an observable effect: Their zero-point energy results in forces acting on suitably arranged metal plates or dielectrics. On the other hand, the Casimir effect can be interpreted as the relativistic van der Waals force.

Pair production

Virtual particles are often popularly described as coming in pairs, a particle and antiparticle which can be of any kind. These pairs exist for an extremely short time, and then mutually annihilate, or in some cases, the pair may be boosted apart using external energy so that they avoid annihilation and become actual particles, as described below. 

This may occur in one of two ways. In an accelerating frame of reference, the virtual particles may appear to be actual to the accelerating observer; this is known as the Unruh effect. In short, the vacuum of a stationary frame appears, to the accelerated observer, to be a warm gas of actual particles in thermodynamic equilibrium.
Another example is pair production in very strong electric fields, sometimes called vacuum decay. If, for example, a pair of atomic nuclei are merged to very briefly form a nucleus with a charge greater than about 140, (that is, larger than about the inverse of the fine structure constant, which is a dimensionless quantity), the strength of the electric field will be such that it will be energetically favorable to create positron-electron pairs out of the vacuum or Dirac sea, with the electron attracted to the nucleus to annihilate the positive charge. This pair-creation amplitude was first calculated by Julian Schwinger in 1951.

Compared to actual particles

As a consequence of quantum mechanical uncertainty, any object or process that exists for a limited time or in a limited volume cannot have a precisely defined energy or momentum. For this reason, virtual particles – which exist only temporarily as they are exchanged between ordinary particles – do not typically obey the mass-shell relation; the longer a virtual particle exists, the more the energy and momentum approach the mass-shell relation.

The lifetime of real particles is typically vastly longer than the lifetime of the virtual particles. Electromagnetic radiation consist of real photons which may travel light years between the emitter and absorber, but (Coulombic) electrostatic attraction and repulsion is a relatively short-range force that is a consequence of the exchange of virtual photons.

Passive infrared sensor

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Passive_infrared_sensor
 
Typical residential/commercial PIR-based motion detector (PID).
 
A passive infrared sensor (PIR sensor) is an electronic sensor that measures infrared (IR) light radiating from objects in its field of view. They are most often used in PIR-based motion detectors. PIR sensors are commonly used in security alarms and automatic lighting applications. PIR sensors detect general movement, but do not give information on who or what moved. For that purpose, an active IR sensor is required. 

PIR sensors are commonly called simply "PIR", or sometimes "PID", for "passive infrared detector". The term passive refers to the fact that PIR devices do not radiate energy for detection purposes. They work entirely by detecting infrared radiation (radiant heat) emitted by or reflected from objects. 

Operating principles

All objects with a temperature above absolute zero emit heat energy in the form of radiation. Usually this radiation isn't visible to the human eye because it radiates at infrared wavelengths, but it can be detected by electronic devices designed for such a purpose. 

Construction

Infrared radiation enters through the front of the sensor, known as the 'sensor face'. At the core of a PIR sensor is a solid state sensor or set of sensors, made from pyroelectric materials—materials which generate energy when exposed to heat. Typically, the sensors are approximately 1/4 inch square (40 mm2), and take the form of a thin film. Materials commonly used in PIR sensors include gallium nitride (GaN), caesium nitrate (CsNO3), polyvinyl fluorides, derivatives of phenylpyridine, and cobalt phthalocyanine. The sensor is often manufactured as part of an integrated circuit.

PIR-based motion detector

A PIR motion detector used to control an outdoor, automatic light.
 
An indoor light switch equipped with PIR-based occupancy sensor
 
A PIR-based motion detector is used to sense movement of people, animals, or other objects. They are commonly used in burglar alarms and automatically-activated lighting systems. 

Operation

A PIR sensor can detect changes in the amount of infrared radiation impinging upon it, which varies depending on the temperature and surface characteristics of the objects in front of the sensor. When an object, such as a person, passes in front of the background, such as a wall, the temperature at that point in the sensor's field of view will rise from room temperature to body temperature, and then back again. The sensor converts the resulting change in the incoming infrared radiation into a change in the output voltage, and this triggers the detection. Objects of similar temperature but different surface characteristics may also have a different infrared emission pattern, and thus moving them with respect to the background may trigger the detector as well.

PIRs come in many configurations for a wide variety of applications. The most common models have numerous Fresnel lenses or mirror segments, an effective range of about 10 meters (30 feet), and a field of view less than 180°. Models with wider fields of view, including 360°, are available, typically designed to mount on a ceiling. Some larger PIRs are made with single segment mirrors and can sense changes in infrared energy over 30 meters (100 feet) from the PIR. There are also PIRs designed with reversible orientation mirrors which allow either broad coverage (110° wide) or very narrow "curtain" coverage, or with individually selectable segments to "shape" the coverage. 

Differential detection

Pairs of sensor elements may be wired as opposite inputs to a differential amplifier. In such a configuration, the PIR measurements cancel each other so that the average temperature of the field of view is removed from the electrical signal; an increase of IR energy across the entire sensor is self-cancelling and will not trigger the device. This allows the device to resist false indications of change in the event of being exposed to brief flashes of light or field-wide illumination. (Continuous high energy exposure may still be able to saturate the sensor materials and render the sensor unable to register further information.) At the same time, this differential arrangement minimizes common-mode interference, allowing the device to resist triggering due to nearby electric fields. However, a differential pair of sensors cannot measure temperature in this configuration, and therefore is only useful for motion detection. 

Practical Implementation

When a PIR sensor is configured in a differential mode, it specifically becomes applicable as a motion detector device. In this mode when a movement is detected within the "line of sight" of the sensor, a pair of complementary pulses are processed at the output pin of the sensor. In order to implement this output signal for a practical triggering of a load such as a relay or a data logger, or an alarm, the differential signal is rectified using a bridge rectifier and fed to a transistorized relay driver circuit. The contacts of this relay close and open in response to the signals from the PIR, activating the attached load across its contacts, acknowledging the detection of a person within the predetermined restricted area. 

Product design

The PIR sensor is typically mounted on a printed circuit board containing the necessary electronics required to interpret the signals from the sensor itself. The complete assembly is usually contained within a housing, mounted in a location where the sensor can cover the area to be monitored. 

PIR motion sensor design
 
The housing will usually have a plastic "window" through which the infrared energy can enter. Despite often being only translucent to visible light, infrared energy is able to reach the sensor through the window because the plastic used is transparent to infrared radiation. The plastic window reduces the chance of foreign objects (dust, insects, etc.) from obscuring the sensor's field of view, damaging the mechanism, and/or causing false alarms. The window may be used as a filter, to limit the wavelengths to 8-14 micrometres, which is closest to the infrared radiation emitted by humans. It may also serve as a focusing mechanism; see below. 

Focusing

Different mechanisms can be used to focus the distant infrared energy onto the sensor surface. 

Lenses

The plastic window covering may have multiple facets molded into it, to focus the infrared energy onto the sensor. Each individual facet is a Fresnel lens.

Mirrors

Some PIRs are manufactured with internal, segmented parabolic mirrors to focus the infrared energy. Where mirrors are used, the plastic window cover generally has no Fresnel lenses molded into it.

Beam pattern

As a result of the focussing, the detector view is actually a beam pattern. Under certain angles (zones), the PIR sensor receives almost no radiation energy and under other angles the PIR receives concentrated amounts of infrared energy. This separation helps the motion detector to discriminate between field-wide illumination and moving objects.

When a person walks from one angle (beam) to another, the detector will only intermittently see the moving person. This results in a rapidly changing sensor signal which is used by the electronics to trigger an alarm or to turn on lighting. A slowly changing signal will be ignored by the electronics.

The number, shape, distribution and sensitivity of these zones are determined by the lens and/or mirror. Manufacturers do their best to create the optimal sensitivity beam pattern for each application.

Automatic lighting applications

When used as part of a lighting system, the electronics in the PIR typically control an integral relay capable of switching mains voltage. This means the PIR can be set up to turn on lights that are connected to the PIR when movement is detected. This is most commonly used in outdoor scenarios either to deter criminals (security lighting) or for practical uses like the front door light turning on so you can find your keys in the dark. Additional uses can be in public toilets, walk-in pantries, hallways or anywhere that automatic control of lights is useful. This can provide energy savings as the lights are only turned on when they are needed and there is no reliance on users remembering to turn the lights off when they leave the area. 

Security applications

When used as part of a security system, the electronics in the PIR typically control a small relay. This relay completes the circuit across a pair of electrical contacts connected to a detection input zone of the burglar alarm control panel. The system is usually designed such that if no motion is being detected, the relay contact is closed—a 'normally closed' (NC) relay. If motion is detected, the relay will open the circuit, triggering the alarm; or, if a wire is disconnected, the alarm will also operate.

Placement

Manufacturers recommend careful placement of their products to prevent false alarms (i.e., any detection not caused by an intruder).

They suggest mounting the PIRs in such a way that the PIR cannot "see" out of a window. Although the wavelength of infrared radiation to which the chips are sensitive does not penetrate glass very well, a strong infrared source (such as from a vehicle headlight or sunlight) can overload the sensor and cause a false alarm. A person moving on the other side of the glass would not be "seen" by the PID. That may be good for a window facing a public sidewalk, or bad for a window in an interior partition.

It is also recommended that the PIR not be placed in such a position that an HVAC vent would blow hot or cold air onto the surface of the plastic which covers the housing's window. Although air has very low emissivity (emits very small amounts of infrared energy), the air blowing on the plastic window cover could change the plastic's temperature enough to trigger a false alarm.

Sensors are also often designed to "ignore" domestic pets, such as dogs or cats, by setting a higher sensitivity threshold, or by ensuring that the floor of the room remains out of focus.

Since PIR sensors have ranges of up to 10 meters (30 feet), a single detector placed near the entrance is typically all that is necessary for rooms with only a single entrance. PIR-based security systems are also viable in outdoor security and motion-sensitive lighting; one advantage is their low power draw, which allows them to be solar-powered.

PIR remote-based thermometer

Designs have been implemented in which a PIR circuit measures the temperature of a remote object. In such a circuit, a non-differential PIR output is used. The output signal is evaluated according to a calibration for the IR spectrum of a specific type of matter to be observed. By this means, relatively accurate and precise temperature measurements may be obtained remotely. Without calibration to the type of material being observed, a PIR thermometer device is able to measure changes in IR emission which correspond directly to temperature changes, but the actual temperature values cannot be calculated.

Friday, December 6, 2019

Smart lighting

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Smart_lighting

Smart lighting is a lighting technology designed for energy efficiency. This may include high efficiency fixtures and automated controls that make adjustments based on conditions such as occupancy or daylight availability. Lighting is the deliberate application of light to achieve some aesthetic or practical effect. It includes task lighting, accent lighting, and general lighting.

Energy consumption

19% of energy use in the world is used for lighting, and 6% of greenhouse emissions in the world derive from this energy used for lighting. In the United States, 65 percent of energy consumption is used by commercial and industrial sectors, and 22 percent of this is used for lighting. 

Minimizing energy usage

Smart lighting is the good way which enables to minimize and save light by allowing the householder to control remotely cooling and heating, lighting, and the control of appliances. This ability saves energy and provides a level of comfort and convenience. From outside the traditional lighting industry, the future success of lighting will require involvement of a number of stakeholders and stakeholder communities. The concept of smart lighting also involves utilizing natural light from the sun to reduce the use of man-made lighting, and the simple concept of people turning off lighting when they leave a room.

Major techniques

Smart lighting control

The use of automatic light dimming is an aspect of smart lighting that serves to reduce energy consumption. Manual light dimming also has the same effect of reducing energy use. 

Use of sensors

In the paper "Energy savings due to occupancy sensors and personal controls: a pilot field study", Galasiu, A.D. and Newsham, G.R have confirmed that automatic lighting systems including occupancy sensors and individual (personal) controls are suitable for open-plan office environments and can save a significant amount of energy (about 32%) when compared to a conventional lighting system, even when the installed lighting power density of the automatic lighting system is ~50% higher than that of the conventional system.

Components

A complete sensor consists of a motion detector, an electronic control unit, and a controllable switch/relay. The detector senses motion and determines whether there are occupants in the space. It also has a timer that signals the electronic control unit after a set period of inactivity. The control unit uses this signal to activate the switch/relay to turn equipment on or off. For lighting applications, there are three main sensor types: passive infrared, ultrasonic, and hybrid. 

Daylight sensing

In response to daylighting technology, daylight-linked automated response systems have been developed to further reduce energy consumption. These technologies are helpful, but they do have their downfalls. Many times, rapid and frequent switching of the lights on and off can occur, particularly during unstable weather conditions or when daylight levels are changing around the switching illuminance. Not only does this disturb occupants, it can also reduce lamp life. A variation of this technology is the 'differential switching' or 'dead-band' photoelectric control which has multiple illuminances it switches from to reduce occupants being disturbed.

Occupancy sensing

Smart lighting that utilizes occupancy sensors can work in unison with other lighting connected to the same network to adjust lighting per various conditions. The table below shows potential electricity savings from using occupancy sensors to control lighting in various types of spaces.

Ultrasonic

The advantages of ultrasonic devices are that they are sensitive to all types of motion and generally there are zero coverage gaps, since they can detect movements not within the line of sight.

Others

Motion-detecting (microwave), heating-sensing (infrared), and sound-sensing; optical cameras, infrared motion, optical trip wires, door contact sensors, thermal cameras, micro radars,daylight sensors.

Smart-lighting emergency ballast for fluorescent lamps

The function of a traditional emergency lighting system is the supply of a minimum illuminating level when a line voltage failure appears. Therefore, they have to store energy in a battery module to supply the lamps in that case of failure. In this kind of lighting systems the internal damages for example battery overcharging, damaged lamps and starting circuit failure must be detected and repaired by specialist workers. 

For this reason, the smart lighting prototype can check its functional state every fourteen days and dump the result into a LED display. With these features they can test themselves checking their functional state and displaying their internal damages. Also the maintenance cost can be decreased. 

Overview

The main idea is the substitution of the simple line voltage sensing block that appears in the traditional systems by a more complex one based on a microcontroller. This new circuit will assume the functions of line voltage sensing and inverter activation, by one side, and the supervision of all the system: lamp and battery state, battery charging, external communications, correct operation of the power stage, etc., by the other side. 

The system has a great flexibility, for instance, it would be possible the communication of several devices with a master computer, which would know the state of each device all the time. 

A new emergency lighting system based on an intelligent module has been developed. The micro-controller as a control and supervision device guarantees increase in the installation security and a maintenance cost saving. 

Another important advantage is the cost saving for mass production specially whether a microcontroller with the program in ROM memory is used. 

Smart lighting ecosystem

Smart lighting systems can be controlled using the internet to adjust lighting brightness and schedules. One approach involves creating a smart lighting network that assigns IP addresses to light bulbs, though users also have the option of integrating smart light bulbs into Zigbee or Bluetooth Low Energy mesh networks.

Information transmitting with smart light

Schubert predicts that revolutionary lighting systems will provide an entirely new means of sensing and broadcasting information. By blinking far too rapidly for any human to notice, the light will pick up data from sensors and carry it from room to room, reporting such information as the location of every person within a high-security building. A major focus of the Future Chips Constellation is smart lighting, a revolutionary new field in photonics based on efficient light sources that are fully tunable in terms of such factors as spectral content, emission pattern, polarization, color temperature, and intensity. Schubert, who leads the group, says smart lighting will not only offer better, more efficient illumination; it will provide “totally new functionalities.” 

Advances in photonics

The advances achieved in photonics are already transforming society just as electronics revolutionized the world in recent decades and it will continue to contribute more in the future. From the statistics, North America’s optoelectronics market grew to more than $20 billion in 2003. The LED (light-emitting diode) market is expected to reach $5 billion in 2007, and the solid-state lighting market is predicted to be $50 billion in 15–20 years, as stated by E. Fred Schubert, Wellfleet Senior Distinguished Professor of the Future Chips Constellation at Rensselaer.

Inventors

Classical radicalism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cla...