Search This Blog

Wednesday, December 25, 2019

Pollination

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Pollination
 
Female Xylocopa with pollen collected from night-blooming cereus
 
Tip of a tulip stamen covered with pollen grains.
 
Pollination is the transfer of pollen from a male part of a plant to a female part of a plant, later enabling fertilisation and the production of seeds, most often by an animal or by wind. Pollinating agents are animals such as insects, birds, and bats; water; wind; and even plants themselves, when self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species it can produce hybrid offspring in nature and in plant breeding work.

In angiosperms, after the pollen grain (gametophyte) has landed on the stigma, where it germinates and develops a pollen tube which grows down the style until it reaches an ovary. Its two gametes travel down the tube to where the gametophyte(s) containing the female gametes are held within the carpel. After entering an ovum cell through the micropyle, one male nucleus fuses with the polar bodies to produce the endosperm tissues, while the other fuses with the ovule to produce the embryo. Hence the term: "double fertilization". This process would result in the production of a seed made of both nutritious tissues and embryo.

In gymnosperms, the ovule is not contained in a carpel, but exposed on the surface of a dedicated support organ, such as the scale of a cone, so that the penetration of carpel tissue is unnecessary. Details of the process vary according to the division of gymnosperms in question. Two main modes of fertilization are found in gymnosperms. Cycads and Ginkgo have motile sperm that swim directly to the egg inside the ovule, whereas conifers and gnetophytes have sperm that are unable to swim but are conveyed to the egg along a pollen tube.

The study of pollination brings together many disciplines, such as botany, horticulture, entomology, and ecology. The pollination process as an interaction between flower and pollen vector was first addressed in the 18th century by Christian Konrad Sprengel. It is important in horticulture and agriculture, because fruiting is dependent on fertilization: the result of pollination. The study of pollination by insects is known as anthecology

Process

Pollen germination has three stages; hydration, activation and pollen tube emergence. The pollen grain is severely dehydrated so that its mass is reduced enabling it to be more easily transported from flower to flower. Germination only takes place after rehydration, ensuring that premature germination does not take place in the anther. Hydration allows the plasma membrane of the pollen grain to reform into its normal bilayer organization providing an effective osmotic membrane. Activation involves the development of actin filaments throughout the cytoplasm of the cell, which eventually become concentrated at the point from which the pollen tube will emerge. Hydration and activation continue as the pollen tube begins to grow.

In conifers, the reproductive structures are borne on cones. The cones are either pollen cones (male) or ovulate cones (female), but some species are monoecious and others dioecious. A pollen cone contains hundreds of microsporangia carried on (or borne on) reproductive structures called sporophylls. Spore mother cells in the microsporangia divide by meiosis to form haploid microspores that develop further by two mitotic divisions into immature male gametophytes (pollen grains). The four resulting cells consist of a large tube cell that forms the pollen tube, a generative cell that will produce two sperm by mitosis, and two prothallial cells that degenerate. These cells comprise a very reduced microgametophyte, that is contained within the resistant wall of the pollen grain.

The pollen grains are dispersed by the wind to the female, ovulate cone that is made up of many overlapping scales (sporophylls, and thus megasporophylls), each protecting two ovules, each of which consists of a megasporangium (the nucellus) wrapped in two layers of tissue, the integument and the cupule, that were derived from highly modified branches of ancestral gymnosperms. When a pollen grain lands close enough to the tip of an ovule, it is drawn in through the micropyle ( a pore in the integuments covering the tip of the ovule) often by means of a drop of liquid known as a pollination drop. The pollen enters a pollen chamber close to the nucellus, and there it may wait for a year before it germinates and forms a pollen tube that grows through the wall of the megasporangium (=nucellus) where fertilisation takes place. During this time, the megaspore mother cell divides by meiosis to form four haploid cells, three of which degenerate. The surviving one develops as a megaspore and divides repeatedly to form an immature female gametophyte (egg sac). Two or three archegonia containing an egg then develop inside the gametophyte. Meanwhile, in the spring of the second year two sperm cells are produced by mitosis of the body cell of the male gametophyte. The pollen tube elongates and pierces and grows through the megasporangium wall and delivers the sperm cells to the female gametophyte inside. Fertilisation takes place when the nucleus of one of the sperm cells enters the egg cell in the megagametophyte's archegonium.

In flowering plants, the anthers of the flower produce microspores by meiosis. These undergo mitosis to form male gametophytes, each of which contains two haploid cells. Meanwhile, the ovules produce megaspores by meiosis, further division of these form the female gametophytes, which are very strongly reduced, each consisting only of a few cells, one of which is the egg. When a pollen grain adheres to the stigma of a carpel it germinates, developing a pollen tube that grows through the tissues of the style, entering the ovule through the micropyle. When the tube reaches the egg sac, two sperm cells pass through it into the female gametophyte and fertilisation takes place.

Methods

Pollination may be biotic or abiotic. Biotic pollination relies on living pollinators to move the pollen from one flower to another. Abiotic pollination relies on wind, water or even rain. About 80% of angiosperms rely on biotic pollination.

Abiotic

Abiotic pollination uses nonliving methods such as wind and water to move pollen from one flower to another. This allows the plant to spend energy directly on pollen rather than on attracting pollinators with flowers and nectar

By wind

Some 98% of abiotic pollination is anemophily, pollination by wind. This probably arose from insect pollination, most likely due to changes in the environment or the availability of pollinators. The transfer of pollen is more efficient than previously thought; wind pollinated plants have developed to have specific heights, in addition to specific floral, stamen and stigma positions that promote effective pollen dispersal and transfer.

By water

Pollination by water, hydrophily, uses water to transport pollen, sometimes as whole anthers; these can travel across the surface of the water to carry dry pollen from one flower to another. In Vallisneria spiralis, an unopened male flower floats to the surface of the water, and, upon reaching the surface, opens up and the fertile anthers project forward. The female flower, also floating, has its stigma protected from the water, while its sepals are slightly depressed into the water, allowing the male flowers to tumble in.

By rain

Rain pollination is used by a small percentage of plants. Heavy rain discourages insect pollination and damages unprotected flowers, but can itself disperse pollen of suitably adapted plants, such as Ranunculus flammula, Narthecium ossifragum, and Caltha palustris. In these plants, excess rain drains allowing the floating pollen to come in contact with the stigma. In rain pollination in orchids, the rain allows for the anther cap to be removed, allowing for the pollen to be exposed. After exposure, raindrops causes the pollen to be shot upward, when the stipe pulls them back, and then fall into the cavity of the stigma. Thus, for the orchid Acampe rigida, this allows the plant to self-pollinate, which is useful when biotic pollinators in the environment have decreased.

Switching methods

It is possible for a plant have varying pollination methods, including both biotic and abiotic pollination. The orchid Oeceoclades maculata uses both rain and butterflies, depending on its environmental conditions.

Melissodes desponsus covered in pollen
 

Biotic

Hummingbirds typically feed on red flowers

More commonly, pollination involves pollinators (also called pollen vectors): organisms that carry or move the pollen grains from the anther of one flower to the receptive part of the carpel or pistil (stigma) of another. Between 100,000 and 200,000 species of animal act as pollinators of the world's 250,000 species of flowering plant. The majority of these pollinators are insects, but about 1,500 species of birds and mammals visit flowers and may transfer pollen between them. Besides birds and bats which are the most frequent visitors, these include monkeys, lemurs, squirrels, rodents and possums.

Entomophily, pollination by insects, often occurs on plants that have developed colored petals and a strong scent to attract insects such as, bees, wasps and occasionally ants (Hymenoptera), beetles (Coleoptera), moths and butterflies (Lepidoptera), and flies (Diptera). The existence of insect pollination dates back to the dinosaur era.

In zoophily, pollination is performed by vertebrates such as birds and bats, particularly, hummingbirds, sunbirds, spiderhunters, honeyeaters, and fruit bats. Ornithophily or bird pollination is the pollination of flowering plants by birds. Chiropterophily or bat pollination is the pollination of flowering plants by bats. Plants adapted to use bats or moths as pollinators typically have white petals, strong scent and flower at night, whereas plants that use birds as pollinators tend to produce copious nectar and have red petals.

Insect pollinators such as honey bees (Apis spp.), bumblebees (Bombus spp.), and butterflies (e.g., Thymelicus flavus) have been observed to engage in flower constancy, which means they are more likely to transfer pollen to other conspecific plants. This can be beneficial for the pollinators, as flower constancy prevents the loss of pollen during interspecific flights and pollinators from clogging stigmas with pollen of other flower species. It also improves the probability that the pollinator will find productive flowers easily accessible and recognisable by familiar clues.

Some flowers have specialized mechanisms to trap pollinators to increase effectiveness. Other flowers will attract pollinators by odor. For example, bee species such as Euglossa cordata are attracted to orchids this way, and it has been suggested that the bees will become intoxicated during these visits to the orchid flowers, which last up to 90 minutes. However, in general, plants that rely on pollen vectors tend to be adapted to their particular type of vector, for example day-pollinated species tend to be brightly coloured, but if they are pollinated largely by birds or specialist mammals, they tend to be larger and have larger nectar rewards than species that are strictly insect-pollinated. They also tend to spread their rewards over longer periods, having long flowering seasons; their specialist pollinators would be likely to starve if the pollination season were too short.

As for the types of pollinators, reptile pollinators are known, but they form a minority in most ecological situations. They are most frequent and most ecologically significant in island systems, where insect and sometimes also bird populations may be unstable and less species-rich. Adaptation to a lack of animal food and of predation pressure, might therefore favour reptiles becoming more herbivorous and more inclined to feed on pollen and nectar. Most species of lizards in the families that seem to be significant in pollination seem to carry pollen only incidentally, especially the larger species such as Varanidae and Iguanidae, but especially several species of the Gekkonidae are active pollinators, and so is at least one species of the Lacertidae, Podarcis lilfordi, which pollinates various species, but in particular is the major pollinator of Euphorbia dendroides on various Mediterranean islands.

Mammals are not generally thought of as pollinators, but some rodents, bats and marsupials are significant pollinators and some even specialise in such activities. In South Africa certain species of Protea (in particular Protea humiflora, P. amplexicaulis, P. subulifolia, P. decurrens and P. cordata) are adapted to pollination by rodents (particularly Cape Spiny Mouse, Acomys subspinosus) and elephant shrews (Elephantulus species). The flowers are borne near the ground, are yeasty smelling, not colourful, and sunbirds reject the nectar with its high xylose content. The mice apparently can digest the xylose and they eat large quantities of the pollen. In Australia pollination by flying, gliding and earthbound mammals has been demonstrated. Examples of pollen vectors include many species of wasps, that transport pollen of many plant species, being potential or even efficient pollinators. 

Mechanism

A European honey bee collects nectar, while pollen collects on its body.
 
Africanized honey bees immersed in Opuntia engelmannii cactus Pollen
 
Diadasia bee straddles cactus carpels
 
Pollination can be accomplished by cross-pollination or by self-pollination:
  • Cross-pollination, also called allogamy, occurs when pollen is delivered from the stamen of one flower to the stigma of a flower on another plant of the same species. Plants adapted for cross-pollination have several mechanisms to prevent self-pollination; the reproductive organs may be arranged in such a way that self-fertilisation is unlikely, or the stamens and carpels may mature at different times.
  • Self-pollination occurs when pollen from one flower pollinates the same flower or other flowers of the same individual. It is thought to have evolved under conditions when pollinators were not reliable vectors for pollen transport, and is most often seen in short-lived annual species and plants that colonize new locations. Self-pollination may include autogamy, where pollen is transferred to the female part of the same flower; or geitonogamy, when pollen is transferred to another flower on the same plant. Plants adapted to self-fertilize often have similar stamen and carpel lengths. Plants that can pollinate themselves and produce viable offspring are called self-fertile. Plants that cannot fertilize themselves are called self-sterile, a condition which mandates cross-pollination for the production of offspring.
  • Cleistogamy: is self-pollination that occurs before the flower opens. The pollen is released from the anther within the flower or the pollen on the anther grows a tube down the style to the ovules. It is a type of sexual breeding, in contrast to asexual systems such as apomixis. Some cleistogamous flowers never open, in contrast to chasmogamous flowers that open and are then pollinated. Cleistogamous flowers are by necessity found on self-compatible or self-fertile plants. Although certain orchids and grasses are entirely cleistogamous, other plants resort to this strategy under adverse conditions. Often there may be a mixture of both cleistogamous and chasmogamous flowers, sometimes on different parts of the plant and sometimes in mixed inflorescences. The ground bean produces cleistogamous flowers below ground, and mixed cleistogamous and chasmogamous flowers above.
An estimated 48.7% of plant species are either dioecious or self-incompatible obligate out-crossers. It is also estimated that about 42% of flowering plants have a mixed mating system in nature. In the most common kind of mixed mating system, individual plants produce a single type of flower and fruits may contain self-pollinated, out-crossed or a mixture of progeny types.

Pollination also requires consideration of pollenizers, the plants that serve as the pollen source for other plants. Some plants are self-compatible (self-fertile) and can pollinate and fertilize themselves. Other plants have chemical or physical barriers to self-pollination.

In agriculture and horticulture pollination management, a good pollenizer is a plant that provides compatible, viable and plentiful pollen and blooms at the same time as the plant that is to be pollinated or has pollen that can be stored and used when needed to pollinate the desired flowers. Hybridization is effective pollination between flowers of different species, or between different breeding lines or populations. see also Heterosis.

Peaches are considered self-fertile because a commercial crop can be produced without cross-pollination, though cross-pollination usually gives a better crop. Apples are considered self-incompatible, because a commercial crop must be cross-pollinated. Many commercial fruit tree varieties are grafted clones, genetically identical. An orchard block of apples of one variety is genetically a single plant. Many growers now consider this a mistake. One means of correcting this mistake is to graft a limb of an appropriate pollenizer (generally a variety of crabapple) every six trees or so.

The wasp Mischocyttarus rotundicollis transporting pollen grains of Schinus terebinthifolius
 

Coevolution

Melittosphex burmensis, the oldest bee fossil, from the Cretaceous
 
The first fossil record for abiotic pollination is from fern-like plants in the late Carboniferous period. Gymnosperms show evidence for biotic pollination as early as the Triassic period. Many fossilized pollen grains show characteristics similar to the biotically dispersed pollen today. Furthermore, the gut contents, wing structures, and mouthpart morphology of fossilized beetles and flies suggest that they acted as early pollinators. The association between beetles and angiosperms during the early Cretaceous period led to parallel radiations of angiosperms and insects into the late Cretaceous. The evolution of nectaries in late Cretaceous flowers signals the beginning of the mutualism between hymenopterans and angiosperms. 

Bees provide a good example of the mutualism that exists between hymenopterans and angiosperms. Flowers provide bees with nectar (an energy source) and pollen (a source of protein). When bees go from flower to flower collecting pollen they are also depositing pollen grains onto the flowers, thus pollinating them. While pollen and nectar, in most cases, are the most notable reward attained from flowers, bees also visit flowers for other resources such as oil, fragrance, resin and even waxes. It has been estimated that bees originated with the origin or diversification of angiosperms. In addition, cases of coevolution between bee species and flowering plants have been illustrated by specialized adaptations. For example, long legs are selected for in Rediviva neliana, a bee that collects oil from Diascia capsularis, which have long spur lengths that are selected for in order to deposit pollen on the oil-collecting bee, which in turn selects for even longer legs in R. neliana and again longer spur length in D. capsularis is selected for, thus, continually driving each other's evolution.

In agriculture

An Andrena bee gathers pollen from the stamens of a rose. The female carpel structure appears rough and globular to the left.
 
Bombus ignitus, a popular commercial pollinator in Japan and China
 
The most essential staple food crops on the planet, like wheat, maize, rice, soybeans and sorghum are wind pollinated or self pollinating. When considering the top 15 crops contributing to the human diet globally in 2013, slightly over 10% of the total human diet of plant crops (211 out of 1916 kcal/person/day) is dependent upon insect pollination.

Pollination management is a branch of agriculture that seeks to protect and enhance present pollinators and often involves the culture and addition of pollinators in monoculture situations, such as commercial fruit orchards. The largest managed pollination event in the world is in Californian almond orchards, where nearly half (about one million hives) of the US honey bees are trucked to the almond orchards each spring. New York's apple crop requires about 30,000 hives; Maine's blueberry crop uses about 50,000 hives each year. The US solution to the pollinator shortage, so far, has been for commercial beekeepers to become pollination contractors and to migrate. Just as the combine harvesters follow the wheat harvest from Texas to Manitoba, beekeepers follow the bloom from south to north, to provide pollination for many different crops.

In America, bees are brought to commercial plantings of cucumbers, squash, melons, strawberries, and many other crops. Honey bees are not the only managed pollinators: a few other species of bees are also raised as pollinators. The alfalfa leafcutter bee is an important pollinator for alfalfa seed in western United States and Canada. Bumblebees are increasingly raised and used extensively for greenhouse tomatoes and other crops.

The ecological and financial importance of natural pollination by insects to agricultural crops, improving their quality and quantity, becomes more and more appreciated and has given rise to new financial opportunities. The vicinity of a forest or wild grasslands with native pollinators near agricultural crops, such as apples, almonds or coffee can improve their yield by about 20%. The benefits of native pollinators may result in forest owners demanding payment for their contribution in the improved crop results – a simple example of the economic value of ecological services. Farmers can also raise native crops in order to promote native bee pollinator species as shown with L. vierecki in Delaware and L. leucozonium in southwest Virginia.

The American Institute of Biological Sciences reports that native insect pollination saves the United States agricultural economy nearly an estimated $3.1 billion annually through natural crop production; pollination produces some $40 billion worth of products annually in the United States alone.

Pollination of food crops has become an environmental issue, due to two trends. The trend to monoculture means that greater concentrations of pollinators are needed at bloom time than ever before, yet the area is forage poor or even deadly to bees for the rest of the season. The other trend is the decline of pollinator populations, due to pesticide misuse and overuse, new diseases and parasites of bees, clearcut logging, decline of beekeeping, suburban development, removal of hedges and other habitat from farms, and public concern about bees. Widespread aerial spraying for mosquitoes due to West Nile fears is causing an acceleration of the loss of pollinators.

In some situations, farmers or horticulturists may aim to restrict natural pollination to only permit breeding with the preferred individuals plants. This may be achieved through the use of pollination bags.

Improving pollination in areas with suboptimal bee densities

In some instances growers’ demand for beehives far exceeds the available supply. The number of managed beehives in the US has steadily declined from close to 6 million after WWII, to less than 2.5 million today. In contrast, the area dedicated to growing bee-pollinated crops has grown over 300% in the same time period. Additionally, in the past five years there has been a decline in winter managed beehives, which has reached an unprecedented rate of colony losses at near 30%. At present, there is an enormous demand for beehive rentals that cannot always be met. There is a clear need across the agricultural industry for a management tool to draw pollinators into cultivations and encourage them to preferentially visit and pollinate the flowering crop. By attracting pollinators like honey bees and increasing their foraging behavior, particularly in the center of large plots, we can increase grower returns and optimize yield from their plantings. ISCA Technologies, from Riverside California, created a semiochemical formulation called SPLAT Bloom, that modifies the behavior of honey bees, inciting them to visit flowers in every portion of the field.

Environmental impacts

Loss of pollinators, also known as Pollinator decline (of which colony collapse disorder is perhaps the most well known) has been noticed in recent years. These loss of pollinators have caused a disturbance in early plant regeneration processes such as seed dispersal and pollination. Early processes of plant regeneration greatly depend on plant-animal interactions and because these interactions are interrupted, biodiversity and ecosystem functioning are threatened. Pollination by animals aids in the genetic variability and diversity within plants because it allows for out-crossing instead for self-crossing. Without this genetic diversity there would be a lack of traits for natural selection to act on for the survival of the plant species. Seed dispersal is also important for plant fitness because it allows plants the ability to expand their populations. More than that, it permits plants to escape environments that have changed and have become difficult to reside in. All of these factors show the importance of pollinators for plants, which are the a significant part of the foundation for a stable ecosystem. If only a few species of plants depended on Loss of pollinators is especially devastating because there are so many plant species rely on them. More than 87.5% of angiosperms, over 75% of tropical tree species, and 30-40% of tree species in temperate regions depend on pollination and seed dispersal.

Factors that contribute to pollinator decline include habitat destruction, pesticide, parasitism/diseases, and climate change. The more destructive forms of human disturbances are land use changes such as fragmentation, selective logging, and the conversion to secondary forest habitat. Defaunation of frugivores is also an important driver. These alterations are especially harmful due to the sensitivity of the pollination process of plants. Research on tropical palms found that defaunation has caused a decline in seed dispersal, which causes a decrease in genetic variability in this species. Habitat destruction such as fragmentation and selective logging remove areas that are most optimal for the different types of pollinators, which removes pollinators food resources, nesting sites, and leads to isolation of populations. The effect of pesticides on pollinators has been debated because it is difficult to determine that a single pesticide is the cause as opposed to a mixture or other threats. Whether exposure alone causes damages, or if the duration and potency are also factors is unknown. However, insecticides have negative effects, as in the case of neonicotinoids that harm bee colonies. Many researchers believe it is the synergistic effects of these factors which are ultimately detrimental to pollinator populations.

Examples of affected pollinators

The most known and understood pollinator, bees, have been used as the prime example of the decline in pollinators. Bees are essential in the pollination of agricultural crops and wild plants and are one of the main insects that perform this task. Out of the bees species, the honey bee or Apis mellifera has been studied the most and in the United States, there has been a loss of 59% of colonies from 1947 to 2005. The decrease in populations of the honey bee have been attributed to pesticides, genetically modified crops, fragmentation, parasites and diseases that have been introduced. There has been a focus on neonicotinoids effects on honey bee populations. Neonicotinoids insecticides have been used due to its low mammalian toxicity, target specificity, low application rates, and broad spectrum activity. However, the insecticides are able to make its way throughout the plant, which includes the pollen and nectar. Due to this, it has been shown to effect on the nervous system and colony relations in the honey bee populations.

Butterflies too have suffered due to these modifications. Butterflies are helpful ecological indicators since they are sensitive to changes within the environment like the season, altitude, and above all, human impact on the environment. Butterfly populations were higher within the natural forest and were lower in open land. The reason for the difference in density is the fact that in open land the butterflies would be exposed to desiccation and predation. These open regions are caused by habitat destruction like logging for timber, livestock grazing, and firewood collection. Due to this destruction, butterfly species' diversity can decrease and it is known that there is a correlation in butterfly diversity and plant diversity.

Food security and pollinator decline

Besides the imbalance of the ecosystem caused by the decline in pollinators, it may jeopardise food security. Pollination is necessary for plants to continue their populations and 3/4 of the plant species that contribute to the world's food supply are plants that require pollinators. Insect pollinators, like bees, are large contributors to crop production, over 200 billion dollars worth of crop species are pollinated by these insects. Pollinators are also essential because they improve crop quality and increase genetic diversity, which is necessary in producing fruit with nutritional value and various flavors. Crops that do not depend on animals for pollination but on the wind or self-pollination, like corn and potatoes, have doubled in production and make up a large part of the human diet but do not provide the micronutrients that are needed. The essential nutrients that are necessary in the human diet are present in plants that rely on animal pollinators. There have been issues in vitamin and mineral deficiencies and it is believed that if pollinator populations continue to decrease these deficiencies will become even more prominent.

Plant–pollinator networks

Wild pollinators often visit a large number of plant species and plants are visited by a large number of pollinator species. All these relations together form a network of interactions between plants and pollinators. Surprising similarities were found in the structure of networks consisting out of the interactions between plants and pollinators. This structure was found to be similar in very different ecosystems on different continents, consisting of entirely different species.

The structure of plant-pollinator networks may have large consequences for the way in which pollinator communities respond to increasingly harsh conditions. Mathematical models, examining the consequences of this network structure for the stability of pollinator communities suggest that the specific way in which plant-pollinator networks are organized minimizes competition between pollinators and may even lead to strong indirect facilitation between pollinators when conditions are harsh. This means that pollinator species together can survive under harsh conditions. But it also means that pollinator species collapse simultaneously when conditions pass a critical point. This simultaneous collapse occurs, because pollinator species depend on each other when surviving under difficult conditions.

Such a community-wide collapse, involving many pollinator species, can occur suddenly when increasingly harsh conditions pass a critical point and recovery from such a collapse might not be easy. The improvement in conditions needed for pollinators to recover, could be substantially larger than the improvement needed to return to conditions at which the pollinator community collapsed.

Anti-predator adaptation

From Wikipedia, the free encyclopedia
 
Anti-predator adaptation in action: the seal shark Dalatias licha (a–c) and the wreckfish Polyprion americanus (d–f) attempt to prey on hagfishes. First, the predators approach their potential prey. Predators bite or try to swallow the hagfishes, but the hagfishes have already projected jets of slime (arrows) into the predators' mouths. Choking, the predators release the hagfishes and gag in an attempt to remove slime from their mouths and gill chambers.
 
Anti-predator adaptations are mechanisms developed through evolution that assist prey organisms in their constant struggle against predators. Throughout the animal kingdom, adaptations have evolved for every stage of this struggle, namely by avoiding detection, warding off attack, fighting back, or escaping when caught. 

The first line of defence consists in avoiding detection, through mechanisms such as camouflage
masquerade, apostatic selection, living underground, or nocturnality

Alternatively, prey animals may ward off attack, whether by advertising the presence of strong defences in aposematism, by mimicking animals which do possess such defences, by startling the attacker, by signalling to the predator that pursuit is not worthwhile, by distraction, by using defensive structures such as spines, and by living in a group. Members of groups are at reduced risk of predation, despite the increased conspicuousness of a group, through improved vigilance, predator confusion, and the likelihood that the predator will attack some other individual. 

Some prey species are capable of fighting back against predators, whether with chemicals, through communal defence, or by ejecting noxious materials. Many animals can escape by fleeing rapidly, outrunning or outmanoeuvring their attacker. 

Finally, some species are able to escape even when caught by sacrificing certain body parts: crabs can shed a claw, while lizards can shed their tails, often distracting predators long enough to permit the prey to escape. 

Avoiding detection

Staying out of sight

Fruit bats forage by night to avoid predators.
 
Animals may avoid becoming prey by living out of sight of predators, whether in caves, burrows, or by being nocturnal. Nocturnality is an animal behavior characterized by activity during the night and sleeping during the day. This is a behavioral form of detection avoidance called crypsis used by animals to either avoid predation or to enhance prey hunting. Predation risk has long been recognized as critical in shaping behavioral decisions. For example, this predation risk is of prime importance in determining the time of evening emergence in echolocating bats. Although early access during brighter times permits easier foraging, it also leads to a higher predation risk from bat hawks and bat falcons. This results in an optimum evening emergence time that is a compromise between the conflicting demands.

Another nocturnal adaptation can be seen in kangaroo rats. They forage in relatively open habitats, and reduce their activity outside their nest burrows in response to moonlight. During a full moon, they shift their activity towards areas of relatively dense cover to compensate for the extra brightness.

Camouflage illustrated by the flat-tail horned lizard, its flattened, fringed and disruptively patterned body eliminating shadow
 

Camouflage

Camouflage uses any combination of materials, coloration, or illumination for concealment to make the organism hard to detect by sight. It is common in both terrestrial and marine animals. Camouflage can be achieved in many different ways, such as through resemblance to surroundings, disruptive coloration, shadow elimination by countershading or counter-illumination, self-decoration, cryptic behavior, or changeable skin patterns and colour. Animals such as the flat-tail horned lizard of North America have evolved to eliminate their shadow and blend in with the ground. The bodies of these lizards are flattened, and their sides thin towards the edge. This body form, along with the white scales fringed along their sides, allows the lizards to effectively hide their shadows. In addition, these lizards hide any remaining shadows by pressing their bodies to the ground.

Masquerade

 
Animals can hide in plain sight by masquerading as inedible objects. For example, the potoo, a South American bird, habitually perches on a tree, convincingly resembling a broken stump of a branch, while a butterfly, Kallima, looks just like a dead leaf.

Apostatic selection

Another way to remain unattacked in plain sight is to look different from other members of the same species. Predators such as tits selectively hunt for abundant types of insect, ignoring less common types that were present, forming search images of the desired prey. This creates a mechanism for negative frequency-dependent selection, apostatic selection.

Warding off attack

A Mediterranean mantis, Iris oratoria, attempting to startle a predator with deimatic behaviour
 
Many species make use of behavioral strategies to deter predators.

Startling the predator

Many weakly-defended animals, including moths, butterflies, mantises, phasmids, and cephalopods such as octopuses, make use of patterns of threatening or startling behaviour, such as suddenly displaying conspicuous eyespots, so as to scare off or momentarily distract a predator, thus giving the prey animal an opportunity to escape. In the absence of toxins or other defences, this is essentially bluffing, in contrast to aposematism which involves honest signals.

Pursuit-deterrent signals

An impala stotting, signalling honestly to the predator that the chase will be unprofitable
 
Pursuit-deterrent signals are behavioral signals used by prey that convince predators not to pursue them. For example, gazelles stot, jumping high with stiff legs and an arched back. This is thought to signal to predators that they have a high level of fitness and can outrun the predator. As a result, predators may choose to pursue a different prey that is less likely to outrun them. White-tailed deer and other prey mammals flag with conspicuous (often black and white) tail markings when alarmed, informing the predator that it has been detected. Warning calls given by birds such as the Eurasian jay are similarly honest signals, benefiting both predator and prey: the predator is informed that it has been detected and might as well save time and energy by giving up the chase, while the prey is protected from attack.

Playing dead

Another pursuit-deterrent signal is thanatosis or playing dead. Thanatosis is a form of bluff in which an animal mimics its own dead body, feigning death to avoid being attacked by predators seeking live prey. Thanatosis can also be used by the predator in order to lure prey into approaching. An example of this is seen in white-tailed deer fawns, which experience a drop in heart rate in response to approaching predators. This response, referred to as "alarm bradycardia", causes the fawn's heart rate to drop from 155 to 38 beats per minute within one beat of the heart. This drop in heart rate can last up to two minutes, causing the fawn to experience a depressed breathing rate and decrease in movement, called tonic immobility. Tonic immobility is a reflex response that causes the fawn to enter a low body position that simulates the position of a dead corpse. Upon discovery of the fawn, the predator loses interest in the "dead" prey. Other symptoms of alarm bradycardia, such as salivation, urination, and defecation, can also cause the predator to lose interest.

Distraction

A killdeer plover, distracting a predator from its nest by feigning a broken wing
 
Marine molluscs such as sea hares, cuttlefish, squid and octopuses give themselves a last chance to escape by distracting their attackers. To do this, they eject a mixture of chemicals, which may mimic food or otherwise confuse predators. In response to a predator, animals in these groups release ink, creating a cloud, and opaline, affecting the predator's feeding senses, causing it to attack the cloud.

Distraction displays attract the attention of predators away from an object, typically the nest or young, that is being protected. Distraction displays are performed by some species of birds, which may feign a broken wing while hopping about on the ground, and by some species of fish.

Mimicry and aposematism

Viceroy and monarch butterflies illustrate Müllerian mimicry
Viceroy and monarch are Müllerian mimics, similar in appearance, unpalatable to predators.
 
Mimicry occurs when an organism (the mimic) simulates signal properties of another organism (the model) to confuse a third organism. This results in the mimic gaining protection, food, and mating advantages. There are two classical types of defensive mimicry: Batesian and Müllerian. Both involve aposematic coloration, or warning signals, to avoid being attacked by a predator.

In Batesian mimicry, a palatable, harmless prey species mimics the appearance of another species that is noxious to predators, thus reducing the mimic's risk of attack. This form of mimicry is seen in many insects. The idea behind Batesian mimicry is that predators that have tried to eat the unpalatable species learn to associate its colors and markings with an unpleasant taste. This results in the predator learning to avoid species displaying similar colours and markings, including Batesian mimics, which are in effect parasitic on the chemical or other defences of the unprofitable models. Some species of octopus can mimic a selection of other animals by changing their skin color, skin pattern and body motion. When a damselfish attacks an octopus, the octopus mimics a banded sea-snake. The model chosen varies with the octopus's predator and habitat. Most of these octopuses use Batesian mimicry, selecting an organism repulsive to predators as a model.

In Müllerian mimicry, two or more aposematic forms share the same warning signals, as in viceroy and monarch butterflies. Birds avoid eating both species because their wing patterns honestly signal their unpleasant taste.

The porcupine Erethizon dorsatum combines sharp spines with warning coloration
 

Defensive structures

Many animals are protected against predators with armour in the form of hard shells (such as most molluscs), leathery or scaly skin (as in reptiles), or tough chitinous exoskeletons (as in arthropods).

A spine is a sharp, needle-like structure used to inflict pain on predators. An example of this seen in nature is in the Sohal surgeonfish. These fish have a sharp scalpel-like spine on the front of each of their tail fins, able to inflict deep wounds. The area around the spines is often brightly colored to advertise the defensive capability; predators often avoid the Sohal surgeonfish. Defensive spines may be detachable, barbed or poisonous. Porcupine spines are long, stiff, break at the tip, and are barbed to stick into a would-be predator. In contrast, the hedgehog's short spines, which are modified hairs, readily bend, and are barbed into the body, so they are not easily lost; they may be jabbed at an attacker.

Stinging Limacodidae slug moth caterpillars
 
Many species of slug caterpillar, Limacodidae, have numerous protuberances and stinging spines along their dorsal surfaces. Species that possess these stinging spines suffer less predation than larvae that lack them, and a predator, the paper wasp, chooses larvae without spines when given a choice.

Safety in numbers

Group living can decrease the risk of predation to the individual in a variety of ways, as described below. 

Dilution effect

A dilution effect is seen when animals living in a group "dilute" their risk of attack, each individual being just one of many in the group. George C. Williams and W.D. Hamilton proposed that group living evolved because it provides benefits to the individual rather than to the group as a whole, which becomes more conspicuous as it becomes larger. One common example is the shoaling of fish. Experiments provide direct evidence for the decrease in individual attack rate seen with group living, for example in Camargue horses in Southern France. The horse-fly often attacks these horses, sucking blood and carrying diseases. When the flies are most numerous, the horses gather in large groups, and individuals are indeed attacked less frequently. Water striders are insects that live on the surface of fresh water, and are attacked from beneath by predatory fish. Experiments varying the group size of the water striders showed that the attack rate per individual water strider decreases as group size increases.

In a group, prey seek central positions in order to reduce their domain of danger. Individuals along the outer edges of the group are more at risk of being targeted by the predator.
 

Selfish herd

The selfish herd theory was proposed by W.D. Hamilton to explain why animals seek central positions in a group. The theory's central idea is to reduce the individual's domain of danger. A domain of danger is the area within the group in which the individual is more likely to be attacked by a predator. The center of the group has the lowest domain of danger, so animals are predicted to strive constantly to gain this position. Testing Hamilton's selfish herd effect, Alta De Vos and Justin O'Rainn (2010) studied brown fur seal predation from great white sharks. Using decoy seals, the researchers varied the distance between the decoys to produce different domains of danger. The seals with a greater domain of danger had an increased risk of shark attack.

Predator satiation

A newly emerged periodical cicada: millions emerge at once, at long intervals, likely to satiate predators.

A radical strategy for avoiding predators which may otherwise kill a large majority of the emerging young of a population is to emerge very rarely, at irregular intervals. This strategy is seen in dramatic form in the periodical cicadas, which emerge at intervals of 13 or 17 years. Predators with a life-cycle of one or a few years are unable to reproduce rapidly enough in response to such an emergence, so predator satiation is a likely evolutionary explanation for the cicadas' unusual life-cycle, though not the only one. Predators may still feast on the emerging cicadas, but are unable to consume more than a fraction of the brief surfeit of prey.

Vervet monkeys have different alarm signals that warn of attacks by eagles, leopards and snakes.
 

Alarm calls

Animals that live in groups often give alarm calls that give warning of an attack. For example, vervet monkeys give different calls depending on the nature of the attack: for an eagle, a disyllabic cough; for a leopard or other cat, a loud bark; for a python or other snake, a "chutter". The monkeys hearing these calls respond defensively, but differently in each case: to the eagle call, they look up and run into cover; to the leopard call, they run up into the trees; to the snake call, they stand on two legs and look around for snakes, and on seeing the snake, they sometimes mob it. Similar calls are found in other species of monkey, while birds also give different calls that elicit different responses.

Improved vigilance

A raptor, a northern harrier, chases up an alert flock of American avocets.
 
In the improved vigilance effect, groups are able to detect predators sooner than solitary individuals. For many predators, success depends on surprise. If the prey is alerted early in an attack, they have an improved chance of escape. For example, wood pigeon flocks are preyed upon by goshawks. Goshawks are less successful when attacking larger flocks of wood pigeons than they are when attacking smaller flocks. This is because the larger the flock size, the more likely it is that one bird will notice the hawk sooner and fly away. Once one pigeon flies off in alarm, the rest of the pigeons follow. Wild ostriches in Tsavo National Park in Kenya feed either alone or in groups of up to four birds. They are subject to predation by lions. As the ostrich group size increases, the frequency at which each individual raises its head to look for predators decreases. Because ostriches are able to run at speeds that exceed those of lions for great distances, lions try to attack an ostrich when its head is down. By grouping, the ostriches present the lions with greater difficulty in determining how long the ostriches' heads stay down. Thus, although individual vigilance decreases, the overall vigilance of the group increases.

A single zebra is hard to catch amongst a herd.
 

Predator confusion

Individuals living in large groups may be safer from attack because the predator may be confused by the large group size. As the group moves, the predator has greater difficulty targeting an individual prey animal. The zebra has been suggested by the zoologist Martin Stevens and his colleagues as an example of this. When stationary, a single zebra stands out because of its large size. To reduce the risk of attack, zebras often travel in herds. The striped patterns of all the zebras in the herd may confuse the predator, making it harder for the predator to focus in on an individual zebra. Furthermore, when moving rapidly, the zebra stripes create a confusing, flickering motion dazzle effect in the eye of the predator.

Fighting back

Defensive structures such as spines may be used both to ward off attack as already mentioned, and if need be to fight back against a predator. Methods of fighting back include chemical defences, mobbing, defensive regurgitation, and suicidal altruism.

Chemical defences

The bloody-nose beetle, Timarcha tenebricosa, exuding a drop of noxious red liquid (upper right)

Many prey animals, and to defend against seed predation also seeds of plants, make use of poisonous chemicals for self-defence. These may be concentrated in surface structures such as spines or glands, giving an attacker a taste of the chemicals before it actually bites or swallows the prey animal: many toxins are bitter-tasting. A last-ditch defence is for the animal's flesh itself to be toxic, as in the puffer fish, danaid butterflies and burnet moths. Many insects acquire toxins from their food plants; Danaus caterpillars accumulate toxic cardenolides from milkweeds (Asclepiadaceae).

Some prey animals are able to eject noxious materials to deter predators actively. The bombardier beetle has specialized glands on the tip of its abdomen that allows it to direct a toxic spray towards predators. The spray is generated explosively through oxidation of hydroquinones and is sprayed at a temperature of 100 °C. Armoured crickets similarly release blood at their joints when threatened (autohaemorrhaging). Several species of grasshopper including Poecilocerus pictus, Parasanaa donovani, Aularches miliaris, and Tegra novaehollandiae secrete noxious liquids when threatened, sometimes ejecting these forcefully. Spitting cobras accurately squirt venom from their fangs at the eyes of potential predators, striking their target eight times out of ten, and causing severe pain. Termite soldiers in the Nasutitermitinae have a fontanellar gun, a gland on the front of their head which can secrete and shoot an accurate jet of resinous terpenes "many centimeters". The material is sticky and toxic to other insects. One of the terpenes in the secretion, pinene, functions as an alarm pheromone. Seeds deter predation with combinations of toxic non-protein amino acids, cyanogenic glycosides, protease and amylase inhibitors, and phytohemaglutinins.

A few vertebrate species such as the Texas horned lizard are able to shoot squirts of blood from their eyes, by rapidly increasing the blood pressure within the eye sockets, if threatened. Because an individual may lose up to 53% of blood in a single squirt, this is only used against persistent predators like foxes, wolves and coyotes (Canidae), as a last defence. Canids often drop horned lizards after being squirted, and attempt to wipe or shake the blood out of their mouths, suggesting that the fluid has a foul taste; they choose other lizards if given the choice, suggesting a learned aversion towards horned lizards as prey.

The slime glands along the body of the hagfish secrete enormous amounts of mucus when it is provoked or stressed. The gelatinous slime has dramatic effects on the flow and viscosity of water, rapidly clogging the gills of any fish that attempt to capture hagfish; predators typically release the hagfish within seconds (pictured above). Common predators of hagfish include seabirds, pinnipeds and cetaceans, but few fish, suggesting that predatory fish avoid hagfish as prey.

Communal defence

Group of muskoxen in defensive formation, horns ready, and highly alert
 
In communal defence, prey groups actively defend themselves by grouping together, and sometimes by attacking or mobbing a predator, rather than allowing themselves to be passive victims of predation. Mobbing is the harassing of a predator by many prey animals. Mobbing is usually done to protect the young in social colonies. For example, red colobus monkeys exhibit mobbing when threatened by chimpanzees, a common predator. The male red colobus monkeys group together and place themselves between predators and the group's females and juveniles. The males jump together and actively bite the chimpanzees. Fieldfares are birds which may nest either solitarily or in colonies. Within colonies, fieldfares mob and defecate on approaching predators, shown experimentally to reduce predation levels.

Defensive regurgitation

A northern fulmar chick protects itself with a jet of stomach oil.
 
Some birds and insects use defensive regurgitation to ward off predators. The northern fulmar vomits a bright orange, oily substance called stomach oil when threatened. The stomach oil is made from their aquatic diets. It causes the predator's feathers to mat, leading to the loss of flying ability and the loss of water repellency. This is especially dangerous for aquatic birds because their water repellent feathers protect them from hypothermia when diving for food.

European roller chicks vomit a bright orange, foul smelling liquid when they sense danger. This repels prospective predators and may alert their parents to danger: they respond by delaying their return.

Numerous insects utilize defensive regurgitation. The eastern tent caterpillar regurgitates a droplet of digestive fluid to repel attacking ants. Similarly, larvae of the noctuid moth regurgitate when disturbed by ants. The vomit of noctuid moths has repellent and irritant properties that help to deter predator attacks.

Suicidal altruism

An unusual type of predator deterrence is observed in the Malaysian exploding ant. Social hymenoptera rely on altruism to protect the entire colony, so the self-destructive acts benefit all individuals in the colony. When a worker ant's leg is grasped, it suicidally expels the contents of its hypertrophied submandibular glands, expelling corrosive irritant compounds and adhesives onto the predator. These prevent predation and serve as a signal to other enemy ants to stop predation of the rest of the colony.

Escaping

Startled pheasants and partridges fly from possible danger.
 

Flight

The normal reaction of a prey animal to an attacking predator is to flee by any available means, whether flying, gliding, falling, swimming, running, jumping, burrowing or rolling, according to the animal's capabilities. Escape paths are often erratic, making it difficult for the predator to predict which way the prey will go next: for example, birds such as snipe, ptarmigan and black-headed gulls evade fast raptors such as peregrine falcons with zigzagging or jinking flight. In the tropical rain forests of Southeast Asia in particular, many vertebrates escape predators by falling and gliding. Among the insects, many moths turn sharply, fall, or perform a powered dive in response to the sonar clicks of bats. Among fish, the stickleback follows a zigzagging path, often doubling back erratically, when chased by a fish-eating merganser duck.

Autotomy

Lizard tail autotomy can distract predators, continuing to writhe while the lizard makes its escape.
 
Some animals are capable of autotomy (self-amputation), shedding one of their own appendages in a last-ditch attempt to elude a predator's grasp or to distract the predator and thereby allow escape. The lost body part may be regenerated later. Certain sea slugs discard stinging papillae; arthropods such as crabs can sacrifice a claw, which can be regrown over several successive moults; among vertebrates, many geckos and other lizards shed their tails when attacked: the tail goes on writhing for a while, distracting the predator, and giving the lizard time to escape; a smaller tail slowly regrows.

History of observations

Aristotle recorded observations (around 350 BC) of the antipredator behaviour of cephalopods in his History of Animals, including the use of ink as a distraction, camouflage, and signalling.

In 1940, Hugh Cott wrote a compendious study of camouflage, mimicry, and aposematism, Adaptive Coloration in Animals.

Politics of Europe

From Wikipedia, the free encyclopedia ...