Search This Blog

Monday, June 8, 2020

Technology integration

From Wikipedia, the free encyclopedia
 
Technology integration is the use of technology tools in general content areas in education in order to allow students to apply computer and technology skills to learning and problem-solving. Generally speaking, the curriculum drives the use of technology and not vice versa. Technology integration is defined as the use of technology to enhance and support the educational environment. Technology integration in the classroom can also support classroom instruction by creating opportunities for students to complete assignments on the computer rather than with normal pencil and paper. In a larger sense, technology integration can also refer to the use of an integration platform and APIs in the management of a school, to integrate disparate SaaS (Software As A Service) applications, databases, and programs used by an educational institution so that their data can be shared in real-time across all systems on campus, thus supporting students' education by improving data quality and access for faculty and staff.
"Curriculum integration with the use of technology involves the infusion of technology as a tool to enhance the learning in a content area or multidisciplinary setting... Effective integration of technology is achieved when students are able to select technology tools to help them obtain information in a timely manner, analyze and synthesize the information, and present it professionally to an authentic audience. The technology should become an integral part of how the classroom functions—as accessible as all other classroom tools. The focus in each lesson or unit is the curriculum outcome, not the technology."
Integrating technology with standard curriculum can not only give students a sense of power, but also allows for more advanced learning among broad topics. However, these technologies require infrastructure, continual maintenance and repair – one determining element, among many, in how these technologies can be used for curricula purposes and whether or not they will be successful. Examples of the infrastructure required to operate and support technology integration in schools include at the basic level electricity, Internet service providers, routers, modems, and personnel to maintain the network, beyond the initial cost of the hardware and software.

Standard education curriculum with an integration of technology can provide tools for advanced learning among a broad range of topics. Integration of information and communication technology is often closely monitored and evaluated due to the current climate of accountability, outcome-based education, and standardization in assessment.

Technology integration can in some instances be problematic. A high ratio of students to technological device has been shown to impede or slow learning and task completion. In some, instances dyadic peer interaction centered on integrated technology has proven to develop a more cooperative sense of social relations. Success or failure of technology integration is largely dependent on factors beyond the technology. The availability of appropriate software for the technology being integrated is also problematic in terms of software accessibility to students and educators. Another issue identified with technology integration is the lack of long-range planning for these tools within the educative districts they are being used.

Technology contributes to global development and diversity in classrooms while helping to develop upon the fundamental building blocks needed for students to achieve more complex ideas. In order for technology to make an impact within the educational system, teachers and students must access to technology in a contextual matter that is culturally relevant, responsive and meaningful to their educational practice and that promotes quality teaching and active student learning.

History

The term 'educational technology' was used during the post World War II era in the United States for the integration of implements such as film strips, slide projectors, language laboratories, audio tapes, and television. Presently, the computers, tablets, and mobile devices integrated into classroom settings for educational purposes are most often referred to as 'current' educational technologies. It is important to note that educational technologies continually change, and once referred to slate chalkboards used by students in early schoolhouses in the late nineteenth and early twentieth centuries. The phrase 'educational technology', a composite meaning of technology + education, is used to refer to the most advanced technologies that are available for both teaching and learning in a particular era.

In 1994 federal legislation for both the Educate America Act and the Improving America's School's Act (IASA) authorized funds for state and federal educational technology planning. One of the principal goals listed in the Educate America Act is to promote the research, consensus building, and systemic changes needed to ensure equitable educational opportunities and high levels of educational achievement for all students (Public Law 103-227). In 1996 the Telecommunications Act provided a systematic change necessary to ensure equitable educational opportunities of bringing new technology into the education sector. The Telecomm Act requires affordable access and service to advanced telecom services for public schools and libraries. Many of the computers, tablets, and mobile devices currently used in classrooms operate through Internet connectivity; particularly those that are application based such as tablets. Schools in high-cost areas and disadvantaged schools were to receive higher discounts in telecom services such as Internet, cable, satellite television, and the management component.

A chart of "Technology Penetration in U.S. Public Schools" report states 98% percent of schools reported having computers in the 1995–1996 school year, with 64% Internet access, and 38% working via networked systems. The ratio of students to computers in the United States in 1984 stood at 15 students per 1 computer, it now stands at an average all-time low of 10 students to computer. From the 1980s on into the 2000s, the most substantial issue to examine in educational technology was school access to technologies according to the 1997 Policy Information Report for Computers and Classrooms: The Status of Technology in U.S. Schools. These technologies included computers, multimedia computers, the Internet, networks, cable TV, and satellite technology amongst other technology-based resources.

More recently ubiquitous computing devices, such as computers and tablets, are being used as networked collaborative technologies in the classroom. Computers, tablets and mobile devices may be used in educational settings within groups, between people and for collaborative tasks. These devices provide teachers and students access to the World Wide Web in addition to a variety of software applications.

Technology education standards

National Educational Technology Standards (NETS) served as a roadmap since 1998 for improved teaching and learning by educators. As stated above, these standards are used by teachers, students, and administrators to measure competency and set higher goals to be skillful.

The Partnership for 21st Century Skills is a national organization that advocates for 21st century readiness for every student. Their most recent Technology Plan was released in 2010, "Transforming American Education: Learning Powered by Technology". This plan outlines a vision "to leverage the learning sciences and modern technology to create engaging, relevant, and personalized learning experiences for all learners that mirror students' daily lives and the reality of their futures. In contrast to traditional classroom instruction, this requires that students be put at the center and encouraged to take control of their own learning by providing flexibility on several dimensions." Although tools have changed dramatically since the beginnings of educational technology, this vision of using technology for empowered, self-directed learning has remained consistent.

Pedagogy

The integration of electronic devices into classrooms has been cited as a possible solution to bridge access for students, to close achievement gaps, that are subject to the digital divide, based on social class, economic inequality, or gender where and a potential user does not have enough cultural capital required to have access to information and communication technologies. Several motivations or arguments have been cited for integrating high-tech hardware and software into school, such as (1) making schools more efficient and productive than they currently are, (2) if this goal is achieved, teaching and learning will be transformed into an engaging and active process connected to real life, and (3) is to prepare the current generation of young people for the future workplace. The computer has access to graphics and other functions students can use to express their creativity. Technology integration does not always have to do with the computer. It can be the use of the overhead projector, student response clickers, etc. Enhancing how the student learns is very important in technology integration. Technology will always help students to learn and explore more.

Paradigms

Most research in technology integration has been criticized for being atheoretical and ad hoc driven more by the affordances of the technology rather than the demands of pedagogy and subject matter. Armstrong (2012) argued that multimedia transmission turns to limit the learning into simple content, because it is difficult to deliver complicated content through multimedia.

One approach that attempts to address this concern is a framework aimed at describing the nature of teacher knowledge for successful technology integration. The technological pedagogical content knowledge or TPACK framework has recently received some positive attention.

Another model that has been used to analyze tech integration is the SAMR framework, developed by Ruben Puentedura. This model attempts to measure the level of tech integration with 4 the levels that go from Enhancement to Transformation: Substitution, Augmentation, Modification, Redefinition.

Constructivism

Constructivism is a crucial component of technology integration. It is a learning theory that describes the process of students constructing their own knowledge through collaboration and inquiry-based learning. According to this theory, students learn more deeply and retain information longer when they have a say in what and how they will learn. Inquiry-based learning, thus, is researching a question that is personally relevant and purposeful because of its direct correlation to the one investigating the knowledge. As stated by Jean Piaget, constructivist learning is based on four stages of cognitive development. In these stages, children must take an active role in their own learning and produce meaningful works in order to develop a clear understanding. These works are a reflection of the knowledge that has been achieved through active self-guided learning. Students are active leaders in their learning and the learning is student-led rather than teacher–directed.

Many teachers use a constructivist approach in their classrooms assuming one or more of the following roles: facilitator, collaborator, curriculum developer, team member, community builder, educational leader, or information producer.

Counter argument to computers in the classroom

Is technology in the classroom needed, or does it hinder students' social development? We've all seen a table of teenagers on their phones, all texting, not really socializing or talking to each other. How do they develop social and communication skills? Neil Postman (1993) concludes:
The role of the school is to help students learn how to ignore and discard information so that they can achieve a sense of coherence in their lives; to help students cultivate a sense of social responsibility; to help students think critically, historically, and humanely; to help students understand the ways in which technology shapes their consciousness; to help students learn that their own needs sometimes are subordinate to the needs of the group. I could go on for another three pages in this vein without any reference to how machinery can give students access to information. Instead, let me summarize in two ways what I mean. First, I'll cite a remark made repeatedly by my friend Alan Kay, who is sometimes called "the father of the personal computer." Alan likes to remind us that any problems the schools cannot solve without machines, they cannot solve with them. Second, and with this I shall come to a close: If a nuclear holocaust should occur some place in the world, it will not happen because of insufficient information; if children are starving in Somalia, it's not because of insufficient information; if crime terrorizes our cities, marriages are breaking up, mental disorders are increasing, and children are being abused, none of this happens because of a lack of information. These things happen because we lack something else. It is the "something else" that is now the business of schools.

Tools

Interactive whiteboards

Interactive whiteboards are used in many schools as replacements for standard whiteboards and provide a way to allow students to interact with material on the computer. In addition, some interactive whiteboards software allow teachers to record their instruction.
  • 3D virtual environments are also used with interactive whiteboards as a way for students to interact with 3D virtual learning objects employing kinetics and haptic touch the classroom. An example of the use of this technique is the open-source project Edusim.
  • Research has been carried out to track the worldwide Interactive Whiteboard market by Decision Tree Consulting (DTC), a worldwide research company. According to the results, interactive Whiteboards continue to be the biggest technology revolution in classrooms, across the world there are over 1.2 million boards installed, over 5 million classrooms are forecast to have Interactive Whiteboards installed by 2011, Americas are the biggest region closely followed by EMEA, and Mexico's Enciclomedia project to equip 145,000 classrooms is worth $1.8 billion and is the largest education technology project in the world.
  • Interactive whiteboards can accommodate different learning styles, such as visual, tactile, and audio.
Interactive Whiteboards are another way that technology is expanding in schools. By assisting the teacher to helping students more kinestically as well as finding different ways to process there information throughout the entire classroom.

Student response systems

Student response systems consist of handheld remote control units, or response pads, which are operated by individual students. An infrared or radio frequency receiver attached to the teacher's computer collects the data submitted by students. The CPS (Classroom Performance System), once set, allows the teacher to pose a question to students in several formats. Students then use the response pad to send their answer to the infrared sensor. Data collected from these systems is available to the teacher in real time and can be presented to the students in a graph form on an LCD projector. The teacher can also access a variety of reports to collect and analyze student data. These systems have been used in higher education science courses since the 1970s and have become popular in K-12 classrooms beginning in the early 21st century.

Audience response systems (ARS) can help teachers analyze, and act upon student feedback more efficiently. For example, with polleverywhere.com, students text in answers via mobile devices to warm-up or quiz questions. The class can quickly view collective responses to the multiple-choice questions electronically, allowing the teacher to differentiate instruction and learn where students need help most.

Combining ARS with peer learning via collaborative discussions has also been proven to be particularly effective. When students answer an in-class conceptual question individually, then discuss it with their neighbors, and then vote again on the same or a conceptually similar question, the percentage of correct student responses usually increases, even in groups where no student had given the correct answer previously.

Among other tools that have been noted as being effective as a way of technology integration are podcasts, digital cameras, smart phones, tablets, digital media, and blogs.Other examples of technology integration include translation memories and smart computerized translation programs that are among the newest integrations that are changing the field of linguistics.

Mobile learning

Mobile learning is defined as "learning across multiple contexts, through social and content interactions, using personal electronic devices". A mobile device is essentially any device that is portable and has internet access and includes tablets, smart phones, cell phones, e-book readers, and MP3 players. As mobile devices become increasingly common personal devices of K-12 students, some educators seek to utilize downloadable applications and interactive games to help facilitate learning. This practice can be controversial because many parents and educators are concerned that students would be off-task because teachers cannot monitor their activity. This is currently being troubleshooted by forms of mobile learning that require a log-in, acting as a way to track engagement of students.

Benefits

According to findings from four meta analyses, blending technology with face-to-face teacher time generally produces better outcomes than face-to-face or online learning alone. Research is currently limited on the specific features of technology integration that improve learning. Meanwhile, the marketplace of learning technologies continues to grow and vary widely in content, quality, implementation, and context of use.

Research shows that adding technology to K-12 environments, alone, does not necessarily improve learning. What matters most to implementing mobile learning is how students and teachers use technology to develop knowledge and skills and that requires training. Successful technology integration for learning goes hand in hand with changes in teacher training, curricula, and assessment practices.

An example of teacher professional development is profiled in Edutopia's Schools That Work series on eMints, a program that offers teachers 200 hours of coaching and training in technology integration over a two-year span. In these workshops teachers are trained in practices such as using interactive whiteboards and the latest web tools to facilitate active learning. In a 2010 publication of Learning Point Associates, statistics showed that students of teachers who had participated in eMints had significantly higher standardized test scores than those attained by their peers.

It can keep students focused for longer periods of time. The use of computers to look up information/ data is a tremendous time saver, especially when used to access a comprehensive resource like the Internet to conduct research. This time-saving aspect can keep students focused on a project much longer than they would with books and paper resources, and it helps them develop better learning through exploration and research.

Project-based activities

Definition: Project Based Learning is a teaching method in which students gain knowledge and skills by working for an extended period of time to investigate and respond to an authentic, engaging and complex question, problem, or challenge. 

Project Based Activities is a method of teaching where the students gain knowledge and skills by involving themselves for the more period of time to research and respond to the engaging and complex questions, problems, or challenges. the students will work in groups to solve the problems which are challenging. The students will work in groups to solve the problems which are challenging, real, curriculum based and frequently relating to more than one branch of knowledge. Therefore, a well designed project based learning activity is one which addresses different student learning styles and which does not assume that all students can demonstrate their knowledge in a single standard way.

Elements

The project based learning activities involves four basic elements.
  1. An extended time frame.
  2. Collaboration.
  3. Inquiry, investigation and research.
  4. The construction of an artifact or performance of a consequential task.

Examples of activities

CyberHunt

The term "hunt" refers to finding or searching for something. "CyberHunt" means an online activity which learners use the internet as tool to find answers to the question's based upon the topics which are assigned by someone else. Hence learners also can design the CyberHunt on some specific topics. a CyberHunt, or internet scavenger hunt, is a project-based activity which helps students gain experience in exploring and browsing the internet. A CyberHunt may ask students to interact with the site (e.g.: play a game or watch a video), record short answers to teacher questions, as well as read and write about a topic in depth. There are basically two types of CyberHunt:
  • A simple task, in which the teacher develops a series of questions and gives the students a hypertext link to the URL that will give them the answer.
  • A more complex task, intended for increasing and improving student internet search skills. Teachers ask questions for students to answer using a search engine.

WebQuests

It is an inquiry oriented activity in which most or all of the information used by the learners which are drawn out by the internet/web. It is designed to use learner 'time well', to focus on using information rather than on looking for it and to support the learners to think at the level of analysis, synthesis, and evaluation. It is the wonderful way of capturing student's imagination and allowing them to explore in a guided, meaningful manner. It allow the students to explore issues and find their own answers.
There are six building blocks of webQuests:
  1. The introduction – capturing the student's interest.
  2. The task-describing the activities end product.
  3. The resources-web sites, students will use to complete the task.
  4. The evaluation-measuring the result of the activity.
  5. The conclusion-summing up of the activity.
WebQuests are student-centered, web-based curricular units that are interactive and use Internet resources. The purpose of a webQuest is to use information on the web to support the instruction taught in the classroom. A webQuest consists of an introduction, a task (or final project that students complete at the end of the webQuest), processes (or instructional activities), web-based resources, evaluation of learning, reflection about learning, and a conclusion.

WISE

The Web-based Inquiry Science Environment (WISE) provides a platform for creating inquiry science projects for middle school and high school students using evidence and resources from the Web. Funded by the U.S. National Science Foundation, WISE has been developed at the University of California, Berkeley from 1996 until the present. WISE inquiry projects include diverse elements such as online discussions, data collection, drawing, argument creation, resource sharing, concept mapping and other built-in tools, as well as links to relevant web resources. It is the research-focused, open-source inquiry-based learning management system that includes the student- learning environment project authoring environment, grading tool, and tool and user/ course/ content management tools.

Virtual field trip

A virtual field trip is a website that allows the students to experience places, ideas, or objects beyond the constraints of the classroom. A virtual field trip is a great way to allow the students to explore and experience new information. This format is especially helpful and beneficial in allowing schools to keep the cost down. Virtual field trips may also be more practical for children in the younger grades, due to the fact that there is not a demand for chaperones and supervision. Although, a virtual field trip does not allow the children to have the hands on experiences and the social interactions that can and do take place on an actual field trip. An educator should incorporate the use of hands on material to further their understanding of the material that is presented and experienced in a virtual field trip.It is a guided exploration through the www that organizes a collection of pre- screened, its thematically based web pages into a structure online learning experience

ePortfolio

An ePortfolio is a collection of student work that exhibits the student's achievements in one or more areas over time. Components in a typical student ePortfolio might contain creative writings, paintings, photography, math explorations, music, and videos. And it is a collection of work developed across varied contexts over time. The portfolio can advance learning by providing students and/or faculty with a way to organize, archive and display pieces of work.

Technology

From Wikipedia, the free encyclopedia

A steam turbine with the case opened. Such turbines produce most of the electricity used today. Electricity consumption and living standards are highly correlated. Electrification is believed to be the most important engineering achievement of the 20th century.

Technology ("science of craft", from Greek τέχνη, techne, "art, skill, cunning of hand"; and -λογία, -logia) is the sum of techniques, skills, methods, and processes used in the production of goods or services or in the accomplishment of objectives, such as scientific investigation. Technology can be the knowledge of techniques, processes, and the like, or it can be embedded in machines to allow for operation without detailed knowledge of their workings. Systems (e.g. machines) applying technology by taking an input, changing it according to the system's use, and then producing an outcome are referred to as technology systems or technological systems.

The simplest form of technology is the development and use of basic tools. The prehistoric discovery of how to control fire and the later Neolithic Revolution increased the available sources of food, and the invention of the wheel helped humans to travel in and control their environment. Developments in historic times, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact freely on a global scale.

Technology has many effects. It has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products known as pollution and deplete natural resources to the detriment of Earth's environment. Innovations have always influenced the values of a society and raised new questions in the ethics of technology. Examples include the rise of the notion of efficiency in terms of human productivity, and the challenges of bioethics.

Philosophical debates have arisen over the use of technology, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar reactionary movements criticize the pervasiveness of technology, arguing that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition.

Definition and usage

The spread of paper and printing to the West, as in this printing press, helped scientists and politicians communicate their ideas easily, leading to the Age of Enlightenment; an example of technology as cultural force.

The use of the term "technology" has changed significantly over the last 200 years. Before the 20th century, the term was uncommon in English, and it was used either to refer to the description or study of the useful arts or to allude to technical education, as in the Massachusetts Institute of Technology (chartered in 1861).

The term "technology" rose to prominence in the 20th century in connection with the Second Industrial Revolution. The term's meanings changed in the early 20th century when American social scientists, beginning with Thorstein Veblen, translated ideas from the German concept of Technik into "technology." In German and other European languages, a distinction exists between technik and technologie that is absent in English, which usually translates both terms as "technology." By the 1930s, "technology" referred not only to the study of the industrial arts but to the industrial arts themselves.

In 1937, the American sociologist Read Bain wrote that "technology includes all tools, machines, utensils, weapons, instruments, housing, clothing, communicating and transporting devices and the skills by which we produce and use them." Bain's definition remains common among scholars today, especially social scientists. Scientists and engineers usually prefer to define technology as applied science, rather than as the things that people make and use. More recently, scholars have borrowed from European philosophers of "technique" to extend the meaning of technology to various forms of instrumental reason, as in Foucault's work on technologies of the self (techniques de soi). 

Dictionaries and scholars have offered a variety of definitions. The Merriam-Webster Learner's Dictionary offers a definition of the term: "the use of science in industry, engineering, etc., to invent useful things or to solve problems" and "a machine, piece of equipment, method, etc., that is created by technology." Ursula Franklin, in her 1989 "Real World of Technology" lecture, gave another definition of the concept; it is "practice, the way we do things around here." The term is often used to imply a specific field of technology, or to refer to high technology or just consumer electronics, rather than technology as a whole. Bernard Stiegler, in Technics and Time, 1, defines technology in two ways: as "the pursuit of life by means other than life," and as "organized inorganic matter."

Technology can be most broadly defined as the entities, both material and immaterial, created by the application of mental and physical effort in order to achieve some value. In this usage, technology refers to tools and machines that may be used to solve real-world problems. It is a far-reaching term that may include simple tools, such as a crowbar or wooden spoon, or more complex machines, such as a space station or particle accelerator. Tools and machines need not be material; virtual technology, such as computer software and business methods, fall under this definition of technology. W. Brian Arthur defines technology in a similarly broad way as "a means to fulfill a human purpose."

The word "technology" can also be used to refer to a collection of techniques. In this context, it is the current state of humanity's knowledge of how to combine resources to produce desired products, to solve problems, fulfill needs, or satisfy wants; it includes technical methods, skills, processes, techniques, tools and raw materials. When combined with another term, such as "medical technology" or "space technology," it refers to the state of the respective field's knowledge and tools. "State-of-the-art technology" refers to the high technology available to humanity in any field.

The invention of integrated circuits and the microprocessor (here, an Intel 4004 chip from 1971) led to the modern computer revolution.

Technology can be viewed as an activity that forms or changes culture. Additionally, technology is the application of mathematics, science, and the arts for the benefit of life as it is known. A modern example is the rise of communication technology, which has lessened barriers to human interaction and as a result has helped spawn new subcultures; the rise of cyberculture has at its basis the development of the Internet and the computer. Not all technology enhances culture in a creative way; technology can also help facilitate political oppression and war via tools such as guns. As a cultural activity, technology predates both science and engineering, each of which formalize some aspects of technological endeavor.

Science, engineering, and technology

Antoine Lavoisier experimenting with combustion generated by amplified sun light

The distinction between science, engineering, and technology is not always clear. Science is systematic knowledge of the physical or material world gained through observation and experimentation. Technologies are not usually exclusively products of science, because they have to satisfy requirements such as utility, usability, and safety.

Engineering is the goal-oriented process of designing and making tools and systems to exploit natural phenomena for practical human means, often (but not always) using results and techniques from science. The development of technology may draw upon many fields of knowledge, including scientific, engineering, mathematical, linguistic, and historical knowledge, to achieve some practical result.

Technology is often a consequence of science and engineering, although technology as a human activity precedes the two fields. For example, science might study the flow of electrons in electrical conductors by using already-existing tools and knowledge. This new-found knowledge may then be used by engineers to create new tools and machines such as semiconductors, computers, and other forms of advanced technology. In this sense, scientists and engineers may both be considered technologists; the three fields are often considered as one for the purposes of research and reference.

The exact relations between science and technology, in particular, have been debated by scientists, historians, and policymakers in the late 20th century, in part because the debate can inform the funding of basic and applied science. In the immediate wake of World War II, for example, it was widely considered in the United States that technology was simply "applied science" and that to fund basic science was to reap technological results in due time. An articulation of this philosophy could be found explicitly in Vannevar Bush's treatise on postwar science policy, Science – The Endless Frontier: "New products, new industries, and more jobs require continuous additions to knowledge of the laws of nature ... This essential new knowledge can be obtained only through basic scientific research." In the late-1960s, however, this view came under direct attack, leading towards initiatives to fund science for specific tasks (initiatives resisted by the scientific community). The issue remains contentious, though most analysts resist the model that technology is a result of scientific research.

History

Paleolithic (2.5 Ma – 10 ka)

A primitive chopper

The use of tools by early humans was partly a process of discovery and of evolution. Early humans evolved from a species of foraging hominids which were already bipedal, with a brain mass approximately one third of modern humans. Tool use remained relatively unchanged for most of early human history. Approximately 50,000 years ago, the use of tools and complex set of behaviors emerged, believed by many archaeologists to be connected to the emergence of fully modern language.

Stone tools

Hand axes from the Acheulian period
 
Hominids started using primitive stone tools millions of years ago. The earliest stone tools were little more than a fractured rock, but approximately 75,000 years ago, pressure flaking provided a way to make much finer work.

Fire

The discovery and use of fire, a simple energy source with many profound uses, was a turning point in the technological evolution of humankind. The exact date of its discovery is not known; evidence of burnt animal bones at the Cradle of Humankind suggests that the domestication of fire occurred before 1 Ma; scholarly consensus indicates that Homo erectus had controlled fire by between 500 and 400 ka. Fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten.

Clothing and shelter

Other technological advances made during the Paleolithic era were clothing and shelter; the adoption of both technologies cannot be dated exactly, but they were a key to humanity's progress. As the Paleolithic era progressed, dwellings became more sophisticated and more elaborate; as early as 380 ka, humans were constructing temporary wood huts. Clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions; humans began to migrate out of Africa by 200 ka and into other continents such as Eurasia.

Neolithic through classical antiquity (10 ka – 300 CE)

An array of Neolithic artifacts, including bracelets, axe heads, chisels, and polishing tools

Human's technological ascent began in earnest in what is known as the Neolithic Period ("New Stone Age"). The invention of polished stone axes was a major advance that allowed forest clearance on a large scale to create farms. This use of polished stone axes increased greatly in the Neolithic, but were originally used in the preceding Mesolithic in some areas such as Ireland. Agriculture fed larger populations, and the transition to sedentism allowed simultaneously raising more children, as infants no longer needed to be carried, as nomadic ones must. Additionally, children could contribute labor to the raising of crops more readily than they could to the hunter-gatherer economy.

With this increase in population and availability of labor came an increase in labor specialization. What triggered the progression from early Neolithic villages to the first cities, such as Uruk, and the first civilizations, such as Sumer, is not specifically known; however, the emergence of increasingly hierarchical social structures and specialized labor, of trade and war amongst adjacent cultures, and the need for collective action to overcome environmental challenges such as irrigation, are all thought to have played a role.

Metal tools

Continuing improvements led to the furnace and bellows and provided, for the first time, the ability to smelt and forge gold, copper, silver, and lead  – native metals found in relatively pure form in nature. The advantages of copper tools over stone, bone, and wooden tools were quickly apparent to early humans, and native copper was probably used from near the beginning of Neolithic times (about 10 ka). Native copper does not naturally occur in large amounts, but copper ores are quite common and some of them produce metal easily when burned in wood or charcoal fires. Eventually, the working of metals led to the discovery of alloys such as bronze and brass (about 4000 BCE). The first uses of iron alloys such as steel dates to around 1800 BCE.

Energy and transport

The wheel was invented circa 4000 BCE.

Meanwhile, humans were learning to harness other forms of energy. The earliest known use of wind power is the sailing ship; the earliest record of a ship under sail is that of a Nile boat dating to the 8th-millennium BCE. From prehistoric times, Egyptians probably used the power of the annual flooding of the Nile to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and "catch" basins. The ancient Sumerians in Mesopotamia used a complex system of canals and levees to divert water from the Tigris and Euphrates rivers for irrigation.

According to archaeologists, the wheel was invented around 4000 BCE probably independently and nearly simultaneously in Mesopotamia (in present-day Iraq), the Northern Caucasus (Maykop culture) and Central Europe. Estimates on when this may have occurred range from 5500 to 3000 BCE with most experts putting it closer to 4000 BCE. The oldest artifacts with drawings depicting wheeled carts date from about 3500 BCE; however, the wheel may have been in use for millennia before these drawings were made. More recently, the oldest-known wooden wheel in the world was found in the Ljubljana marshes of Slovenia.

The invention of the wheel revolutionized trade and war. It did not take long to discover that wheeled wagons could be used to carry heavy loads. The ancient Sumerians used the potter's wheel and may have invented it. A stone pottery wheel found in the city-state of Ur dates to around 3429 BCE, and even older fragments of wheel-thrown pottery have been found in the same area. Fast (rotary) potters' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy (through water wheels, windmills, and even treadmills) that revolutionized the application of nonhuman power sources. The first two-wheeled carts were derived from travois and were first used in Mesopotamia and Iran in around 3000 BCE.

The oldest known constructed roadways are the stone-paved streets of the city-state of Ur, dating to circa 4000 BCE and timber roads leading through the swamps of Glastonbury, England, dating to around the same time period. The first long-distance road, which came into use around 3500 BCE, spanned 1,500 miles from the Persian Gulf to the Mediterranean Sea, but was not paved and was only partially maintained. In around 2000 BCE, the Minoans on the Greek island of Crete built a fifty-kilometer (thirty-mile) road leading from the palace of Gortyn on the south side of the island, through the mountains, to the palace of Knossos on the north side of the island. Unlike the earlier road, the Minoan road was completely paved.

Plumbing

Photograph of the Pont du Gard in France, one of the most famous ancient Roman aqueducts
 
Ancient Minoan private homes had running water. A bathtub virtually identical to modern ones was unearthed at the Palace of Knossos. Several Minoan private homes also had toilets, which could be flushed by pouring water down the drain. The ancient Romans had many public flush toilets, which emptied into an extensive sewage system. The primary sewer in Rome was the Cloaca Maxima; construction began on it in the sixth century BCE and it is still in use today.

The ancient Romans also had a complex system of aqueducts, which were used to transport water across long distances. The first Roman aqueduct was built in 312 BCE. The eleventh and final ancient Roman aqueduct was built in 226 CE. Put together, the Roman aqueducts extended over 450 kilometers, but less than seventy kilometers of this was above ground and supported by arches.

Medieval and modern history (300 CE – present)

The card catalog, a technology developed in the 19th century, became ubiquitous in the 20th century.

Innovations continued through the Middle Ages with innovations such as silk-manufacture (introduced into Europe after centuries of development in Asia), the horse collar and horseshoes in the first few hundred years after the 5th-century fall of the Roman Empire. Medieval technology saw the use of simple machines (such as the lever, the screw, and the pulley) being combined to form more complicated tools, such as the wheelbarrow, windmills and clocks, and a system of universities developed and spread scientific ideas and practices. The Renaissance era produced many innovations, including the printing press (which facilitated the communication of knowledge), and technology became increasingly associated with science, beginning a cycle of mutual advancement. Advances in technology in this era allowed a more reliable supply of food, followed by the wider availability of consumer goods.

The automobile revolutionized personal transportation.
 
Starting in the United Kingdom in the 18th century, the Industrial Revolution was a period of great technological discovery, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, driven by the discovery of steam power and the widespread application of the factory system. Technology took another step in a second industrial revolution (c.  1870 to c.  1914) with the harnessing of electricity to allow such innovations as the electric motor, light bulb, and countless others. Scientific advances and the discovery of new concepts later allowed for powered flight and developments in medicine, chemistry, physics, and engineering. The rise in technology has led to skyscrapers and broad urban areas whose inhabitants rely on motors to transport them and their food supplies. Communication improved with the invention of the telegraph, telephone, radio and television. The late-19th and early-20th centuries saw a revolution in transportation with the invention of the airplane and automobile

F-15 and F-16 flying over Kuwaiti oil fires during the Gulf War in 1991.

The 20th century brought a host of innovations. In physics, the discovery of nuclear fission has led to both nuclear weapons and nuclear power. Computers were invented and later miniaturized using transistors and integrated circuits. Information technology subsequently led to the birth in the 1980s of the Internet, which ushered in the current Information Age. Humans started to explore space with satellites (late 1950s, later used for telecommunication) and in manned missions (1960s) going all the way to the moon. In medicine, this era brought innovations such as open-heart surgery and later stem-cell therapy along with new medications and treatments.

Complex manufacturing and construction techniques and organizations are needed to make and maintain some of the newer technologies, and entire industries have arisen to support and develop succeeding generations of increasingly more complex tools. Modern technology increasingly relies on training and education – their designers, builders, maintainers, and users often require sophisticated general and specific training. Moreover, these technologies have become so complex that entire fields have developed to support them, including engineering, medicine, and computer science; and other fields have become more complex, such as construction, transportation, and architecture.

Philosophy

Technicism

Generally, technicism is the belief in the utility of technology for improving human societies. Taken to an extreme, technicism "reflects a fundamental attitude which seeks to control reality, to resolve all problems with the use of scientific–technological methods and tools." In other words, human beings will someday be able to master all problems and possibly even control the future using technology. Some, such as Stephen V. Monsma, connect these ideas to the abdication of religion as a higher moral authority.

Optimism

Optimistic assumptions are made by proponents of ideologies such as transhumanism and singularitarianism, which view technological development as generally having beneficial effects for the society and the human condition. In these ideologies, technological development is morally good.
Transhumanists generally believe that the point of technology is to overcome barriers, and that what we commonly refer to as the human condition is just another barrier to be surpassed.

Singularitarians believe in some sort of "accelerating change"; that the rate of technological progress accelerates as we obtain more technology, and that this will culminate in a "Singularity" after artificial general intelligence is invented in which progress is nearly infinite; hence the term. Estimates for the date of this Singularity vary, but prominent futurist Ray Kurzweil estimates the Singularity will occur in 2045. 

Kurzweil is also known for his history of the universe in six epochs: (1) the physical/chemical epoch, (2) the life epoch, (3) the human/brain epoch, (4) the technology epoch, (5) the artificial intelligence epoch, and (6) the universal colonization epoch. Going from one epoch to the next is a Singularity in its own right, and a period of speeding up precedes it. Each epoch takes a shorter time, which means the whole history of the universe is one giant Singularity event.

Some critics see these ideologies as examples of scientism and techno-utopianism and fear the notion of human enhancement and technological singularity which they support. Some have described Karl Marx as a techno-optimist.

Skepticism and critics

Refer to caption
Luddites smashing a power loom in 1812

On the somewhat skeptical side are certain philosophers like Herbert Marcuse and John Zerzan, who believe that technological societies are inherently flawed. They suggest that the inevitable result of such a society is to become evermore technological at the cost of freedom and psychological health.

Many, such as the Luddites and prominent philosopher Martin Heidegger, hold serious, although not entirely, deterministic reservations about technology. According to Heidegger scholars Hubert Dreyfus and Charles Spinosa, "Heidegger does not oppose technology. He hopes to reveal the essence of technology in a way that 'in no way confines us to a stultified compulsion to push on blindly with technology or, what comes to the same thing, to rebel helplessly against it.' Indeed, he promises that 'when we once open ourselves expressly to the essence of technology, we find ourselves unexpectedly taken into a freeing claim.' What this entails is a more complex relationship to technology than either techno-optimists or techno-pessimists tend to allow."

Some of the most poignant criticisms of technology are found in what are now considered to be dystopian literary classics such as Aldous Huxley's Brave New World, Anthony Burgess's A Clockwork Orange, and George Orwell's Nineteen Eighty-Four. In Goethe's Faust, Faust selling his soul to the devil in return for power over the physical world is also often interpreted as a metaphor for the adoption of industrial technology. More recently, modern works of science fiction such as those by Philip K. Dick and William Gibson and films such as Blade Runner and Ghost in the Shell project highly ambivalent or cautionary attitudes toward technology's impact on human society and identity.

The late cultural critic Neil Postman distinguished tool-using societies from technological societies and from what he called "technopolies," societies that are dominated by the ideology of technological and scientific progress to the exclusion or harm of other cultural practices, values, and world-views.

Darin Barney has written about technology's impact on practices of citizenship and democratic culture, suggesting that technology can be construed as (1) an object of political debate, (2) a means or medium of discussion, and (3) a setting for democratic deliberation and citizenship. As a setting for democratic culture, Barney suggests that technology tends to make ethical questions, including the question of what a good life consists in, nearly impossible because they already give an answer to the question: a good life is one that includes the use of more and more technology.

Nikolas Kompridis has also written about the dangers of new technology, such as genetic engineering, nanotechnology, synthetic biology, and robotics. He warns that these technologies introduce unprecedented new challenges to human beings, including the possibility of the permanent alteration of our biological nature. These concerns are shared by other philosophers, scientists and public intellectuals who have written about similar issues (e.g. Francis Fukuyama, Jürgen Habermas, William Joy, and Michael Sandel).

Another prominent critic of technology is Hubert Dreyfus, who has published books such as On the Internet and What Computers Still Can't Do.




A more infamous anti-technological treatise is Industrial Society and Its Future, written by the Unabomber Ted Kaczynski and printed in several major newspapers (and later books) as part of an effort to end his bombing campaign of the techno-industrial infrastructure. There are also subcultures that disapprove of some or most technology, such as self-identified off-gridders.

Appropriate technology

The notion of appropriate technology was developed in the 20th century by thinkers such as E.F. Schumacher and Jacques Ellul to describe situations where it was not desirable to use very new technologies or those that required access to some centralized infrastructure or parts or skills imported from elsewhere. The ecovillage movement emerged in part due to this concern.

Optimism and skepticism in the 21st century

This section mainly focuses on American concerns even if it can reasonably be generalized to other Western countries.
The inadequate quantity and quality of American jobs is one of the most fundamental economic challenges we face. [...] What's the linkage between technology and this fundamental problem?
— Bernstein, Jared, "It’s Not a Skills Gap That’s Holding Wages Down: It’s the Weak Economy, Among Other Things," in The American Prospect, October 2014
In his article, Jared Bernstein, a Senior Fellow at the Center on Budget and Policy Priorities, questions the widespread idea that automation, and more broadly, technological advances, have mainly contributed to this growing labor market problem. His thesis appears to be a third way between optimism and skepticism. Essentially, he stands for a neutral approach of the linkage between technology and American issues concerning unemployment and declining wages.

He uses two main arguments to defend his point. First, because of recent technological advances, an increasing number of workers are losing their jobs. Yet, scientific evidence fails to clearly demonstrate that technology has displaced so many workers that it has created more problems than it has solved. Indeed, automation threatens repetitive jobs but higher-end jobs are still necessary because they complement technology and manual jobs that "requires flexibility judgment and common sense" remain hard to replace with machines. Second, studies have not shown clear links between recent technology advances and the wage trends of the last decades.

Therefore, according to Bernstein, instead of focusing on technology and its hypothetical influences on current American increasing unemployment and declining wages, one needs to worry more about "bad policy that fails to offset the imbalances in demand, trade, income, and opportunity."

For people who use both the Internet and mobile devices in excessive quantities it is likely for them to experience fatigue and over exhaustion as a result of disruptions in their sleeping patterns. Continuous studies have shown that increased BMI and weight gain are associated with people who spend long hours online and not exercising frequently. Heavy Internet use is also displayed in the school lower grades of those who use it in excessive amounts. It has also been noted that the use of mobile phones whilst driving has increased the occurrence of road accidents — particularly amongst teen drivers. Statistically, teens reportedly have fourfold the number of road traffic incidents as those who are 20 years or older, and a very high percentage of adolescents write (81%) and read (92%) texts while driving. In this context, mass media and technology have a negative impact on people, on both their mental and physical health.

Complex technological systems

Thomas P. Hughes stated that because technology has been considered as a key way to solve problems, we need to be aware of its complex and varied characters to use it more efficiently. What is the difference between a wheel or a compass and cooking machines such as an oven or a gas stove? Can we consider all of them, only a part of them, or none of them as technologies? 

Technology is often considered too narrowly; according to Hughes, "Technology is a creative process involving human ingenuity". This definition's emphasis on creativity avoids unbounded definitions that may mistakenly include cooking "technologies," but it also highlights the prominent role of humans and therefore their responsibilities for the use of complex technological systems.

Yet, because technology is everywhere and has dramatically changed landscapes and societies, Hughes argues that engineers, scientists, and managers have often believed that they can use technology to shape the world as they want. They have often supposed that technology is easily controllable and this assumption has to be thoroughly questioned. For instance, Evgeny Morozov particularly challenges two concepts: "Internet-centrism" and "solutionism." Internet-centrism refers to the idea that our society is convinced that the Internet is one of the most stable and coherent forces. Solutionism is the ideology that every social issue can be solved thanks to technology and especially thanks to the internet. In fact, technology intrinsically contains uncertainties and limitations. According to Alexis Madrigal's review of Morozov's theory, to ignore it will lead to "unexpected consequences that could eventually cause more damage than the problems they seek to address." Benjamin R. Cohen and Gwen Ottinger also discussed the multivalent effects of technology.

Therefore, recognition of the limitations of technology, and more broadly, scientific knowledge, is needed – especially in cases dealing with environmental justice and health issues. Ottinger continues this reasoning and argues that the ongoing recognition of the limitations of scientific knowledge goes hand in hand with scientists and engineers’ new comprehension of their role. Such an approach of technology and science "[require] technical professionals to conceive of their roles in the process differently. [They have to consider themselves as] collaborators in research and problem solving rather than simply providers of information and technical solutions."

Other animal species

This adult gorilla uses a branch as a walking stick to gauge the water's depth, an example of technology usage by non-human primates.

The use of basic technology is also a feature of other animal species apart from humans. These include primates such as chimpanzees, some dolphin communities, and crows. Considering a more generic perspective of technology as ethology of active environmental conditioning and control, we can also refer to animal examples such as beavers and their dams, or bees and their honeycombs.

The ability to make and use tools was once considered a defining characteristic of the genus Homo. However, the discovery of tool construction among chimpanzees and related primates has discarded the notion of the use of technology as unique to humans. For example, researchers have observed wild chimpanzees using tools for foraging: some of the tools used include leaf sponges, termite fishing probes, pestles and levers. West African chimpanzees also use stone hammers and anvils for cracking nuts, as do capuchin monkeys of Boa Vista, Brazil.

Future technology

Theories of technology often attempt to predict the future of technology based on the high technology and science of the time. As with all predictions of the future, however, technology is uncertain.

In 2005, futurist Ray Kurzweil predicted that the future of technology would mainly consist of an overlapping "GNR Revolution" of genetics, nanotechnology and robotics, with robotics being the most important of the three.

United States labor law

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Uni...