Search This Blog

Tuesday, March 30, 2021

Space architecture

From Wikipedia, the free encyclopedia

A 1990 artist rendering of Space Station Freedom, a project that eventually evolved into the International Space Station

Space architecture is the theory and practice of designing and building inhabited environments in outer space. The architectural approach to spacecraft design addresses the total built environment. It is mainly based on the field of engineering (especially aerospace engineering), but also involves diverse disciplines such as physiology, psychology, and sociology. Like architecture on Earth, the attempt is to go beyond the component elements and systems and gain a broad understanding of the issues that affect design success. Space architecture borrows from multiple forms of niche architecture to accomplish the task of ensuring human beings can live and work in space. These include the kinds of design elements one finds in “tiny housing, small living apartments/houses, vehicle design, capsule hotels, and more.”

Much space architecture work has been in designing concepts for orbital space stations and lunar and Martian exploration ships and surface bases for the world's space agencies, chiefly NASA.

The practice of involving architects in the space program grew out of the Space Race, although its origins can be seen much earlier. The need for their involvement stemmed from the push to extend space mission durations and address the needs of astronauts including but beyond minimum survival needs. Space architecture is currently represented in several institutions. The Sasakawa International Center for Space Architecture (SICSA) is an academic organization with the University of Houston that offers a Master of Science in Space Architecture. SICSA also works design contracts with corporations and space agencies. In Europe, The Vienna University of Technology and the International Space University are involved in space architecture research. The International Conference on Environmental Systems meets annually to present sessions on human spaceflight and space human factors. Within the American Institute of Aeronautics and Astronautics, the Space Architecture Technical Committee has been formed. Despite the historical pattern of large government-led space projects and university-level conceptual design, the advent of space tourism threatens to shift the outlook for space architecture work.

Etymology

The word space in space architecture is referring to the outer space definition, which is from English outer and space. Outer can be defined as "situated on or toward the outside; external; exterior" and originated around 1350–1400 in Middle English. Space is "an area, extent, expanse, lapse of time," the aphetic of Old French espace dating to 1300. Espace is from Latin spatium, "room, area, distance, stretch of time," and is of uncertain origin. In space architecture, speaking of outer space usually means the region of the universe outside Earth's atmosphere, as opposed to outside the atmospheres of all terrestrial bodies. This allows the term to include such domains as the lunar and Martian surfaces.

Architecture, the concatenation of architect and -ure, dates to 1563, coming from Middle French architecte. This term is of Latin origin, formerly architectus, which came from Greek arkhitekton. Arkitekton means "master builder" and is from the combination of arkhi- "chief" and tekton "builder". The human experience is central to architecture – the primary difference between space architecture and spacecraft engineering.

There is some debate over the terminology of space architecture. Some consider the field to be a specialty within architecture that applies architectural principles to space applications. Others such as Ted Hall of the University of Michigan see space architects as generalists, with what is traditionally considered architecture (Earth-bound or terrestrial architecture) being a subset of a broader space architecture. Any structures that fly in space will likely remain for some time highly dependent on Earth-based infrastructure and personnel for financing, development, construction, launch, and operation. Therefore, it is a matter of discussion how much of these earthly assets are to be considered part of space architecture. The technicalities of the term space architecture are open to some level of interpretation.

Origins

Ideas of people traveling to space were first published in science fiction stories, like Jules Verne's 1865 From the Earth to the Moon. In this story several details of the mission (crew of three, spacecraft dimensions, Florida launch site) bear striking similarity to the Apollo moon landings that took place more than 100 years later. Verne's aluminum capsule had shelves stocked with equipment needed for the journey such as a collapsing telescope, pickaxes and shovels, firearms, oxygen generators, and even trees to plant. A curved sofa was built into the floor and walls and windows near the tip of the spacecraft were accessible by ladder. The projectile was shaped like a bullet because it was gun-launched from the ground, a method infeasible for transporting man to space due to the high acceleration forces produced. It would take rocketry to get humans to the cosmos.

An illustration of von Braun's rotating space station concept

The first serious theoretical work published on space travel by means of rocket power was by Konstantin Tsiolkovsky in 1903. Besides being the father of astronautics he conceived such ideas as the space elevator (inspired by the Eiffel Tower), a rotating space station that created artificial gravity along the outer circumference, airlocks, space suits for extra-vehicular activity (EVA), closed ecosystems to provide food and oxygen, and solar power in space. Tsiolkovsky believed human occupation of space was the inevitable path for our species. In 1952 Wernher von Braun published his own inhabited space station concept in a series of magazine articles. His design was an upgrade of earlier concepts, but he took the unique step in going directly to the public with it. The spinning space station would have three decks and was to function as a navigational aid, meteorological station, Earth observatory, military platform, and way point for further exploration missions to outer space. It is said that the space station depicted in 2001: A Space Odyssey traces its design heritage to Von Braun's work. Wernher von Braun went on to devise mission schemes to the Moon and Mars, each time publishing his grand plans in Collier's Weekly.

The flight of Yuri Gagarin on April 12, 1961 was humanity's maiden spaceflight. While the mission was a necessary first step, Gagarin was more or less confined to a chair with a small view port from which to observe the cosmos – a far cry from the possibilities of life in space. Following space missions gradually improved living conditions and quality of life in low Earth orbit. Expanding room for movement, physical exercise regimens, sanitation facilities, improved food quality, and recreational activities all accompanied longer mission durations. Architectural involvement in space was realized in 1968 when a group of architects and industrial designers led by Raymond Loewy, over objections from engineers, prevailed in convincing NASA to include an observation window in the Skylab orbital laboratory. This milestone represents the introduction of the human psychological dimension to spacecraft design. Space architecture was born.

Theory

The subject of architectural theory has much application in space architecture. Some considerations, though, will be unique to the space context.

Ideology of building

Louis Sullivan famously coined the phrase 'form ever follows function'

In the first century BC, the Roman architect Vitruvius said all buildings should have three things: strength, utility, and beauty. Vitruvius's work De Architectura, the only surviving work on the subject from classical antiquity, would have profound influence on architectural theory for thousands of years to come. Even in space architecture these are some of the first things we consider. However, the tremendous challenge of living in space has led to habitat design based largely on functional necessity with little or no applied ornament. In this sense space architecture as we know it shares the form follows function principle with modern architecture.

Some theorists link different elements of the Vitruvian triad. Walter Gropius writes:

'Beauty' is based on the perfect mastery of all the scientific, technological and formal prerequisites of the task ... The approach of Functionalism means to design the objects organically on the basis of their own contemporary postulates, without any romantic embellishment or jesting.

As space architecture continues to mature as a discipline, dialogue on architectural design values will open up just as it has for Earth.

Analogs

The Mars Desert Research Station is located in the Utah desert because of its relative similarity to the Martian surface

A starting point for space architecture theory is the search for extreme environments in terrestrial settings where humans have lived, and the formation of analogs between these environments and space. For example, humans have lived in submarines deep in the ocean, in bunkers beneath the Earth's surface, and on Antarctica, and have safely entered burning buildings, radioactively contaminated zones, and the stratosphere with the help of technology. Aerial refueling enables Air Force One to stay airborne virtually indefinitely. Nuclear powered submarines generate oxygen using electrolysis and can stay submerged for months at a time. Many of these analogs can be very useful design references for space systems. In fact space station life support systems and astronaut survival gear for emergency landings bear striking similarity to submarine life support systems and military pilot survival kits, respectively.

Space missions, especially human ones, require extensive preparation. In addition to terrestrial analogs providing design insight, the analogous environments can serve as testbeds to further develop technologies for space applications and train astronaut crews. The Flashline Mars Arctic Research Station is a simulated Mars base, maintained by the Mars Society, on Canada's remote Devon Island. The project aims to create conditions as similar as possible to a real Mars mission and attempts to establish ideal crew size, test equipment "in the field", and determine the best extra-vehicular activity suits and procedures. To train for EVAs in microgravity, space agencies make broad use of underwater and simulator training. The Neutral Buoyancy Laboratory, NASA's underwater training facility, contains full-scale mockups of the Space Shuttle cargo bay and International Space Station modules. Technology development and astronaut training in space-analogous environments are essential to making living in space possible.

In space

Fundamental to space architecture is designing for physical and psychological wellness in space. What often is taken for granted on Earth – air, water, food, trash disposal – must be designed for in fastidious detail. Rigorous exercise regimens are required to alleviate muscular atrophy and other effects of space on the body. That space missions are (optimally) fixed in duration can lead to stress from isolation. This problem is not unlike that faced in remote research stations or military tours of duty, although non-standard gravity conditions can exacerbate feelings of unfamiliarity and homesickness. Furthermore, confinement in limited and unchanging physical spaces appears to magnify interpersonal tensions in small crews and contribute to other negative psychological effects. These stresses can be mitigated by establishing regular contact with family and friends on Earth, maintaining health, incorporating recreational activities, and bringing along familiar items such as photographs and green plants. The importance of these psychological measures can be appreciated in the 1968 Soviet 'DLB Lunar Base' design:

...it was planned that the units on the Moon would have a false window, showing scenes of the Earth countryside that would change to correspond with the season back in Moscow. The exercise bicycle was equipped with a synchronized film projector, that allowed the cosmonaut to take a 'ride' out of Moscow with return.

Mir was a 'modular' space station. This approach allows a habitat to function before assembly is complete and its design can be changed by swapping modules.

The challenge of getting anything at all to space, due to launch constraints, has had a profound effect on the physical shapes of space architecture. All space habitats to date have used modular architecture design. Payload fairing dimensions (typically the width but also the height) of modern launch vehicles limit the size of rigid components launched into space. This approach to building large scale structures in space involves launching multiple modules separately and then manually assembling them afterward. Modular architecture results in a layout similar to a tunnel system where passage through several modules is often required to reach any particular destination. It also tends to standardize the internal diameter or width of pressurized rooms, with machinery and furniture placed along the circumference. These types of space stations and surface bases can generally only grow by adding additional modules in one or more direction. Finding adequate working and living space is often a major challenge with modular architecture. As a solution, flexible furniture (collapsible tables, curtains on rails, deployable beds) can be used to transform interiors for different functions and change the partitioning between private and group space. For more discussion of the factors that influence shape in space architecture, see the Varieties section.

Eugène Viollet-le-Duc advocated different architectural forms for different materials. This is especially important in space architecture. The mass constraints with launching push engineers to find ever lighter materials with adequate material properties. Moreover, challenges unique to the orbital space environment, such as rapid thermal expansion due to abrupt changes in solar exposure, and corrosion caused by particle and atomic oxygen bombardment, require unique materials solutions. Just as the industrial age produced new materials and opened up new architectural possibilities, advances in materials technology will change the prospects of space architecture. Carbon-fiber is already being incorporated into space hardware because of its high strength-to-weight ratio. Investigations are underway to see whether carbon-fiber or other composite materials will be adopted for major structural components in space. The architectural principle that champions using the most appropriate materials and leaving their nature unadorned is called truth to materials.

A notable difference between the orbital context of space architecture and Earth-based architecture is that structures in orbit do not need to support their own weight. This is possible because of the microgravity condition of objects in free fall. In fact much space hardware, such as the Space Shuttle ''s robotic arm, is designed only to function in orbit and would not be able to lift its own weight on the Earth's surface. Microgravity also allows an astronaut to move an object of practically any mass, albeit slowly, provided he or she is adequately constrained to another object. Therefore, structural considerations for the orbital environment are dramatically different from those of terrestrial buildings, and the biggest challenge to holding a space station together is usually launching and assembling the components intact. Construction on extraterrestrial surfaces still needs to be designed to support its own weight, but its weight will depend on the strength of the local gravitational field.

Ground infrastructure

Human spaceflight currently requires a great deal of supporting infrastructure on Earth. All human orbital missions to date have been government-orchestrated. The organizational body that manages space missions is typically a national space agency, NASA in the case of the United States and Roscosmos for Russia. These agencies are funded at the federal level. At NASA, flight controllers are responsible for real-time mission operations and work onsite at NASA Centers. Most engineering development work involved with space vehicles is contracted-out to private companies, who in turn may employ subcontractors of their own, while fundamental research and conceptual design is often done in academia through research funding.

Varieties

Suborbital

Structures that cross the boundary of space but do not reach orbital speeds are considered suborbital architecture. For spaceplanes, the architecture has much in common with airliner architecture, especially those of small business jets.

SpaceShip

A mockup of the SpaceShipTwo interior

On June 21, 2004, Mike Melvill reached space funded entirely by private means. The vehicle, SpaceShipOne, was developed by Scaled Composites as an experimental precursor to a privately operated fleet of spaceplanes for suborbital space tourism. The operational spaceplane model, SpaceShipTwo (SS2), will be carried to an altitude of about 15 kilometers by a B-29 Superfortress-sized carrier aircraft, WhiteKnightTwo. From there SS2 will detach and fire its rocket motor to bring the craft to its apogee of approximately 110 kilometers. Because SS2 is not designed to go into orbit around the Earth, it is an example of suborbital or aerospace architecture.

The architecture of the SpaceShipTwo vehicle is somewhat different from what is common in previous space vehicles. Unlike the cluttered interiors with protruding machinery and many obscure switches of previous vehicles, this cabin looks more like something out of science fiction than a modern spacecraft. Both SS2 and the carrier aircraft are being built from lightweight composite materials instead of metal. When the time for weightlessness has arrived on a SS2 flight, the rocket motor will be turned off, ending the noise and vibration. Passengers will be able to see the curvature of the Earth. Numerous double-paned windows that encircle the cabin will offer views in nearly all directions. Cushioned seats will recline flat into the floor to maximize room for floating. An always-pressurized interior will be designed to eliminate the need for space suits.

Orbital

Orbital architecture is the architecture of structures designed to orbit around the Earth or another astronomical object. Examples of currently-operational orbital architecture are the International Space Station and the re-entry vehicles Space Shuttle, Soyuz spacecraft, and Shenzhou spacecraft. Historical craft include the Mir space station, Skylab, and the Apollo spacecraft. Orbital architecture usually addresses the condition of weightlessness, a lack of atmospheric and magnetospheric protection from solar and cosmic radiation, rapid day/night cycles, and possibly risk of orbital debris collision. In addition, re-entry vehicles must also be adapted both to weightlessness and to the high temperatures and accelerations experienced during atmospheric reentry.

International Space Station

Astronaut (upper center) works on the Integrated Truss Structure of the ISS

The International Space Station (ISS) is the only permanently inhabited structure currently in space. It is the size of an American football field and has a crew of six. With a living volume of 358 m³, it has more interior room than the cargo beds of two American 18-wheeler trucks. However, because of the microgravity environment of the space station, there are not always well-defined walls, floors, and ceilings and all pressurized areas can be utilized as living and working space. The International Space Station is still under construction. Modules were primarily launched using the Space Shuttle until its deactivation and were assembled by its crew with the help of the working crew on board the space station. ISS modules were often designed and built to barely fit inside the shuttle's payload bay, which is cylindrical with a 4.6 meter diameter.

An interior view of the Columbus module

Life aboard the space station is distinct from terrestrial life in some very interesting ways. Astronauts commonly "float" objects to one another; for example they will give a clipboard an initial nudge and it will coast to its receiver across the room. In fact, an astronaut can become so accustomed to this habit that they forget that it doesn't work anymore when they return to Earth. The diet of ISS spacefarers is a combination of participating nations' space food. Each astronaut selects a personalized menu before flight. Many food choices reflect the cultural differences of the astronauts, such as bacon and eggs vs. fish products for breakfast (for the US and Russia, respectively). More recently such delicacies as Japanense beef curry, kimchi, and swordfish (Riviera style) have been featured on the orbiting outpost. As much of ISS food is dehydrated or sealed in pouches MRE-style, astronauts are quite excited to get relatively fresh food from shuttle and Progress resupply missions. Food is stored in packages that facilitate eating in microgravity by keeping the food constrained to the table. Spent packaging and trash must be collected to load into an available spacecraft for disposal. Waste management is not nearly as straight forward as it is on Earth. The ISS has many windows for observing Earth and space, one of the astronauts' favorite leisure activities. Since the Sun rises every 90 minutes, the windows are covered at "night" to help maintain the 24-hour sleep cycle.

When a shuttle is operating in low Earth orbit, the ISS serves as a safety refuge in case of emergency. The inability to fall back on the safety of the ISS during the latest Hubble Space Telescope Servicing Mission (because of different orbital inclinations) was the reason a backup shuttle was summoned to the launch pad. So, ISS astronauts operate with the mindset that they may be called upon to give sanctuary to a Shuttle crew should something happen to compromise a mission. The International Space Station is a colossal cooperative project between many nations. The prevailing atmosphere on board is one of diversity and tolerance. This does not mean that it is perfectly harmonious. Astronauts experience the same frustrations and interpersonal quarrels as their Earth-based counterparts.

A typical day on the station might start with wakeup at 6:00 am inside a private soundproof booth in the crew quarters. Astronauts would probably find their sleeping bags in an upright position tied to the wall, because orientation does not matter in space. The astronaut's thighs would be lifted about 50 degrees off the vertical. This is the neutral body posture in weightlessness – it would be excessively tiring to "sit" or "stand" as is common on Earth. Crawling out of his booth, an astronaut may chat with other astronauts about the day's science experiments, mission control conferences, interviews with Earthlings, and perhaps even a space walk or space shuttle arrival.

Bigelow Aerospace (out of business since March 2020)

Bigelow Aerospace took the unique step in securing two patents NASA held from development of the Transhab concept in regard to inflatable space structures. The company now has sole rights to commercial development of the inflatable module technology. On July 12, 2006 the Genesis I experimental space habitat was launched into low Earth orbit. Genesis I demonstrated the basic viability of inflatable space structures, even carrying a payload of life science experiments. The second module, Genesis II, was launched into orbit on June 28, 2007 and tested out several improvements over its predecessor. Among these are reaction wheel assemblies, a precision measurement system for guidance, nine additional cameras, improved gas control for module inflation, and an improved on-board sensor suite.

While Bigelow architecture is still modular, the inflatable configuration allows for much more interior volume than rigid modules. The BA-330, Bigelow's full-scale production model, has more than twice the volume of the largest module on the ISS. Inflatable modules can be docked to rigid modules and are especially well suited for crew living and working quarters. In 2009 NASA began considering attaching a Bigelow module to the ISS, after abandoning the Transhab concept more than a decade before. The modules will likely have a solid inner core for structural support. Surrounding usable space could be partitioned into different rooms and floors. The Bigelow Expandable Activity Module (BEAM) was transported to ISS arriving on April 10, 2016, inside the unpressurized cargo trunk of a SpaceX Dragon during the SpaceX CRS-8 cargo mission.

Bigelow Aerospace may choose to launch many of their modules independently, leasing their use to a wide variety of companies, organizations, and countries that can't afford their own space programs. Possible uses of this space include microgravity research and space manufacturing. Or we may see a private space hotel composed of numerous Bigelow modules for rooms, observatories, or even a recreational padded gymnasium. There is the option of using such modules for habitation quarters on long-term space missions in the Solar System. One amazing aspect of spaceflight is that once a craft leaves an atmosphere, aerodynamic shape is a non-issue. For instance it's possible to apply a Trans Lunar Injection to an entire space station and send it to fly by the Moon. Bigelow has expressed the possibility of their modules being modified for lunar and Martian surface systems as well.

Lunar

Lunar architecture exists both in theory and in practice. Today the archeological artifacts of temporary human outposts lay untouched on the surface of the Moon. Five Apollo Lunar Module descent stages stand upright in various locations across the equatorial region of the Near Side, hinting at the extraterrestrial endeavors of mankind. The leading hypothesis on the origin of the Moon did not gain its current status until after lunar rock samples were analysed. The Moon is the furthest any humans have ever ventured from their home, and space architecture is what kept them alive and allowed them to function as humans.

Apollo

Lunar Module ascent stage blasts off the Moon in 1972, leaving the descent stage behind. View from TV camera on Lunar rover.

On the cruise to the Moon, Apollo astronauts had two "rooms" to choose from – the Command Module (CM) or the Lunar Module (LM). This can be seen in the film Apollo 13 where the three astronauts were forced to use the LM as an emergency life boat. Passage between the two modules was possible through a pressurized docking tunnel, a major advantage over the Soviet design, which required donning a spacesuit to switch modules. The Command Module featured five windows made of three thick panes of glass. The two inner panes, made of aluminosilicate, ensured no cabin air leaked into space. The outer pane served as a debris shield and part of the heat shield needed for atmospheric reentry. The CM was a sophisticated spacecraft with all the systems required for successful flight but with an interior volume of 6.17 m3 could be considered cramped for three astronauts. It had its design weaknesses such as no toilet (astronauts used much-hated 'relief tubes' and fecal bags). The coming of the space station would bring effective life support systems with waste management and water reclamation technologies.

The Lunar Module had two stages. A pressurized upper stage, termed the Ascent stage, was the first true spaceship as it could only operate in the vacuum of space. The Descent stage carried the engine used for descent, landing gear and radar, fuel and consumables, the famous ladder, and the Lunar Rover during later Apollo missions. The idea behind staging is to reduce mass later in a flight, and is the same strategy used in an Earth-launched multistage rocket. The LM pilot stood up during the descent to the Moon. Landing was achieved via automated control with a manual backup mode. There was no airlock on the LM so the entire cabin had to be evacuated (air vented to space) in order to send an astronaut out to walk on the surface. To stay alive, both astronauts in the LM would have to get in their space suits at this point. The Lunar Module worked well for what it was designed to do. However, a big unknown remained throughout the design process – the effects of lunar dust. Every astronaut who walked on the Moon tracked in lunar dust, contaminating the LM and later the CM during Lunar Orbit Rendezvous. These dust particles can't be brushed away in a vacuum, and have been described by John Young of Apollo 16 as being like tiny razor blades. It was soon realized that for humans to live on the Moon, dust mitigation was one of many issues that had to be taken seriously.

Constellation program

The Exploration Systems Architecture Study that followed the Vision for Space Exploration of 2004 recommended the development of a new class of vehicles that have similar capabilities to their Apollo predecessors with several key differences. In part to retain some of the Space Shuttle program workforce and ground infrastructure, the launch vehicles were to use Shuttle-derived technologies. Secondly, rather than launching the crew and cargo on the same rocket, the smaller Ares I was to launch the crew with the larger Ares V to handle the heavier cargo. The two payloads were to rendezvous in low Earth orbit and then head to the Moon from there. The Apollo Lunar Module could not carry enough fuel to reach the polar regions of the Moon but the Altair lunar lander was intended to access any part of the Moon. While the Altair and surface systems would have been equally necessary for Constellation program to reach fruition, the focus was on developing the Orion spacecraft to shorten the gap in US access to orbit following the retirement of the Space Shuttle in 2010.

Even NASA has described Constellation architecture as 'Apollo on steroids'. Nonetheless, a return to the proven capsule design is a move welcomed by many.

Martian

Martian architecture is architecture designed to sustain human life on the surface of Mars, and all the supporting systems necessary to make this possible. The direct sampling of water ice on the surface, and evidence for geyser-like water flows within the last decade have made Mars the most likely extraterrestrial environment for finding liquid water, and therefore alien life, in the Solar System. Moreover, some geologic evidence suggests that Mars could have been warm and wet on a global scale in its distant past. Intense geologic activity has reshaped the surface of the Earth, erasing evidence of our earliest history. Martian rocks can be even older than Earth rocks, though, so exploring Mars may help us decipher the story of our own geologic evolution including the origin of life on Earth. Mars has an atmosphere, though its surface pressure is less than 1% of Earth's. Its surface gravity is about 38% of Earth's. Although a human expedition to Mars has not yet taken place, there has been significant work on Martian habitat design. Martian architecture usually falls into one of two categories: architecture imported from Earth fully assembled and architecture making use of local resources.

Von Braun and other early proposals

Wernher von Braun was the first to come up with a technically comprehensive proposal for a manned Mars expedition. Rather than a minimal mission profile like Apollo, von Braun envisioned a crew of 70 astronauts aboard a fleet of ten massive spacecraft. Each vessel would be constructed in low Earth orbit, requiring nearly 100 separate launches before one was fully assembled. Seven of the spacecraft would be for crew while three were designated as cargo ships. There were even designs for small "boats" to shuttle crew and supplies between ships during the cruise to the Red Planet, which was to follow a minimum-energy Hohmann transfer trajectory. This mission plan would involve one-way transit times on the order of eight months and a long stay at Mars, creating the need for long-term living accommodations in space. Upon arrival at the Red Planet, the fleet would brake into Mars orbit and would remain there until the seven human vessels were ready to return to Earth. Only landing gliders, which were stored in the cargo ships, and their associated ascent stages would travel to the surface. Inflatable habitats would be constructed on the surface along with a landing strip to facilitate further glider landings. All necessary propellant and consumables were to be brought from Earth in von Braun's proposal. Some crew remained in the passenger ships during the mission for orbit-based observation of Mars and to maintain the ships. The passenger ships had habitation spheres 20 meters in diameter. Because the average crew member would spend much time in these ships (around 16 months of transit plus rotating shifts in Mars orbit), habitat design for the ships was an integral part of this mission.

Von Braun was aware of the threat posed by extended exposure to weightlessness. He suggested either tethering passenger ships together to spin about a common center of mass or including self-rotating, dumbbell-shaped "gravity cells" to drift alongside the flotilla to provide each crew member with a few hours of artificial gravity each day. At the time of von Braun's proposal, little was known of the dangers of solar radiation beyond Earth and it was cosmic radiation that was thought to present the more formidable challenge. The discovery of the Van Allen belts in 1958 demonstrated that the Earth was shielded from high energy solar particles. For the surface portion of the mission, inflatable habitats suggest the desire to maximize living space. It is clear von Braun considered the members of the expedition part of a community with much traffic and interaction between vessels.

The Soviet Union conducted studies of human exploration of Mars and came up with slightly less epic mission designs (though not short on exotic technologies) in 1960 and 1969. The first of which used electric propulsion for interplanetary transit and nuclear reactors as the power plants. On spacecraft that combine human crew and nuclear reactors, the reactor is usually placed at a maximum distance from the crew quarters, often at the end of a long pole, for radiation safety. An interesting component of the 1960 mission was the surface architecture. A "train" with wheels for rough terrain was to be assembled of landed research modules, one of which was a crew cabin. The train was to traverse the surface of Mars from south pole to north pole, an extremely ambitious goal even by today's standards. Other Soviet plans such as the TMK eschewed the large costs associated with landing on the Martian surface and advocated piloted (manned) flybys of Mars. Flyby missions, like the lunar Apollo 8, extend the human presence to other worlds with less risk than landings. Most early Soviet proposals called for launches using the ill-fated N1 rocket. They also usually involved fewer crew than their American counterparts. Early Martian architecture concepts generally featured assembly in low Earth orbit, bringing all needed consumables from Earth, and designated work vs. living areas. The modern outlook on Mars exploration is not the same.

Recent initiatives

In every serious study of what it would take to land humans on Mars, keep them alive, and then return them to Earth, the total mass required for the mission is simply stunning. The problem lies in that to launch the amount of consumables (oxygen, food and water) even a small crew would go through during a multi-year Mars mission, it would take a very large rocket with the vast majority of its own mass being propellant. This is where multiple launches and assembly in Earth orbit come from. However even if such a ship stocked full of goods could be put together in orbit, it would need an additional (large) supply of propellant to send it to Mars. The delta-v, or change in velocity, required to insert a spacecraft from Earth orbit to a Mars transfer orbit is many kilometers per second. When we think of getting astronauts to the surface of Mars and back home we quickly realize that an enormous amount of propellant is needed if everything is taken from the Earth. This was the conclusion reached in the 1989 '90-Day Study' initiated by NASA in response to the Space Exploration Initiative.

The NASA Design Reference Mission 3.0 incorporated many concepts from the Mars Direct proposal

Several techniques have changed the outlook on Mars exploration. The most powerful of which is in-situ resource utilization. Using hydrogen imported from Earth and carbon dioxide from the Martian atmosphere, the Sabatier reaction can be used to manufacture methane (for rocket propellant) and water (for drinking and for oxygen production through electrolysis). Another technique to reduce Earth-brought propellant requirements is aerobraking. Aerobraking involves skimming the upper layers of an atmosphere, over many passes, to slow a spacecraft down. It's a time-intensive process that shows most promise in slowing down cargo shipments of food and supplies. NASA's Constellation program does call for landing humans on Mars after a permanent base on the Moon is demonstrated, but details of the base architecture are far from established. It is likely that the first permanent settlement will consist of consecutive crews landing prefabricated habitat modules in the same location and linking them together to form a base.

In some of these modern, economy models of the Mars mission, we see the crew size reduced to a minimal 4 or 6. Such a loss in variety of social relationships can lead to challenges in forming balanced social responses and forming a complete sense of identity. It follows that if long-duration missions are to be carried out with very small crews, then intelligent selection of crew is of primary importance. Role assignments is another open issue in Mars mission planning. The primary role of 'pilot' is obsolete when landing takes only a few minutes of a mission lasting hundreds of days, and when that landing will be automated anyway. Assignment of roles will depend heavily on the work to be done on the surface and will require astronauts to assume multiple responsibilities. As for surface architecture inflatable habitats, perhaps even provided by Bigelow Aerospace, remain a possible option for maximizing living space. In later missions, bricks could be made from a Martian regolith mixture for shielding or even primary, airtight structural components. The environment on Mars offers different opportunities for space suit design, even something like the skin-tight Bio-Suit.

A number of specific habitat design proposals have been put forward, to varying degrees of architectural and engineering analysis. One recent proposal—and the winner of NASA's 2015 Mars Habitat Competition—is Mars Ice House. The design concept is for a Mars surface habitat, 3d-printed in layers out of water ice on the interior of an Earth-manufactured inflatable pressure-retention membrane. The completed structure would be semi-transparent, absorbing harmful radiation in several wavelengths, while admitting approximately 50 percent of light in the visible spectrum. The habitat is proposed to be entirely set up and built from an autonomous robotic spacecraft and bots, although human habitation with approximately 2–4 inhabitants is envisioned once the habitat is fully built and tested.

Robotic

It is widely accepted that robotic reconnaissance and trail-blazer missions will precede human exploration of other worlds. Making an informed decision on which specific destinations warrant sending human explorers requires more data than what the best Earth-based telescopes can provide. For example, landing site selection for the Apollo landings drew on data from three different robotic programs: the Ranger program, the Lunar Orbiter program, and the Surveyor program. Before a human was sent, robotic spacecraft mapped the lunar surface, proved the feasibility of soft landings, filmed the terrain up close with television cameras, and scooped and analysed the soil.

A robotic exploration mission is generally designed to carry a wide variety of scientific instruments, ranging from cameras sensitive to particular wavelengths, telescopes, spectrometers, radar devices, accelerometers, radiometers, and particle detectors to name a few. The function of these instruments is usually to return scientific data but it can also be to give an intuitive "feel" of the state of the spacecraft, allowing a subconscious familiarization with the territory being explored, through telepresence. A good example of this is the inclusion of HDTV cameras on the Japanese lunar orbiter SELENE. While purely scientific instruments could have been brought in their stead, these cameras allow the use of an innate sense to perceive the exploration of the Moon.

The modern, balanced approach to exploring an extraterrestrial destination involves several phases of exploration, each of which needs to produce rationale for progressing to the next phase. The phase immediately preceding human exploration can be described as anthropocentric sensing, that is, sensing designed to give humans as realistic a feeling as possible of actually exploring in person. More, the line between a human system and a robotic system in space is not always going to be clear. As a general rule, the more formidable the environment, the more essential robotic technology is. Robotic systems can be broadly considered part of space architecture when their purpose is to facilitate the habitation of space or extend the range of the physiological senses into space.

Future

The future of space architecture hinges on the expansion of human presence in space. Under the historical model of government-orchestrated exploration missions initiated by single political administrations, space structures are likely to be limited to small-scale habitats and orbital modules with design life cycles of only several years or decades. The designs, and thus architecture, will generally be fixed and without real time feedback from the spacefarers themselves. The technology to repair and upgrade existing habitats, a practice widespread on Earth, is not likely to be developed under short term exploration goals. If exploration takes on a multi-administration or international character, the prospects for space architecture development by the inhabitants themselves will be broader. Private space tourism is a way the development of space and a space transportation infrastructure can be accelerated. Virgin Galactic has indicated plans for an orbital craft, SpaceShipThree. The demand for space tourism is one without bound. It is not difficult to imagine lunar parks or cruises by Venus. Another impetus to become a spacefaring species is planetary defense.

The classic space mission is the Earth-colliding asteroid interception mission. Using nuclear detonations to split or deflect the asteroid is risky at best. Such a tactic could actually make the problem worse by increasing the amount of asteroid fragments that do end up hitting the Earth. Robert Zubrin writes:

If bombs are to be used as asteroid deflectors, they cannot just be launched willy-nilly. No, before any bombs are detonated, the asteroid will have to be thoroughly explored, its geology assessed, and subsurface bomb placements carefully determined and precisely located on the basis of such knowledge. A human crew, consisting of surveyors, geologists, miners, drillers, and demolition experts, will be needed on the scene to do the job right.

Robotic probes have explored much of the solar system but humans have not yet left the Earth's influence

If such a crew is to be summoned to a distant asteroid, there may be less risky ways to divert the asteroid. Another promising asteroid mitigation strategy is to land a crew on the asteroid well ahead of its impact date and to begin diverting some its mass into space to slowly alter its trajectory. This is a form of rocket propulsion by virtue of Newton's third law with the asteroid's mass as the propellant. Whether exploding nuclear weapons or diversion of mass is used, a sizable human crew may need to be sent into space for many months if not years to accomplish this mission. Questions such as what the astronauts will live in and what the ship will be like are questions for the space architect.

When motivations to go into space are realized, work on mitigating the most serious threats can begin. One of the biggest threats to astronaut safety in space is sudden radiation events from solar flares. The violent solar storm of August 1972, which occurred between the Apollo 16 and Apollo 17 missions, could have produced fatal consequences had astronauts been caught exposed on the lunar surface. The best known protection against radiation in space is shielding; an especially effective shield is water contained in large tanks surrounding the astronauts. Unfortunately water has a mass of 1000 kilograms per cubic meter. A more practical approach would be to construct solar "storm shelters" that spacefarers can retreat to during peak events. For this to work, however, there would need to be a space weather broadcasting system in place to warn astronauts of upcoming storms, much like a tsunami warning system warns coastal inhabitants of impending danger. Perhaps one day a fleet of robotic spacecraft will orbit close to the Sun, monitoring solar activity and sending precious minutes of warning before waves of dangerous particles arrive at inhabited regions of space.

Nobody knows what the long-term human future in space will be. Perhaps after gaining experience with routine spaceflight by exploring different worlds in the Solar System and deflecting a few asteroids, the possibility of constructing non-modular space habitats and infrastructure will be within capability. Such possibilities include mass drivers on the Moon, which launch payloads into space using only electricity, and spinning space colonies with closed ecological systems. A Mars in the early stages of terraformation, where inhabitants only need simple oxygen masks to walk out on the surface, may be seen. In any case, such futures require space architecture.

Private spaceflight

From Wikipedia, the free encyclopedia
 
Private spaceflight
Active companies
Active vehicles
Contracts and programs

Private spaceflight is spaceflight or the development of spaceflight technology that is conducted and paid for by an entity other than a government agency.

In the early decades of the Space Age, the government space agencies of the Soviet Union and United States pioneered space technology in collaboration with affiliated design bureaus in the USSR and private companies in the US, entirely funding both the development of new spaceflight technologies and the operational costs of spaceflight. The European Space Agency was formed in 1975, largely following the same model of space technology development.

Later on, large defense contractors began to develop and operate space launch systems, derived from government rockets. Private spaceflight in Earth orbit includes communications satellites, satellite television, satellite radio, astronaut transport and sub-orbital and orbital space tourism. In the United States, the FAA has created a new certification called Commercial Astronaut, a new occupation.

In the 2000s, entrepreneurs began designing—and by the 2010s, deploying—space systems competitive to the governmental systems of the early decades of the space age. These new offerings have brought about significant market competition in space launch services after 2010 that had not been present previously, principally through the reduction of the cost of space launch and the availability of more space launch capacity.

Private spaceflight accomplishments to date include flying suborbital spaceplanes (SpaceShipOne and SpaceShipTwo), launching orbital rockets, flying two orbital expandable test modules (Genesis I and II), and launching astronauts to the International Space Station (ISS).

Planned private spaceflights beyond Earth orbit include personal spaceflights around the Moon. Two private orbital habitat prototypes are already in Earth orbit, with larger versions to follow. Planned private spaceflights beyond Earth orbit include solar sailing prototypes (LightSail-3).

History of commercial space transportation

During the principal period of spaceflight in the mid-twentieth century, only nation states developed and flew spacecraft above the Kármán line, the nominal boundary of space. Private entities and corporations primarily served as contractors to government organizations.

Both the U.S. civilian space program and Soviet space program were operated using mainly military pilots as astronauts. During this period, no commercial space launches were available to private operators, and no private organization was able to offer space launches. Eventually, private organizations were able to both offer and purchase space launches, thus beginning the period of private spaceflight.

The first phase of private space operation was the launch of the first commercial communications satellites. The U.S. Communications Satellite Act of 1962 allowed commercial consortia owning and operating their own satellites, although these were still deployed on state-owned launch vehicles.

In 1980, the European Space Agency created Arianespace, a company to be operated commercially after initial hardware and launch facilities were developed with government funding. Arianespace has since launched numerous satellites as a commercial entity.

The history of full private space transportation includes early efforts by German company OTRAG in the 20th century. Founded in 1975 as the first private company to attempt to launch a private spacecraft, testing of its OTRAG rocket began in 1977. The history also covers numerous modern orbital and suborbital launch systems in the 21st century. More recent commercial spaceflight projects include the suborbital flights of Virgin Galactic and Blue Origin, the orbital flights of SpaceX and other COTS participants.

Development of alternatives to government-provided space launch services began in earnest in the 2000s. Private interests began funding limited development programs, but the US government later sponsored a series of programs to incentivize and encourage private companies to begin offering both cargo, and later, crew space transportation services.

Lower prices for launch services after 2010, and published prices for standard launch services, have brought about significant space launch market competition that had not been present previously. By 2012, a private company had begun transporting cargo to and from the International Space Station, while a second private company was scheduled to begin making deliveries in 2013, ushering in a time of regular private space cargo delivery to and return from the government-owned space facility in low-Earth orbit (LEO). In this new paradigm for LEO cargo transport, the government contracts for and pays for cargo services on substantially privately developed space vehicles rather than the government operating each of the cargo vehicles and cargo delivery systems. As of 2013, there is a mix of private and government resupply vehicles being used for the ISS, as the Russian Soyuz and Progress vehicles, and the European Space Agency (ESA) ATV (through 2014) and the Japanese Kounotori (through 2021) remain in operation after the 2011 retirement of the US Space Shuttle.

In June 2013, British newspaper The Independent claimed that "the space race is flaring back into life, and it's not massive institutions such as NASA that are in the running. The old view that human space flight is so complex, difficult and expensive that only huge government agencies could hope to accomplish it is being disproved by a new breed of flamboyant space privateers, who are planning to send humans out beyond the Earth's orbit for the first time since 1972," particularly noting projects underway by Mars One, Inspiration Mars Foundation, Bigelow Aerospace and SpaceX.

American deregulation

The Commercial Space Launch Act of 1984 required encouragement of commercial space ventures, adding a new clause to NASA's mission statement:

(c) Commercial Use of Space.--Congress declares that the general welfare of the United States requires that the Administration seek and encourage, to the maximum extent possible, the fullest commercial use of space.

Yet one of NASA's early actions was to effectively prevent private space flight through a large amount of regulation. From the beginning, though, this met significant opposition not only by the private sector, but in Congress. In 1962, Congress passed its first law pushing back the prohibition on private involvement in space, the Communications Satellite Act of 1962. While largely focusing on the satellites of its namesake, this was described by both the law's opponents and advocates of private space, as the first step on the road to privatisation.

While launch vehicles were originally bought from private contractors, from the beginning of the Shuttle program until the Space Shuttle Challenger disaster in 1986, NASA attempted to position its shuttle as the sole legal space launch option. But with the mid-launch explosion/loss of Challenger came the suspension of the government-operated shuttle flights, allowing the formation of a commercial launch industry.

On 30 October 1984, US President Ronald Reagan signed into law the Commercial Space Launch Act. This enabled an American industry of private operators of expendable launch systems. Prior to the signing of this law, all commercial satellite launches in the United States were restricted by Federal regulation to NASA's Space Shuttle.

On 5 November 1990, United States President George H. W. Bush signed into law the Launch Services Purchase Act. The Act, in a complete reversal of the earlier Space Shuttle monopoly, ordered NASA to purchase launch services for its primary payloads from commercial providers whenever such services are required in the course of its activities.

In 1996, the United States government selected Lockheed Martin and Boeing to each develop Evolved Expendable Launch Vehicles (EELV) to compete for launch contracts and provide assured access to space. The government's acquisition strategy relied on the strong commercial viability of both vehicles to lower unit costs. This anticipated market demand did not materialise, but both the Delta IV and Atlas V EELVs remain in active service.

Commercial launches outnumbered government launches at the Eastern Range in 1997.

The Commercial Space Act was passed in 1998 and implements many of the provisions of the Launch Services Purchase Act of 1990.

Nonetheless, until 2004 NASA kept private space flight effectively illegal. But that year, the Commercial Space Launch Amendments Act of 2004 required that NASA and the Federal Aviation Administration legalise private space flight. The 2004 Act also specified a "learning period" which restricted the ability of the FAA to enact regulations regarding the safety of people who might actually fly on commercial spacecraft through 2012, ostensibly because spaceflight participants would share the risk of flight through informed consent procedures of human spaceflight risks, while requiring the launch provider to be legally liable for potential losses to uninvolved persons and structures.

To the end of 2014, commercial passenger flights in space has remained effectively illegal, as the FAA has refused to give a commercial operator's license to any private space company.

The United States updated US commercial space legislation with the passage of the SPACE Act of 2015 in November 2015. The full name of the act is Spurring Private Aerospace Competitiveness and Entrepreneurship Act of 2015

The update US law explicitly allows "US citizens to engage in the commercial exploration and exploitation of 'space resources' [including... water and minerals]". The right does not extend to biological life, so anything that is alive may not be exploited commercially. The Act further asserts that "the United States does not [(by this Act)] assert sovereignty, or sovereign or exclusive rights or jurisdiction over, or the ownership of, any celestial body". 

The SPACE Act includes the extension of indemnification of US launch providers for extraordinary catastrophic third-party losses of a failed launch through 2025, while the previous indemnification law was scheduled to expire in 2016. The Act also extends, through 2025, the "learning period" restrictions which limit the ability of the FAA to enact regulations regarding the safety of spaceflight participants.

Indemnification for extraordinary third-party losses has, as of 2015, been a component of US space law for over 25 years, and during this time, "has never been invoked in any commercial launch mishap".

Russian privatization

In 1992, a Resurs-500 capsule containing gifts was launched from Plesetsk Cosmodrome in a private spaceflight called Europe-America 500. The flight was conceived by the Russian Foundation for Social Inventions and TsSKB-Progress, a Russian rocket-building company, to increase trade between Russia and USA, and to promote the use of technology once reserved only for military forces. Money for the launch was raised from a collection of Russian companies. The capsule parachuted into the Pacific Ocean and was brought to Seattle by a Russian missile-tracking ship.

The Russian government sold part of its stake in RSC Energia to private investors in 1994. Energia, together with Khrunichev, constituted most of the Russian crewed space program.

Launch alliances

Launch of a Proton rocket

Since 1995 Khrunichev's Proton rocket has been marketed through International Launch Services, while the Soyuz rocket is marketed via Starsem. The Sea Launch project flies the Ukrainian Zenit rocket.

In 2003, Arianespace joined with Boeing Launch Services and Mitsubishi Heavy Industries to create the Launch Services Alliance. In 2005, continued weak commercial demand for EELV launches drove Lockheed Martin and Boeing to propose a joint venture called the United Launch Alliance to service the United States government launch market.

Spaceflight privatization

Since the 1980s, various private initiatives have started up to pursue the private use of space. Traditional costs to launch anything to space have been high—on the order of tens of thousands of US dollars per kilogram—but by 2020, costs on the order of a few thousand dollars per kilogram are being seen from one private launch provider that was an early 2000s startup, with the cost projected to fall to less than a few hundred dollars per kilogram as the technology of a second private spaceflight startup of ~2000 comes into service.

The first privately funded rocket to reach the boundary of space, the Kármán line, (although not orbit) was Conestoga I, which was launched by Space Services Inc. on a suborbital flight to 309 kilometres (192 mi) altitude on 9 September 1982. In October 1995, their first (and only) attempt at an orbital launch, Conestoga 1620, failed to achieve orbit due to a guidance system failure.

First launch of the Pegasus rocket, from a NASA-owned B-52.

On April 5, 1990, Orbital Sciences Corporation's Pegasus, an air launched rocket, was the first launch vehicle fully developed by a private company to reach orbit.

In the early 2000s, several public-private corporate partnerships were established in the United States to privately develop spaceflight technology. Several purely private initiatives have shown interest in private endeavors to the inner solar system.

In 2006, NASA initiated a program to purchase commercial space transport to carry cargo to the International Space Station, while funding a portion of the development of new technology in a public-private partnership.

In May 2015, the Japanese legislature considered legislation to allow private company spaceflight initiatives in Japan.

In 2016, the United States granted its first clearance for a private flight to the moon, from the FAA's Office of Commercial Space Transportation.

Companies

Today many commercial space transportation companies offer launch services to satellite companies and government space organizations around the world. In 2005, there were 18 total commercial launches and 37 non-commercial launches. Russia flew 44% of commercial orbital launches, while Europe had 28% and the United States had 6%. China's first private launch, a suborbital flight by OneSpace, took place in May 2018.

Funding

In recent years, the funding to support private spaceflight has begun to be raised from a larger pool of sources than the comparatively limited pool of the 1990s. For example, as of June 2013 and in the United States alone, ten billionaires had made "serious investments in private spaceflight activities" at six companies, including Stratolaunch Systems, Planetary Resources, Blue Origin, Virgin Galactic, SpaceX, and Bigelow Aerospace. The ten investors were Paul Allen, Larry Page, Eric Schmidt, Ram Shriram, Charles Simonyi, Ross Perot Jr., Jeff Bezos, Richard Branson, Elon Musk, and Robert Bigelow.

It is not yet clear to what extent these entrepreneurs see "legitimate business opportunity, [for example], space tourism and other commercial activities in space, or [are] wealthy men seeking the exclusivity that space offers innovators and investors." There has been speculation as to whether these investments are a "gamble", and whether they will prove lucrative.

Venture capital investment

Some investors see the traditional spaceflight industry as ripe for disruption, with "a 100-fold improvement [relatively straightforward and] a thousand-fold improvement [possible]". Between 2005 and 2015, there was US$10 billion of private capital invested in the space sector, most of it in the United States. This liberalized private space sector investments beginning in the 1980s, with additional legislative reforms in the 1990s–2000s. From 2000 through the end of 2015, a total of US$13.3 billion of investment finance was invested in the space sector, with US$2.9 billion of that being venture capital. In 2015, venture capital firms invested US$1.8 billion in private spaceflight companies, more than they had in the previous 15 years combined. As of October 2015, the largest and most active investors in space were Lux Capital, Bessemer Venture Partners, Khosla, Founders Fund, RRE Ventures and Draper Fisher Jurvetson.

Increasing interest by investors in economically driven spaceflight had begun to appear by 2016, and some space ventures had to turn away investor funding. CBInsights in August 2016 published that funding to space startups was "in a slump", although the number of space investment deals per quarter had gone from 2 or 3 in 2012 to 14 by 2015. In 2017, CB Insights ranked the most active space tech investors, ranked from highest to lowest, were Space Angels Networks, Founders Fund, RRE Ventures, Data Collective, Bessemer, Lux Capital, Alphabet, Tencent Holdings, and Rothenberg Ventures. In June 2019, Miriam Kramer of Axios wrote that private spaceflight companies and investors were poised to capitalize on NASA's plan to open up the International Space Station to commercial space ventures.

Commercial launchers

The space transport business has, historically, had its primary customers in national governments and large commercial segments. Launches of government payloads, including military, civilian and scientific satellites, was the largest market segment in 2007 at nearly $100 billion a year. This segment is dominated by domestic favorites such as the United Launch Alliance for U.S. government payloads and Arianespace for European satellites. The commercial payload segment, valued at under $3 billion a year, was dominated by Arianespace in 2007, with over 50% of the market segment, followed by Russian launchers. See a complete list of launch systems.

US government commercial cargo services

The SpaceX Dragon berthing with the ISS during its final demonstration mission, on 25 May 2012.

The US government determined to begin a process to purchase orbital launch services for cargo deliveries to the International Space Station (ISS) beginning in the mid-2000s, rather than operate the launch and delivery services as they had with the Space Shuttle, which was to retire in less than half a decade, and ultimately did retire in 2011. On 18 January 2006, NASA announced an opportunity for US commercial providers to demonstrate orbital transportation services. As of 2008, NASA planned to spend $500 million through 2010 to finance development of private sector capability to transport payloads to the International Space Station (ISS). This was considered more challenging than then-available commercial space transportation because it would require precision orbit insertion, rendezvous and possibly docking with another spacecraft. The commercial vendors competed in specific service areas.

In August 2006, NASA announced that two relatively young aerospace companies, SpaceX and Rocketplane Kistler, had been awarded $278 million and $207 million, respectively, under the COTS program. In 2008, NASA anticipated that commercial cargo delivery services to and return services from the ISS would be necessary through at least 2015. The NASA Administrator suggested that space transportation services procurement may be expanded to orbital fuel depots and lunar surface deliveries should the first phase of COTS prove successful.

After it transpired that Rocketplane Kistler was failing to meet its contractual deadlines, NASA terminated its contract with the company in August 2008, after only $32 million had been spent. Several months later, in December 2008, NASA awarded the remaining $170 million in that contract to Orbital Sciences Corporation to develop resupply services to the ISS.

Emerging personal spaceflight

Before 2004, the year it was legalized in the US, no privately operated crewed spaceflight had ever occurred. The only private individuals to journey to space went as space tourists in the Space Shuttle or on Russian Soyuz flights to Mir or the International Space Station.

All private individuals who flew to space before Dennis Tito's self-financed International Space Station visit in 2001 had been sponsored by their home governments or by private corporations. Those trips include US Congressman Bill Nelson's January 1986 flight on the Space Shuttle Columbia and Japanese television reporter Toyohiro Akiyama's 1990 flight to the Mir Space Station.

The Ansari X PRIZE was intended to stimulate private investment in the development of spaceflight technologies. 21 June 2004, test flight of SpaceShipOne, a contender for the X PRIZE, was the first human spaceflight in a privately developed and operated vehicle.

On 27 September 2004, following the success of SpaceShipOne, Richard Branson, owner of Virgin and Burt Rutan, SpaceShipOne's designer, announced that Virgin Galactic had licensed the craft's technology, and were planning commercial space flights in 2.5 to 3 years. A fleet of five craft (SpaceShipTwo, launched from the WhiteKnightTwo carrier airplane) were to be constructed, and flights would be offered at around $200,000 each, although Branson said he planned to use this money to make flights more affordable in the long term. A test flight of SpaceShipTwo crashed in October 2014.

In December 2004, United States President George W. Bush signed into law the Commercial Space Launch Amendments Act. The Act resolved the regulatory ambiguity surrounding private spaceflights and is designed to promote the development of the emerging U.S. commercial human space flight industry.

On 12 July 2006, Bigelow Aerospace launched the Genesis I, a subscale pathfinder of an orbital space station module. Genesis II was launched on 28 June 2007, and there are plans for additional prototypes to be launched in preparation for the production model BA 330 spacecraft.

Zero2infinity, a Spanish aerospace company, is developing a high-altitude balloon-based launch vehicle termed a bloostar to launch small satellites to orbit for customers, as well as platform for near-space tourism. Similar projects of stratospheric balloon tourism are being developed by multiple other companies around the world (Zephalto, Space Perspective, ...), though none has yet made a high altitude crewed flight (as of Feb. 2021).

Private foundations

The B612 Foundation was designing and building an asteroid-finding space telescope named Sentinel. It would have launched in 2016.

The Planetary Society, a nonprofit space research and advocacy organization, has sponsored a series of small satellites to test the feasibility of solar sailing. Their first such project, Cosmos 1, was launched in 2005 but failed to reach space, and was succeeded by the Lightsail series, the first of which launched on 20 May 2015. A second spacecraft is expected to launch in 2016 on a more complex mission.

Copenhagen Suborbitals is a crowd funded amateur crewed space programme. As of 2016 it has flown four home-built rockets and two mock-up space capsules.

Plans

Many have speculated on where private spaceflight may go in the near future. Numerous projects of orbital and suborbital launch systems for satellites and crewed flights exist. Some orbital crewed missions would be state-sponsored like most COTS participants. (that develop their own launch systems). Another possibility is for paid suborbital tourism on craft like those from Virgin Galactic, Space Adventures, XCOR Aerospace, RocketShip Tours, ARCASPACE, PlanetSpace-Canadian Arrow, British Starchaser Industries or non-commercial like Copenhagen Suborbitals. Additionally, suborbital spacecraft have applications for faster intercontinental package delivery and passenger flight.

Private orbital spaceflight, space stations

SpaceX's Falcon 9 rocket, first launched in 2010 with no passengers, was designed to be subsequently human-rated. The Atlas V launch vehicle is also a contender for human-rating.

Plans and a full-scale prototype for the SpaceX Dragon, a capsule capable of carrying up to seven passengers, were announced in March 2006, and Dragon version 2 flight hardware was unveiled in May 2014. As of September 2014, both SpaceX and Boeing have received contracts from NASA to complete building, testing, and flying up to six flights of human-rated space capsules to the International Space Station beginning in 2017.

In December 2010, SpaceX launched the second Falcon 9 and the first operational Dragon spacecraft. The mission was deemed fully successful, marking the first launch to space, atmospheric reentry and recovery of a capsule by a private company. Subsequent COTS missions included increasingly complex orbital tasks, culminating in Dragon first docking to the ISS in 2012.

Bigelow Aerospace develops BA 330 module (based on the former NASA TransHab design) intended to be used for activities like microgravity research, space manufacturing, and space tourism with modules serving as orbital "hotels". To promote private crewed launch efforts, Bigelow offered the US$50 million America's Space Prize for the first US-based privately funded team to launch a crewed reusable spacecraft to orbit on or before 10 January 2010; such feat is yet to be achieved as of December 2018.

The British Government partnered in 2015 with the ESA to promote a possibly commercial single-stage to orbit spaceplane concept called Skylon. This design was pioneered by the privately held Reaction Engines Limited, a company founded by Alan Bond after HOTOL was canceled.

As of 2012, private company NanoRacks provides commercial access to the US National Laboratory space on the International Space Station (ISS). Science experiments can be conducted on a variety of standard rack-sized experimental platforms, with standard interfaces for power and data acquisition.

On-orbit propellant depots

In a presentation given 15 November 2005 to the 52nd Annual Conference of the American Astronautical Society, NASA Administrator Michael D. Griffin suggested that establishing an on-orbit propellant depot is, "Exactly the type of enterprise which should be left to industry and to the marketplace." At the Space Technology and Applications International Forum in 2007, Dallas Bienhoff of Boeing made a presentation detailing the benefits of propellant depots. Shackleton Energy Company has established operational plans, an extensive teaming and industrial consortium for developing LEO Propellant Depots supplied by Lunar polar sourced water ice.

Asteroid mining

Asteroid mining spacecraft

Some have speculated on the profitability of mining metal from asteroids. According to some estimates, a one kilometer-diameter asteroid would contain 30 million tons of nickel, 1.5 million tons of metal cobalt and 7,500 tons of platinum; the platinum alone would have a value of more than $150 billion at 2008 terrestrial prices.

Space elevators

A space elevator system is a possible launch system, currently under investigation by at least one private venture. There are concerns over cost, general feasibility and some political issues. On the plus side the potential to scale the system to accommodate traffic would (in theory) be greater than some other alternatives. Some factions contend that a space elevator — if successful — would not supplant existing launch solutions but complement them.

Non-launched efforts

Failed spaceflight ventures

After earlier first effort of OTRAG, in the 1990s the projection of a significant demand for communications satellite launches attracted the development of a number of commercial space launch providers. The launch demand largely vanished when some of the largest satellite constellations, such as 288 satellite Teledesic network, were never built.

In 1996, NASA selected Lockheed Martin Skunk Works to build the X-33 VentureStar prototype for a single stage to orbit (SSTO) reusable launch vehicle. In 1999, the subscale X-33 prototype's composite liquid hydrogen fuel tank failed during testing. At project termination on 31 March 2001, NASA had funded US$912 million of this wedge shaped spacecraft while Lockheed Martin financed US$357 million of it. The VentureStar was to have been a full-scale commercial space transport operated by Lockheed Martin.

In 1997, Beal Aerospace proposed the BA-2, a low-cost heavy-lift commercial launch vehicle. On 4 March 2000, the BA-2 project tested the largest liquid rocket engine built since the Saturn V. In October 2000, Beal Aerospace ceased operations citing a decision by NASA and the Department of Defense to commit themselves to the development of the competing government-financed EELV program.

In 1998, Rotary Rocket proposed the Roton, a Single Stage to Orbit (SSTO) piloted Vertical Take-off and Landing (VTOL) space transport. A full scale Roton Atmospheric Test Vehicle flew three times in 1999. After spending tens of millions of dollars in development the Roton failed to secure launch contracts and Rotary Rocket ceased operations in 2001.

On 28 September 2006, Jim Benson, SpaceDev founder, announced he was founding Benson Space Company with the intention of being first to market with the safest and lowest cost suborbital personal spaceflight launches, using the vertical takeoff and horizontal landing Dream Chaser vehicle based on the NASA HL-20 Personnel Launch System vehicle.

Excalibur Almaz had plans in 2007 to launch a modernized TKS Spacecraft (for Almaz space station), for tourism and other uses. It was to feature the largest window ever on a spacecraft. Their equipment was never launched, and their hangar facility closed in 2016. It is to be converted into an educational exhibit.

Escape Dynamics operated from 2010 to 2015, with the goal of making single-stage to orbit spaceplanes.

In December 2012, the Golden Spike Company announced plans to privately transport space exploration participants to the surface of the Moon and return, beginning as early as 2020, for US$750 million per passenger.

XCOR Aerospace planned to initiate a suborbital commercial spaceflight service with the Lynx rocketplane in 2016 or 2017 at $95,000. First test flights to be conducted by 23 pilots from the Axe Apollo Space Academy, one of which is a Filipino named Chino Roque, were planned for 2015.

Private space stations

By 2010, Bigelow Aerospace was developing the Next-Generation Commercial Space Station, a private orbital space complex. The space station was to have been constructed of both Sundancer and B330 expandable modules as well as a central docking node, propulsion, solar arrays, and attached crew capsules. Initial launch of space station components was planned for 2014, with portions of the station projected to be available for leased use as early as 2015. As of 2018, no launches have taken place.

Lunar private ventures

Robotic Lunar-surface missions

The following companies and organizations had made initial funded launch commitments for Google Lunar X Prize-related Lunar launches in 2016:

Private Lunar-surface crewed expeditions

  • Shackleton Energy Company intends to undertake human tended lunar prospecting for water ice. If significant reserves of ice are located, they plan to establish a network of "refueling service stations" in low Earth orbit and on the Moon to process and provide fuel and consumables for commercial and government customers. If the prospecting is successful—ice deposits are located, the appropriate legal regime is in place to support commercial development, and the ice can be extracted — Shackleton proposes to establish a fuel-processing operation on the lunar surface and in propellant depots in Low Earth Orbit. Equipment would melt the ice and purify the water, "electrolyze the water into gaseous hydrogen and oxygen, and then condense the gases into liquid hydrogen and liquid oxygen and also process them into hydrogen peroxide, all of which could be used as rocket fuels."

Mars exploration

In June 2012, private Dutch non-profit, Mars One, announced a private one-way (no return) human mission to Mars with the aim to establish a permanent human colony on Mars. The plan was to send a communication satellite and pathfinder lander to the planet by 2016 and, after several stages, land four humans on the Martian surface for permanent settlement in 2023. A new set of four astronauts would then arrive every two years.

Mars One has received a variety of criticism, mostly relating to medical, technical and financial feasibility. There are also unverified claims that Mars One is a scam designed to take as much money as possible from donors, including reality show contestants. Many have criticized the project's US$6 billion budget as being too low to successfully transport humans to Mars, to the point of being delusional. A similar project study by NASA estimated the cost of such a feat at US$100 billion, although that included transporting the astronauts back to Earth. Objections have also been raised regarding the reality TV project associated with the expedition. Given the transient nature of most reality TV ventures, many believe that as viewership declines, funding could significantly decrease, thereby harming the entire expedition. Further, contestants have reported that they were ranked based on their donations and funds raised.

In February 2013, the US nonprofit Inspiration Mars Foundation announced a plan to send a married couple on a 2018 mission to travel to Mars and back to Earth on a 501-day round trip, with no landing planned on Mars. The mission would have taken advantage of an infrequently occurring free return trajectory—a unique orbit opportunity which occurs only once every fifteen years—and will allow the space capsule to use the smallest possible amount of fuel to get it to Mars and back to Earth. The two-person American crew – a man and a woman – will orbit around Mars at a distance of 100 miles (160 km) of the surface. "If anything goes wrong, the spacecraft should make its own way back to Earth — but with no possibility of any shortcuts home."

On September 27, 2016, at the 67th annual meeting of the International Astronautical Congress, Musk unveiled substantial details of the design for the transport vehicles—including size, construction material, number and type of engines, thrust, cargo and passenger payload capabilities, on-orbit propellant-tanker refills, representative transit times, etc.—as well as a few details of portions of the Mars-side and Earth-side infrastructure that SpaceX intends to build to support the flight vehicles. In addition, Musk championed a larger systemic vision, a vision for a bottom-up emergent order of other interested parties—whether companies, individuals, or governments—to utilize the new and radically lower-cost transport infrastructure to build up a sustainable human civilization on Mars, potentially, on numerous other locations around the Solar System, by innovating and meeting the demand that such a growing venture would occasion.

In July 2017, SpaceX made public plans for ITS based on a smaller launch vehicle and spacecraft. The new system architecture has "evolved quite a bit" since the November 2016 articulation of the very large "Interplanetary Transport System". A key driver of the new architecture is to make the new system useful for substantial Earth-orbit and cislunar launches so that the new system might pay for itself, in part, through economic spaceflight activities in the near-Earth space zone. The Super Heavy is designed to fulfill the Mars transportation goals while also launching satellites, servicing the ISS, flying humans and cargo to the Moon, and enabling ballistic transport of passengers on Earth as a substitute to long-haul airline flights.

NewSpace terminology

The term "NewSpace" emphasizes the relative modernity of private spaceflight efforts, encompassing international and multinational efforts to privatize spaceflight as a commercial industry. Such corporations fall under the governance of international treaties and national governments.

Cousin marriage in the Middle East

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cou...