Search This Blog

Friday, September 17, 2021

Growth hormone

From Wikipedia, the free encyclopedia
Growth hormone 2 (placental)
Identifiers
SymbolGH2
NCBI gene2689
HGNC4262
OMIM139240
RefSeqNM_002059
UniProtP01242
Other data
LocusChr. 17 q22-q24

Growth hormone (GH) or somatotropin, also known as human growth hormone (hGH or HGH) in its human form, is a peptide hormone that stimulates growth, cell reproduction, and cell regeneration in humans and other animals. It is thus important in human development. GH also stimulates production of IGF-1 and increases the concentration of glucose and free fatty acids. It is a type of mitogen which is specific only to the receptors on certain types of cells. GH is a 191-amino acid, single-chain polypeptide that is synthesized, stored and secreted by somatotropic cells within the lateral wings of the anterior pituitary gland.

A recombinant form of hGH called somatropin (INN) is used as a prescription drug to treat children's growth disorders and adult growth hormone deficiency. In the United States, it is only available legally from pharmacies by prescription from a licensed health care provider. In recent years in the United States, some health care providers are prescribing growth hormone in the elderly to increase vitality. While legal, the efficacy and safety of this use for HGH has not been tested in a clinical trial. Many of the functions of hGH remain unknown.

In its role as an anabolic agent, HGH has been used by competitors in sports since at least 1982, and has been banned by the IOC and NCAA. Traditional urine analysis does not detect doping with HGH, so the ban was not enforced until the early 2000s, when blood tests that could distinguish between natural and artificial HGH were starting to be developed. Blood tests conducted by WADA at the 2004 Olympic Games in Athens, Greece targeted primarily HGH. Use of the drug for performance enhancement is not currently approved by the FDA.

GH has been studied for use in raising livestock more efficiently in industrial agriculture and several efforts have been made to obtain governmental approval to use GH in livestock production. These uses have been controversial. In the United States, the only FDA-approved use of GH for livestock is the use of a cow-specific form of GH called bovine somatotropin for increasing milk production in dairy cows. Retailers are permitted to label containers of milk as produced with or without bovine somatotropin.

Nomenclature

The names somatotropin (STH) or somatotropic hormone refer to the growth hormone produced naturally in animals and extracted from carcasses. Hormone extracted from human cadavers is abbreviated hGH. The main growth hormone produced by recombinant DNA technology has the approved generic name (INN) somatropin and the brand name Humatrope, and is properly abbreviated rhGH in the scientific literature. Since its introduction in 1992 Humatrope has been a banned sports doping agent, and in this context is referred to as HGH.

Biology

Gene

Genes for human growth hormone, known as growth hormone 1 (somatotropin; pituitary growth hormone) and growth hormone 2 (placental growth hormone; growth hormone variant), are localized in the q22-24 region of chromosome 17 and are closely related to human chorionic somatomammotropin (also known as placental lactogen) genes. GH, human chorionic somatomammotropin, and prolactin belong to a group of homologous hormones with growth-promoting and lactogenic activity.

Structure

The major isoform of the human growth hormone is a protein of 191 amino acids and a molecular weight of 22,124 daltons. The structure includes four helices necessary for functional interaction with the GH receptor. It appears that, in structure, GH is evolutionarily homologous to prolactin and chorionic somatomammotropin. Despite marked structural similarities between growth hormone from different species, only human and Old World monkey growth hormones have significant effects on the human growth hormone receptor.

Several molecular isoforms of GH exist in the pituitary gland and are released to blood. In particular, a variant of approximately 20 kDa originated by an alternative splicing is present in a rather constant 1:9 ratio, while recently an additional variant of ~ 23-24 kDa has also been reported in post-exercise states at higher proportions. This variant has not been identified, but it has been suggested to coincide with a 22 kDa glycosylated variant of 23 kDa identified in the pituitary gland. Furthermore, these variants circulate partially bound to a protein (growth hormone-binding protein, GHBP), which is the truncated part of the growth hormone receptor, and an acid-labile subunit (ALS).

Regulation

Secretion of growth hormone (GH) in the pituitary is regulated by the neurosecretory nuclei of the hypothalamus. These cells release the peptides growth hormone-releasing hormone (GHRH or somatocrinin) and growth hormone-inhibiting hormone (GHIH or somatostatin) into the hypophyseal portal venous blood surrounding the pituitary. GH release in the pituitary is primarily determined by the balance of these two peptides, which in turn is affected by many physiological stimulators (e.g., exercise, nutrition, sleep) and inhibitors (e.g., free fatty acids) of GH secretion.

Somatotropic cells in the anterior pituitary gland then synthesize and secrete GH in a pulsatile manner, in response to these stimuli by the hypothalamus. The largest and most predictable of these GH peaks occurs about an hour after onset of sleep with plasma levels of 13 to 72 ng/mL. Otherwise there is wide variation between days and individuals. Nearly fifty percent of GH secretion occurs during the third and fourth NREM sleep stages. Surges of secretion during the day occur at 3- to 5-hour intervals. The plasma concentration of GH during these peaks may range from 5 to even 45 ng/mL. Between the peaks, basal GH levels are low, usually less than 5 ng/mL for most of the day and night. Additional analysis of the pulsatile profile of GH described in all cases less than 1 ng/ml for basal levels while maximum peaks were situated around 10-20 ng/mL.

A number of factors are known to affect GH secretion, such as age, sex, diet, exercise, stress, and other hormones. Young adolescents secrete GH at the rate of about 700 μg/day, while healthy adults secrete GH at the rate of about 400 μg/day. Sleep deprivation generally suppresses GH release, particularly after early adulthood.

Stimulators of growth hormone (GH) secretion include:

Inhibitors of GH secretion include:

In addition to control by endogenous and stimulus processes, a number of foreign compounds (xenobiotics such as drugs and endocrine disruptors) are known to influence GH secretion and function.

Function

Main pathways in endocrine regulation of growth

Effects of growth hormone on the tissues of the body can generally be described as anabolic (building up). Like most other protein hormones, GH acts by interacting with a specific receptor on the surface of cells.

Increased height during childhood is the most widely known effect of GH. Height appears to be stimulated by at least two mechanisms:

  1. Because polypeptide hormones are not fat-soluble, they cannot penetrate cell membranes. Thus, GH exerts some of its effects by binding to receptors on target cells, where it activates the MAPK/ERK pathway. Through this mechanism GH directly stimulates division and multiplication of chondrocytes of cartilage.
  2. GH also stimulates, through the JAK-STAT signaling pathway, the production of insulin-like growth factor 1 (IGF-1, formerly known as somatomedin C), a hormone homologous to proinsulin. The liver is a major target organ of GH for this process and is the principal site of IGF-1 production. IGF-1 has growth-stimulating effects on a wide variety of tissues. Additional IGF-1 is generated within target tissues, making it what appears to be both an endocrine and an autocrine/paracrine hormone. IGF-1 also has stimulatory effects on osteoblast and chondrocyte activity to promote bone growth.

In addition to increasing height in children and adolescents, growth hormone has many other effects on the body:

Biochemistry

GH has a short biological half-life of about 10 to 20 minutes.

Clinical significance

Excess

The most common disease of GH excess is a pituitary tumor composed of somatotroph cells of the anterior pituitary. These somatotroph adenomas are benign and grow slowly, gradually producing more and more GH. For years, the principal clinical problems are those of GH excess. Eventually, the adenoma may become large enough to cause headaches, impair vision by pressure on the optic nerves, or cause deficiency of other pituitary hormones by displacement.

Prolonged GH excess thickens the bones of the jaw, fingers and toes, resulting in heaviness of the jaw and increased size of digits, referred to as acromegaly. Accompanying problems can include sweating, pressure on nerves (e.g. carpal tunnel syndrome), muscle weakness, excess sex hormone-binding globulin (SHBG), insulin resistance or even a rare form of type 2 diabetes, and reduced sexual function.

GH-secreting tumors are typically recognized in the fifth decade of life. It is extremely rare for such a tumor to occur in childhood, but, when it does, the excessive GH can cause excessive growth, traditionally referred to as pituitary gigantism.

Surgical removal is the usual treatment for GH-producing tumors. In some circumstances, focused radiation or a GH antagonist such as pegvisomant may be employed to shrink the tumor or block function. Other drugs like octreotide (somatostatin agonist) and bromocriptine (dopamine agonist) can be used to block GH secretion because both somatostatin and dopamine negatively inhibit GHRH-mediated GH release from the anterior pituitary.

Deficiency

The effects of growth hormone (GH) deficiency vary depending on the age at which they occur. Alterations in somatomedin can result in growth hormone deficiency with two known mechanisms; failure of tissues to respond to somatomedin, or failure of the liver to produce somatomedin. Major manifestations of GH deficiency in children are growth failure, the development of a short stature, and delayed sexual maturity. In adults, somatomedin alteration contributes to increased osteoclast activity, resulting in weaker bones that are more prone to pathologic fracture and osteoporosis. However, deficiency is rare in adults, with the most common cause being a pituitary adenoma. Other adult causes include a continuation of a childhood problem, other structural lesions or trauma, and very rarely idiopathic GHD.

Adults with GHD "tend to have a relative increase in fat mass and a relative decrease in muscle mass and, in many instances, decreased energy and quality of life".

Diagnosis of GH deficiency involves a multiple-step diagnostic process, usually culminating in GH stimulation tests to see if the patient's pituitary gland will release a pulse of GH when provoked by various stimuli.

Psychological effects

Quality of life

Several studies, primarily involving patients with GH deficiency, have suggested a crucial role of GH in both mental and emotional well-being and maintaining a high energy level. Adults with GH deficiency often have higher rates of depression than those without. While GH replacement therapy has been proposed to treat depression as a result of GH deficiency, the long-term effects of such therapy are unknown.

Cognitive function

GH has also been studied in the context of cognitive function, including learning and memory. GH in humans appears to improve cognitive function and may be useful in the treatment of patients with cognitive impairment that is a result of GH deficiency.

Medical uses

Replacement therapy

GH is used as replacement therapy in adults with GH deficiency of either childhood-onset or adult-onset (usually as a result of an acquired pituitary tumor). In these patients, benefits have variably included reduced fat mass, increased lean mass, increased bone density, improved lipid profile, reduced cardiovascular risk factors, and improved psychosocial well-being.

Other approved uses

GH can be used to treat conditions that produce short stature but are not related to deficiencies in GH. However, results are not as dramatic when compared to short stature that is solely attributable to deficiency of GH. Examples of other causes of shortness often treated with GH are Turner syndrome, chronic kidney failure, Prader–Willi syndrome, intrauterine growth restriction, and severe idiopathic short stature. Higher ("pharmacologic") doses are required to produce significant acceleration of growth in these conditions, producing blood levels well above normal ("physiologic"). Despite the higher doses, side-effects during treatment are rare, and vary little according to the condition being treated.

One version of rHGH has also been FDA approved for maintaining muscle mass in wasting due to AIDS.

Off-label use

Off-label prescription of HGH is controversial and may be illegal.

Claims for GH as an anti-aging treatment date back to 1990 when the New England Journal of Medicine published a study wherein GH was used to treat 12 men over 60. At the conclusion of the study, all the men showed statistically significant increases in lean body mass and bone mineral density, while the control group did not. The authors of the study noted that these improvements were the opposite of the changes that would normally occur over a 10- to 20-year aging period. Despite the fact the authors at no time claimed that GH had reversed the aging process itself, their results were misinterpreted as indicating that GH is an effective anti-aging agent. This has led to organizations such as the controversial American Academy of Anti-Aging Medicine promoting the use of this hormone as an "anti-aging agent".

A Stanford University School of Medicine meta-analysis of clinical studies on the subject published in early 2007 showed that the application of GH on healthy elderly patients increased muscle by about 2 kg and decreased body fat by the same amount. However, these were the only positive effects from taking GH. No other critical factors were affected, such as bone density, cholesterol levels, lipid measurements, maximal oxygen consumption, or any other factor that would indicate increased fitness. Researchers also did not discover any gain in muscle strength, which led them to believe that GH merely let the body store more water in the muscles rather than increase muscle growth. This would explain the increase in lean body mass.

GH has also been used experimentally to treat multiple sclerosis, to enhance weight loss in obesity, as well as in fibromyalgia, heart failure, Crohn's disease and ulcerative colitis, and burns. GH has also been used experimentally in patients with short bowel syndrome to lessen the requirement for intravenous total parenteral nutrition.

In 1990, the US Congress passed an omnibus crime bill, the Crime Control Act of 1990, that amended the Federal Food, Drug, and Cosmetic Act, that classified anabolic steroids as controlled substances and added a new section that stated that a person who "knowingly distributes, or possesses with intent to distribute, human growth hormone for any use in humans other than the treatment of a disease or other recognized medical condition, where such use has been authorized by the Secretary of Health and Human Services" has committed a felony.

The Drug Enforcement Administration of the US Department of Justice considers off-label prescribing of HGH to be illegal, and to be a key path for illicit distribution of HGH. This section has also been interpreted by some doctors, most notably the authors of a commentary article published in the Journal of the American Medical Association in 2005, as meaning that prescribing HGH off-label may be considered illegal. And some articles in the popular press, such as those criticizing the pharmaceutical industry for marketing drugs for off-label use (with concern of ethics violations) have made strong statements about whether doctors can prescribe HGH off-label: "Unlike other prescription drugs, HGH may be prescribed only for specific uses. U.S. sales are limited by law to treat a rare growth defect in children and a handful of uncommon conditions like short bowel syndrome or Prader-Willi syndrome, a congenital disease that causes reduced muscle tone and a lack of hormones in sex glands." At the same time, anti-aging clinics where doctors prescribe, administer, and sell HGH to people are big business. In a 2012 article in Vanity Fair, when asked how HGH prescriptions far exceed the number of adult patients estimated to have HGH-deficiency, Dragos Roman, who leads a team at the FDA that reviews drugs in endocrinology, said "The F.D.A. doesn't regulate off-label uses of H.G.H. Sometimes it's used appropriately. Sometimes it's not."

Side effects

Injection-site reaction is common. More rarely, patients can experience joint swelling, joint pain, carpal tunnel syndrome, and an increased risk of diabetes. In some cases, the patient can produce an immune response against GH. GH may also be a risk factor for Hodgkin's lymphoma.

One survey of adults that had been treated with replacement cadaver GH (which has not been used anywhere in the world since 1985) during childhood showed a mildly increased incidence of colon cancer and prostate cancer, but linkage with the GH treatment was not established.

Performance enhancement

The first description of the use of GH as a doping agent was Dan Duchaine's "Underground Steroid handbook" which emerged from California in 1982; it is not known where and when GH was first used this way.

Athletes in many sports have used human growth hormone in order to attempt to enhance their athletic performance. Some recent studies have not been able to support claims that human growth hormone can improve the athletic performance of professional male athletes. Many athletic societies ban the use of GH and will issue sanctions against athletes who are caught using it. However, because GH is a potent endogenous protein, it is very difficult to detect GH doping. In the United States, GH is legally available only by prescription from a medical doctor.

Dietary supplements

To capitalize on the idea that GH might be useful to combat aging, companies selling dietary supplements have websites selling products linked to GH in the advertising text, with medical-sounding names described as "HGH Releasers". Typical ingredients include amino acids, minerals, vitamins, and/or herbal extracts, the combination of which are described as causing the body to make more GH with corresponding beneficial effects. In the United States, because these products are marketed as dietary supplements, it is illegal for them to contain GH, which is a drug. Also, under United States law, products sold as dietary supplements cannot have claims that the supplement treats or prevents any disease or condition, and the advertising material must contain a statement that the health claims are not approved by the FDA. The FTC and the FDA do enforce the law when they become aware of violations.

Agricultural use

In the United States, it is legal to give a bovine GH to dairy cows to increase milk production, and is legal to use GH in raising cows for beef; see article on Bovine somatotropin, cattle feeding, dairy farming and the beef hormone controversy.

The use of GH in poultry farming is illegal in the United States. Similarly, no chicken meat for sale in Australia is administered hormones.

Several companies have attempted to have a version of GH for use in pigs (porcine somatotropin) approved by the FDA but all applications have been withdrawn.

Drug development history

The identification, purification and later synthesis of growth hormone is associated with Choh Hao Li. Genentech pioneered the first use of recombinant human growth hormone for human therapy in 1981.

Prior to its production by recombinant DNA technology, growth hormone used to treat deficiencies was extracted from the pituitary glands of cadavers. Attempts to create a wholly synthetic HGH failed. Limited supplies of HGH resulted in the restriction of HGH therapy to the treatment of idiopathic short stature. Very limited clinical studies of growth hormone derived from an Old World monkey, the rhesus macaque, were conducted by John C. Beck and colleagues in Montreal, in the late 1950s. The study published in 1957, which was conducted on "a 13-year-old male with well-documented hypopituitarism secondary to a crainiophyaryngioma," found that: "Human and monkey growth hormone resulted in a significant enhancement of nitrogen storage ... (and) there was a retention of potassium, phosphorus, calcium, and sodium. ... There was a gain in body weight during both periods. ... There was a significant increase in urinary excretion of aldosterone during both periods of administration of growth hormone. This was most marked with the human growth hormone. ... Impairment of the glucose tolerance curve was evident after 10 days of administration of the human growth hormone. No change in glucose tolerance was demonstrable on the fifth day of administration of monkey growth hormone." The other study, published in 1958, was conducted on six people: the same subject as the Science paper; an 18-year-old male with statural and sexual retardation and a skeletal age of between 13 and 14 years; a 15-year-old female with well-documented hypopituitarism secondary to a craniopharyngioma; a 53-year-old female with carcinoma of the breast and widespread skeletal metastases; a 68-year-old female with advanced postmenopausal osteoporosis; and a healthy 24-year-old medical student without any clinical or laboratory evidence of systemic disease.

In 1985, unusual cases of Creutzfeldt–Jakob disease were found in individuals that had received cadaver-derived HGH ten to fifteen years previously. Based on the assumption that infectious prions causing the disease were transferred along with the cadaver-derived HGH, cadaver-derived HGH was removed from the market.

In 1985, biosynthetic human growth hormone replaced pituitary-derived human growth hormone for therapeutic use in the U.S. and elsewhere.

As of 2005, recombinant growth hormones available in the United States (and their manufacturers) included Nutropin (Genentech), Humatrope (Lilly), Genotropin (Pfizer), Norditropin (Novo), and Saizen (Merck Serono). In 2006, the U.S. Food and Drug Administration (FDA) approved a version of rHGH called Omnitrope (Sandoz). A sustained-release form of growth hormone, Nutropin Depot (Genentech and Alkermes) was approved by the FDA in 1999, allowing for fewer injections (every 2 or 4 weeks instead of daily); however, the product was discontinued by Genentech/Alkermes in 2004 for financial reasons (Nutropin Depot required significantly more resources to produce than the rest of the Nutropin line).

Alzheimer's disease

From Wikipedia, the free encyclopedia

Alzheimer's disease
Brain-ALZH.png
Drawing comparing a normal aged brain (left) and the brain of a person with Alzheimer's (right). Characteristics that separate the two are pointed out.
Pronunciation
  • ˈaltshʌɪməz
SpecialtyNeurology
SymptomsDifficulty in remembering recent events, problems with language, disorientation, mood swings
ComplicationsDehydration and Pneumonia in the terminal stage
Usual onsetOver 65 years old
DurationLong term
CausesPoorly understood
Risk factorsGenetics, head injuries, depression, hypertension
Diagnostic methodBased on symptoms and cognitive testing after ruling out other possible causes
Differential diagnosisNormal aging
MedicationAcetylcholinesterase inhibitors, NMDA receptor antagonists (small benefit),
PrognosisLife expectancy 3–9 years
Frequency29.8 million (2015)
DeathsFor all dementias 1.9 million (2015)

Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems with language, disorientation (including easily getting lost), mood swings, loss of motivation, self-neglect, and behavioral issues. As a person's condition declines, they often withdraw from family and society. Gradually, bodily functions are lost, ultimately leading to death. Although the speed of progression can vary, the typical life expectancy following diagnosis is three to nine years.

The cause of Alzheimer's disease is poorly understood. There are many environmental and genetic risk factors associated with its development. The strongest genetic risk factor is from an allele of APOE. Other risk factors include a history of head injury, clinical depression, and high blood pressure. The disease process is largely associated with amyloid plaques, neurofibrillary tangles, and loss of neuronal connections in the brain. A probable diagnosis is based on the history of the illness and cognitive testing with medical imaging and blood tests to rule out other possible causes. Initial symptoms are often mistaken for normal aging. Examination of brain tissue is needed for a definite diagnosis, but this can only take place after death. Good nutrition, physical activity, and engaging socially are known to be of benefit generally in aging, and these may help in reducing the risk of cognitive decline and Alzheimer's; in 2019 clinical trials were underway to look at these possibilities. There are no medications or supplements that have been shown to decrease risk.

No treatments stop or reverse its progression, though some may temporarily improve symptoms. Affected people increasingly rely on others for assistance, often placing a burden on the caregiver. The pressures can include social, psychological, physical, and economic elements. Exercise programs may be beneficial with respect to activities of daily living and can potentially improve outcomes. Behavioral problems or psychosis due to dementia are often treated with antipsychotics, but this is not usually recommended, as there is little benefit and an increased risk of early death.

As of 2015, there were approximately 29.8 million people worldwide with AD with about 50 million of all forms of dementia as of 2020. It most often begins in people over 65 years of age, although up to 10 per cent of cases are early-onset affecting those in their 30's to mid 60's. Women get sick more often than men. It affects about 6% of people 65 years and older. In 2015, all forms of dementia resulted in about 1.9 million deaths. The disease is named after German psychiatrist and pathologist Alois Alzheimer, who first described it in 1906. Alzheimer's financial burden on society is large, on par with the costs of cancer and heart disease, costing 200 billion dollars in the US alone.

Signs and symptoms

The course of Alzheimer's is generally described in three stages, with a progressive pattern of cognitive and functional impairment. The three stages are described as early or mild, middle or moderate, and late or severe. The disease is known to target the hippocampus which is associated with memory, and this is responsible for the first symptoms of memory impairment. As the disease progresses so does the degree of memory impairment.

First symptoms

Stages of atrophy in Alzheimer's.

The first symptoms are often mistakenly attributed to aging or stress. Detailed neuropsychological testing can reveal mild cognitive difficulties up to eight years before a person fulfills the clinical criteria for diagnosis of Alzheimer's disease. These early symptoms can affect the most complex activities of daily living. The most noticeable deficit is short term memory loss, which shows up as difficulty in remembering recently learned facts and inability to acquire new information.

Subtle problems with the executive functions of attentiveness, planning, flexibility, and abstract thinking, or impairments in semantic memory (memory of meanings, and concept relationships) can also be symptomatic of the early stages of Alzheimer's disease. Apathy and depression can be seen at this stage, with apathy remaining as the most persistent symptom throughout the course of the disease. The preclinical stage of the disease has also been termed mild cognitive impairment (MCI). This is often found to be a transitional stage between normal aging and dementia. MCI can present with a variety of symptoms, and when memory loss is the predominant symptom, it is termed amnestic MCI and is frequently seen as a prodromal stage of Alzheimer's disease. Amnestic MCI has a greater than 90% likelihood of being associated with Alzheimer's.

Early stage

In people with Alzheimer's disease, the increasing impairment of learning and memory eventually leads to a definitive diagnosis. In a small percentage, difficulties with language, executive functions, perception (agnosia), or execution of movements (apraxia) are more prominent than memory problems. Alzheimer's disease does not affect all memory capacities equally. Older memories of the person's life (episodic memory), facts learned (semantic memory), and implicit memory (the memory of the body on how to do things, such as using a fork to eat or how to drink from a glass) are affected to a lesser degree than new facts or memories.

Language problems are mainly characterised by a shrinking vocabulary and decreased word fluency, leading to a general impoverishment of oral and written language. In this stage, the person with Alzheimer's is usually capable of communicating basic ideas adequately. While performing fine motor tasks such as writing, drawing, or dressing, certain movement coordination and planning difficulties (apraxia) may be present, but they are commonly unnoticed. As the disease progresses, people with Alzheimer's disease can often continue to perform many tasks independently, but may need assistance or supervision with the most cognitively demanding activities.

Middle stage

Progressive deterioration eventually hinders independence, with subjects being unable to perform most common activities of daily living. Speech difficulties become evident due to an inability to recall vocabulary, which leads to frequent incorrect word substitutions (paraphasias). Reading and writing skills are also progressively lost. Complex motor sequences become less coordinated as time passes and Alzheimer's disease progresses, so the risk of falling increases. During this phase, memory problems worsen, and the person may fail to recognise close relatives. Long-term memory, which was previously intact, becomes impaired.

Behavioral and neuropsychiatric changes become more prevalent. Common manifestations are wandering, irritability and emotional lability, leading to crying, outbursts of unpremeditated aggression, or resistance to caregiving. Sundowning can also appear. Approximately 30% of people with Alzheimer's disease develop illusionary misidentifications and other delusional symptoms. Subjects also lose insight of their disease process and limitations (anosognosia). Urinary incontinence can develop. These symptoms create stress for relatives and carers, which can be reduced by moving the person from home care to other long-term care facilities.

Late stage

A normal brain on the left and a late-stage Alzheimer's brain on the right.

During the final stage, known as the late-stage or severe stage, the patient is completely dependent upon caregivers. Language is reduced to simple phrases or even single words, eventually leading to complete loss of speech. Despite the loss of verbal language abilities, people can often understand and return emotional signals. Although aggressiveness can still be present, extreme apathy and exhaustion are much more common symptoms. People with Alzheimer's disease will ultimately not be able to perform even the simplest tasks independently; muscle mass and mobility deteriorates to the point where they are bedridden and unable to feed themselves. The cause of death is usually an external factor, such as infection of pressure ulcers or pneumonia, not the disease itself.

Causes

Alzheimer's disease is believed to occur when abnormal amounts of amyloid beta, accumulating extracellularly as amyloid plaques, and tau proteins, accumulating intracellularly as neurofibrillary tangles, form in the brain affecting neuronal functioning and connectivity, resulting in a progressive loss of brain function. This altered protein clearance ability is age-related, regulated by brain cholesterol, and associated with other neurodegenerative diseases.

The cause for most Alzheimer's cases is still mostly unknown except for 1-2% of cases where deterministic genetic differences have been identified. Several competing hypotheses exist trying to explain the cause of the disease.

Genetic

Only 1–2% of Alzheimer's cases are inherited (autosomal dominant). These types are known as early onset familial Alzheimer's disease, can have a very early onset, and a faster rate of progression. Early onset familial Alzheimer's disease can be attributed to mutations in one of three genes: those encoding amyloid-beta precursor protein (APP) and presenilins PSEN1 and PSEN2. Most mutations in the APP and presenilin genes increase the production of a small protein called amyloid beta (Aβ)42, which is the main component of amyloid plaques. Some of the mutations merely alter the ratio between Aβ42 and the other major forms—particularly Aβ40—without increasing Aβ42 levels. Two other genes associated with autosomal dominant Alzheimer's disease are ABCA7 and SORL1.

Most cases of Alzheimer's are not inherited and are termed sporadic Alzheimer's disease, in which environmental and genetic differences may act as risk factors. Most cases of sporadic Alzheimer's disease in contrast to familial Alzheimer's disease are late-onset Alzheimer's disease (LOAD) developing after the age of 65 years. Less than 5% of sporadic Alzheimer's disease have an earlier onset. The strongest genetic risk factor for sporadic Alzheimer's disease is APOEε4. APOEε4 is one of four alleles of apolipoprotein E (APOE). APOE plays a major role in lipid-binding proteins in lipoprotein particles and the epsilon4 allele disrupts this function. Between 40 and 80% of people with Alzheimer's disease possess at least one APOEε4 allele. The APOEε4 allele increases the risk of the disease by three times in heterozygotes and by 15 times in homozygotes. Like many human diseases, environmental effects and genetic modifiers result in incomplete penetrance. For example, certain Nigerian populations do not show the relationship between dose of APOEε4 and incidence or age-of-onset for Alzheimer's disease seen in other human populations. Early attempts to screen up to 400 candidate genes for association with late-onset sporadic Alzheimer's disease (LOAD) resulted in a low yield. More recent genome-wide association studies (GWAS) have found 19 areas in genes that appear to affect the risk. These genes include: CASS4, CELF1, FERMT2, HLA-DRB5, INPP5D, MEF2C, NME8, PTK2B, SORL1, ZCWPW1, SLC24A4, CLU, PICALM, CR1, BIN1, MS4A, ABCA7, EPHA1, and CD2AP.

Alleles in the TREM2 gene have been associated with a 3 to 5 times higher risk of developing Alzheimer's disease. A suggested mechanism of action is that in some variants in TREM2, white blood cells in the brain are no longer able to control the amount of amyloid beta present. Many single-nucleotide polymorphisms (SNPs) are associated with Alzheimer's, with a 2018 study adding 30 SNPs by differentiating Alzheimer's disease into six categories, including memory, language, visuospatial, and executive functioning.

Osaka mutation

A Japanese pedigree of familial Alzheimer's disease was found to be associated with a deletion mutation of codon 693 of APP. This mutation and its association with Alzheimer's disease was first reported in 2008, and is known as the Osaka mutation. Only homozygotes with this mutation develop Alzheimer's disease. This mutation accelerates Aβ oligomerization but the proteins do not form the amyloid fibrils that aggregate into amyloid plaques, suggesting that it is the Aβ oligomerization rather than the fibrils that may be the cause of this disease. Mice expressing this mutation have all the usual pathologies of Alzheimer's disease.

Cholinergic hypothesis

The oldest hypothesis, on which most drug therapies are based, is the cholinergic hypothesis, which proposes that Alzheimer's disease is caused by reduced synthesis of the neurotransmitter acetylcholine. The cholinergic hypothesis has not maintained widespread support, largely because medications intended to treat acetylcholine deficiency have not been very effective.

Amyloid hypothesis

The 1991 amyloid hypothesis postulated that extracellular amyloid beta (Aβ) deposits are the fundamental cause of the disease. Support for this postulate comes from the location of the gene for the amyloid precursor protein (APP) on chromosome 21, together with the fact that people with trisomy 21 (Down syndrome) who have an extra gene copy almost universally exhibit at least the earliest symptoms of Alzheimer's disease by 40 years of age. Also, a specific isoform of apolipoprotein, APOE4, is a major genetic risk factor for Alzheimer's disease. While apolipoproteins enhance the breakdown of beta amyloid, some isoforms are not very effective at this task (such as APOE4), leading to excess amyloid buildup in the brain.

Tau hypothesis

In Alzheimer's disease, changes in tau protein lead to the disintegration of microtubules in brain cells.

The tau hypothesis proposes that tau protein abnormalities initiate the disease cascade. In this model, hyperphosphorylated tau begins to pair with other threads of tau as paired helical filaments. Eventually, they form neurofibrillary tangles inside nerve cell bodies. When this occurs, the microtubules disintegrate, destroying the structure of the cell's cytoskeleton which collapses the neuron's transport system. This may result first in malfunctions in biochemical communication between neurons and later in the death of the cells.

Inflammatory hypothesis

A number of studies connect the misfolded amyloid beta and tau proteins associated with the pathology of Alzheimer's disease, as bringing about oxidative stress that leads to chronic inflammation. Sustained inflammation (neuroinflammation) is also a feature of other neurodegenerative diseases including Parkinson's disease, and ALS. Spirochete infections have also been linked to dementia.

Sleep disturbances are seen as a possible risk factor for inflammation in Alzheimer's disease. Sleep problems have been seen as a consequence of Alzheimer's disease but studies suggest that they may instead be a causal factor. Sleep disturbances are thought to be linked to persistent inflammation. A possible role of chronic periodontal infection and the gut microbiota has been suggested.

Other hypotheses

Cholesterol signaling hypothesis postulates that amyloid production and tau phosphorylation are regulated by cholesterol and high brain cholesterol contributes to the disease. First, the cholesterol is made in the astrocytes, the astrocytes load the cholesterol into the cholesterol carrier protein apoE, and the apoE loads the cholesterol into the neurons. Once in the neurons, cholesterol causes clustering of amyloid precursor protein (APP) with its hydrolytic enzyme gamma secretase, resulting in amyloid beta production and accumulation of amyloid plaques. Cholesterol regulates amyloid beta production by substrate presentation.

A neurovascular hypothesis stating that poor functioning of the blood–brain barrier may be involved has been proposed.

The cellular homeostasis of biometals such as ionic copper, iron, and zinc is disrupted in Alzheimer's disease, though it remains unclear whether this is produced by or causes the changes in proteins. These ions affect and are affected by tau, APP, and APOE, and their dysregulation may cause oxidative stress that may contribute to the pathology. The quality of some of these studies has been criticised, and the link remains controversial. The majority of researchers do not support a causal connection with aluminium.

Smoking is a significant Alzheimer's disease risk factor. Systemic markers of the innate immune system are risk factors for late-onset Alzheimer's disease.

There is tentative evidence that exposure to air pollution may be a contributing factor to the development of Alzheimer's disease.

One hypothesis posits that dysfunction of oligodendrocytes and their associated myelin during aging contributes to axon damage, which then causes amyloid production and tau hyper-phosphorylation as a side effect.

Retrogenesis is a medical hypothesis about the development and progress of Alzheimer's disease proposed by Barry Reisberg in the 1980s. The hypothesis is that just as the fetus goes through a process of neurodevelopment beginning with neurulation and ending with myelination, the brains of people with Alzheimer's disease go through a reverse neurodegeneration process starting with demyelination and death of axons (white matter) and ending with the death of grey matter. Likewise the hypothesis is, that as infants go through states of cognitive development, people with Alzheimer's disease go through the reverse process of progressive cognitive impairment. Reisberg developed the caregiving assessment tool known as "FAST" (Functional Assessment Staging Tool) which he says allows those caring for people with Alzheimer's disease to identify the stages of disease progression and that provides advice about the kind of care needed at each stage.

The association with celiac disease is unclear, with a 2019 study finding no increase in dementia overall in those with CD, while a 2018 review found an association with several types of dementia including Alzheimer's disease.

Kynurenines are a downstream metabolite of tryptophan and have the potential to be neuroactive. This may be associated with the neuropsychiatric symptoms and cognitive prognosis in mild dementia. A five-year study focused on the role of kynurenine in Alzheimer's and Lewy body disease and found its increase to be associated with more hallucinations.

Pathophysiology

Histopathologic images of Alzheimer's disease, in the CA3 area of the hippocampus, showing an amyloid plaque (top right), neurofibrillary tangles (bottom left), and granulovacuolar degeneration bodies (bottom center)

Neuropathology

Alzheimer's disease is characterised by loss of neurons and synapses in the cerebral cortex and certain subcortical regions. This loss results in gross atrophy of the affected regions, including degeneration in the temporal lobe and parietal lobe, and parts of the frontal cortex and cingulate gyrus. Degeneration is also present in brainstem nuclei particularly the locus coeruleus in the pons. Studies using MRI and PET have documented reductions in the size of specific brain regions in people with Alzheimer's disease as they progressed from mild cognitive impairment to Alzheimer's disease, and in comparison with similar images from healthy older adults.

Both plaques and neurofibrillary tangles are clearly visible by microscopy in brains of those afflicted by Alzheimer's disease, especially in the hippocampus. However, Alzheimer's disease may occur without neurofibrillary tangles in the neocortex. Plaques are dense, mostly insoluble deposits of beta-amyloid peptide and cellular material outside and around neurons. Tangles (neurofibrillary tangles) are aggregates of the microtubule-associated protein tau which has become hyperphosphorylated and accumulate inside the cells themselves. Although many older individuals develop some plaques and tangles as a consequence of aging, the brains of people with Alzheimer's disease have a greater number of them in specific brain regions such as the temporal lobe. Lewy bodies are not rare in the brains of people with Alzheimer's disease.

Biochemistry

Enzymes act on the APP (amyloid-beta precursor protein) and cut it into fragments. The beta-amyloid fragment is crucial in the formation of amyloid plaques in Alzheimer's disease.

Alzheimer's disease has been identified as a protein misfolding disease, a proteopathy, caused by the accumulation of abnormally folded amyloid beta protein into amyloid plaques, and tau protein into neurofibrillary tangles in the brain. Plaques are made up of small peptides, 39–43 amino acids in length, called amyloid beta (Aβ). Amyloid beta is a fragment from the larger amyloid-beta precursor protein (APP) a transmembrane protein that penetrates the neuron's membrane. APP is critical to neuron growth, survival, and post-injury repair. In Alzheimer's disease, gamma secretase and beta secretase act together in a proteolytic process which causes APP to be divided into smaller fragments. One of these fragments gives rise to fibrils of amyloid beta, which then form clumps that deposit outside neurons in dense formations known as amyloid plaques.

Alzheimer's disease is also considered a tauopathy due to abnormal aggregation of the tau protein. Every neuron has a cytoskeleton, an internal support structure partly made up of structures called microtubules. These microtubules act like tracks, guiding nutrients and molecules from the body of the cell to the ends of the axon and back. A protein called tau stabilises the microtubules when phosphorylated, and is therefore called a microtubule-associated protein. In Alzheimer's disease, tau undergoes chemical changes, becoming hyperphosphorylated; it then begins to pair with other threads, creating neurofibrillary tangles and disintegrating the neuron's transport system. Pathogenic tau can also cause neuronal death through transposable element dysregulation.

Disease mechanism

Exactly how disturbances of production and aggregation of the beta-amyloid peptide give rise to the pathology of Alzheimer's disease is not known. The amyloid hypothesis traditionally points to the accumulation of beta-amyloid peptides as the central event triggering neuron degeneration. Accumulation of aggregated amyloid fibrils, which are believed to be the toxic form of the protein responsible for disrupting the cell's calcium ion homeostasis, induces programmed cell death (apoptosis). It is also known that Aβ selectively builds up in the mitochondria in the cells of Alzheimer's-affected brains, and it also inhibits certain enzyme functions and the utilisation of glucose by neurons.

Various inflammatory processes and cytokines may also have a role in the pathology of Alzheimer's disease. Inflammation is a general marker of tissue damage in any disease, and may be either secondary to tissue damage in Alzheimer's disease or a marker of an immunological response. There is increasing evidence of a strong interaction between the neurons and the immunological mechanisms in the brain. Obesity and systemic inflammation may interfere with immunological processes which promote disease progression.

Alterations in the distribution of different neurotrophic factors and in the expression of their receptors such as the brain-derived neurotrophic factor (BDNF) have been described in Alzheimer's disease.

Diagnosis

PET scan of the brain of a person with Alzheimer's disease showing a loss of function in the temporal lobe

Alzheimer's disease is usually diagnosed based on the person's medical history, history from relatives, and behavioral observations. The presence of characteristic neurological and neuropsychological features and the absence of alternative conditions is supportive. Advanced medical imaging with computed tomography (CT) or magnetic resonance imaging (MRI), and with single-photon emission computed tomography (SPECT) or positron emission tomography (PET) can be used to help exclude other cerebral pathology or subtypes of dementia. Moreover, it may predict conversion from prodromal stages (mild cognitive impairment) to Alzheimer's disease. Approved radiopharmaceutical diagnostic agents used in PET for patients with Alzheimer's disease: florbetapir (2012), flutemetamol (2013), florbetaben (2014), flortaucipir (2020).

Assessment of intellectual functioning including memory testing can further characterise the state of the disease. Medical organizations have created diagnostic criteria to ease and standardise the diagnostic process for practising physicians. The diagnosis can be confirmed with very high accuracy post-mortem when brain material is available and can be examined histologically.

Criteria

The National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer's Disease and Related Disorders Association (ADRDA, now known as the Alzheimer's Association) established the most commonly used NINCDS-ADRDA Alzheimer's Criteria for diagnosis in 1984, extensively updated in 2007. These criteria require that the presence of cognitive impairment, and a suspected dementia syndrome, be confirmed by neuropsychological testing for a clinical diagnosis of possible or probable Alzheimer's disease. A histopathologic confirmation including a microscopic examination of brain tissue is required for a definitive diagnosis. Good statistical reliability and validity have been shown between the diagnostic criteria and definitive histopathological confirmation. Eight intellectual domains are most commonly impaired in AD—memory, language, perceptual skills, attention, motor skills, orientation, problem solving and executive functional abilities. These domains are equivalent to the NINCDS-ADRDA Alzheimer's Criteria as listed in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) published by the American Psychiatric Association.

Techniques

Cognitive tests such as the Mini–Mental State Examination (MMSE) can help in the diagnosis of Alzheimer's disease. In this test instructions are given to copy drawings like the one shown, remember some words, read, and subtract numbers serially.

Neuropsychological tests including cognitive tests such as the Mini–Mental State Examination (MMSE) are widely used to evaluate the cognitive impairments needed for diagnosis. More comprehensive test arrays are necessary for high reliability of results, particularly in the earliest stages of the disease. Neurological examination in early Alzheimer's disease will usually provide normal results, except for obvious cognitive impairment, which may not differ from that resulting from other diseases processes, including other causes of dementia.

Further neurological examinations are crucial in the differential diagnosis of Alzheimer's disease and other diseases. Interviews with family members are also utilised in the assessment of the disease. Caregivers can supply important information on the daily living abilities, as well as on the decrease, over time, of the person's mental function. A caregiver's viewpoint is particularly important, since a person with Alzheimer's disease is commonly unaware of their deficits. Many times, families also have difficulties in the detection of initial dementia symptoms and may not communicate accurate information to a physician.

Supplemental testing provides extra information on some features of the disease or is used to rule out other diagnoses. Blood tests can identify other causes for dementia than AD—causes which may, in rare cases, be reversible. It is common to perform thyroid function tests, assess B12, rule out syphilis, rule out metabolic problems (including tests for kidney function, electrolyte levels and for diabetes), assess levels of heavy metals (e.g., lead, mercury) and anaemia. (It is also necessary to rule out delirium).

Psychological tests for depression are employed, since depression can either be concurrent with Alzheimer's disease, an early sign of cognitive impairment, or even the cause.

Due to low accuracy, the C-PIB-PET scan is not recommended to be used as an early diagnostic tool or for predicting the development of Alzheimer's disease when people show signs of mild cognitive impairment (MCI). The use of 18F-FDG PET scans, as a single test, to identify people who may develop Alzheimer's disease is also not supported by evidence.

Prevention

Intellectual activities such as playing chess or regular social interaction have been linked to a reduced risk of Alzheimer's disease in epidemiological studies, although no causal relationship has been found.

There is no evidence that supports any particular measure as being effective in preventing Alzheimer's disease. Global studies of measures to prevent or delay the onset of Alzheimer's disease have often produced inconsistent results. Epidemiological studies have proposed relationships between certain modifiable factors, such as diet, cardiovascular risk, pharmaceutical products, or intellectual activities, among others, and a population's likelihood of developing Alzheimer's disease. Only further research, including clinical trials, will reveal whether these factors can help to prevent Alzheimer's disease.

Medication

Cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes, and smoking, are associated with a higher risk of onset and worsened course of Alzheimer's disease. Blood pressure medications may decrease the risk. A review found that the use of statins, which lower cholesterol may be of benefit in Alzheimer's and other dementias but not in vascular dementia.

Long-term usage of non-steroidal anti-inflammatory drugs (NSAIDs) were thought in 2007 to be associated with a reduced likelihood of developing Alzheimer's disease. Evidence also suggested the notion that NSAIDs could reduce inflammation related to amyloid plaques, but trials were suspended due to high adverse events. No prevention trial has been completed. They do not appear to be useful as a treatment, but as of 2011 were thought to be candidates as presymptomatic preventives. Hormone replacement therapy in menopause, although previously used, may increase risk of dementia.

Lifestyle

Evidence suggests that higher education and occupational attainment, and participation in leisure activities show a reduced risk of developing Alzheimer's, or of delaying the onset of symptoms. This is compatible with the cognitive reserve theory, which states that some life experiences result in more efficient neural functioning providing the individual a cognitive reserve that delays the onset of dementia manifestations. Education delays the onset of Alzheimer's disease syndrome without changing the duration of the disease. Learning a second language even later in life seems to delay the onset of Alzheimer's disease.

Physical exercise is associated with decreased rate of dementia. Physical exercise is also effective in reducing symptom severity in those with Alzheimer's disease.

Diet

Diet is seen to be a modifiable risk factor for the development of dementia. The Mediterranean diet, and the DASH diet are both associated with less cognitive decline. A different approach has been to incorporate elements of both of these diets into one known as the MIND diet. These diets are generally low in saturated fats while providing a good source of carbohydrates, mainly those that help stabilize blood sugar and insulin levels. Those who eat a diet high in saturated fats and simple carbohydrates (mono- and disaccharide) have a higher risk.

Raised blood sugar levels over a long time, can damage nerves and cause memory problems if they are not managed. Nutritional factors associated with the proposed diets for reducing dementia risk, include unsaturated fatty acids, antioxidants vitamin E, vitamin C, and flavonoids, vitamin B, and vitamin D. The MIND diet may be more protective but further studies are needed. The Mediterranean diet seems to be more protective against Alzheimer's than DASH but there are no consistent findings against dementia in general. The role of olive oil needs further study as it may be one of the most important components in reducing the risk of cognitive decline and dementia.

In those with celiac disease or non-celiac gluten sensitivity, a strict gluten-free diet may relieve the symptoms given a mild cognitive impairment. Once dementia is advanced no evidence suggests that a gluten free diet is useful Conclusions on dietary components have been difficult to ascertain as results have differed between population-based studies and randomised controlled trials. There is limited evidence that light to moderate use of alcohol, particularly red wine, is associated with lower risk of Alzheimer's disease. There is tentative evidence that caffeine may be protective. A number of foods high in flavonoids such as cocoa, red wine, and tea may decrease the risk of Alzheimer's disease. A number of studies have looked at the possible role of minerals such as selenium, zinc, and copper. Omega 3 fatty acid supplements from plants and fish, and dietary docosahexaenoic acid (DHA), do not appear to benefit people with mild to moderate Alzheimer's disease.

Curcumin as of 2010 had not shown benefit in people even though there is tentative evidence in animals. There is growing evidence (2020) for the neuroprotection offered by the use of cannabinoids in Alzheimer's and other neurodegenerative disorders. However, further population studies are recommended to see this use beyond experimental.

Management

There is no cure for Alzheimer's disease; available treatments offer relatively small symptomatic benefits but remain palliative in nature. Current treatments can be divided into pharmaceutical, psychosocial, and caregiving.

Medications

Three-dimensional molecular model of donepezil, an acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease symptoms
Molecular structure of memantine, a medication approved for advanced Alzheimer's disease symptoms

Medications used to treat the cognitive problems of Alzheimer's disease include: four acetylcholinesterase inhibitors (tacrine, rivastigmine, galantamine, and donepezil) and memantine, an NMDA receptor antagonist. The benefit from their use is small.

Reduction in the activity of the cholinergic neurons is a well-known feature of Alzheimer's disease. Acetylcholinesterase inhibitors are employed to reduce the rate at which acetylcholine (ACh) is broken down, thereby increasing the concentration of ACh in the brain and combating the loss of ACh caused by the death of cholinergic neurons. There is evidence for the efficacy of these medications in mild to moderate Alzheimer's disease, some evidence for their use in the advanced stage. The use of these drugs in mild cognitive impairment has not shown any effect in a delay of the onset of Alzheimer's disease. The most common side effects are nausea and vomiting, both of which are linked to cholinergic excess. These side effects arise in approximately 10–20% of users, are mild to moderate in severity, and can be managed by slowly adjusting medication doses. Less common secondary effects include muscle cramps, decreased heart rate (bradycardia), decreased appetite and weight, and increased gastric acid production.

Glutamate is an excitatory neurotransmitter of the nervous system, although excessive amounts in the brain can lead to cell death through a process called excitotoxicity which consists of the overstimulation of glutamate receptors. Excitotoxicity occurs not only in Alzheimer's disease, but also in other neurological diseases such as Parkinson's disease and multiple sclerosis. Memantine is a noncompetitive NMDA receptor antagonist first used as an anti-influenza agent. It acts on the glutamatergic system by blocking NMDA receptors and inhibiting their overstimulation by glutamate. Memantine has been shown to have a small benefit in the treatment of moderate to severe Alzheimer's disease. Reported adverse events with memantine are infrequent and mild, including hallucinations, confusion, dizziness, headache and fatigue. The combination of memantine and donepezil has been shown to be "of statistically significant but clinically marginal effectiveness".

An extract of Ginkgo biloba known as EGb 761 has been widely used for treating Alzheimer's and other neuropsychiatric disorders. Its use is approved throughout Europe. The World Federation of Biological Psychiatry guidelines lists EGb 761 with the same weight of evidence (level B) given to acetylcholinesterase inhibitors, and memantine. EGb 761 is the only one that showed improvement of symptoms in both Alzheimer's disease and vascular dementia. EGb 761 is seen as being able to play an important role either on its own or as an add-on particularly when other therapies prove ineffective. EGb 761 is seen to be neuroprotective; it is a free radical scavenger, improves mitochondrial function, and modulates serotonin and dopamine levels. Many studies of its use in mild to moderate dementia have shown it to significantly improve cognitive function, activities of daily living, and neuropsychiatric symptoms. However, its use has not been shown to prevent the progression to dementia.

Atypical antipsychotics are modestly useful in reducing aggression and psychosis in people with Alzheimer's disease, but their advantages are offset by serious adverse effects, such as stroke, movement difficulties or cognitive decline. When used in the long-term, they have been shown to associate with increased mortality. Stopping antipsychotic use in this group of people appears to be safe.

Psychosocial intervention

Psychosocial interventions are used as an adjunct to pharmaceutical treatment and can be classified within behavior-, emotion-, cognition- or stimulation-oriented approaches. Research on efficacy is unavailable and rarely specific to Alzheimer's disease, focusing instead on dementia in general.

Behavioral interventions attempt to identify and reduce the antecedents and consequences of problem behaviors. This approach has not shown success in improving overall functioning, but can help to reduce some specific problem behaviors, such as incontinence. There is a lack of high quality data on the effectiveness of these techniques in other behavior problems such as wandering. Music therapy is effective in reducing behavioral and psychological symptoms.

Emotion-oriented interventions include reminiscence therapy, validation therapy, supportive psychotherapy, sensory integration, also called snoezelen, and simulated presence therapy. A Cochrane review has found no evidence that this is effective. Supportive psychotherapy has received little or no formal scientific study, but some clinicians find it useful in helping mildly impaired people adjust to their illness. Reminiscence therapy (RT) involves the discussion of past experiences individually or in group, many times with the aid of photographs, household items, music and sound recordings, or other familiar items from the past. A 2018 review of the effectiveness of RT found that effects were inconsistent, small in size and of doubtful clinical significance, and varied by setting. Simulated presence therapy (SPT) is based on attachment theories and involves playing a recording with voices of the closest relatives of the person with Alzheimer's disease. There is partial evidence indicating that SPT may reduce challenging behaviors. Finally, validation therapy is based on acceptance of the reality and personal truth of another's experience, while sensory integration is based on exercises aimed to stimulate senses. There is no evidence to support the usefulness of these therapies.

The aim of cognition-oriented treatments, which include reality orientation and cognitive retraining, is the reduction of cognitive deficits. Reality orientation consists of the presentation of information about time, place, or person to ease the understanding of the person about its surroundings and his or her place in them. On the other hand, cognitive retraining tries to improve impaired capacities by exercising mental abilities. Both have shown some efficacy improving cognitive capacities, although in some studies these effects were transient and negative effects, such as frustration, have also been reported.

Stimulation-oriented treatments include art, music and pet therapies, exercise, and any other kind of recreational activities. Stimulation has modest support for improving behavior, mood, and, to a lesser extent, function. Nevertheless, as important as these effects are, the main support for the use of stimulation therapies is the change in the person's routine.

Caregiving

Since Alzheimer's has no cure and it gradually renders people incapable of tending to their own needs, caregiving is essentially the treatment and must be carefully managed over the course of the disease.

During the early and moderate stages, modifications to the living environment and lifestyle can increase patient safety and reduce caretaker burden. Examples of such modifications are the adherence to simplified routines, the placing of safety locks, the labeling of household items to cue the person with the disease or the use of modified daily life objects. If eating becomes problematic, food will need to be prepared in smaller pieces or even puréed. When swallowing difficulties arise, the use of feeding tubes may be required. In such cases, the medical efficacy and ethics of continuing feeding is an important consideration of the caregivers and family members. The use of physical restraints is rarely indicated in any stage of the disease, although there are situations when they are necessary to prevent harm to the person with Alzheimer's disease or their caregivers.

As the disease progresses, different medical issues can appear, such as oral and dental disease, pressure ulcers, malnutrition, hygiene problems, or respiratory, skin, or eye infections. Careful management can prevent them, while professional treatment is needed when they do arise. During the final stages of the disease, treatment is centred on relieving discomfort until death, often with the help of hospice.

Prognosis

Disability-adjusted life year for Alzheimer and other dementias per 100,000 inhabitants in 2004.
  No data
  ≤ 50
  50–70
  70–90
  90–110
  110–130
  130–150
  150–170
  170–190
  190–210
  210–230
  230–250
  ≥ 250

The early stages of Alzheimer's disease are difficult to diagnose. A definitive diagnosis is usually made once cognitive impairment compromises daily living activities, although the person may still be living independently. The symptoms will progress from mild cognitive problems, such as memory loss through increasing stages of cognitive and non-cognitive disturbances, eliminating any possibility of independent living, especially in the late stages of the disease.

Life expectancy of people with Alzheimer's disease is reduced. The normal life expectancy for 60 to 70 years old is 23 to 15 years; for 90 years old it is 4.5 years. Following Alzheimer's disease diagnosis it ranges from 7 to 10 years for those in their 60s and early 70s (a loss of 13 to 8 years), to only about 3 years or less (a loss of 1.5 years) for those in their 90s. It is about 50% life expectancy with Alzheimer's disease.

Fewer than 3% of people live more than fourteen years. Disease features significantly associated with reduced survival are an increased severity of cognitive impairment, decreased functional level, history of falls, and disturbances in the neurological examination. Other coincident diseases such as heart problems, diabetes or history of alcohol abuse are also related with shortened survival. While the earlier the age at onset the higher the total survival years, life expectancy is particularly reduced when compared to the healthy population among those who are younger. Men have a less favourable survival prognosis than women.

Pneumonia and dehydration are the most frequent immediate causes of death brought by Alzheimer's disease, while cancer is a less frequent cause of death than in the general population.

Epidemiology

Two main measures are used in epidemiological studies: incidence and prevalence. Incidence is the number of new cases per unit of person-time at risk (usually number of new cases per thousand person-years); while prevalence is the total number of cases of the disease in the population at any given time.

Deaths per million persons in 2012 due to dementias including Alzheimer's disease
  0–4
  5–8
  9–10
  11–13
  14–17
  18–24
  25–45
  46–114
  115–375
  376–1266

Regarding incidence, cohort longitudinal studies (studies where a disease-free population is followed over the years) provide rates between 10 and 15 per thousand person-years for all dementias and 5–8 for Alzheimer's disease, which means that half of new dementia cases each year are Alzheimer's disease. Advancing age is a primary risk factor for the disease and incidence rates are not equal for all ages: every five years after the age of 65, the risk of acquiring the disease approximately doubles, increasing from 3 to as much as 69 per thousand person years. There are also sex differences in the incidence rates, women having a higher risk of developing Alzheimer's disease particularly in the population older than 85. In the United States, the risk of dying from Alzheimer's disease is 26% higher among the non-Hispanic white population than among the non-Hispanic black population, whereas the Hispanic population has a 30% lower risk than the non-Hispanic white population.

The prevalence of Alzheimer's disease in populations is dependent upon different factors including incidence and survival. Since the incidence of Alzheimer's disease increases with age, it is particularly important to include the mean age of the population of interest. In the United States, Alzheimer's prevalence was estimated to be 1.6% in 2000 both overall and in the 65–74 age group, with the rate increasing to 19% in the 75–84 group and to 42% in the greater than 84 groups. Prevalence rates in less developed regions are lower. The World Health Organization estimated that in 2005, 0.379% of people worldwide had dementia, and that the prevalence would increase to 0.441% in 2015 and to 0.556% in 2030. Other studies have reached similar conclusions. Another study estimated that in 2006, 0.40% of the world population (range 0.17–0.89%; absolute number 26.6 million, range 11.4–59.4 million) were afflicted by Alzheimer's disease, and that the prevalence rate would triple and the absolute number would quadruple by 2050.

History

Alois Alzheimer's patient Auguste Deter in 1902. Hers was the first described case of what became known as Alzheimer's disease.

The ancient Greek and Roman philosophers and physicians associated old age with increasing dementia. It was not until 1901 that German psychiatrist Alois Alzheimer identified the first case of what became known as Alzheimer's disease, named after him, in a fifty-year-old woman he called Auguste D. He followed her case until she died in 1906 when he first reported publicly on it. During the next five years, eleven similar cases were reported in the medical literature, some of them already using the term Alzheimer's disease. The disease was first described as a distinctive disease by Emil Kraepelin after suppressing some of the clinical (delusions and hallucinations) and pathological features (arteriosclerotic changes) contained in the original report of Auguste D. He included Alzheimer's disease, also named presenile dementia by Kraepelin, as a subtype of senile dementia in the eighth edition of his Textbook of Psychiatry, published on 15 July, 1910.

For most of the 20th century, the diagnosis of Alzheimer's disease was reserved for individuals between the ages of 45 and 65 who developed symptoms of dementia. The terminology changed after 1977 when a conference on Alzheimer's disease concluded that the clinical and pathological manifestations of presenile and senile dementia were almost identical, although the authors also added that this did not rule out the possibility that they had different causes. This eventually led to the diagnosis of Alzheimer's disease independent of age. The term senile dementia of the Alzheimer type (SDAT) was used for a time to describe the condition in those over 65, with classical Alzheimer's disease being used to describe those who were younger. Eventually, the term Alzheimer's disease was formally adopted in medical nomenclature to describe individuals of all ages with a characteristic common symptom pattern, disease course, and neuropathology.

Society and culture

Social costs

Dementia, and specifically Alzheimer's disease, may be among the most costly diseases for society in Europe and the United States, while their costs in other countries such as Argentina, and South Korea, are also high and rising. These costs will probably increase with the aging of society, becoming an important social problem. AD-associated costs include direct medical costs such as nursing home care, direct nonmedical costs such as in-home day care, and indirect costs such as lost productivity of both patient and caregiver. Numbers vary between studies but dementia costs worldwide have been calculated around $160 billion, while costs of Alzheimer's disease in the United States may be $100 billion each year.

The greatest origin of costs for society is the long-term care by health care professionals and particularly institutionalisation, which corresponds to 2/3 of the total costs for society. The cost of living at home is also very high, especially when informal costs for the family, such as caregiving time and caregiver's lost earnings, are taken into account.

Costs increase with dementia severity and the presence of behavioral disturbances, and are related to the increased caregiving time required for the provision of physical care. Therefore, any treatment that slows cognitive decline, delays institutionalisation or reduces caregivers' hours will have economic benefits. Economic evaluations of current treatments have shown positive results.

Caregiving burden

The role of the main caregiver is often taken by the spouse or a close relative. Alzheimer's disease is known for placing a great burden on caregivers which includes social, psychological, physical or economic aspects. Home care is usually preferred by people with Alzheimer's disease and their families. This option also delays or eliminates the need for more professional and costly levels of care. Nevertheless, two-thirds of nursing home residents have dementias.

Dementia caregivers are subject to high rates of physical and mental disorders. Factors associated with greater psychosocial problems of the primary caregivers include having an affected person at home, the carer being a spouse, demanding behaviors of the cared person such as depression, behavioral disturbances, hallucinations, sleep problems or walking disruptions and social isolation. Regarding economic problems, family caregivers often give up time from work to spend 47 hours per week on average with the person with Alzheimer's disease, while the costs of caring for them are high. Direct and indirect costs of caring for somebody with Alzheimer's average between $18,000 and $77,500 per year in the United States, depending on the study.

Cognitive behavioral therapy and the teaching of coping strategies either individually or in group have demonstrated their efficacy in improving caregivers' psychological health.

Media

Alzheimer's disease has been portrayed in films such as: Iris (2001), based on John Bayley's memoir of his wife Iris Murdoch; The Notebook (2004), based on Nicholas Sparks' 1996 novel of the same name; A Moment to Remember (2004); Thanmathra (2005); Memories of Tomorrow (Ashita no Kioku) (2006), based on Hiroshi Ogiwara's novel of the same name; Away from Her (2006), based on Alice Munro's short story "The Bear Came over the Mountain"; Still Alice (2014), about a Columbia University professor who has early onset Alzheimer's disease, based on Lisa Genova's 2007 novel of the same name and featuring Julianne Moore in the title role. Documentaries on Alzheimer's disease include Malcolm and Barbara: A Love Story (1999) and Malcolm and Barbara: Love's Farewell (2007), both featuring Malcolm Pointon. It has also been portrayed in music by English musician the Caretaker in releases such as Persistent Repetition of Phrases (2008), An Empty Bliss Beyond This World (2011), and Everywhere at the End of Time (2016–2019). Paintings depicting the disorder include the late works by American artist William Utermohlen, who drew self-portraits from 1995 to 2000 as an experiment of showing his disease through art.

Research directions

Treatment and prevention

In the decade 2002–2012, 244 compounds were assessed in Phase I, Phase II, or Phase III trials, and only one of these (memantine) received FDA approval (though others were still in the pipeline). Solanezumab and aducanumab failed to show effectiveness in people who already had Alzheimer's symptoms.

In early 2017, a trial of verubecestat, which inhibits the beta-secretase protein responsible for creating beta-amyloid protein was discontinued as an independent panel found "virtually no chance of finding a positive clinical effect". In 2018 and 2019, more trials, including aducanumab which reduced amyloid beta concentrations, failed, leading some to question the validity of the amyloid hypothesis.

The senescence-accelerated mouse (SAMP8) is an Alzheimer's disease (AD) animal model in which amyloid precursor protein (APP) is overproduced. The mice develop early memory disturbances and alterations in the blood-brain barrier, which causes a decreased expulsion of amyloid-β protein from the brain. It has a marked increase in oxidative stress in the brain. Medications that reduce oxidative stress have been shown to improve memory. Treatments that reduce amyloid-β (antisense to APP and antibodies to amyloid-β) not only improve memory but also reduce oxidative stress. It has been shown that the initial deviations in lipid peroxidative damage favor mitochondrial dysfunction as being a trigger for amyloid-β overproduction in this Alzheimer's disease mouse strain. This process begets increased amyloid-beta, which further damages mitochondria.

Research on the effects of meditation on preserving memory and cognitive functions is at an early stage. A 2015 review suggests that mindfulness-based interventions may prevent or delay the onset of mild cognitive impairment and Alzheimer's disease.

The ketogenic diet is a very high-fat, adequate-protein, low-carbohydrate diet that is used to treat refractory epilepsy in children. Designed to mimic some of the effects of fasting, following a ketogenic diet leads to elevated blood levels of molecules called ketone bodies: a metabolic state known as ketosis. These ketone bodies have a neuroprotective effect on aging brain cells, though it is not fully understood why. Limited research in the form of preclinical trials (mice and rats), and small-scale clinical (human) trials, have explored its potential as a therapy for neurodegenerative disorders like Alzheimer's disease.

Infections

The herpes simplex virus HSV-1 has been found in the same areas as amyloid plaques. This suggested the possibility that Alzheimer's disease could be treated or prevented with antiviral medication. Studies of antivirals in cell cultures have shown promising results. A 2021 study of 265,172 subjects in Sweden over a 12-year period found that patients with herpes diagnoses not treated with antiviral drugs had a 50% increased risk of dementia over controls, but treatment with antiviral drugs reduced the incidence by 25%.

Fungal infection of Alzheimer's disease brain has also been described. This hypothesis was proposed by the microbiologist L. Carrasco when his group found statistical correlation between disseminated mycoses and Alzheimer's disease. Further work revealed that fungal infection is present in different brain regions of Alzheimer's disease patients, but not in the control individuals. A fungal infection explains the symptoms observed in Alzheimer's disease patients. The slow progression of Alzheimer's disease fits with the chronic nature of some systemic fungal infections, which can be asymptomatic and thus, unnoticed and untreated. The fungal hypotheses are also compatible with some other established Alzheimer's disease hypotheses, like the amyloid hypothesis, that can be explained as an immune system response to an infection in the CNS, as found by R. Moir and R. Tanzi in mouse and worm models of Alzheimer's disease.

Diagnosis

Emphasis in Alzheimer's research has been placed on diagnosing the condition before symptoms begin. A number of biochemical tests have been developed to enable earlier detection. Some such tests involve the analysis of cerebrospinal fluid for beta-amyloid, total tau protein and phosphorylated tau181P protein concentrations. Because drawing CSF can be painful, repeated draws are avoided. A blood test for circulatory miRNA and inflammatory biomarkers is a potential alternative indicator.

A series of studies suggest that aging-related breakdown of the blood–brain barrier may be causative of Alzheimer's disease, and conclude that markers for that damage may be an early predictor of the disease.

 

Information asymmetry

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inf...