Search This Blog

Friday, August 5, 2022

History of geodesy

From Wikipedia, the free encyclopedia
 
The history of geodesy deals with the historical development of measurements and representations of the Earth. The corresponding scientific discipline, geodesy (/dʒiːˈɒdɪsi/), began in pre-scientific antiquity and blossomed during the Age of Enlightenment.

Early ideas about the figure of the Earth held the Earth to be flat (see flat Earth), and the heavens a physical dome spanning over it. Two early arguments for a spherical Earth were that lunar eclipses were seen as circular shadows which could only be caused by a spherical Earth, and that Polaris is seen lower in the sky as one travels South.

Hellenic world

Initial development from a diversity of views

Though the earliest written mention of a spherical Earth comes from ancient Greek sources, there is no account of how the sphericity of Earth was discovered, or if it was initially simply a guess. A plausible explanation given by the historian Otto E. Neugebauer is that it was "the experience of travellers that suggested such an explanation for the variation in the observable altitude of the pole and the change in the area of circumpolar stars, a change that was quite drastic between Greek settlements" around the eastern Mediterranean Sea, particularly those between the Nile Delta and Crimea.

Another possible explanation can be traced back to earlier Phoenician sailors. The first circumnavigation of Africa is described as being undertaken by Phoenician explorers employed by Egyptian pharaoh Necho II c. 610–595 BC. In The Histories, written 431–425 BC, Herodotus cast doubt on a report of the Sun observed shining from the north. He stated that the phenomenon was observed by Phoenician explorers during their circumnavigation of Africa (The Histories, 4.42) who claimed to have had the Sun on their right when circumnavigating in a clockwise direction. To modern historians, these details confirm the truth of the Phoenicians' report. The historian Dmitri Panchenko hypothesizes that it was the Phoenician circumnavigation of Africa that inspired the theory of a spherical Earth, the earliest mention of which was made by the philosopher Parmenides in the 5th century BC. However, nothing certain about their knowledge of geography and navigation has survived; therefore, later researchers have no evidence that they conceived of Earth as spherical.

Speculation and theorizing ranged from the flat disc advocated by Homer to the spherical body reportedly postulated by Pythagoras. Anaximenes, an early Greek philosopher, believed strongly that the Earth was rectangular in shape. Some early Greek philosophers alluded to a spherical Earth, though with some ambiguity. Pythagoras (6th century BC) was among those said to have originated the idea, but this might reflect the ancient Greek practice of ascribing every discovery to one or another of their ancient wise men. Pythagoras was a mathematician, and he supposedly reasoned that the gods would create a perfect figure which to him was a sphere. Some idea of the sphericity of Earth seems to have been known to both Parmenides and Empedocles in the 5th century BC, and although the idea cannot reliably be ascribed to Pythagoras, it might nevertheless have been formulated in the Pythagorean school in the 5th century BC although some disagree. After the 5th century BC, no Greek writer of repute thought the world was anything but round. The Pythagorean idea was supported later by Aristotle. Efforts commenced to determine the size of the sphere.

Plato

Plato (427–347 BC) travelled to southern Italy to study Pythagorean mathematics. When he returned to Athens and established his school, Plato also taught his students that Earth was a sphere, though he offered no justifications. "My conviction is that the Earth is a round body in the centre of the heavens, and therefore has no need of air or of any similar force to be a support." If man could soar high above the clouds, Earth would resemble "one of those balls which have leather coverings in twelve pieces, and is decked with various colours, of which the colours used by painters on Earth are in a manner samples." In Timaeus, his one work that was available throughout the Middle Ages in Latin, he wrote that the Creator "made the world in the form of a globe, round as from a lathe, having its extremes in every direction equidistant from the centre, the most perfect and the most like itself of all figures", though the word "world" here refers to the heavens.

Aristotle

Round Earth umbra during the August 2008 lunar eclipse

Aristotle (384–322 BC) was Plato's prize student and "the mind of the school". Aristotle observed "there are stars seen in Egypt and [...] Cyprus which are not seen in the northerly regions". Since this could only happen on a curved surface, he too believed Earth was a sphere "of no great size, for otherwise the effect of so slight a change of place would not be quickly apparent".

Aristotle reported that mathematicians had calculated the circumference of the Earth (which is actually slightly over 40,000 km) to be 400,000 stadia (between 62,800 and 74,000 km or 46,250 and 39,250 mi).

Aristotle provided physical and observational arguments supporting the idea of a spherical Earth:

  • Every portion of Earth tends toward the centre until by compression and convergence they form a sphere.
  • Travelers going south see southern constellations rise higher above the horizon.
  • The shadow of Earth on the Moon during a lunar eclipse is round. 

The concepts of symmetry, equilibrium and cyclic repetition permeated Aristotle's work. In his Meteorology he divided the world into five climatic zones: two temperate areas separated by a torrid zone near the equator, and two cold inhospitable regions, "one near our upper or northern pole and the other near the [...] southern pole", both impenetrable and girdled with ice. Although no humans could survive in the frigid zones, inhabitants in the southern temperate regions could exist.

Aristotle's theory of natural place relied on a spherical Earth to explain why heavy things go down (toward what Aristotle believed was the center of the Universe), and things like air and fire go up. In this geocentric model, the structure of the universe was believed to be a series of perfect spheres. The Sun, Moon, planets and fixed stars were believed to move on celestial spheres around a stationary Earth.

Though Aristotle's theory of physics survived in the Christian world for many centuries, the heliocentric model was eventually shown to be a more correct explanation of the Solar System than the geocentric model, and atomic theory was shown to be a more correct explanation of the nature of matter than classical elements like earth, water, air, fire, and aether.

Archimedes

Archimedes gave an upper bound for the circumference of the Earth of 3,000,000 stadia (483,000 km or 300,000 mi) using the Hellenic stadion which scholars generally take to be 185 meters or 19 of a geographical mile.

In proposition 2 of the First Book of his treatise "On floating bodies", Archimedes demonstrates that "The surface of any fluid at rest is the surface of a sphere whose centre is the same as that of the Earth". Subsequently, in propositions 8 and 9 of the same work, he assumes the result of proposition 2 that Earth is a sphere and that the surface of a fluid on it is a sphere centered on the center of Earth.

Eratosthenes

Eratosthenes (276–194 BC), a Hellenistic astronomer from what is now Cyrene, Libya working in Alexandria, Egypt, estimated Earth's circumference around 240 BC, computing a value of 252,000 stades. The length that Eratosthenes intended for a "stade" is not known, but his figure only has an error of around one to fifteen percent. Assuming a value for the stadion between 155 and 160 metres, the error is between −2.4% and +0.8%. Eratosthenes described his technique in a book entitled On the measure of the Earth, which has not been preserved. Eratosthenes could only measure the circumference of Earth by assuming that the distance to the Sun is so great that the rays of sunlight are practically parallel.

 

Measure of Earth's circumference according to Cleomedes' simplified version, based on the wrong assumption that Syene is on the Tropic of Cancer and on the same meridian as Alexandria

Eratosthenes' method to calculate the Earth's circumference has been lost; what has been preserved is the simplified version described by Cleomedes to popularise the discovery. Cleomedes invites his reader to consider two Egyptian cities, Alexandria and Syene, modern Assuan:

  1. Cleomedes assumes that the distance between Syene and Alexandria was 5,000 stadia (a figure that was checked yearly by professional bematists, mensores regii);
  2. he assumes the simplified (but false) hypothesis that Syene was precisely on the Tropic of Cancer, saying that at local noon on the summer solstice the Sun was directly overhead;
  3. he assumes the simplified (but false) hypothesis that Syene and Alexandria are on the same meridian.

Under the previous assumptions, says Cleomedes, you can measure the Sun's angle of elevation at noon of the summer solstice in Alexandria, by using a vertical rod (a gnomon) of known length and measuring the length of its shadow on the ground; it is then possible to calculate the angle of the Sun's rays, which he claims to be about 7°, or 1/50th the circumference of a circle. Taking the Earth as spherical, the Earth's circumference would be fifty times the distance between Alexandria and Syene, that is 250,000 stadia. Since 1 Egyptian stadium is equal to 157.5 metres, the result is 39,375 km, which is 1.4% less than the real number, 39,941 km.

Eratosthenes' method was actually more complicated, as stated by the same Cleomedes, whose purpose was to present a simplified version of the one described in Eratosthenes' book. The method was based on several surveying trips conducted by professional bematists, whose job was to precisely measure the extent of the territory of Egypt for agricultural and taxation-related purposes. Furthermore, the fact that Eratosthenes' measure corresponds precisely to 252,000 stadia might be intentional, since it is a number that can be divided by all natural numbers from 1 to 10: some historians believe that Eratosthenes changed from the 250,000 value written by Cleomedes to this new value to simplify calculations; other historians of science, on the other side, believe that Eratosthenes introduced a new length unit based on the length of the meridian, as stated by Pliny, who writes about the stadion "according to Eratosthenes' ratio".

1,700 years after Eratosthenes, Christopher Columbus studied Eratosthenes's findings before sailing west for the Indies. However, ultimately he rejected Eratosthenes in favour of other maps and arguments that interpreted Earth's circumference to be a third smaller than it really is. If, instead, Columbus had accepted Eratosthenes' findings, he may have never gone west, since he did not have the supplies or funding needed for the much longer eight-thousand-plus mile voyage.

Seleucus of Seleucia

Seleucus of Seleucia (c. 190 BC), who lived in the city of Seleucia in Mesopotamia, wrote that Earth is spherical (and actually orbits the Sun, influenced by the heliocentric theory of Aristarchus of Samos).

Posidonius

A parallel later ancient measurement of the size of the Earth was made by another Greek scholar, Posidonius (c. 135 – 51 BC), using a similar method as Eratosthenes. Instead of observing the sun, he noted that the star Canopus was hidden from view in most parts of Greece but that it just grazed the horizon at Rhodes. Posidonius is supposed to have measured the angular elevation of Canopus at Alexandria and determined that the angle was 1/48 of a circle. He used a distance from Alexandria to Rhodes, 5000 stadia, and so he computed the Earth's circumference in stadia as 48 × 5000 = 240,000. Some scholars see these results as luckily semi-accurate due to cancellation of errors. But since the Canopus observations are both mistaken by over a degree, the "experiment" may be not much more than a recycling of Eratosthenes's numbers, while altering 1/50 to the correct 1/48 of a circle. Later, either he or a follower appears to have altered the base distance to agree with Eratosthenes's Alexandria-to-Rhodes figure of 3750 stadia, since Posidonius' final circumference was 180,000 stadia, which equals 48 × 3750 stadia. The 180,000 stadia circumference of Posidonius is suspiciously close to that which results from another method of measuring the Earth, by timing ocean sunsets from different heights, a method which is inaccurate due to horizontal atmospheric refraction. Posidonius furthermore expressed the distance of the Sun in Earth radii.

The above-mentioned larger and smaller sizes of the Earth were those used by later Roman author Claudius Ptolemy at different times: 252,000 stadia in his Almagest and 180,000 stadia in his later Geographia. His mid-career conversion resulted in the latter work's systematic exaggeration of degree longitudes in the Mediterranean by a factor close to the ratio of the two seriously differing sizes discussed here, which indicates that the conventional size of the Earth was what changed, not the stadion.

Ancient India

While the textual evidence has not survived, the precision of the constants used in pre-Greek Vedanga models, and the model's accuracy in predicting the Moon and Sun's motion for Vedic rituals, probably came from direct astronomical observations. The cosmographic theories and assumptions in ancient India likely developed independently and in parallel, but these were influenced by some unknown quantitative Greek astronomy text in the medieval era.

Greek ethnographer Megasthenes, c. 300 BC, has been interpreted as stating that the contemporary Brahmans believed in a spherical Earth as the center of the universe. With the spread of Hellenistic culture in the east, Hellenistic astronomy filtered eastwards to ancient India where its profound influence became apparent in the early centuries AD. The Greek concept of an Earth surrounded by the spheres of the planets and that of the fixed stars, vehemently supported by astronomers like Varāhamihira and Brahmagupta, strengthened the astronomical principles. Some ideas were found possible to preserve, although in altered form.

The Indian astronomer and mathematician Aryabhata (476–550 CE) was a pioneer of mathematical astronomy on the subcontinent. He describes the Earth as being spherical and says that it rotates on its axis, among other places in his Sanskrit magnum opus, Āryabhaṭīya. Aryabhatiya is divided into four sections: Gitika, Ganitha ("mathematics"), Kalakriya ("reckoning of time") and Gola ("celestial sphere"). The discovery that the Earth rotates on its own axis from west to east is described in Aryabhatiya (Gitika 3,6; Kalakriya 5; Gola 9,10). For example, he explained the apparent motion of heavenly bodies as only an illusion (Gola 9), with the following simile:

Just as a passenger in a boat moving downstream sees the stationary (trees on the river banks) as traversing upstream, so does an observer on earth see the fixed stars as moving towards the west at exactly the same speed (at which the earth moves from west to east.)

Aryabhatiya also estimates the circumference of the Earth. He gives this as 4967 yojanas and its diameter as 1581 124 yojanas. The length of a yojana varies considerably between sources; assuming a yojana to be 8 km (4.97097 miles) this gives a circumference of 39,736 kilometres (24,691 mi), close to the current equatorial value of 40,075 km (24,901 mi).

Roman Empire

The idea of a spherical Earth slowly spread across the globe, and ultimately became the adopted view in all major astronomical traditions.

In the West, the idea came to the Romans through the lengthy process of cross-fertilization with Hellenistic civilization. Many Roman authors such as Cicero and Pliny refer in their works to the rotundity of Earth as a matter of course. Pliny also considered the possibility of an imperfect sphere "shaped like a pinecone".

When a ship is at the horizon, its lower part is obscured by Earth's curvature. This was one of the first arguments favouring a round-Earth model.

Strabo

It has been suggested that seafarers probably provided the first observational evidence that Earth was not flat, based on observations of the horizon. This argument was put forward by the geographer Strabo (c. 64 BC – 24 AD), who suggested that the spherical shape of Earth was probably known to seafarers around the Mediterranean Sea since at least the time of Homer, citing a line from the Odyssey as indicating that the poet Homer knew of this as early as the 7th or 8th century BC. Strabo cited various phenomena observed at sea as suggesting that Earth was spherical. He observed that elevated lights or areas of land were visible to sailors at greater distances than those less elevated, and stated that the curvature of the sea was obviously responsible for this.

Claudius Ptolemy

A printed map from the 15th century depicting Ptolemy's description of the Ecumene, (1482, Johannes Schnitzer, engraver).

Claudius Ptolemy (90–168 AD) lived in Alexandria, the centre of scholarship in the 2nd century. In the Almagest, which remained the standard work of astronomy for 1,400 years, he advanced many arguments for the spherical nature of Earth. Among them was the observation that when a ship is sailing towards mountains, observers note these seem to rise from the sea, indicating that they were hidden by the curved surface of the sea. He also gives separate arguments that Earth is curved north-south and that it is curved east-west.

He compiled an eight-volume Geographia covering what was known about Earth. The first part of the Geographia is a discussion of the data and of the methods he used. As with the model of the Solar System in the Almagest, Ptolemy put all this information into a grand scheme. He assigned coordinates to all the places and geographic features he knew, in a grid that spanned the globe (although most of this has been lost). Latitude was measured from the equator, as it is today, but Ptolemy preferred to express it as the length of the longest day rather than degrees of arc (the length of the midsummer day increases from 12h to 24h as you go from the equator to the polar circle). He put the meridian of 0 longitude at the most western land he knew, the Canary Islands.

Geographia indicated the countries of "Serica" and "Sinae" (China) at the extreme right, beyond the island of "Taprobane" (Sri Lanka, oversized) and the "Aurea Chersonesus" (Southeast Asian peninsula).

Ptolemy also devised and provided instructions on how to make maps both of the whole inhabited world (oikoumenè) and of the Roman provinces. In the second part of the Geographia, he provided the necessary topographic lists, and captions for the maps. His oikoumenè spanned 180 degrees of longitude from the Canary Islands in the Atlantic Ocean to China, and about 81 degrees of latitude from the Arctic to the East Indies and deep into Africa. Ptolemy was well aware that he knew about only a quarter of the globe.

Late Antiquity

Knowledge of the spherical shape of Earth was received in scholarship of Late Antiquity as a matter of course, in both Neoplatonism and Early Christianity. Calcidius's fourth-century Latin commentary on and translation of Plato's Timaeus, which was one of the few examples of Greek scientific thought that was known in the Early Middle Ages in Western Europe, discussed Hipparchus's use of the geometrical circumstances of eclipses in On Sizes and Distances to compute the relative diameters of the Sun, Earth, and Moon.

Theological doubt informed by the flat Earth model implied in the Hebrew Bible inspired some early Christian scholars such as Lactantius, John Chrysostom and Athanasius of Alexandria, but this remained an eccentric current. Learned Christian authors such as Basil of Caesarea, Ambrose and Augustine of Hippo were clearly aware of the sphericity of Earth. "Flat Earthism" lingered longest in Syriac Christianity, which tradition laid greater importance on a literalist interpretation of the Old Testament. Authors from that tradition, such as Cosmas Indicopleustes, presented Earth as flat as late as in the 6th century. This last remnant of the ancient model of the cosmos disappeared during the 7th century. From the 8th century and the beginning medieval period, "no cosmographer worthy of note has called into question the sphericity of the Earth".

Such widely read encyclopedists as Macrobius and Martianus Capella (both 5th century AD) discussed the circumference of the sphere of the Earth, its central position in the universe, the difference of the seasons in northern and southern hemispheres, and many other geographical details. In his commentary on Cicero's Dream of Scipio, Macrobius described the Earth as a globe of insignificant size in comparison to the remainder of the cosmos.

Islamic world

Diagram illustrating a method proposed and used by Al-Biruni (973–1048) to estimate the radius and circumference of the Earth

Islamic astronomy was developed on the basis of a spherical Earth inherited from Hellenistic astronomy. The Islamic theoretical framework largely relied on the fundamental contributions of Aristotle (De caelo) and Ptolemy (Almagest), both of whom worked from the premise that Earth was spherical and at the centre of the universe (geocentric model).

Early Islamic scholars recognized Earth's sphericity, leading Muslim mathematicians to develop spherical trigonometry in order to further mensuration and to calculate the distance and direction from any given point on Earth to Mecca. This determined the Qibla, or Muslim direction of prayer.

Al-Ma'mun

Around 830 CE, Caliph al-Ma'mun commissioned a group of Muslim astronomers and geographers to measure the distance from Tadmur (Palmyra) to Raqqa in modern Syria. To determine the length of one degree of latitude, by using a rope to measure the distance travelled due north or south (meridian arc) on flat desert land until they reached a place where the altitude of the North Pole had changed by one degree.

Al-Ma'mun's arc measurement result is described in different sources as 66 2/3 miles, 56.5 miles, and 56 miles. The figure Alfraganus used based on these measurements was 56 2/3 miles, giving an Earth circumference of 20,400 miles (32,830 km). 6623 miles results in a calculated planetary circumference of 24,000 miles (39,000 km).

Another estimate given by his astronomers was 5623 Arabic miles (111.8 km) per degree, which corresponds to a circumference of 40,248 km, very close to the currently modern values of 111.3 km per degree and 40,068 km circumference, respectively.

Ibn Hazm

Andalusian polymath Ibn Hazm gave a concise proof of Earth's sphericity: at any given time, there is a point on the Earth where the Sun is directly overhead (which moves throughout the day and throughout the year).

Al-Farghānī

Al-Farghānī (Latinized as Alfraganus) was a Persian astronomer of the 9th century involved in measuring the diameter of Earth, and commissioned by Al-Ma'mun. His estimate given above for a degree (5623 Arabic miles) was much more accurate than the 6023 Roman miles (89.7 km) given by Ptolemy. Christopher Columbus uncritically used Alfraganus's figure as if it were in Roman miles instead of in Arabic miles, in order to prove a smaller size of Earth than that propounded by Ptolemy.

Biruni

Abu Rayhan Biruni (973–1048) used a new method to accurately compute Earth's circumference, by which he arrived at a value that was close to modern values for Earth's circumference. His estimate of 6,339.6 kilometres (3,939.2 mi) for Earth's radius was only 31.4 kilometres (19.5 mi) less than the modern mean value of 6,371.0 kilometres (3,958.8 mi). In contrast to his predecessors, who measured Earth's circumference by sighting the Sun simultaneously from two different locations, Biruni developed a new method of using trigonometric calculations based on the angle between a plain and mountain top. This yielded more accurate measurements of Earth's circumference and made it possible for a single person to measure it from a single location. Biruni's method was intended to avoid "walking across hot, dusty deserts", and the idea came to him when he was on top of a tall mountain in India (present day Pind Dadan Khan, Pakistan).

From the top of the mountain, he sighted the dip angle which, along with the mountain's height (which he calculated beforehand), he applied to the law of sines formula to calculate the curvature of the Earth. While this was an ingenious new method, Al-Biruni was not aware of atmospheric refraction. To get the true dip angle the measured dip angle needs to be corrected by approximately 1/6, meaning that even with perfect measurement his estimate could only have been accurate to within about 20%.

Biruni also made use of algebra to formulate trigonometric equations and used the astrolabe to measure angles.

According to John J. O'Connor and Edmund F. Robertson,

Important contributions to geodesy and geography were also made by Biruni. He introduced techniques to measure Earth and distances on it using triangulation. He found the radius of Earth to be 6,339.6 kilometres (3,939.2 mi), a value not obtained in the West until the 16th century. His Masudic canon contains a table giving the coordinates of six hundred places, almost all of which he had direct knowledge.

Jamal-al-Din

A terrestrial globe (Kura-i-ard) was among the presents sent by the Persian Muslim astronomer Jamal-al-Din to Kublai Khan's Chinese court in 1267. It was made of wood on which "seven parts of water are represented in green, three parts of land in white, with rivers, lakes[, et cetera]". Ho Peng Yoke remarks that "it did not seem to have any general appeal to the Chinese in those days".

Applications

Muslim scholars who held to the spherical Earth theory used it for a quintessentially Islamic purpose: to calculate the distance and direction from any given point on Earth to Mecca. Muslim mathematicians developed spherical trigonometry; in the 11th century, al-Biruni used it to find the direction of Mecca from many cities and published it in The Determination of the Co-ordinates of Cities. This determined the Qibla, or Muslim direction of prayer.

Magnetic declination

Muslim astronomers and geographers were aware of magnetic declination by the 15th century, when the Egyptian astronomer 'Abd al-'Aziz al-Wafa'i (d. 1469/1471) measured it as 7 degrees from Cairo.

Medieval Europe

Greek influence

In medieval Europe, knowledge of the sphericity of Earth survived into the medieval corpus of knowledge by direct transmission of the texts of Greek antiquity (Aristotle), and via authors such as Isidore of Seville and Beda Venerabilis. It became increasingly traceable with the rise of scholasticism and medieval learning.

Revising the figures attributed to Posidonius, another Greek philosopher determined 18,000 miles (29,000 km) as the Earth's circumference. This last figure was promulgated by Ptolemy through his world maps. The maps of Ptolemy strongly influenced the cartographers of the Middle Ages. It is probable that Christopher Columbus, using such maps, was led to believe that Asia was only 3,000 or 4,000 miles (4,800 or 6,400 km) west of Europe.

Ptolemy's view was not universal, however, and chapter 20 of Mandeville's Travels (c. 1357) supports Eratosthenes' calculation.

Spread of this knowledge beyond the immediate sphere of Greco-Roman scholarship was necessarily gradual, associated with the pace of Christianisation of Europe. For example, the first evidence of knowledge of the spherical shape of Earth in Scandinavia is a 12th-century Old Icelandic translation of Elucidarius. A list of more than a hundred Latin and vernacular writers from Late Antiquity and the Middle Ages who were aware that Earth was spherical has been compiled by Reinhard Krüger, professor for Romance literature at the University of Stuttgart.

It was not until the 16th century that his concept of the Earth's size was revised. During that period the Flemish cartographer, Mercator, made successive reductions in the size of the Mediterranean Sea and all of Europe which had the effect of increasing the size of the earth.

Early Medieval Europe

Spherical Earth with the four seasons. Illustration in 12th-century book Liber Divinorum Operum by Hildegard of Bingen

Isidore of Seville

Bishop Isidore of Seville (560–636) taught in his widely read encyclopedia, The Etymologies, that Earth was "round". The bishop's confusing exposition and choice of imprecise Latin terms have divided scholarly opinion on whether he meant a sphere or a disk or even whether he meant anything specific. Notable recent scholars claim that he taught a spherical Earth. Isidore did not admit the possibility of people dwelling at the antipodes, considering them as legendary and noting that there was no evidence for their existence.

Bede the Venerable

The monk Bede (c. 672–735) wrote in his influential treatise on computus, The Reckoning of Time, that Earth was round. He explained the unequal length of daylight from "the roundness of the Earth, for not without reason is it called 'the orb of the world' on the pages of Holy Scripture and of ordinary literature. It is, in fact, set like a sphere in the middle of the whole universe." (De temporum ratione, 32). The large number of surviving manuscripts of The Reckoning of Time, copied to meet the Carolingian requirement that all priests should study the computus, indicates that many, if not most, priests were exposed to the idea of the sphericity of Earth. Ælfric of Eynsham paraphrased Bede into Old English, saying, "Now the Earth's roundness and the Sun's orbit constitute the obstacle to the day's being equally long in every land."

Bede was lucid about Earth's sphericity, writing "We call the earth a globe, not as if the shape of a sphere were expressed in the diversity of plains and mountains, but because, if all things are included in the outline, the earth's circumference will represent the figure of a perfect globe... For truly it is an orb placed in the centre of the universe; in its width it is like a circle, and not circular like a shield but rather like a ball, and it extends from its centre with perfect roundness on all sides."

Anania Shirakatsi

The 7th-century Armenian scholar Anania Shirakatsi described the world as "being like an egg with a spherical yolk (the globe) surrounded by a layer of white (the atmosphere) and covered with a hard shell (the sky)".

High and late medieval Europe

John Gower prepares to shoot the world, a sphere with compartments representing earth, air, and water (Vox Clamantis, around 1400)

During the High Middle Ages, the astronomical knowledge in Christian Europe was extended beyond what was transmitted directly from ancient authors by transmission of learning from Medieval Islamic astronomy. An early student of such learning was Gerbert d'Aurillac, the later Pope Sylvester II.

Saint Hildegard (Hildegard von Bingen, 1098–1179), depicted the spherical Earth several times in her work Liber Divinorum Operum.

Johannes de Sacrobosco (c. 1195 – c. 1256 AD) wrote a famous work on Astronomy called Tractatus de Sphaera, based on Ptolemy, which primarily considers the sphere of the sky. However, it contains clear proofs of Earth's sphericity in the first chapter.

Many scholastic commentators on Aristotle's On the Heavens and Sacrobosco's Treatise on the Sphere unanimously agreed that Earth is spherical or round. Grant observes that no author who had studied at a medieval university thought that Earth was flat.

The Elucidarium of Honorius Augustodunensis (c. 1120), an important manual for the instruction of lesser clergy, which was translated into Middle English, Old French, Middle High German, Old Russian, Middle Dutch, Old Norse, Icelandic, Spanish, and several Italian dialects, explicitly refers to a spherical Earth. Likewise, the fact that Bertold von Regensburg (mid-13th century) used the spherical Earth as an illustration in a sermon shows that he could assume this knowledge among his congregation. The sermon was preached in the vernacular German, and thus was not intended for a learned audience.

Dante's Divine Comedy, written in Italian in the early 14th century, portrays Earth as a sphere, discussing implications such as the different stars visible in the southern hemisphere, the altered position of the Sun, and the various time zones of Earth.

Early modern period

The invention of the telescope and the theodolite and the development of logarithm tables allowed exact triangulation and arc measurements.

Ming China

Joseph Needham, in his Chinese Cosmology reports that Shen Kuo (1031-1095) used models of lunar eclipse and solar eclipse to conclude the roundness of celestial bodies.

If they were like balls they would surely obstruct each other when they met. I replied that these celestial bodies were certainly like balls. How do we know this? By the waxing and waning of the moon. The moon itself gives forth no light, but is like a ball of silver; the light is the light of the sun (reflected). When the brightness is first seen, the sun (-light passes almost) alongside, so the side only is illuminated and looks like a crescent. When the sun gradually gets further away, the light shines slanting, and the moon is full, round like a bullet. If half of a sphere is covered with (white) powder and looked at from the side, the covered part will look like a crescent; if looked at from the front, it will appear round. Thus we know that the celestial bodies are spherical.

However, Shen's ideas did not gain widespread acceptance or consideration, as the shape of Earth was not important to Confucian officials who were more concerned with human relations. In the 17th century, the idea of a spherical Earth, now considerably advanced by Western astronomy, ultimately spread to Ming China, when Jesuit missionaries, who held high positions as astronomers at the imperial court, successfully challenged the Chinese belief that Earth was flat and square.

The Ge zhi cao (格致草) treatise of Xiong Mingyu (熊明遇) published in 1648 showed a printed picture of Earth as a spherical globe, with the text stating that "the round Earth certainly has no square corners". The text also pointed out that sailing ships could return to their port of origin after circumnavigating the waters of Earth.

The influence of the map is distinctly Western, as traditional maps of Chinese cartography held the graduation of the sphere at 365.25 degrees, while the Western graduation was of 360 degrees. The adoption of European astronomy, facilitated by the failure of indigenous astronomy to make progress, was accompanied by a sinocentric reinterpretation that declared the imported ideas Chinese in origin:

European astronomy was so much judged worth consideration that numerous Chinese authors developed the idea that the Chinese of antiquity had anticipated most of the novelties presented by the missionaries as European discoveries, for example, the rotundity of the Earth and the "heavenly spherical star carrier model". Making skillful use of philology, these authors cleverly reinterpreted the greatest technical and literary works of Chinese antiquity. From this sprang a new science wholly dedicated to the demonstration of the Chinese origin of astronomy and more generally of all European science and technology.

Although mainstream Chinese science until the 17th century held the view that Earth was flat, square, and enveloped by the celestial sphere, this idea was criticized by the Jin-dynasty scholar Yu Xi (fl. 307–345), who suggested that Earth could be either square or round, in accordance with the shape of the heavens. The Yuan-dynasty mathematician Li Ye (c. 1192–1279) firmly argued that Earth was spherical, just like the shape of the heavens only smaller, since a square Earth would hinder the movement of the heavens and celestial bodies in his estimation. The 17th-century Ge zhi cao treatise also used the same terminology to describe the shape of Earth that the Eastern-Han scholar Zhang Heng (78–139 AD) had used to describe the shape of the Sun and Moon (as in, that the former was as round as a crossbow bullet, and the latter was the shape of a ball).

Circumnavigation of the globe

The Portuguese exploration of Africa and Asia, Columbus's voyage to the Americas (1492) provided more direct evidence of the size and shape of the world.

The first direct demonstration of Earth's sphericity came in the form of the first circumnavigation in history, an expedition captained by Portuguese explorer Ferdinand Magellan. The expedition was financed by the Spanish Crown. On August 10, 1519, the five ships under Magellan's command departed from Seville. They crossed the Atlantic Ocean, passed through what is now called the Strait of Magellan, crossed the Pacific, and arrived in Cebu, where Magellan was killed by Philippine natives in a battle. His second in command, the Spaniard Juan Sebastián Elcano, continued the expedition and, on September 6, 1522, arrived at Seville, completing the circumnavigation. Charles I of Spain, in recognition of his feat, gave Elcano a coat of arms with the motto Primus circumdedisti me (in Latin, "You went around me first").

A circumnavigation alone does not prove that Earth is spherical: it could be cylindric, irregularly globular, or one of many other shapes. Still, combined with trigonometric evidence of the form used by Eratosthenes 1,700 years prior, the Magellan expedition removed any reasonable doubt in educated circles in Europe. The Transglobe Expedition (1979–1982) was the first expedition to make a circumpolar circumnavigation, travelling the world "vertically" traversing both of the poles of rotation using only surface transport.

European calculations

In the Carolingian era, scholars discussed Macrobius's view of the antipodes. One of them, the Irish monk Dungal, asserted that the tropical gap between our habitable region and the other habitable region to the south was smaller than Macrobius had believed.

In 1505 the cosmographer and explorer Duarte Pacheco Pereira calculated the value of the degree of the meridian arc with a margin of error of only 4%, when the current error at the time varied between 7 and 15%.

Jean Picard performed the first modern meridian arc measurement in 1669–1670. He measured a baseline using wooden rods, a telescope (for his angular measurements), and logarithms (for computation). Gian Domenico Cassini then his son Jacques Cassini later continued Picard's arc (Paris meridian arc) northward to Dunkirk and southward to the Spanish border. Cassini divided the measured arc into two parts, one northward from Paris, another southward. When he computed the length of a degree from both chains, he found that the length of one degree of latitude in the northern part of the chain was shorter than that in the southern part (see illustration).

Cassini's ellipsoid; Huygens' theoretical ellipsoid

This result, if correct, meant that the earth was not a sphere, but a prolate spheroid (taller than wide). However, this contradicted computations by Isaac Newton and Christiaan Huygens. In 1659, Christiaan Huygens was the first to derive the now standard formula for the centrifugal force in his work De vi centrifuga. The formula played a central role in classical mechanics and became known as the second of Newton's laws of motion. Newton's theory of gravitation combined with the rotation of the Earth predicted the Earth to be an oblate spheroid (wider than tall), with a flattening of 1:230.

The issue could be settled by measuring, for a number of points on earth, the relationship between their distance (in north–south direction) and the angles between their zeniths. On an oblate Earth, the meridional distance corresponding to one degree of latitude will grow toward the poles, as can be demonstrated mathematically.

The French Academy of Sciences dispatched two expeditions. One expedition (1736–37) under Pierre Louis Maupertuis was sent to Torne Valley (near the Earth's northern pole). The second mission (1735–44) under Pierre Bouguer was sent to what is modern-day Ecuador, near the equator. Their measurements demonstrated an oblate Earth, with a flattening of 1:210. This approximation to the true shape of the Earth became the new reference ellipsoid.

In 1787 the first precise trigonometric survey to be undertaken within Britain was the Anglo-French Survey. Its purpose was to link the Greenwich and Paris' observatories. The survey is very significant as the forerunner of the work of the Ordnance Survey which was founded in 1791, one year after William Roy's death.

Johann Georg Tralles surveyed the Bernese Oberland, then the entire Canton of Bern. Soon after the Anglo-French Survey, in 1791 and 1797, he and his pupil Ferdinand Rudolph Hassler measured the base of the Grand Marais (German: Grosses Moos) near Aarberg in Seeland. This work earned Tralles to be appointed as the representative of the Helvetic Republic on the international scientific committee meeting in Paris from 1798 to 1799 to determine the length of the metre.

The French Academy of Sciences had commissioned an expedition led by Jean Baptiste Joseph Delambre and Pierre Méchain, lasting from 1792 to 1799, which attempted to accurately measure the distance between a belfry in Dunkerque and Montjuïc castle in Barcelona at the longitude of Paris Panthéon. The metre was defined as one ten-millionth of the shortest distance from the North Pole to the equator passing through Paris, assuming an Earth's flattening of 1/334. The committee extrapolated from Delambre and Méchain's survey the distance from the North Pole to the Equator which was 5 130 740 toises. As the metre had to be equal to one ten-million of this distance, it was defined as 0,513074 toises or 443,296 lignes of the Toise of Peru (see below).

Asia and Americas

A discovery made in 1672-1673 by Jean Richer turned the attention of mathematicians to the deviation of the Earth's shape from a spherical form. This astronomer, having been sent by the Academy of Sciences of Paris to Cayenne, in South America, for the purpose of investigating the amount of astronomical refraction and other astronomical objects, notably the parallax of Mars between Paris and Cayenne in order to determine the Earth-Sun distance, observed that his clock, which had been regulated at Paris to beat seconds, lost about two minutes and a half daily at Cayenne, and that in order to bring it to measure mean solar time it was necessary to shorten the pendulum by more than a line (about 112th of an in.). This fact was scarcely credited till it had been confirmed by the subsequent observations of Varin and Deshayes on the coasts of Africa and America.

In South America Bouguer noticed, as did George Everest in the 19th century Great Trigonometric Survey of India, that the astronomical vertical tended to be pulled in the direction of large mountain ranges, due to the gravitational attraction of these huge piles of rock. As this vertical is everywhere perpendicular to the idealized surface of mean sea level, or the geoid, this means that the figure of the Earth is even more irregular than an ellipsoid of revolution. Thus the study of the "undulation of the geoid" became the next great undertaking in the science of studying the figure of the Earth.

19th century

Archive with lithography plates for maps of Bavaria in the Landesamt für Vermessung und Geoinformation in Munich
 
Negative lithography stone and positive print of a historic map of Munich

In the late 19th century the Mitteleuropäische Gradmessung (Central European Arc Measurement) was established by several central European countries and a Central Bureau was set up at the expense of Prussia, within the Geodetic Institute at Berlin. One of its most important goals was the derivation of an international ellipsoid and a gravity formula which should be optimal not only for Europe but also for the whole world. The Mitteleuropäische Gradmessung was an early predecessor of the International Association of Geodesy (IAG) one of the constituent sections of the International Union of Geodesy and Geophysics (IUGG) which was founded in 1919.

Prime meridian and standard of length

The beginning of the U. S. coastal survey.

In 1811 Ferdinand Rudolph Hassler was selected to direct the U.S. coast survey, and sent on a mission to France and England to procure instruments and standards of measurement. The unit of length to which all distances measured in the U.S. coast survey were referred is the French metre, of which Ferdinand Rudolph Hassler had brought a copy in the United States in 1805.

Struve Geodetic Arc.

The Scandinavian-Russian meridian arc or Struve Geodetic Arc, named after the German astronomer Friedrich Georg Wilhelm von Struve, was a degree measurement that consisted of a nearly 3000 km long network of geodetic survey points. The Struve Geodetic Arc was one of the most precise and largest projects of earth measurement at that time. In 1860 Friedrich Georg Wilhelm Struve published his Arc du méridien de 25° 20′ entre le Danube et la Mer Glaciale mesuré depuis 1816 jusqu’en 1855. The flattening of the earth was estimated at 1/294.26 and the earth's equatorial radius was estimated at 6378360.7 metres.

In the early 19th century, the Paris meridian's arc was recalculated with greater precision between Shetland and the Balearic Islands by the French astronomers François Arago and Jean-Baptiste Biot. In 1821 they published their work as a fourth volume following the three volumes of "Bases du système métrique décimal ou mesure de l'arc méridien compris entre les parallèles de Dunkerque et Barcelone" (Basis for the decimal metric system or measurement of the meridian arc comprised between Dunkirk and Barcelona) by Delambre and Méchain.

West Europe-Africa Meridian Arc

Louis Puissant declared in 1836 in front of the French Academy of Sciences that Delambre and Méchain had made an error in the measurement of the French meridian arc. Some thought that the base of the metric system could be attacked by pointing out some errors that crept into the measurement of the two French scientists. Méchain had even noticed an inaccuracy he did not dare to admit. As this survey was also part of the groundwork for the map of France, Antoine Yvon Villarceau checked, from 1861 to 1866, the geodesic opérations in eight points of the meridian arc. Some of the errors in the operations of Delambre and Méchain were corrected. In 1866, at the conference of the International Association of Geodesy in Neuchâtel Carlos Ibáñez e Ibáñez de Ibero announced Spain's contribution to the remeasurement and extension of the French meridian arc. In 1870, François Perrier was in charge of resuming the triangulation between Dunkirk and Barcelona. This new survey of the Paris meridian arc, named West Europe-Africa Meridian-arc by Alexander Ross Clarke, was undertaken in France and in Algeria under the direction of François Perrier from 1870 to his death in 1888. Jean-Antonin-Léon Bassot completed the task in 1896. According to the calculations made at the central bureau of the international association on the great meridian arc extending from the Shetland Islands, through Great Britain, France and Spain to El Aghuat in Algeria, the Earth equatorial radius was 6377935 metres, the ellipticity being assumed as 1/299.15.

Many measurements of degrees of longitudes along central parallels in Europe were projected and partly carried out as early as the first half of the 19th century; these, however, only became of importance after the introduction of the electric telegraph, through which calculations of astronomical longitudes obtained a much higher degree of accuracy. Of the greatest moment is the measurement near the parallel of 52° lat., which extended from Valentia in Ireland to Orsk in the southern Ural mountains over 69 degrees of longitude. F. G. W. Struve, who is to be regarded as the father of the Russo-Scandinavian latitude-degree measurements, was the originator of this investigation. Having made the requisite arrangements with the governments in 1857, he transferred them to his son Otto, who, in 1860, secured the co-operation of England.

In 1860, the Russian Government at the instance of Otto Wilhelm von Sturve invited the Governments of Belgium, France, Prussia and England to connect their triangulations in order to measure the length of an arc of parallel in latitude 52° and to test the accuracy of the figure and dimensions of the Earth, as derived from the measurements of arc of meridian. In order to combine the measurements, it was necessary to compare the geodetic standards of length used in the different countries. The British Government invited those of France, Belgium, Prussia, Russia, India, Australia, Austria, Spain, United States and Cape of Good Hope to send their standards to the Ordnance Survey office in Southampton. Notably the standards of France, Spain and United States were based on the metric system, whereas those of Prussia, Belgium and Russia where calibrated against the toise, of which the oldest physical representative was the Toise of Peru. The Toise of Peru had been constructed in 1735 for Bouguer and De La Condamine as their standard of reference in the French Geodesic Mission, conducted in actual Ecuador from 1735 to 1744 in collaboration with the Spanish officers Jorge Juan and Antonio de Ulloa.

Gravimeter with variant of Repsold pendulum

Friedrich Bessel was responsible for the nineteenth-century investigations of the shape of the Earth by means of the pendulum's determination of gravity and the use of Clairaut's theorem. The studies he conducted from 1825 to 1828 and his determination of the length of the pendulum beating the second in Berlin seven years later marked the beginning of a new era in geodesy. Indeed, the reversible pendulum as it was used by geodesists at the end of the 19th century was largely due to the work of Bessel, because neither Johann Gottlieb Friedrich von Bohnenberger, its inventor, nor Henry Kater who used it in 1818 brought the improvements which would result from the precious indications of Bessel, and which converted the reversible pendulum into one of the most admirable instruments which the scientists of the nineteenth century could use. The reversible pendulum built by the Repsold brothers was used in Switzerland in 1865 by Émile Plantamour for the measurement of gravity in six stations of the Swiss geodetic network. Following the example set by this country and under the patronage of the International Geodetic Association, Austria, Bavaria, Prussia, Russia and Saxony undertook gravity determinations on their respective territories.

However, these results could only be considered provisional insofar as they did not take into account the movements that the oscillations of the pendulum impart to its suspension plane, which constitute an important factor of error in measuring both the duration of the oscillations and the length of the pendulum. Indeed, the determination of gravity by the pendulum is subject to two types of error. On the one hand the resistance of the air and on the other hand the movements that the oscillations of the pendulum impart to its plane of suspension. These movements were particularly important with the device designed by the Repsold brothers on Bessel's indications, because the pendulum had a large mass in order to counteract the effect of the viscosity of the air. While Emile Plantamour was carrying out a series of experiments with this device, Adolphe Hirsch found a way to highlight the movements of the pendulum suspension plane by an ingenious optical amplification process. Isaac-Charles Élisée Cellérier, a Genevan mathematician and Charles Sanders Peirce would independently develop a correction formula which would make it possible to use the observations made using this type of gravimeter.

Three-dimensionales model of the so-called "Potsdamer Kartoffel" (Potato of Potsdam) with a 15000 times magnification of the surface's level of the earth, Potsdam (2017)

As Carlos Ibáñez e Ibáñez de Ibero stated. If precision metrology had needed the help of geodesy, it could not continue to prosper without the help of metrology. Indeed, how to express all the measurements of terrestrial arcs as a function of a single unit, and all the determinations of the force of gravity with the pendulum, if metrology had not created a common unit, adopted and respected by all civilized nations, and if in addition one had not compared, with great precision, to the same unit all the rulers for measuring geodesic bases, and all the pendulum rods that had hitherto been used or would be used in the future? Only when this series of metrological comparisons would be finished with a probable error of a thousandth of a millimeter would geodesy be able to link the works of the different nations one with another, and then proclaim the result of the measurement of the Globe.

Alexander Ross Clarke and Henry James published the first results of the standards' comparisons in 1867. The same year Russia, Spain and Portugal joined the Europäische Gradmessung and the General Conference of the association proposed the metre as a uniform length standard for the Arc Measurement and recommended the establishment of an International Bureau of Weights and Measures.

The Europäische Gradmessung decided the creation of an international geodetic standard at the General Conference held in Paris in 1875. The Conference of the International Association of Geodesy also dealt with the best instrument to be used for the determination of gravity. After an in-depth discussion in which Charles Sanders Peirce took part, the association decided in favor of the reversion pendulum, which was used in Switzerland, and it was resolved to redo in Berlin, in the station where Bessel made his famous measurements, the determination of gravity by means of apparatus of various kinds employed in different countries, in order to compare them and thus to have the equation of their scales.

The Metre Convention was signed in 1875 in Paris and the International Bureau of Weights and Measures was created under the supervision of the International Committee for Weights and Measures. The first president of the International Committee for Weights and Measures was the Spanish geodesist Carlos Ibáñez e Ibáñez de Ibero. He also was the president of the Permanent Commission of the Europäische Gradmessung from 1874 to 1886. In 1886 the association changed its name to the International Geodetic Association and Carlos Ibáñez e Ibáñez de Ibero was reelected as president. He remained in this position until his death in 1891. During this period the International Geodetic Association gained worldwide importance with the joining of United States, Mexico, Chile, Argentina and Japan. In 1883 the General Conference of the Europäische Gradmessung had proposed to select the Greenwich meridian as prime meridian in the hope that United States and Great Britain would accede to the Association. Moreover, according to the calculations made at the central bureau of the international association on the West Europe-Africa Meridian-arc the meridian of Greenwich was nearer the mean than that of Paris.

Geodesy and mathematics

Louis Puissant, Traité de géodésie, 1842

In 1804 Johann Georg Tralles was made a member of the Berlin Academy of Sciences. In 1810 he became the first holder of the chair of mathematics at the Humboldt University of Berlin. In the same year he was appointed secretary of the mathematics class at the Berlin Academy of Sciences. Tralles maintained an important correspondence with Friedrich Wilhelm Bessel and supported his appointment to the University of Königsberg.

In 1809 Carl Friedrich Gauss published his method of calculating the orbits of celestial bodies. In that work he claimed to have been in possession of the method of least squares since 1795. This naturally led to a priority dispute with Adrien-Marie Legendre. However, to Gauss's credit, he went beyond Legendre and succeeded in connecting the method of least squares with the principles of probability and to the normal distribution. He had managed to complete Laplace's program of specifying a mathematical form of the probability density for the observations, depending on a finite number of unknown parameters, and define a method of estimation that minimises the error of estimation. Gauss showed that the arithmetic mean is indeed the best estimate of the location parameter by changing both the probability density and the method of estimation. He then turned the problem around by asking what form the density should have and what method of estimation should be used to get the arithmetic mean as estimate of the location parameter. In this attempt, he invented the normal distribution.

In 1810, after reading Gauss's work, Pierre-Simon Laplace, after proving the central limit theorem, used it to give a large sample justification for the method of least squares and the normal distribution. In 1822, Gauss was able to state that the least-squares approach to regression analysis is optimal in the sense that in a linear model where the errors have a mean of zero, are uncorrelated, and have equal variances, the best linear unbiased estimator of the coefficients is the least-squares estimator. This result is known as the Gauss–Markov theorem.

The publication in 1838 of Friedrich Wilhelm Bessel’s Gradmessung in Ostpreussen marked a new era in the science of geodesy. Here was found the method of least squares applied to the calculation of a network of triangles and the reduction of the observations generally. The systematic manner in which all the observations were taken with the view of securing final results of extreme accuracy was admirable. Bessel was also the first scientist who realised the effect later called personal equation, that several simultaneously observing persons determine slightly different values, especially recording the transition time of stars.

Most of the relevant theories were then derived by the German geodesist Friedrich Robert Helmert in his famous books Die mathematischen und physikalischen Theorien der höheren Geodäsie, Volumes 1 & 2 (1880 & 1884, resp.). Helmert also derived the first global ellipsoid in 1906 with an accuracy of 100 meters (0.002 percent of the Earth's radii). The US geodesist Hayford derived a global ellipsoid in ~1910, based on intercontinental isostasy and an accuracy of 200 m. It was adopted by the IUGG as "international ellipsoid 1924".

Electric power distribution

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Electric_power_distribution

A 50 kVA pole-mounted distribution transformer

Electric power distribution is the final stage in the delivery of electric power; it carries electricity from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between kV and 35 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

General layout of electricity networks. The voltages and loadings are typical of a European network.

The transition from transmission to distribution happens in a power substation, which has the following functions:

  • Circuit breakers and switches enable the substation to be disconnected from the transmission grid or for distribution lines to be disconnected.
  • Transformers step down transmission voltages, 35 kV or more, down to primary distribution voltages. These are medium voltage circuits, usually 600–35000 V.
  • From the transformer, power goes to the busbar that can split the distribution power off in multiple directions. The bus distributes power to distribution lines, which fan out to customers.

Urban distribution is mainly underground, sometimes in common utility ducts. Rural distribution is mostly above ground with utility poles, and suburban distribution is a mix. Closer to the customer, a distribution transformer steps the primary distribution power down to a low-voltage secondary circuit, usually 120/240 V in the US for residential customers. The power comes to the customer via a service drop and an electricity meter. The final circuit in an urban system may be less than 15 metres (50 ft), but may be over 91 metres (300 ft) for a rural customer.

History

The late 1870s and early 1880s saw the introduction of arc lamp lighting used outdoors or in large indoor spaces such as this Brush Electric Company system installed in 1880 in New York City.

Electric power distribution became necessary only in the 1880s when electricity started being generated at power stations. Before that, electricity was usually generated where it was used. The first power distribution systems installed in European and US cities were used to supply lighting: arc lighting running on very high voltage (around 3000 volts) alternating current (AC) or direct current (DC), and incandescent lighting running on low voltage (100 volt) direct current. Both were supplanting gas lighting systems, with arc lighting taking over large area and street lighting, and incandescent lighting replacing gas for business and residential lighting.

Due to the high voltages used in arc lighting, a single generating station could supply a long string of lights, up to 7-mile (11 km) long circuits. Each doubling of the voltage would allow the same size cable to transmit the same amount of power four times the distance for a given power loss. Direct current indoor incandescent lighting systems, for example the first Edison Pearl Street Station installed in 1882, had difficulty supplying customers more than a mile away. This was due to the low 110 volt system being used throughout the system, from the generators to the final use. The Edison DC system needed thick copper conductor cables, and the generating plants needed to be within about 1.5 miles (2.4 km) of the farthest customer to avoid excessively large and expensive conductors.

Introduction of the transformer

Transmitting electricity a long distance at high voltage and then reducing it to a lower voltage for lighting became a recognized engineering roadblock to electric power distribution with many, not very satisfactory, solutions tested by lighting companies. The mid-1880s saw a breakthrough with the development of functional transformers that allowed the AC voltage to be "stepped up" to much higher transmission voltages and then dropped down to a lower end user voltage. With much cheaper transmission costs and the greater economies of scale of having large generating plants supply whole cities and regions, the use of AC spread rapidly.

In the US the competition between direct current and alternating current took a personal turn in the late 1880s in the form of a "war of currents" when Thomas Edison started attacking George Westinghouse and his development of the first US AC transformer systems, pointing out all the deaths caused by high-voltage AC systems over the years and claiming any AC system was inherently dangerous. Edison's propaganda campaign was short-lived, with his company switching over to AC in 1892.

AC became the dominant form of transmission of power with innovations in Europe and the US in electric motor designs and the development of engineered universal systems allowing the large number of legacy systems to be connected to large AC grids.

In the first half of the 20th century, in many places the electric power industry was vertically integrated, meaning that one company did generation, transmission, distribution, metering and billing. Starting in the 1970s and 1980s, nations began the process of deregulation and privatisation, leading to electricity markets. The distribution system would remain regulated, but generation, retail, and sometimes transmission systems were transformed into competitive markets.

Generation and transmission

Power stationTransformerElectric power transmissionTransformer
Simplified diagram of AC electricity delivery from generation stations to consumers' service drop.

Electric power begins at a generating station, where the potential difference can be as high as 33,000 volts. AC is usually used. Users of large amounts of DC power such as some railway electrification systems, telephone exchanges and industrial processes such as aluminium smelting use rectifiers to derive DC from the public AC supply, or may have their own generation systems. High-voltage DC can be advantageous for isolating alternating-current systems or controlling the quantity of electricity transmitted. For example, Hydro-Québec has a direct-current line which goes from the James Bay region to Boston.

From the generating station it goes to the generating station's switchyard where a step-up transformer increases the voltage to a level suitable for transmission, from 44 kV to 765 kV. Once in the transmission system, electricity from each generating station is combined with electricity produced elsewhere. Electricity is consumed as soon as it is produced. It is transmitted at a very high speed, close to the speed of light.

Primary distribution

Primary distribution voltages range from 4 kV to 35 kV phase-to-phase (2.4 kV to 20 kV phase-to-neutral) Only large consumers are fed directly from distribution voltages; most utility customers are connected to a transformer, which reduces the distribution voltage to the low voltage "utilization voltage", "supply voltage" or "mains voltage" used by lighting and interior wiring systems.

Network configurations

Substation near Yellowknife, in the Northwest Territories of Canada

Distribution networks are divided into two types, radial or network. A radial system is arranged like a tree where each customer has one source of supply. A network system has multiple sources of supply operating in parallel. Spot networks are used for concentrated loads. Radial systems are commonly used in rural or suburban areas.

Radial systems usually include emergency connections where the system can be reconfigured in case of problems, such as a fault or planned maintenance. This can be done by opening and closing switches to isolate a certain section from the grid.

Long feeders experience voltage drop (power factor distortion) requiring capacitors or voltage regulators to be installed.

Reconfiguration, by exchanging the functional links between the elements of the system, represents one of the most important measures which can improve the operational performance of a distribution system. The problem of optimization through the reconfiguration of a power distribution system, in terms of its definition, is a historical single objective problem with constraints. Since 1975, when Merlin and Back introduced the idea of distribution system reconfiguration for active power loss reduction, until nowadays, a lot of researchers have proposed diverse methods and algorithms to solve the reconfiguration problem as a single objective problem. Some authors have proposed Pareto optimality based approaches (including active power losses and reliability indices as objectives). For this purpose, different artificial intelligence based methods have been used: microgenetic, branch exchange, particle swarm optimization and non-dominated sorting genetic algorithm.

Rural services

High voltage power pole in rural Butte County, California

Rural electrification systems tend to use higher distribution voltages because of the longer distances covered by distribution lines (see Rural Electrification Administration). 7.2, 12.47, 25, and 34.5 kV distribution is common in the United States; 11 kV and 33 kV are common in the UK, Australia and New Zealand; 11 kV and 22 kV are common in South Africa; 10, 20 and 35 kV are common in China. Other voltages are occasionally used.

Rural services normally try to minimize the number of poles and wires. It uses higher voltages (than urban distribution), which in turn permits use of galvanized steel wire. The strong steel wire allows for less expensive wide pole spacing. In rural areas a pole-mount transformer may serve only one customer. In New Zealand, Australia, Saskatchewan, Canada, and South Africa, Single-wire earth return systems (SWER) are used to electrify remote rural areas.

Three phase service provides power for large agricultural facilities, petroleum pumping facilities, water plants, or other customers that have large loads (Three phase equipment). In North America, overhead distribution systems may be three phase, four wire, with a neutral conductor. Rural distribution system may have long runs of one phase conductor and a neutral. In other countries or in extreme rural areas the neutral wire is connected to the ground to use that as a return (Single-wire earth return). This is called an ungrounded wye system.

Secondary distribution

World map of mains voltage and frequencies
 

Electricity is delivered at a frequency of either 50 or 60 Hz, depending on the region. It is delivered to domestic customers as single-phase electric power. In some countries as in Europe a three phase supply may be made available for larger properties. Seen with an oscilloscope, the domestic power supply in North America would look like a sine wave, oscillating between −170 volts and 170 volts, giving an effective voltage of 120 volts RMS. Three-phase electric power is more efficient in terms of power delivered per cable used, and is more suited to running large electric motors. Some large European appliances may be powered by three-phase power, such as electric stoves and clothes dryers.

A ground connection is normally provided for the customer's system as well as for the equipment owned by the utility. The purpose of connecting the customer's system to ground is to limit the voltage that may develop if high voltage conductors fall down onto lower-voltage conductors which are usually mounted lower to the ground, or if a failure occurs within a distribution transformer. Earthing systems can be TT, TN-S, TN-C-S or TN-C.

Regional variations

220–240 volt systems

Most of the world uses 50 Hz 220 or 230 V single phase, or 400 V 3 phase for residential and light industrial services. In this system, the primary distribution network supplies a few substations per area, and the 230 V / 400 V power from each substation is directly distributed to end users over a region of normally less than 1 km radius. Three live (hot) wires and the neutral are connected to the building for a three phase service. Single-phase distribution, with one live wire and the neutral is used domestically where total loads are light. In Europe, electricity is normally distributed for industry and domestic use by the three-phase, four wire system. This gives a phase-to-phase voltage of 400 volts wye service and a single-phase voltage of 230 volts between any one phase and neutral. In the UK a typical urban or suburban low-voltage substation would normally be rated between 150 kVA and 1 MVA and supply a whole neighbourhood of a few hundred houses. Transformers are typically sized on an average load of 1 to 2 kW per household, and the service fuses and cable is sized to allow any one property to draw a peak load of perhaps ten times this. For industrial customers, 3-phase 690 / 400 volt is also available, or may be generated locally. Large industrial customers have their own transformer(s) with an input from 11 kV to 220 kV.

100–120 volt systems

Most of the Americas use 60 Hz AC, the 120/240 volt split-phase system domestically and three phase for larger installations. North American transformers usually power homes at 240 volts, similar to Europe's 230 volts. It is the split-phase that allows use of 120 volts in the home.

Japan's utility frequencies are 50 Hz and 60 Hz.

In the electricity sector in Japan, the standard voltage is 100 V, with both 50 and 60 Hz AC frequencies being used. Parts of the country use 50 Hz, while other parts use 60 Hz. This is a relic from the 1890s. Some local providers in Tokyo imported 50 Hz German equipment, while the local power providers in Osaka brought in 60 Hz generators from the United States. The grids grew until eventually the entire country was wired. Today the frequency is 50 Hz in Eastern Japan (including Tokyo, YokohamaTohoku, and Hokkaido) and 60 Hz in Western Japan (including NagoyaOsakaKyotoHiroshimaShikoku, and Kyushu).

Most household appliances are made to work on either frequency. The problem of incompatibility came into the public eye when the 2011 Tōhoku earthquake and tsunami knocked out about a third of the east's capacity, and power in the west could not be fully shared with the east, since the country does not have a common frequency.

There are four high-voltage direct current (HVDC) converter stations that move power across Japan's AC frequency border. Shin Shinano is a back-to-back HVDC facility in Japan which forms one of four frequency changer stations that link Japan's western and eastern power grids. The other three are at Higashi-Shimizu, Minami-Fukumitsu and Sakuma Dam. Together they can move up to 1.2 GW of power east or west.

240 volt systems and 120 volt outlets

Most modern North American homes are wired to receive 240 volts from the transformer, and through the use of split-phase electrical power, can have both 120 volt receptacles and 240 volt receptacles. The 120 volts is typically used for lighting and most wall outlets. The 240 volt circuits are typically used for appliances requiring high watt heat output such as ovens and heaters. They may also be used to supply an electric car charger.

Modern Distribution Systems

Traditionally, the distribution systems would only operate as simple distribution lines where the electricity from the transmission networks would be shared among the customers. Today's distribution systems are heavily integrated with renewable energy generations at the distribution level of the power systems by the means of distributed generation resources, such as solar energy and wind energy. As a result, distribution systems are becoming more independent from the transmission networks day-by-day. Balancing the supply-demand relationship at these modern distribution networks (sometimes referred to as microgrids) is extremely challenging, and it requires the use of various technological and operational means to operate. Such tools include battery storage power station, data analytics, optimization tools, etc.

Film preservation

From Wikipedia, the free encyclopedia
 
Stacked film cans containing rolls of film.
 
Decayed nitrate film. EYE Film Institute Netherlands.
 
Decayed nitrate film. EYE Film Institute Netherlands.

Film preservation, or film restoration, describes a series of ongoing efforts among film historians, archivists, museums, cinematheques, and non-profit organizations to rescue decaying film stock and preserve the images they contain. In the widest sense, preservation assures that a movie will continue to exist in as close to its original form as possible.

For many years the term "preservation" was synonymous with "duplication" of film. The goal of a preservationist was to create a durable copy without any significant loss of quality. In more modern terms, film preservation includes the concepts of handling, duplication, storage, and access. The archivist seeks to protect the film and share its content with the public.

Film preservation is not to be confused with film revisionism, in which long-completed films are modified with the insertion of outtakes or new musical scores, the addition of sound effects, black-and-white film being colorized, older soundtracks converted to Dolby stereo, or minor edits and other cosmetic changes being made.

By the 1980s, it was becoming apparent that the collections of motion picture heritage were at risk of becoming lost. Not only was the preservation of nitrate film an ongoing problem, but it was then discovered that safety film, used as a replacement for the more volatile nitrate stock, was beginning to be affected by a unique form of decay known as "vinegar syndrome", and color film manufactured, in particular, by Eastman Kodak, was found to be at risk of fading. At that time, the best-known solution was to duplicate the original film onto a more secure medium.

A common estimate is that 90 percent of all American silent films made before 1920 and 50 percent of American sound films made before 1950 are lost films.

Although institutional practices of film preservation date back to the 1930s, the field received an official status only in 1980, when UNESCO recognized "moving images" as an integral part of the world's cultural heritage.

The problem of film decay

Simulation of a film archive: the shelves have been left almost empty to help visitors better visualize the gap between the number of surviving films and the number of films actually made. Museum of Film and Television Berlin, Deutsche Kinemathek

The great majority of films made in the silent era are now considered to be lost forever. Movies of the first half of the 20th century were filmed on an unstable, highly flammable cellulose nitrate film base, which required careful storage to slow its inevitable process of decomposition over time. Most films made on nitrate stock were not preserved; over the years, their negatives and prints crumbled into powder or dust. Many of them were recycled for their silver content, or destroyed in studio or vault fires. The largest cause, however, was intentional destruction. As film preservationist Robert A. Harris explains, "Most of the early films did not survive because of wholesale junking by the studios. There was no thought of ever saving these films. They simply needed vault space and the materials were expensive to house." Silent films had little or no commercial value after the advent of sound films in the 1930s, and as such, they were not kept. As a result, preserving the now-rare silent films has been proposed as a high priority amongst film historians.

Because of the fragility of film stock, proper preservation of film usually involves storing the original negatives (if they have survived) and prints in climate-controlled facilities. The vast majority of films were not stored in this manner, which resulted in the widespread decay of film stocks.

The problem of film decay is not limited to films made on cellulose nitrate. Film industry researchers and specialists have found that color films (made using processes for Technicolor and its successors) are also decaying at an increasingly rapid rate. A number of well-known films only exist as copies of original film productions or exhibition elements because the originals have decomposed beyond use. Cellulose acetate film, which was the initial replacement for nitrate, has been found to suffer from "vinegar syndrome". Polyester film base, which replaced acetate, also suffers from fading colors.

Storage at carefully controlled low temperatures and low humidity can inhibit both color fading and the onset of vinegar syndrome. However, once degradation begins to occur, the chemical reactions involved will promote further deterioration. "There is no indication that we will ever find a way to arrest decomposition once it has started. All we can do is inhibit it," says the director of the AMIA (Association of Moving Image Archivists) board, Leo Enticknap.

Film decay as an art form

In 2002, filmmaker Bill Morrison produced Decasia, a film solely based on fragments of old unrestored nitrate-based films in various states of decay and disrepair, providing a somewhat eerie aesthetic to the film. The film was created to accompany a symphony of the same name, composed by Michael Gordon and performed by his orchestra. The footage used was from old newsreel and archive film and was obtained by Morrison from several sources, such as the George Eastman House, the archives of the Museum of Modern Art, and the Fox Movietone News film archives at the University of South Carolina.

Preservation through careful storage

Packard Humanities Institute, Santa Clarita, Nitrate film Film Vault

The preservation of film usually refers to physical storage of the film in a climate-controlled vault, and sometimes to the actual repair and copying of the film element. Preservation is different from restoration, as restoration is the act of returning the film to a version most faithful to its initial release to the public and often involves combining various fragments of film elements.

Film is best preserved by proper protection from external forces while in storage along with being under controlled temperatures. For most film materials, the Image Permanence Institute finds that storing film media in frozen temperatures, with relative humidity (RH) between 30% and 50%, greatly extends its useful life. These measures inhibit deterioration better than any other methods and are a cheaper solution than replicating deteriorating films.

Preparing a film for preservation and restoration

In most cases, when a film is chosen for preservation or restoration work, new prints are created from the original camera negative or from a composite restoration negative, which can be made from a combination of elements for general screening. It is therefore particularly important to keep camera negatives or digital masters under safe storage conditions.

The original camera negative is the remaining, edited, film negative that passed through the camera on the set. This original camera negative may, or may not, remain in original release form, depending upon number of subsequent re-releases after the initial release for theatrical exhibition. Restorers sometimes create a composite negative (or composite dupe) by recombining duplicated sections of the best remaining material, sometimes on "a shot-to-shot, frame-by-frame basis" to approximate the original configuration of the original camera negative at some time in the film's release cycle.

In traditional photochemical restorations, image polarity considerations must be observed when recombining surviving materials and the final, lowest generation restoration master may be either a duplicate negative or a fine grain master positive. Preservation elements, such as fine-grain master positives and duplicate printing negatives, are generated from this restoration master element to make both duplication masters and access projection prints available for future generations.

Choosing an archival medium

Film as an archival medium

Film preservationists would prefer that the film images, whether restored through photochemical or digital processes, be eventually transferred to other film stock, because no digital media exists that has proven truly archival because of rapidly evolving and shifting data formats, while a well-developed and stored, modern film print can last upwards of 100 years.

While some in the archival community feel that conversion from film to a digital image results in a loss of quality that can make it more difficult to create a high-quality print based upon the digital image, digital imaging technology has become increasingly advanced to the point where 8K scanners can capture the full resolution of images filmed at as high as 65mm. 70mm IMAX film has a theoretical resolution of 18K, the highest possible resolution given the sensor.

Of course, having an intermediate digital stage, followed by forming a new film master by lasering the digital results onto new film stock does represent an extra generation. So would an intermediate film master that was restored frame-by-frame by hand. The choice of film vs. digital restoration will be driven by the amount, if any, of restoration required, the taste and skill set of the restorer, and the economics of film restoration vs. digital restoration.

Digital as an archival medium

As of 2014, digital scanners can capture images as large as 65mm in full resolution. That is the typical image size on a traditional (as opposed to the IMAX process) 70mm film which used a portion of the film surface for its multitrack magnetic sound stripe. The cost of a 70mm print of a two and a half hour film as of 2012 ran upwards of $170,000; while a hard disk capable of storing such a movie typically cost a few hundred dollars, with an archival optical disk even less. The problem of having to transfer the data as new generations of equipment come along will continue, however, until true archival standards are put in place.

Digital film preservation

In the context of film preservation, the term "digital preservation" highlights the use of digital technology for the transfer of films from 8mm to 70mm in size to digital carriers, as well as all practices for ensuring the longevity and access to digitized or digitally born film materials. On purely technical and practical terms, digital film preservation stands for a domain specific subset of digital curation practices.

The aesthetic and ethical implications of the use of digital technology for film preservation are major subjects of debate. For instance, the senior curator of George Eastman House Paolo Cherchi Usai has decried the shift from analogue to digital preservation of film as ethically unacceptable, arguing, on philosophical terms, that the medium of film is an essential ontological precondition for the existence of cinema. In 2009, the senior curator of EYE Film Institute Netherlands Giovanna Fossati has discussed the use of digital technologies for the restoration and preservation of film in a more optimistic way as a form of remediation of the cinematic medium, and has positively reflected on digital technologies' ability to broaden restoration possibilities, improve quality, and reduce costs. According to the cinema scholar Leo Enticknap, the views held by Usai and Fossati could be seen as representative of the two poles of the digital debate in film preservation. It should be kept in mind, however, that both Usai and Fossati's arguments are highly complex and nuanced, and likewise, the debate about the utility of digital technologies in film preservation is complex and continually evolving.

Advancements

In 1935, New York's Museum of Modern Art began one of the earliest institutional attempts to collect and preserve motion pictures, obtaining original negatives of the Biograph and Edison companies and the world's largest collection of D. W. Griffith films. The following year, Henri Langlois founded the Cinémathèque Française in Paris, which would become the world's largest international film collection.

For thousands of early silent films stored in the Library of Congress, mostly between 1894 and 1912, the only existing copies were printed on rolls of paper submitted as copyright registrations. For these, an optical printer was used to copy these images onto safety film stock, a project that began in 1947 and continues today. The Library hosts the National Film Preservation Board, whose National Film Registry annually selects 25 U.S. films "showcasing the range and diversity of American film heritage". The George Eastman House International Museum of Photography and Film was chartered in 1947 to collect, preserve and present the history of photography and film, and in 1996 opened the Louis B. Mayer Conservation Center, one of only four film conservation centers in the United States. The American Film Institute was founded in 1967 to train the next generation of filmmakers and preserve the American film heritage. Its collection now includes over 27,500 titles.

In 1978, Dawson City, Yukon Territory, Canada, a construction excavation inadvertently found a forgotten collection of more than 500 discarded films from the early 20th century that were buried in and preserved in the permafrost. This fortunate discovery was shared and moved to the United States' Library of Congress and Library and Archives Canada for transfer to safety stock and archiving. However, to move such highly flammable material such a distance ultimately required assistance from the Canadian Armed Forces to make the delivery to Ottawa. The story of this discovery as well as excerpts of these films can be seen in the 2016 documentary film Dawson City: Frozen Time.

Another high-profile restoration by staff at the British Film Institute's National Film and Television Archive is the Mitchell and Kenyon collection, which consists almost entirely of actuality films commissioned by traveling fairground operators for showing at local fairgrounds or other venues across the UK in the early part of the twentieth century. The collection was stored for many decades in two large barrels following the winding-up of the firm, and was discovered in Blackburn in the early 1990s. The restored films now offer a unique social record of early 20th-century British life.

Individual preservationists who have contributed to the cause include Robert A. Harris and James Katz (Lawrence of Arabia, My Fair Lady, and several Alfred Hitchcock films), Michael Thau (Superman), and Kevin Brownlow (Intolerance and Napoleon). Other organizations, such as the UCLA Film and Television Archive, have also preserved and restored films; a major part of UCLA's work includes such projects as Becky Sharp and select Paramount/Famous Studios and Warner Bros. cartoons whose credits were once altered due to rights taken over by different entities.

Studio efforts

In 1926 Will Hays asked for film studios to preserve their films by storing them at 40 degrees at low humidity in an Eastman Kodak process, so that "schoolboys in the year 3,000 and 4,000 A.D. may learn about us".

Beginning in the 1970s, Metro-Goldwyn-Mayer, aware that the original negatives to many of its Golden Age films had been destroyed in a fire, began a preservation program to restore and preserve all of its films by using whatever negatives survived, or, in many cases, the next best available elements (whether it be a fine-grain master positive or mint archival print). From the onset, it was determined that if some films had to be preserved, then it would have to be all of them. In 1986, when Ted Turner acquired MGM's library (which by then had included Warner Bros.' pre-1950, MGM's pre-May 1986, and a majority of the RKO Radio Pictures catalogs), he vowed to continue the preservation work MGM had started. Time Warner, the current owner of Turner Entertainment, continues this work today.

The cause for film preservation came to the forefront in the 1980s and early 1990s when such famous and influential film directors as Steven Spielberg and Martin Scorsese contributed to the cause. Spielberg became interested in film preservation when he went to view the master of his film Jaws, only to find that it had badly decomposed and deteriorated—a mere fifteen years after it had been filmed. Scorsese drew attention to the film industry's use of color-fading film stock through his use of black-and-white film stock in his 1980 film Raging Bull. His film, Hugo included a key scene in which many of film pioneer Georges Méliès' silent films are melted down and the raw material recycled as shoes; this was seen by many movie critics as "a passionate brief for film preservation wrapped in a fanciful tale of childhood intrigue and adventure".

Scorsese's concern about the need to save motion pictures of the past led him to create The Film Foundation, a non-profit organization dedicated to film preservation, in 1990. He was joined in this effort by fellow film makers who served on the foundation's board of directors—Woody Allen, Robert Altman, Francis Ford Coppola, Clint Eastwood, Stanley Kubrick, George Lucas, Sydney Pollack, Robert Redford, and Steven Spielberg. In 2006, Paul Thomas Anderson, Wes Anderson, Curtis Hanson, Peter Jackson, Ang Lee, and Alexander Payne were added to the board of directors of The Film Foundation, which is aligned with the Directors Guild of America.

By working in partnership with the leading film archives and studios, The Film Foundation has saved nearly 600 films, often restoring them to pristine condition. In many cases, original footage that had been excised—or censored by the Production Code in the U.S.—from the original negative, has been reinstated. In addition to the preservation, restoration, and presentation of classic cinema, the foundation teaches young people about film language and history through The Story of Movies, an educational program claimed to be "used by over 100,000 educators nationwide".

In the age of digital television, high-definition television and DVD, film preservation and restoration has taken on commercial as well as historical importance, since audiences demand the highest possible picture quality from digital formats. Meanwhile, the dominance of home video and ever-present need for television broadcasting content, especially on specialty channels, has meant that films have proven a source of long-term revenue to a degree that the original artists and studio management before the rise of these media never imagined. Thus media companies have a strong financial incentive to carefully archive and preserve their complete library of films.

Video Aids to Film Preservation

The group Video Aids to Film Preservation (VAFP) became active on the Internet in 2005.

The VAFP site was funded as part of a 2005 Institute of Museum and Library Services (IMLS) grant to the Folkstreams project. The purpose of the site is to supplement already existing film preservation guides provided by the National Film Preservation Foundation with video demonstrations. The preservation guides provided by the origination, while thoroughly depicting accurate methods of preservation, are mostly text-based. The films and clips are copyrighted under the Creative Commons license, which allows anyone to use these clips with attribution—in this case, attribution to the VAFP site and to the author of the clip and his company.

Obstacles in restoration

Regardless of the age of the print itself, damage may occur if stored improperly. Damage to the film (caused by tears on the print, curling of the film base due to intense light exposure, temperature, humidity, etc.) can significantly raise the difficulty and the cost of preservation processes. Many films simply do not have enough information left on the film to piece together a new master, although careful digital restoration can produce stunning results by gathering bits and pieces of buildings from adjacent frames for restoration on a damaged frame, predicting entire frames based on the characters' movements in prior and subsequent frames, etc. As time goes on, this digital capability will only improve, but it will ultimately require sufficient information from the original film to make proper restorations and predictions.

Cost is another obstacle. As of 2020, Martin Scorsese's non-profit The Film Foundation, dedicated to film preservation, estimates the average cost of photochemical restoration of a color feature with sound to be $80,000 to $450,000 dollars, with digital 2K or 4K restoration being "several hundred thousand dollars". The degrees of physical and chemical damage of film influence the incentive to preserve, i.e., as the business perspective states that once a film is no longer "commercially" viable, it stops generating profit and becomes a financial liability. While few films would not benefit from digital restoration, the high cost of digitally restoring films still prevents the method from being as broadly applied as it might be.

Demand for new media, digital cinema, and constantly evolving consumer digital formats continues to change. Film restoration facilities must keep pace to maintain audience acceptance. Classic films today must be in near-mint condition if they are to be reshown or resold, with the demand for perfection only rising as theaters move from 2K to 4K projection and consumer media continues its shift from SD to HD to UltraHD and beyond.

Digital restoration steps

Once a film is inspected and cleaned, it is transferred via telecine or a motion picture film scanner to a digital tape or disk, and the audio is synced to create a new master.

Common defects needing restoration include:

  • Dirt/dust
  • Scratches, tears, burned frames
  • Color fade, color change
  • Excessive film grain (a copy of an existing film has all of the film grain from the original as well as the film grain in the copy)
  • Missing scenes and sound (censored or edited out for re-release or television broadcast)
  • Shrinkage

Modern, digital film restoration takes the following steps:

  1. Expertly clean the film of dirt and dust.
  2. Repair all film tears with clear polyester tape or splicing cement.
  3. Scan each frame into a digital file.
  4. Restore the film frame by frame by comparing each frame to adjacent frames. This can be done somewhat by computer algorithms with human checking of the result.
    1. Fix frame alignment ("jitter" and "weave"), or the misalignment of adjacent film frames due to movement of film within the sprockets. This corrects the issue where the holes on each side of a frame are distorted over time. This causes frames to slightly be off center.
    2. Fix color and lighting changes. This corrects flickering and slight color changes from one frame to another due to aging of the film.
    3. Restore areas blocked by dirt and dust by using parts of images in other frames.
    4. Restore scratches by using parts of images in other frames.
    5. Enhance frames by reducing film grain noise. Film foreground/background detail about the same size as the film grain or smaller is blurred or lost in making the film. Comparing a frame with adjacent frames allows detail information to be reconstructed since a given small detail may be split between more film grains from one frame to another.

Photochemical restoration steps

Modern, photochemical restoration follows roughly the same path that digital restoration does:

  1. Extensive research is done to determine what version of the film can be restored from the existing material. Often, extensive efforts are taken to search out alternative material in film archives located around the world.
  2. A comprehensive restoration plan is mapped that allows preservationists to designate elements as "key" elements upon which to base the polarity map for the ensuing photochemical work. Since many alternative elements are actually salvaged from release prints and duplication masters (foreign and domestic). Care must be taken to plot the course at which negative, master positive and release print elements arrive back at a common polarity (i.e., negative or positive) for assembly and subsequent printing.
  3. Test prints are struck from existing elements to evaluate contrast, resolution, color (if color) and sound quality (if audio element exists).
  4. Elements are duplicated using the shortest possible duplication path to minimize analog duplication artifacts, such as the build-up of contrast, grain and loss of resolution.
  5. All sources are assembled into a single master restoration element (most often a duplicate negative).
  6. From this master restoration element, duplication masters, such as composite fine grain masters, are generated to be used to generate additional printing negatives from which actual release prints can be struck for festival screenings and DVD mastering.

Education

The practice of film preservation is more craft than science. Until the early 1990s there were no dedicated academic programs in film preservation. Practitioners had often entered the field through related education (e.g. library or archival science), related technical experience (e.g. film lab work), or driven by sheer passion for working with film.

In the last two decades universities globally began offering graduate degrees in film preservation and film archiving, which are often taught conjointly (the latter focusing more on skills related to the description, cataloguing, indexing and broadly speaking management of film and media collections).

The recent years rapid incursion of digital technologies in the field has somewhat redefined the vocational scope of film preservation. In response, the majority of graduate programs in film preservation have begun offering courses on digital film preservation and digital film and media collection management.

Some established graduate programs in the field are:

Butane

From Wikipedia, the free encyclopedia ...