Search This Blog

Thursday, November 3, 2022

Alcohol-related dementia

From Wikipedia, the free encyclopedia

Alcohol-related dementia (ARD) is a form of dementia caused by long-term, excessive consumption of alcoholic beverages, resulting in neurological damage and impaired cognitive function.

Terminology

Alcohol-related dementia is a broad term currently preferred among medical professionals. If a person has alcohol-related ‘dementia’ they will struggle with day-to-day tasks. This is because of the damage to their brain, caused by regularly drinking too much alcohol over many years.  This affects memory, learning and other mental functions. Korsakoff’s syndrome and Wernicke-Korsakoff syndrome are particular forms of alcohol related brain injury which may be related to alcohol related dementia. Many experts use the terms alcohol (or alcoholic) dementia to describe a specific form of ARD, characterized by impaired executive function (planning, thinking, and judgment). Another form of ARD is known as wet brain (Wernicke–Korsakoff syndrome), characterized by short-term memory loss and thiamine (vitamin B1) deficiency. ARD patients often have symptoms of both forms, i.e. impaired ability to plan, apathy, and memory loss. ARD may occur with other forms of dementia (mixed dementia). The diagnosis of ARD is widely recognized but rarely applied, due to a lack of specific diagnostic criteria.

On many non-medical websites, the terms wet brain and alcohol-related dementia are often used interchangeably, creating significant confusion. Additionally, the term alcohol-induced persistent dementia is another nonspecific name that is sometimes used.

Signs and symptoms

Alcohol-related dementia presents as a global deterioration in intellectual function with memory not being specifically affected, but it may occur with other forms of dementia, resulting in a wide range of symptoms. Certain individuals with alcohol-related dementia present with damage to the frontal lobes of their brain causing disinhibition, loss of planning and executive functions, and a disregard for the consequences of their behavior. Other types of alcohol-related dementia such as Wernicke encephalopathy cause the destruction of certain areas of the brain, where changes in memory, primarily a loss of short-term memory, are the main symptom. Most presentations of alcohol dementia are somewhere along the spectrum between a global dementia and Korsakoff's psychosis, and may include symptoms of both.

Individuals affected by alcohol-related dementia may develop memory problems, language impairment, and an inability to perform complex motor tasks such as getting dressed. Heavy alcohol consumption also damages the nerves in arms and legs, i.e. peripheral neuropathy, as well as the cerebellum that controls coordination thereby leading to the development of cerebellar ataxia. These patients frequently have problems with sensation in their extremities and may demonstrate unsteadiness on their feet.

Alcohol-related dementia can produce a variety of psychiatric problems including psychosis (disconnection from reality), depression, anxiety, and personality changes. Patients with alcoholic dementia often develop apathy, related to frontal lobe damage, that may mimic depression. People with an alcohol use disorder are more likely to become depressed than people without alcohol use disorder, and it may be difficult to differentiate between depression and alcohol dementia.

Pathophysiology

Epidemiological studies show an association between long-term alcohol intoxication and dementia. Alcohol can damage the brain directly as a neurotoxin, or it can damage it indirectly by causing malnutrition, primarily a loss of thiamine (vitamin B1). Alcohol use disorder is common in older persons, and alcohol-related dementia is under-diagnosed.

Diagnosis

The signs and symptoms of alcohol-related dementia are essentially the same as the symptoms present in other types of dementia, making alcohol-related dementia difficult to diagnose. There are very few qualitative differences between alcohol dementia and Alzheimer's disease and it is therefore difficult to distinguish between the two. Some of these warning signs may include memory loss, difficulty performing familiar tasks, poor or impaired judgment and problems with language. However the biggest indicator is friends or family members reporting changes in personality.

A simple test for intellectual function, like the Folstein Mini-Mental Status Examination, is the minimum screen for dementia. The test requires 15–20 minutes to administer and is available in mental health centers.

Diagnosing alcohol-related dementia can be difficult due to the wide range of symptoms and a lack of specific brain pathology. The Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) is a guide to aid doctors in diagnosing a range of psychiatric disorders, and may be helpful in diagnosing dementia.

Diagnostic criteria

The existence of alcohol-related dementia is widely acknowledged but not often used as a diagnosis, due to a lack of widely accepted, non-subjective diagnostic criteria; more research is needed. Criteria for alcohol-induced persistent dementia in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) include the following:

A. The development of multiple cognitive deficits manifested by both:
  1. Memory impairment (impaired ability to learn new information or to recall previously learned information)
  2. One (or more) of the following cognitive disturbances:
  • (a) Aphasia (language disturbance)
  • (b) Apraxia (impaired ability to carry out motor activities despite intact motor function)
  • (c) Agnosia (failure to recognize or identify objects despite intact sensory function)
  • (d) Disturbance in executive functioning (i.e. planning, organizing, sequencing, abstracting)
B. The cognitive deficits in criteria A1 and A2 each cause significant impairment in social or occupational functioning and represent a significant decline from a previous level of functioning.
C. The deficits do not occur exclusively during the course of a delirium and persist beyond the usual duration of substance intoxication or withdrawal.
D. There is evidence from the history, physical examination, or laboratory findings that deficits are etiologically related to the persisting effects of substance use.

There are problems with DSM diagnostic criteria. First, they are vague and subjective. Furthermore, the criteria for diagnosis of dementia were inspired by the clinical presentation of Alzheimer's disease and are poorly adapted to the diagnosis of other dementias. This has led to efforts to develop better diagnostic models.

Oslin (Int J Geriatr Psychiatry 1998) proposed alternative clinical diagnostic criteria which were validated. The criteria include a clinical diagnosis of dementia at least 60 days after last exposure to alcohol, significant alcohol use (i.e. minimum 35 standard drinks/week for males and 28 for women) for more than five years, and significant alcohol use occurring within three years of the initial onset of cognitive deficits. Oslin proposed the new and refined diagnostic criteria for alcohol-related dementia because he hoped that the redefined classification system would bring more awareness and clarity to the relationship between alcohol use and dementia.

Oslin's proposed classification of ARD:

  • Definite alcohol-related dementia

At the current time there are no acceptable criteria to definitively define alcohol-related dementia.

  • Probable alcohol-related dementia
A. The criteria for the clinical diagnosis of probable alcohol-related dementia include the following:
  1. A clinical diagnosis of dementia at least 60 days after the last exposure to alcohol.
  2. Significant alcohol use as defined by a minimum average of 35 standard drinks per week for men (28 for women) for greater than a period of five years. The period of significant alcohol use must occur within three years of the initial onset of dementia.
B. The diagnosis of alcohol-related dementia is supported by the presence of any of the following
  1. Alcohol related hepatic, pancreatic, gastrointestinal, cardiovascular, or renal disease i.e. other end-organ damage.
  2. Ataxia or peripheral sensory polyneuropathy (not attributed to other causes).
  3. Beyond 60 days of abstinence, the cognitive impairment stabilizes or improves.
  4. After 60 days of abstinence, any neuroimaging evidence of ventricular or sulcal dilatation improves.
  5. Neuroimaging evidence of cerebellar atrophy, especially in the vermis.
C. The following clinical features cast doubt on the diagnosis of alcohol-related dementia
  1. The presence of language impairment, especially dysnomia or anomia.
  2. the presence of focal neurologic signs or symptoms (except ataxia or peripheral sensory polyneuropathy).
  3. Neuroimaging evidence for cortical or subcortical infarction, subdural hematoma, or other focal brain pathology.
  4. Elevated Hachinski Ischemia Scale score.
D. Clinical features that are neither supportive nor cast doubt on the diagnosis of alcohol-related dementia included:
  1. Neuroimaging evidence of cortical atrophy.
  2. The presence of periventricular or deep white matter lesions on neuroimaging in the absence of focal infarct(s).
  3. The presence of the Apolipoprotein c4 allele.

Treatment

ARD is treated with abstinence from further alcohol consumption.

Prognosis

Multiple withdrawals and binge drinking may significantly exacerbate cognitive deficits. Older individuals are at greater risk of cognitive changes.

Recovery

Following abstinence, many deficits often resolve rapidly (in as little as a week). Further gradual recovery of cognitive abilities may take place over several years. Executive function, working memory, perceptual impairment, and motor impairments often persist after short-term abstinence. Recovery of cognitive skills appears correlated to recent intake levels and duration of abstinence, rather than to lifetime cumulative alcohol intake.

Older individuals are less likely to recover completely following cessation of alcohol intake.

Epidemiology

The onset of alcohol dementia can occur as early as age 30, although it is far more common that the dementia will reveal itself anywhere from age 50 to 70. The onset and the severity of this type of dementia is directly correlated to the amount of alcohol that a person consumes over their lifetime.

Sex appears to be a risk factor for cognitive impairment, with females being more susceptible despite lower alcohol intake.

A French study, looking at other studies of thousands of subjects, found that moderate alcohol consumption (up to four glasses of wine per week) was associated with lower levels of dementia, and vice versa. There is insufficient evidence to assume that alcohol is protective against dementia at any level of intake; some studies found the opposite effect, and the quality of evidence from current epidemiological studies is poor overall (since observational studies assessing health effects of alcohol intake cannot adequately control for confounding factors).

Notable cases

According to her family, the socialite Leonore Lemmon (fiancée of George Reeves) spent the last few years of her life with alcohol dementia, before dying in 1989.

The Australian entertainer and "King of Comedy" Graham Kennedy had alcohol-related dementia at time of his death in 2005.

Neurodegenerative disease

From Wikipedia, the free encyclopedia

Neurodegenerative disease
Alzheimer's disease brain comparison.jpg
Normal brain on left contrasted with structural changes shown in brain on right of person with Alzheimer's disease, the most common neurodegenerative disease
SpecialtyNeurology, Psychiatry

A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies (like proteinopathy) and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.

Within neurodegenerative diseases, it is estimated that 55 million people worldwide had dementia in 2019, and that by 2050 this figure will increase to 139 million people.

Specific disorders

Alzheimer's disease

Comparison of brain tissue between healthy individual and Alzheimer's disease patient, demonstrating extent of neuronal death
 

Alzheimer's disease (AD) is a chronic neurodegenerative disease that results in the loss of neurons and synapses in the cerebral cortex and certain subcortical structures, resulting in gross atrophy of the temporal lobe, parietal lobe, and parts of the frontal cortex and cingulate gyrus. It is the most common neurodegenerative disease. Even with billions of dollars being used to find a treatment for Alzheimer's disease, no effective treatments have been found. However, clinical trials have developed certain compounds that could potentially change the future of Alzheimer's disease treatments. Currently, diagnoses of Alzheimer's is subpar, and better methods need to be utilized for various aspects of clinical diagnoses. Alzheimer's has a 20% misdiagnosis rate.

AD pathology is primarily characterized by the presence of amyloid plaques and neurofibrillary tangles. Plaques are made up of small peptides, typically 39–43 amino acids in length, called amyloid beta (also written as A-beta or Aβ). Amyloid beta is a fragment from a larger protein called amyloid precursor protein (APP), a transmembrane protein that penetrates through the neuron's membrane. APP appears to play roles in normal neuron growth, survival and post-injury repair. APP is cleaved into smaller fragments by enzymes such as gamma secretase and beta secretase. One of these fragments gives rise to fibrils of amyloid beta which can self-assemble into the dense extracellular amyloid plaques.

Parkinson's disease

Parkinson's disease (PD) is the second most common neurodegenerative disorder. It typically manifests as bradykinesia, rigidity, resting tremor and posture instability. The crude prevalence rate of PD has been reported to range from 15 per 100,000 to 12,500 per 100,000, and the incidence of PD from 15 per 100,000 to 328 per 100,000, with the disease being less common in Asian countries.

PD is primarily characterized by death of dopaminergic neurons in the substantia nigra, a region of the midbrain. The cause of this selective cell death is unknown. Notably, alpha-synuclein-ubiquitin complexes and aggregates are observed to accumulate in Lewy bodies within affected neurons. It is thought that defects in protein transport machinery and regulation, such as RAB1, may play a role in this disease mechanism. Impaired axonal transport of alpha-synuclein may also lead to its accumulation in Lewy bodies. Experiments have revealed reduced transport rates of both wild-type and two familial Parkinson's disease-associated mutant alpha-synucleins through axons of cultured neurons. Membrane damage by alpha-synuclein could be another Parkinson's disease mechanism.

The main known risk factor is age. Mutations in genes such as α-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2), glucocerebrosidase (GBA), and tau protein (MAPT) can also cause hereditary PD or increase PD risk. While PD is the second most common neurodegenerative disorder, problems with diagnoses still persist. Problems with the sense of smell is a widespread symptom of Parkinson's disease (PD), however, some neurologists question its efficacy. This assessment method is a source of controversy among medical professionals. The gut microbiome might play a role in the diagnosis of PD, and research suggests various ways that could revolutionize the future of PD treatment.

Huntington's disease

Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by mutations in the huntingtin gene (HTT). HD is characterized by loss of medium spiny neurons and astrogliosis. The first brain region to be substantially affected is the striatum, followed by degeneration of the frontal and temporal cortices. The striatum's subthalamic nuclei send control signals to the globus pallidus, which initiates and modulates motion. The weaker signals from subthalamic nuclei thus cause reduced initiation and modulation of movement, resulting in the characteristic movements of the disorder, notably chorea. Huntington's disease presents itself later in life even though the proteins that cause the disease works towards manifestation from their early stages in the humans affected by the proteins. Along with being a neurodegenerative disorder, HD has links to problems with neurodevelopment.

HD is caused by polyglutamine tract expansion in the huntingtin gene, resulting in the mutant huntingtin. Aggregates of mutant huntingtin form as inclusion bodies in neurons, and may be directly toxic. Additionally, they may damage molecular motors and microtubules to interfere with normal axonal transport, leading to impaired transport of important cargoes such as BDNF. Huntington's disease currently has no effective treatments that would modify the disease.

Multiple sclerosis

Multiple sclerosis (MS) is a chronic debilitating demyelinating disease of the central nervous system, caused by an autoimmune attack resulting in the progressive loss of myelin sheath on neuronal axons. The resultant decrease in the speed of signal transduction leads to a loss of functionality that includes both cognitive and motor impairment depending on the location of the lesion. The progression of MS occurs due to episodes of increasing inflammation, which is proposed to be due to the release of antigens such as myelin oligodendrocyte glycoprotein, myelin basic protein, and proteolipid protein, causing an autoimmune response. This sets off a cascade of signaling molecules that result in T cells, B cells, and Macrophages to cross the blood-brain barrier and attack myelin on neuronal axons leading to inflammation. Further release of antigens drives subsequent degeneration causing increased inflammation. Multiple sclerosis presents itself as a spectrum based on the degree of inflammation, a majority of patients experience early relapsing and remitting episodes of neuronal deterioration following a period of recovery. Some of these individuals may transition to a more linear progression of the disease, while about 15% of others begin with a progressive course on the onset of Multiple sclerosis. The inflammatory response contributes to the loss of the grey matter, and as a result current literature devotes itself to combatting the auto-inflammatory aspect of the disease. While there are several proposed causal links between EBV and the HLA-DRB1*15:01 allele to the onset of MS – they may contribute to the degree of autoimmune attack and the resultant inflammation – they do not determine the onset of MS.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) or Lou Gehrig's disease is a disease in which motor neurons are selectively targeted for degeneration. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that negatively impacts the upper motor neurons (UMNs) and lower motor neurons (LMNs). In 1993, missense mutations in the gene encoding the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD1) were discovered in a subsets of patients with familial ALS. This discovery led researchers to focus on unlocking the mechanisms for SOD1-mediated diseases. However, the pathogenic mechanism underlying SOD1 mutant toxicity has yet to be resolved. More recently, TDP-43 and FUS protein aggregates have been implicated in some cases of the disease, and a mutation in chromosome 9 (C9orf72) is thought to be the most common known cause of sporadic ALS. It is diagnosed by skeletal muscle weakness that progresses gradually. Early diagnosis of ALS is harder than with other neurodegenerative diseases as there are no highly effective means of determining its early onset. Currently, there is research being done regarding the diagnosis of ALS through upper motor neuron tests. The Penn Upper Motor Neuron Score (PUMNS) consists of 28 criteria with a score range of 0-32. A higher score indicates a higher level of burden present on the upper motor neurons. The PUMNS has proven quite effective in determining the burden that exists on upper motor neurons in affected patients.

Independent research provided in vitro evidence that the primary cellular sites where SOD1 mutations act are located on astrocytes. Astrocytes then cause the toxic effects on the motor neurons. The specific mechanism of toxicity still needs to be investigated, but the findings are significant because they implicate cells other than neuron cells in neurodegeneration.

Batten disease

Batten disease is a rare and fatal recessive neurodegenerative disorder that begins in childhood. Batten disease is the common name for a group of lysosomal storage disorders known as neuronal ceroid lipofuscinoses (NCLs) – each caused by a specific gene mutation, of which there are thirteen. Since Batten disease is quite rare, its worldwide prevalence is about 1 in every 100,000 live births. In North America, CLN3 disease (juvenile NCL) typically manifests between the ages of 4 to 7. Batten disease is characterized by motor impairment, epilepsy, dementia, vision loss, and shortened lifespan. A loss of vision is common first sign of Batten disease. Loss of vision is typically preceded by cognitive and behavioral changes, seizures, and loss of the ability to walk. It is common for people to establish cardiac arrhythmias and difficulties eating food as the disease progresses. Batten disease diagnosis depends on a conflation of many criteria: clinical signs and symptoms, evaluations of the eye, electroencephalograms (EEG), and brain magnetic resonance imaging (MRI) results. The diagnosis provided by these results are corroborated by genetic and biochemical testing. No effective treatments were available to prevent the disease from being widespread before the past few years. In recent years, more models have been created to expedite the research process for methods to treat Batten disease.

Creutzfeldt–Jakob disease

Creutzfeldt–Jakob disease (CJD) is a prion disease that is characterized by rapidly progressive dementia. Abnormal proteins called prions aggregate in brain tissue leading to nerve cell death. Prions are misfolded PRNP proteins. They are also infectious. Variant Creutzfeldt–Jakob disease (vCJD) is the infectious form that comes from the meat of a cow that was infected with bovine spongiform encephalopathy, also called mad cow disease.

Risk factor

The greatest risk factor for neurodegenerative diseases is aging. Mitochondrial DNA mutations as well as oxidative stress both contribute to aging. Many of these diseases are late-onset, meaning there is some factor that changes as a person ages for each disease. One constant factor is that in each disease, neurons gradually lose function as the disease progresses with age. It has been proposed that DNA damage accumulation provides the underlying causative link between aging and neurodegenerative disease. About 20–40% of healthy people between 60 and 78 years old experience discernable decrements in cognitive performance in several domains including working, spatial, and episodic memory, and processing speed.

Mechanisms

Genetics

Many neurodegenerative diseases are caused by genetic mutations, most of which are located in completely unrelated genes. In many of the different diseases, the mutated gene has a common feature: a repeat of the CAG nucleotide triplet. CAG codes for the amino acid glutamine. A repeat of CAG results in a polyglutamine (polyQ) tract. Diseases associated with such mutations are known as trinucleotide repeat disorders.

Polyglutamine repeats typically cause dominant pathogenesis. Extra glutamine residues can acquire toxic properties through a variety of ways, including irregular protein folding and degradation pathways, altered subcellular localization, and abnormal interactions with other cellular proteins. PolyQ studies often use a variety of animal models because there is such a clearly defined trigger – repeat expansion. Extensive research has been done using the models of nematode (C. elegans), and fruit fly (Drosophila), mice, and non-human primates.

Nine inherited neurodegenerative diseases are caused by the expansion of the CAG trinucleotide and polyQ tract, including Huntington's disease and the spinocerebellar ataxias.

Epigenetics

The presence of epigenetic modifications for certain genes has been demonstrated in this type of pathology. An example is FKBP5 gene, which progressively increases its expression with age and has been related to Braak staging and increased tau pathology both in vitro and in mouse models of AD.

Protein misfolding

Several neurodegenerative diseases are classified as proteopathies as they are associated with the aggregation of misfolded proteins. Protein toxicity is one of the key mechanisms of many neurodegenrative diseases.

Intracellular mechanisms

Protein degradation pathways

Parkinson's disease and Huntington's disease are both late-onset and associated with the accumulation of intracellular toxic proteins. Diseases caused by the aggregation of proteins are known as proteopathies, and they are primarily caused by aggregates in the following structures:ytosol, e.g. Parkinson's and Huntington's

  • nucleus, e.g. Spinocerebellar ataxia type 1 (SCA1)
  • endoplasmic reticulum (ER), (as seen with neuroserpin mutations that cause familial encephalopathy with neuroserpin inclusion bodies)
  • extracellularly excreted proteins, amyloid-beta in Alzheimer's disease

There are two main avenues eukaryotic cells use to remove troublesome proteins or organelles:

  • ubiquitin–proteasome: protein ubiquitin along with enzymes is key for the degradation of many proteins that cause proteopathies including polyQ expansions and alpha-synucleins. Research indicates proteasome enzymes may not be able to correctly cleave these irregular proteins, which could possibly result in a more toxic species. This is the primary route cells use to degrade proteins.
    • Decreased proteasome activity is consistent with models in which intracellular protein aggregates form. It is still unknown whether or not these aggregates are a cause or a result of neurodegeneration.
  • autophagy–lysosome pathways: a form of programmed cell death (PCD), this becomes the favorable route when a protein is aggregate-prone meaning it is a poor proteasome substrate. This can be split into two forms of autophagy: macroautophagy and chaperone-mediated autophagy (CMA).
    • macroautophagy is involved with nutrient recycling of macromolecules under conditions of starvation, certain apoptotic pathways, and if absent, leads to the formation of ubiquinated inclusions. Experiments in mice with neuronally confined macroautophagy-gene knockouts develop intraneuronal aggregates leading to neurodegeneration.
    • chaperone-mediated autophagy defects may also lead to neurodegeneration. Research has shown that mutant proteins bind to the CMA-pathway receptors on lysosomal membrane and in doing so block their own degradation as well as the degradation of other substrates.

Membrane damage

Damage to the membranes of organelles by monomeric or oligomeric proteins could also contribute to these diseases. Alpha-synuclein can damage membranes by inducing membrane curvature, and cause extensive tubulation and vesiculation when incubated with artificial phospholipid vesicles. The tubes formed from these lipid vesicles consist of both micellar as well as bilayer tubes. Extensive induction of membrane curvature is deleterious to the cell and would eventually lead to cell death. Apart from tubular structures, alpha-synuclein can also form lipoprotein nanoparticles similar to apolipoproteins.

Mitochondrial dysfunction

The most common form of cell death in neurodegeneration is through the intrinsic mitochondrial apoptotic pathway. This pathway controls the activation of caspase-9 by regulating the release of cytochrome c from the mitochondrial intermembrane space. Reactive oxygen species (ROS) are normal byproducts of mitochondrial respiratory chain activity. ROS concentration is mediated by mitochondrial antioxidants such as manganese superoxide dismutase (SOD2) and glutathione peroxidase. Over production of ROS (oxidative stress) is a central feature of all neurodegenerative disorders. In addition to the generation of ROS, mitochondria are also involved with life-sustaining functions including calcium homeostasis, PCD, mitochondrial fission and fusion, lipid concentration of the mitochondrial membranes, and the mitochondrial permeability transition. Mitochondrial disease leading to neurodegeneration is likely, at least on some level, to involve all of these functions.

There is strong evidence that mitochondrial dysfunction and oxidative stress play a causal role in neurodegenerative disease pathogenesis, including in four of the more well known diseases Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis.

Neurons are particularly vulnerable to oxidative damage due to their strong metabolic activity associated with high transcription levels, high oxygen consumption, and weak antioxidant defense.

DNA damage

The brain metabolizes as much as a fifth of consumed oxygen, and reactive oxygen species produced by oxidative metabolism are a major source of DNA damage in the brain. Damage to a cell's DNA is particularly harmful because DNA is the blueprint for protein production and unlike other molecules it cannot simply be replaced by re-synthesis. The vulnerability of post-mitotic neurons to DNA damage (such as oxidative lesions or certain types of DNA strand breaks), coupled with a gradual decline in the activities of repair mechanisms, could lead to accumulation of DNA damage with age and contribute to brain aging and neurodegeneration. DNA single-strand breaks are common and are associated with the neurodegenerative disease ataxia-oculomotor apraxia. Increased oxidative DNA damage in the brain is associated with Alzheimer's disease and Parkinson's disease. Defective DNA repair has been linked to neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, ataxia telangiectasia, Cockayne syndrome, Parkinson's disease and xeroderma pigmentosum.

Axonal transport

Axonal swelling, and axonal spheroids have been observed in many different neurodegenerative diseases. This suggests that defective axons are not only present in diseased neurons, but also that they may cause certain pathological insult due to accumulation of organelles. Axonal transport can be disrupted by a variety of mechanisms including damage to: kinesin and cytoplasmic dynein, microtubules, cargoes, and mitochondria. When axonal transport is severely disrupted a degenerative pathway known as Wallerian-like degeneration is often triggered.

Programmed cell death

Programmed cell death (PCD) is death of a cell in any form, mediated by an intracellular program. This process can be activated in neurodegenerative diseases including Parkinson's disease, amytrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. PCD observed in neurodegenerative diseases may be directly pathogenic; alternatively, PCD may occur in response to other injury or disease processes.

Apoptosis (type I)

Apoptosis is a form of programmed cell death in multicellular organisms. It is one of the main types of programmed cell death (PCD) and involves a series of biochemical events leading to a characteristic cell morphology and death.

  • Extrinsic apoptotic pathways: Occur when factors outside the cell activate cell surface death receptors (e.g., Fas) that result in the activation of caspases-8 or -10.
  • Intrinsic apoptotic pathways: Result from mitochondrial release of cytochrome c or endoplasmic reticulum malfunctions, each leading to the activation of caspase-9. The nucleus and Golgi apparatus are other organelles that have damage sensors, which can lead the cells down apoptotic pathways.

Caspases (cysteine-aspartic acid proteases) cleave at very specific amino acid residues. There are two types of caspases: initiators and effectors. Initiator caspases cleave inactive forms of effector caspases. This activates the effectors that in turn cleave other proteins resulting in apoptotic initiation.

Autophagic (type II)

Autophagy is a form of intracellular phagocytosis in which a cell actively consumes damaged organelles or misfolded proteins by encapsulating them into an autophagosome, which fuses with a lysosome to destroy the contents of the autophagosome. Because many neurodegenerative diseases show unusual protein aggregates, it is hypothesized that defects in autophagy could be a common mechanism of neurodegeneration.

Cytoplasmic (type III)

PCD can also occur via non-apoptotic processes, also known as Type III or cytoplasmic cell death. For example, type III PCD might be caused by trophotoxicity, or hyperactivation of trophic factor receptors. Cytotoxins that induce PCD can cause necrosis at low concentrations, or aponecrosis (combination of apoptosis and necrosis) at higher concentrations. It is still unclear exactly what combination of apoptosis, non-apoptosis, and necrosis causes different kinds of aponecrosis.

Transglutaminase

Transglutaminases are human enzymes ubiquitously present in the human body and in the brain in particular.

The main function of transglutaminases is bind proteins and peptides intra- and intermolecularly, by a type of covalent bonds termed isopeptide bonds, in a reaction termed transamidation or crosslinking.

Transglutaminase binding of these proteins and peptides make them clump together. The resulting structures are turned extremely resistant to chemical and mechanical disruption.

Most relevant human neurodegenerative diseases share the property of having abnormal structures made up of proteins and peptides.

Each of these neurodegenerative diseases have one (or several) specific main protein or peptide. In Alzheimer's disease, these are amyloid-beta and tau. In Parkinson's disease, it is alpha-synuclein. In Huntington's disease, it is huntingtin.

Transglutaminase substrates: Amyloid-beta, tau, alpha-synuclein and huntingtin have been proved to be substrates of transglutaminases in vitro or in vivo, that is, they can be bonded by trasglutaminases by covalent bonds to each other and potentially to any other transglutaminase substrate in the brain.

Transglutaminase augmented expression: It has been proved that in these neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease) the expression of the transglutaminase enzyme is increased.

Presence of isopeptide bonds in these structures: The presence of isopeptide bonds (the result of the transglutaminase reaction) have been detected in the abnormal structures that are characteristic of these neurodegenerative diseases.

Co-localization: Co-localization of transglutaminase mediated isopeptide bonds with these abnormal structures has been detected in the autopsy of brains of patients with these diseases.

Management

The process of neurodegeneration is not well understood, so the diseases that stem from it have, as yet, no cures.

Animal models in research

In the search for effective treatments (as opposed to palliative care), investigators employ animal models of disease to test potential therapeutic agents. Model organisms provide an inexpensive and relatively quick means to perform two main functions: target identification and target validation. Together, these help show the value of any specific therapeutic strategies and drugs when attempting to ameliorate disease severity. An example is the drug Dimebon by Medivation, Inc. In 2009 this drug was in phase III clinical trials for use in Alzheimer's disease, and also phase II clinical trials for use in Huntington's disease. In March 2010, the results of a clinical trial phase III were released; the investigational Alzheimer's disease drug Dimebon failed in the pivotal CONNECTION trial of patients with mild-to-moderate disease. With CONCERT, the remaining Pfizer and Medivation Phase III trial for Dimebon (latrepirdine) in Alzheimer's disease failed in 2012, effectively ending the development in this indication.

In another experiment using a rat model of Alzheimer's disease, it was demonstrated that systemic administration of hypothalamic proline-rich peptide (PRP)-1 offers neuroprotective effects and can prevent neurodegeneration in hippocampus amyloid-beta 25–35. This suggests that there could be therapeutic value to PRP-1.

Other avenues of investigation

Protein degradation offers therapeutic options both in preventing the synthesis and degradation of irregular proteins. There is also interest in upregulating autophagy to help clear protein aggregates implicated in neurodegeneration. Both of these options involve very complex pathways that we are only beginning to understand.

The goal of immunotherapy is to enhance aspects of the immune system. Both active and passive vaccinations have been proposed for Alzheimer's disease and other conditions; however, more research must be done to prove safety and efficacy in humans.

A current therapeutic target for the treatment of Alzheimer's disease is the protease β-secretase, which is involved in the amyloidogenic processing pathway that leads to the pathological accumulation of proteins in the brain. When the gene that encodes for amyloid precursor protein (APP) is spliced by α-secretase rather than β-secretase, the toxic protein β amyloid is not produced. Targeted inhibition of β-secretase can potentially prevent the neuronal death that is responsible for the symptoms of Alzheimer's disease.

Photovoltaic system

From Wikipedia, the free encyclopedia
 
Solar string inverter and other BOS components in Vermont, U.S.Solar array on rooftop in Hong KongBIPV on balcony in Helsinki, Finland
Solar rooftop system in Boston, United StatesWestmill solar park in the United Kingdom
Dual axis tracker with CPV modules in Golmud, ChinaTopaz Solar Farm, one of the world's largest PV power station, as seen from space
Large commercial flattop systemSolar farm at Mt. Komekura, JapanPV system on Germany's highest mountain-top
Photovoltaic power systems and components:

Top: solar string inverter and other BOS components · Solar array on rooftop in Hong Kong, China · BIPV on balcony in Helsinki, Finland
Middle: rooftop system in Boston, United States · Westmill solar park in the United Kingdom · Dual axis tracker with CPV modules · Topaz, one of the world's largest solar power station, as seen from space
Bottom: commercial rooftop PV system of about 400 kWp · Power plant on Mt. Komekura, Japan · Solar PV system on Zugspitze, Germany's highest mountain-top

A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery.

PV systems convert light directly into electricity, and are not to be confused with other solar technologies, such as concentrated solar power or solar thermal, used for heating and cooling. A solar array only encompasses the ensemble of solar panels, the visible part of the PV system, and does not include all the other hardware, often summarized as balance of system (BOS). PV systems range from small, rooftop-mounted or building-integrated systems with capacities from a few to several tens of kilowatts, to large utility-scale power stations of hundreds of megawatts. Nowadays, most PV systems are grid-connected, while off-grid or stand-alone systems account for a small portion of the market.

Operating silently and without any moving parts or environmental emissions, PV systems have developed from being niche market applications into a mature technology used for mainstream electricity generation. A rooftop system recoups the invested energy for its manufacturing and installation within 0.7 to 2 years and produces about 95 percent of net clean renewable energy over a 30-year service lifetime.

Due to the growth of photovoltaics, prices for PV systems have rapidly declined since their introduction; however, they vary by market and the size of the system. In 2014, prices for residential 5-kilowatt systems in the United States were around $3.29 per watt, while in the highly penetrated German market, prices for rooftop systems of up to 100 kW declined to €1.24 per watt. Nowadays, solar PV modules account for less than half of the system's overall cost, leaving the rest to the remaining BOS-components and to soft costs, which include customer acquisition, permitting, inspection and interconnection, installation labor and financing costs.

Modern system

Overview

Diagram of the possible components of a photovoltaic system

A photovoltaic system converts the Sun's radiation, in the form of light, into usable electricity. It comprises the solar array and the balance of system components. PV systems can be categorized by various aspects, such as, grid-connected vs. stand alone systems, building-integrated vs. rack-mounted systems, residential vs. utility systems, distributed vs. centralized systems, rooftop vs. ground-mounted systems, tracking vs. fixed-tilt systems, and new constructed vs. retrofitted systems. Other distinctions may include, systems with microinverters vs. central inverter, systems using crystalline silicon vs. thin-film technology, and systems with modules.

About 99 percent of all European and 90 percent of all U.S. solar power systems are connected to the electrical grid, while off-grid systems are somewhat more common in Australia and South Korea. PV systems rarely use battery storage. This may change, as government incentives for distributed energy storage are implemented and investments in storage solutions gradually become economically viable for small systems. A typical residential solar array is rack-mounted on the roof, rather than integrated into the roof or facade of the building, which is significantly more expensive. Utility-scale solar power stations are ground-mounted, with fixed tilted solar panels rather than using expensive tracking devices. Crystalline silicon is the predominant material used in 90 percent of worldwide produced solar modules, while its rival thin-film has lost market-share. About 70 percent of all solar cells and modules are produced in China and Taiwan, only 5 percent by European and US-manufacturers. The installed capacity for both small rooftop systems and large solar power stations is growing rapidly and in equal parts, although there is a notable trend towards utility-scale systems, as the focus on new installations is shifting away from Europe to sunnier regions, such as the Sunbelt in the U.S., which are less opposed to ground-mounted solar farms and cost-effectiveness is more emphasized by investors.

Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaics is declining continuously. There are several million PV systems distributed all over the world, mostly in Europe, with 1.4 million systems in Germany alone – as well as North America with 440,000 systems in the United States. The energy conversion efficiency of a conventional solar module increased from 15 to 20 percent since 2004 and a PV system recoups the energy needed for its manufacture in about 2 years. In exceptionally irradiated locations, or when thin-film technology is used, the so-called energy payback time decreases to one year or less. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity, have also greatly supported installations of PV systems in many countries. The levelised cost of electricity from large-scale PV systems has become competitive with conventional electricity sources in an expanding list of geographic regions, and grid parity has been achieved in about 30 countries.

As of 2015, the fast-growing global PV market is rapidly approaching the 200 GW mark – about 40 times the installed capacity in 2006. These systems currently contribute about 1 percent to worldwide electricity generation. Top installers of PV systems in terms of capacity are currently China, Japan and the United States, while half of the world's capacity is installed in Europe, with Germany and Italy supplying 7% to 8% of their respective domestic electricity consumption with solar PV. The International Energy Agency expects solar power to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar thermal contributing 16% and 11% to the global demand, respectively.

Solar grid-connection

Schematics of a typical residential PV system

A grid connected system is connected to a larger independent grid (typically the public electricity grid) and feeds energy directly into the grid. This energy may be shared by a residential or commercial building before or after the revenue measurement point, depending on whether the credited energy production is calculated independently of the customer's energy consumption (feed-in tariff) or only on the difference of energy (net metering). These systems vary in size from residential (2–10 kWp) to solar power stations (up to 10s of MWp). This is a form of decentralized electricity generation. Feeding electricity into the grid requires the transformation of DC into AC by a special, synchronising grid-tie inverter. In kilowatt-sized installations the DC side system voltage is as high as permitted (typically 1000 V except US residential 600 V) to limit ohmic losses. Most modules (60 or 72 crystalline silicon cells) generate 160 W to 300 W at 36 volts. It is sometimes necessary or desirable to connect the modules partially in parallel rather than all in series. An individual set of modules connected in series is known as a 'string'.

Scale of system

Photovoltaic systems are generally categorized into three distinct market segments: residential rooftop, commercial rooftop, and ground-mount utility-scale systems. Their capacities range from a few kilowatts to hundreds of megawatts. A typical residential system is around 10 kilowatts and mounted on a sloped roof, while commercial systems may reach a megawatt-scale and are generally installed on low-slope or even flat roofs. Although rooftop mounted systems are small and have a higher cost per watt than large utility-scale installations, they account for the largest share in the market. There is, however, a growing trend towards bigger utility-scale power plants, especially in the "sunbelt" region of the planet.

Utility-scale

Large utility-scale solar parks or farms are power stations and capable of providing an energy supply to large numbers of consumers. Generated electricity is fed into the transmission grid powered by central generation plants (grid-connected or grid-tied plant), or combined with one, or many, domestic electricity generators to feed into a small electrical grid (hybrid plant). In rare cases generated electricity is stored or used directly by island/standalone plant. PV systems are generally designed in order to ensure the highest energy yield for a given investment. Some large photovoltaic power stations such as Solar Star, Waldpolenz Solar Park and Topaz Solar Farm cover tens or hundreds of hectares and have power outputs up to hundreds of megawatts.

Rooftop, mobile, and portable

A small PV system is capable of providing enough AC electricity to power a single home, or an isolated device in the form of AC or DC electric. Military and civilian Earth observation satellites, street lights, construction and traffic signs, electric cars, solar-powered tents, and electric aircraft may contain integrated photovoltaic systems to provide a primary or auxiliary power source in the form of AC or DC power, depending on the design and power demands. In 2013, rooftop systems accounted for 60 percent of worldwide installations. However, there is a trend away from rooftop and towards utility-scale PV systems, as the focus of new PV installations is also shifting from Europe to countries in the sunbelt region of the planet where opposition to ground-mounted solar farms is less accentuated. Portable and mobile PV systems provide electrical power independent of utility connections, for "off the grid" operation. Such systems are so commonly used on recreational vehicles and boats that there are retailers specializing in these applications and products specifically targeted to them. Since recreational vehicles (RV) normally carry batteries and operate lighting and other systems on nominally 12-volt DC power, RV systems normally operate in a voltage range that can charge 12-volt batteries directly, so addition of a PV system requires only panels, a charge controller, and wiring. Solar systems on recreation vehicles are usually constrained in wattage by the physical size of the RV's roof space.

Building-integrated

BAPV wall near Barcelona, Spain

In urban and suburban areas, photovoltaic arrays are often used on rooftops to supplement power use; often the building will have a connection to the power grid, in which case the energy produced by the PV array can be sold back to the utility in some sort of net metering agreement. Some utilities use the rooftops of commercial customers and telephone poles to support their use of PV panels. Solar trees are arrays that, as the name implies, mimic the look of trees, provide shade, and at night can function as street lights.

Performance

Uncertainties in revenue over time relate mostly to the evaluation of the solar resource and to the performance of the system itself. In the best of cases, uncertainties are typically 4% for year-to-year climate variability, 5% for solar resource estimation (in a horizontal plane), 3% for estimation of irradiation in the plane of the array, 3% for power rating of modules, 2% for losses due to dirt and soiling, 1.5% for losses due to snow, and 5% for other sources of error. Identifying and reacting to manageable losses is critical for revenue and O&M efficiency. Monitoring of array performance may be part of contractual agreements between the array owner, the builder, and the utility purchasing the energy produced. A method to create "synthetic days" using readily available weather data and verification using the Open Solar Outdoors Test Field make it possible to predict photovoltaic systems performance with high degrees of accuracy. This method can be used to then determine loss mechanisms on a local scale - such as those from snow or the effects of surface coatings (e.g. hydrophobic or hydrophilic) on soiling or snow losses. (Although in heavy snow environments with severe ground interference can result in annual losses from snow of 30%.) Access to the Internet has allowed a further improvement in energy monitoring and communication. Dedicated systems are available from a number of vendors. For solar PV systems that use microinverters (panel-level DC to AC conversion), module power data is automatically provided. Some systems allow setting performance alerts that trigger phone/email/text warnings when limits are reached. These solutions provide data for the system owner and the installer. Installers are able to remotely monitor multiple installations, and see at-a-glance the status of their entire installed base.

Components

The balance of system components of a PV system (BOS) balance the power-generating subsystem of the solar array (left side) with the power-using side of the AC-household devices and the utility grid (right side).

A photovoltaic system for residential, commercial, or industrial energy supply consists of the solar array and a number of components often summarized as the balance of system (BOS). This term is synonymous with "Balance of plant" q.v. BOS-components include power-conditioning equipment and structures for mounting, typically one or more DC to AC power converters, also known as inverters, an energy storage device, a racking system that supports the solar array, electrical wiring and interconnections, and mounting for other components.

Optionally, a balance of system may include any or all of the following: renewable energy credit revenue-grade meter, maximum power point tracker (MPPT), battery system and charger, GPS solar tracker, energy management software, solar irradiance sensors, anemometer, or task-specific accessories designed to meet specialized requirements for a system owner. In addition, a CPV system requires optical lenses or mirrors and sometimes a cooling system.

The terms "solar array" and "PV system" are often incorrectly used interchangeably, despite the fact that the solar array does not encompass the entire system. Moreover, "solar panel" is often used as a synonym for "solar module", although a panel consists of a string of several modules. The term "solar system" is also an often used misnomer for a PV system.

Solar array

Fixed tilt solar array in of crystalline silicon panels in Canterbury, New Hampshire, United States
 
Solar array of a solar farm with a few thousand solar modules on the island of Majorca, Spain

The building blocks of a photovoltaic system are solar cells. A solar cell is the electrical device that can directly convert photons energy into electricity. There are three technological generations of solar cells: the first generation (1G) of crystalline silicon cells (c-Si), the second generation (2G) of thin-film cells (such as CdTe, CIGS, Amorphous Silicon, and GaAs), and the third generation (3G) of organic, dye-sensitized, Perovskite and multijunction cells.

Conventional c-Si solar cells, normally wired in series, are encapsulated in a solar module to protect them from the weather. The module consists of a tempered glass as cover, a soft and flexible encapsulant, a rear backsheet made of a weathering and fire-resistant material and an aluminium frame around the outer edge. Electrically connected and mounted on a supporting structure, solar modules build a string of modules, often called solar panel. A solar array consists of one or many such panels. A photovoltaic array, or solar array, is a linked collection of solar modules. The power that one module can produce is seldom enough to meet requirements of a home or a business, so the modules are linked together to form an array. Most PV arrays use an inverter to convert the DC power produced by the modules into alternating current that can power lights, motors, and other loads. The modules in a PV array are usually first connected in series to obtain the desired voltage; the individual strings are then connected in parallel to allow the system to produce more current. Solar panels are typically measured under STC (standard test conditions) or PTC (PVUSA test conditions), in watts. Typical panel ratings range from less than 100 watts to over 400 watts. The array rating consists of a summation of the panel ratings, in watts, kilowatts, or megawatts.

Module and efficiency

A typical 150 watt PV module is about a square meter in size. Such a module may be expected to produce 0.75 kilowatt-hour (kWh) every day, on average, after taking into account the weather and the latitude, for an insolation of 5 sun hours/day. Module output and life degraded by increased temperature. Allowing ambient air to flow over, and if possible behind, PV modules reduces this problem. Effective module lives are typically 25 years or more. The payback period for an investment in a PV solar installation varies greatly and is typically less useful than a calculation of return on investment. While it is typically calculated to be between 10 and 20 years, the financial payback period can be far shorter with incentives.

The temperature effect on photovoltaic modules is usually quantified by means of some coefficients relating the variations of the open‐circuit voltage, of the short‐circuit current, and of the maximum power to temperature changes. In this paper, comprehensive experimental guidelines to estimate the temperature coefficients.

Due to the low voltage of an individual solar cell (typically ca. 0.5V), several cells are wired (also see copper used in PV systems) in series in the manufacture of a "laminate". The laminate is assembled into a protective weatherproof enclosure, thus making a photovoltaic module or solar panel. Modules may then be strung together into a photovoltaic array. In 2012, solar panels available for consumers have an efficiency of up to about 17%, while commercially available panels can go as far as 27%. It has been recorded that a group from The Fraunhofer Institute for Solar Energy Systems have created a cell that can reach 44.7% efficiency, which makes scientists' hopes of reaching the 50% efficiency threshold a lot more feasible.

Shading and dirt

Photovoltaic cell electrical output is extremely sensitive to shading ("Christmas light effect"). When even a small portion of a cell, module, or array is shaded, with the remainder is in sunlight, the output falls dramatically due to internal 'short-circuiting' (the electrons reversing course through the shaded portion of the p-n junction). If the current drawn from the series string of cells is no greater than the current that can be produced by the shaded cell, the current (and so power) developed by the string is limited. If enough voltage is available from the other cells in a string, current will be forced through the cell by breaking down the junction in the shaded portion. This breakdown voltage in common cells is between 10 and 30 volts. Instead of adding to the power produced by the panel, the shaded cell absorbs power, turning it into heat. Since the reverse voltage of a shaded cell is much greater than the forward voltage of an illuminated cell, one shaded cell can absorb the power of many other cells in the string, disproportionately affecting panel output. For example, a shaded cell may drop 8 volts, instead of adding 0.5 volts, at a particular current level, thereby absorbing the power produced by 16 other cells. It is thus important that a PV installation is not shaded by trees or other obstructions.

Several methods have been developed to determine shading losses from trees to PV systems over both large regions using LiDAR, but also at an individual system level using 3D modeling software. Most modules have bypass diodes between each cell or string of cells that minimize the effects of shading and only lose the power of the shaded portion of the array. The main job of the bypass diode is to eliminate hot spots that form on cells that can cause further damage to the array, and cause fires.

Sunlight can be absorbed by dust, snow, or other impurities at the surface of the module (collectively referred to as soiling). Soiling reduces the light that strikes the cells, which in turn reduces the power output of the PV system. Soiling losses aggregate over time, and can become large without adequate cleaning. In 2018, the global annual energy loss due to soiling was estimated to at least 3–4%. However, soiling losses varies largely from region to region, and within regions. Maintaining a clean module surface will increase output performance over the life of the PV system. In one study performed in a snow-rich area (Ontario), cleaning flat mounted solar panels after 15 months increased their output by almost 100%. However, 5° tilted arrays were adequately cleaned by rainwater. In many cases, especially in arid regions, or in locations in close proximity to deserts, roads, industry, or agriculture, regular cleaning of the solar panels is cost-effective. In 2018, the estimated soiling-induced revenue loss was estimated to between 5 and 7 billion euros.

The long‐term reliability of photovoltaic modules is crucial to ensure the technical and economic viability of PV as a successful energy source. The analysis of degradation mechanisms of PV modules is key to ensure current lifetimes exceeding 25 years.

Insolation and energy

Solar insolation is made up of direct, diffuse, and reflected radiation. The absorption factor of a PV cell is defined as the fraction of incident solar irradiance that is absorbed by the cell. At high noon on a cloudless day at the equator, the power of the sun is about 1 kW/m2, on the Earth's surface, to a plane that is perpendicular to the sun's rays. As such, PV arrays can track the sun through each day to greatly enhance energy collection. However, tracking devices add cost, and require maintenance, so it is more common for PV arrays to have fixed mounts that tilt the array and face solar noon (approximately due south in the Northern Hemisphere or due north in the Southern Hemisphere). The tilt angle, from horizontal, can be varied for season, but if fixed, should be set to give optimal array output during the peak electrical demand portion of a typical year for a stand-alone system. This optimal module tilt angle is not necessarily identical to the tilt angle for maximum annual array energy output. The optimization of the photovoltaic system for a specific environment can be complicated as issues of solar flux, soiling, and snow losses should be taken into effect. In addition, later work has shown that spectral effects can play a role in optimal photovoltaic material selection. For example, the spectral albedo can play a significant role in output depending on the surface around the photovoltaic system and the type of solar cell material. For the weather and latitudes of the United States and Europe, typical insolation ranges from 4 kWh/m2/day in northern climes to 6.5 kWh/m2/day in the sunniest regions. A photovoltaic installation in the northern latitudes of Europe or the United States may expect to produce 1 kWh/m2/day. A typical 1 kW photovoltaic installation in Australia or the southern latitudes of Europe or United States, may produce 3.5–5 kWh per day, dependent on location, orientation, tilt, insolation and other factors. In the Sahara desert, with less cloud cover and a better solar angle, one could ideally obtain closer to 8.3 kWh/m2/day provided the nearly ever present wind would not blow sand onto the units. The area of the Sahara desert is over 9 million km2. 90,600 km2, or about 1%, could generate as much electricity as all of the world's power plants combined.

Mounting

A 23-year-old ground mounted PV system from the 1980s on a North Frisian Island, Germany. The modules conversion efficiency was only 12%.

Modules are assembled into arrays on some kind of mounting system, which may be classified as ground mount, roof mount or pole mount. For solar parks a large rack is mounted on the ground, and the modules mounted on the rack. For buildings, many different racks have been devised for pitched roofs. For flat roofs, racks, bins and building integrated solutions are used. Solar panel racks mounted on top of poles can be stationary or moving, see Trackers below. Side-of-pole mounts are suitable for situations where a pole has something else mounted at its top, such as a light fixture or an antenna. Pole mounting raises what would otherwise be a ground mounted array above weed shadows and livestock, and may satisfy electrical code requirements regarding inaccessibility of exposed wiring. Pole mounted panels are open to more cooling air on their underside, which increases performance. A multiplicity of pole top racks can be formed into a parking carport or other shade structure. A rack which does not follow the sun from left to right may allow seasonal adjustment up or down.

Cabling

Due to their outdoor usage, solar cables are designed to be resistant against UV radiation and extremely high temperature fluctuations and are generally unaffected by the weather. Standards specifying the usage of electrical wiring in PV systems include the IEC 60364 by the International Electrotechnical Commission, in section 712 "Solar photovoltaic (PV) power supply systems", the British Standard BS 7671, incorporating regulations relating to microgeneration and photovoltaic systems, and the US UL4703 standard, in subject 4703 "Photovoltaic Wire".

Tracker

A 1998 model of a passive solar tracker, viewed from underneath

A solar tracking system tilts a solar panel throughout the day. Depending on the type of tracking system, the panel is either aimed directly at the Sun or the brightest area of a partly clouded sky. Trackers greatly enhance early morning and late afternoon performance, increasing the total amount of power produced by a system by about 20–25% for a single axis tracker and about 30% or more for a dual axis tracker, depending on latitude. Trackers are effective in regions that receive a large portion of sunlight directly. In diffuse light (i.e. under cloud or fog), tracking has little or no value. Because most concentrated photovoltaics systems are very sensitive to the sunlight's angle, tracking systems allow them to produce useful power for more than a brief period each day. Tracking systems improve performance for two main reasons. First, when a solar panel is perpendicular to the sunlight, it receives more light on its surface than if it were angled. Second, direct light is used more efficiently than angled light. Special anti-reflective coatings can improve solar panel efficiency for direct and angled light, somewhat reducing the benefit of tracking.

Trackers and sensors to optimise the performance are often seen as optional, but they can increase viable output by up to 45%. Arrays that approach or exceed one megawatt often use solar trackers. Considering clouds, and the fact that most of the world is not on the equator, and that the sun sets in the evening, the correct measure of solar power is insolation – the average number of kilowatt-hours per square meter per day. For the weather and latitudes of the United States and Europe, typical insolation ranges from 2.26 kWh/m2/day in northern climes to 5.61 kWh/m2/day in the sunniest regions.

For large systems, the energy gained by using tracking systems can outweigh the added complexity. For very large systems, the added maintenance of tracking is a substantial detriment. Tracking is not required for flat panel and low-concentration photovoltaic systems. For high-concentration photovoltaic systems, dual axis tracking is a necessity. Pricing trends affect the balance between adding more stationary solar panels versus having fewer panels that track.

As pricing, reliability and performance of single-axis trackers have improved, the systems have been installed in an increasing percentage of utility-scale projects. According to data from WoodMackenzie/GTM Research, global solar tracker shipments hit a record 14.5 gigawatts in 2017. This represents growth of 32 percent year-over-year, with similar or greater growth projected as large-scale solar deployment accelerates.

Inverter

Central inverter with AC and DC disconnects (on the side), monitoring gateway, transformer isolation and interactive LCD
 
String inverter (left), generation meter, and AC disconnect (right). A modern 2013 installation in Vermont, United States.

Systems designed to deliver alternating current (AC), such as grid-connected applications need an inverter to convert the direct current (DC) from the solar modules to AC. Grid connected inverters must supply AC electricity in sinusoidal form, synchronized to the grid frequency, limit feed in voltage to no higher than the grid voltage and disconnect from the grid if the grid voltage is turned off. Islanding inverters need only produce regulated voltages and frequencies in a sinusoidal waveshape as no synchronisation or co-ordination with grid supplies is required.

A solar inverter may connect to a string of solar panels. In some installations a solar micro-inverter is connected at each solar panel. For safety reasons a circuit breaker is provided both on the AC and DC side to enable maintenance. AC output may be connected through an electricity meter into the public grid. The number of modules in the system determines the total DC watts capable of being generated by the solar array; however, the inverter ultimately governs the amount of AC watts that can be distributed for consumption. For example, a PV system comprising 11 kilowatts DC (kWDC) worth of PV modules, paired with one 10-kilowatt AC (kWAC) inverter, will be limited to the inverter's output of 10 kW. As of 2019, conversion efficiency for state-of-the-art converters reached more than 98 percent. While string inverters are used in residential to medium-sized commercial PV systems, central inverters cover the large commercial and utility-scale market. Market-share for central and string inverters are about 44 percent and 52 percent, respectively, with less than 1 percent for micro-inverters.

Maximum power point tracking (MPPT) is a technique that grid connected inverters use to get the maximum possible power from the photovoltaic array. In order to do so, the inverter's MPPT system digitally samples the solar array's ever changing power output and applies the proper resistance to find the optimal maximum power point.

Anti-islanding is a protection mechanism to immediately shut down the inverter, preventing it from generating AC power when the connection to the load no longer exists. This happens, for example, in the case of a blackout. Without this protection, the supply line would become an "island" with power surrounded by a "sea" of unpowered lines, as the solar array continues to deliver DC power during the power outage. Islanding is a hazard to utility workers, who may not realize that an AC circuit is still powered, and it may prevent automatic re-connection of devices. Anti-Islanding feature is not required for complete Off-Grid Systems.

Inverter/Converter market in 2019
Type Power Efficiency(a) Market
Share
(b)
Remarks
 String inverter up to 150 kWp(c) 98% 61.6% Cost(b) €0.05-0.17 per watt-peak. Easy to replace.
 Central inverter above 80 kWp 98.5% 36.7% €0.04 per watt-peak. High reliability. Often sold along with a service contract.
 Micro-inverter module power range 90%–97% 1.7% €0.29 per watt-peak. Ease-of-replacement concerns.
 DC/DC converter
 (Power optimizer)
module power range 99.5% 5.1% €0.08 per watt-peak. Ease-of-replacement concerns. Inverter is still needed.
Source: data by IHS Markit 2020, remarks by Fraunhofer ISE 2020, from: Photovoltaics Report 2020, p. 39, PDF
Notes: (a)best efficiencies displayed, (b)market-share and cost per watt are estimated, (c)kWp = kilowatt-peak, (d) Total Market Share is greater than 100% because DC/DC converters are required to be paired with string inverters

Battery

Although still expensive, PV systems increasingly use rechargeable batteries to store a surplus to be later used at night. Batteries used for grid-storage also stabilize the electrical grid by leveling out peak loads, and play an important role in a smart grid, as they can charge during periods of low demand and feed their stored energy into the grid when demand is high.

Common battery technologies used in today's PV systems include the valve regulated lead-acid battery – a modified version of the conventional lead–acid battery – nickel–cadmium and lithium-ion batteries. Compared to the other types, lead-acid batteries have a shorter lifetime and lower energy density. However, due to their high reliability, low self discharge as well as low investment and maintenance costs, they are currently the predominant technology used in small-scale, residential PV systems, as lithium-ion batteries are still being developed and about 3.5 times as expensive as lead-acid batteries. Furthermore, as storage devices for PV systems are stationary, the lower energy and power density and therefore higher weight of lead-acid batteries are not as critical as, for example, in electric transportation Other rechargeable batteries considered for distributed PV systems include sodium–sulfur and vanadium redox batteries, two prominent types of a molten salt and a flow battery, respectively. In 2015, Tesla Motors launched the Powerwall, a rechargeable lithium-ion battery with the aim to revolutionize energy consumption.

PV systems with an integrated battery solution also need a charge controller, as the varying voltage and current from the solar array requires constant adjustment to prevent damage from overcharging. Basic charge controllers may simply turn the PV panels on and off, or may meter out pulses of energy as needed, a strategy called PWM or pulse-width modulation. More advanced charge controllers will incorporate MPPT logic into their battery charging algorithms. Charge controllers may also divert energy to some purpose other than battery charging. Rather than simply shut off the free PV energy when not needed, a user may choose to heat air or water once the battery is full.

Monitoring and metering

The metering must be able to accumulate energy units in both directions, or two meters must be used. Many meters accumulate bidirectionally, some systems use two meters, but a unidirectional meter (with detent) will not accumulate energy from any resultant feed into the grid. In some countries, for installations over 30 kWp a frequency and a voltage monitor with disconnection of all phases is required. This is done where more solar power is being generated than can be accommodated by the utility, and the excess can not either be exported or stored. Grid operators historically have needed to provide transmission lines and generation capacity. Now they need to also provide storage. This is normally hydro-storage, but other means of storage are used. Initially storage was used so that baseload generators could operate at full output. With variable renewable energy, storage is needed to allow power generation whenever it is available, and consumption whenever needed.

A Canadian electricity meter

The two variables a grid operator has are storing electricity for when it is needed, or transmitting it to where it is needed. If both of those fail, installations over 30kWp can automatically shut down, although in practice all inverters maintain voltage regulation and stop supplying power if the load is inadequate. Grid operators have the option of curtailing excess generation from large systems, although this is more commonly done with wind power than solar power, and results in a substantial loss of revenue. Three-phase inverters have the unique option of supplying reactive power which can be advantageous in matching load requirements.

Photovoltaic systems need to be monitored to detect breakdown and optimize operation. There are several photovoltaic monitoring strategies depending on the output of the installation and its nature. Monitoring can be performed on site or remotely. It can measure production only, retrieve all the data from the inverter or retrieve all of the data from the communicating equipment (probes, meters, etc.). Monitoring tools can be dedicated to supervision only or offer additional functions. Individual inverters and battery charge controllers may include monitoring using manufacturer specific protocols and software. Energy metering of an inverter may be of limited accuracy and not suitable for revenue metering purposes. A third-party data acquisition system can monitor multiple inverters, using the inverter manufacturer's protocols, and also acquire weather-related information. Independent smart meters may measure the total energy production of a PV array system. Separate measures such as satellite image analysis or a solar radiation meter (a pyranometer) can be used to estimate total insolation for comparison. Data collected from a monitoring system can be displayed remotely over the World Wide Web, such as OSOTF.

Other systems

This section includes systems that are either highly specialized and uncommon or still an emerging new technology with limited significance. However, standalone or off-grid systems take a special place. They were the most common type of systems during the 1980s and 1990s, when PV technology was still very expensive and a pure niche market of small scale applications. Only in places where no electrical grid was available, they were economically viable. Although new stand-alone systems are still being deployed all around the world, their contribution to the overall installed photovoltaic capacity is decreasing. In Europe, off-grid systems account for 1 percent of installed capacity. In the United States, they account for about 10 percent. Off-grid systems are still common in Australia and South Korea, and in many developing countries.

CPV

Concentrator photovoltaics (CPV) and high concentrator photovoltaic (HCPV) systems use optical lenses or curved mirrors to concentrate sunlight onto small but highly efficient solar cells. Besides concentrating optics, CPV systems sometime use solar trackers and cooling systems and are more expensive.

Especially HCPV systems are best suited in location with high solar irradiance, concentrating sunlight up to 400 times or more, with efficiencies of 24–28 percent, exceeding those of regular systems. Various designs of systems are commercially available but not very common. However, ongoing research and development is taking place.

CPV is often confused with CSP (concentrated solar power) that does not use photovoltaics. Both technologies favor locations that receive much sunlight and directly compete with each other.

Hybrid

A hybrid system combines PV with other forms of generation, usually a diesel generator. Biogas is also used. The other form of generation may be a type able to modulate power output as a function of demand. However more than one renewable form of energy may be used e.g. wind. The photovoltaic power generation serves to reduce the consumption of non renewable fuel. Hybrid systems are most often found on islands. Pellworm island in Germany and Kythnos island in Greece are notable examples (both are combined with wind). The Kythnos plant has reduced diesel consumption by 11.2%.

In 2015, a case-study conducted in seven countries concluded that in all cases generating costs can be reduced by hybridising mini-grids and isolated grids. However, financing costs for such hybrids are crucial and largely depend on the ownership structure of the power plant. While cost reductions for state-owned utilities can be significant, the study also identified economic benefits to be insignificant or even negative for non-public utilities, such as independent power producers.

There has also been work showing that the PV penetration limit can be increased by deploying a distributed network of PV+CHP hybrid systems in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. This theory was reconfirmed with numerical simulations using per second solar flux data to determine that the necessary battery backup to provide for such a hybrid system is possible with relatively small and inexpensive battery systems. In addition, large PV+CHP systems are possible for institutional buildings, which again provide back up for intermittent PV and reduce CHP runtime.

  • PVT system (hybrid PV/T), also known as photovoltaic thermal hybrid solar collectors, convert solar radiation into thermal and electrical energy. Such a system combines a solar (PV) module with a solar thermal collector in a complementary way.
  • CPVT system. A concentrated photovoltaic thermal hybrid (CPVT) system is similar to a PVT system. It uses concentrated photovoltaics (CPV) instead of conventional PV technology, and combines it with a solar thermal collector.
  • CPV/CSP system is a proposed novel solar hybrid system, combining concentrator photovoltaics with the non-PV technology of concentrated solar power (CSP), or also known as concentrated solar thermal.
  • PV diesel system combines a photovoltaic system with a diesel generator. Combinations with other renewables are possible and include wind turbines.

Floating solar arrays

Floating solar arrays are PV systems that float on – or are built over – the surface of drinking water reservoirs, quarry lakes, irrigation canals or remediation and tailing ponds. These systems are called "floatovoltaics" when used only for electrical production or "aquavoltaics" when such systems are used to synergistically enhance aquaculture. A small number of such systems exist in France, India, Japan, South Korea, the United Kingdom, Singapore and the United States.

The systems are said to have advantages over photovoltaics on land. The cost of land is more expensive, and there are fewer rules and regulations for structures built on bodies of water not used for recreation. Unlike most land-based solar plants, floating arrays can be unobtrusive because they are hidden from public view. They achieve higher efficiencies than PV panels on land, because water cools the panels. The panels have a special coating to prevent rust or corrosion.

In May 2008, the Far Niente Winery in Oakville, California, pioneered the world's first floatovoltaic system by installing 994 solar PV modules with a total capacity of 477 kW on to 130 pontoons and floating them on the winery's irrigation pond. The primary benefit of such a system is that it avoids the need to sacrifice valuable land area that could be used for another purpose. In the case of the Far Niente Winery, it saved 0.75 acres (0.30 ha) that would have been required for a land-based system. Another benefit of a floatovoltaic system is that the panels are kept at a cooler temperature than they would be on land, leading to a higher efficiency of solar energy conversion. The floating PV array also reduces the amount of water lost through evaporation and inhibits the growth of algae.

Utility-scale floating PV farms are starting to be built. The multinational electronics and ceramics manufacturer Kyocera will develop the world's largest, a 13.4 MW farm on the reservoir above Yamakura Dam in Chiba Prefecture using 50,000 solar panels. Salt-water resistant floating farms are also being considered for ocean use, with experiments in Thailand. The largest so far announced floatovoltaic project is a 350 MW power station in the Amazon region of Brazil.

Direct current grid

DC grids are found in electric powered transport: railways trams and trolleybuses. A few pilot plants for such applications have been built, such as the tram depots in Hannover Leinhausen, using photovoltaic contributors and Geneva (Bachet de Pesay). The 150 kWp Geneva site feeds 600 V DC directly into the tram/trolleybus electricity network whereas before it provided about 15% of the electricity at its opening in 1999.

Standalone

An isolated mountain hut in Catalonia, Spain
 
Solar parking meter in Edinburgh, Scotland

A stand-alone or off-grid system is not connected to the electrical grid. Standalone systems vary widely in size and application from wristwatches or calculators to remote buildings or spacecraft. If the load is to be supplied independently of solar insolation, the generated power is stored and buffered with a battery. In non-portable applications where weight is not an issue, such as in buildings, lead acid batteries are most commonly used for their low cost and tolerance for abuse.

A charge controller may be incorporated in the system to avoid battery damage by excessive charging or discharging. It may also help to optimize production from the solar array using a maximum power point tracking technique (MPPT). However, in simple PV systems where the PV module voltage is matched to the battery voltage, the use of MPPT electronics is generally considered unnecessary, since the battery voltage is stable enough to provide near-maximum power collection from the PV module. In small devices (e.g. calculators, parking meters) only direct current (DC) is consumed. In larger systems (e.g. buildings, remote water pumps) AC is usually required. To convert the DC from the modules or batteries into AC, an inverter is used.

In agricultural settings, the array may be used to directly power DC pumps, without the need for an inverter. In remote settings such as mountainous areas, islands, or other places where a power grid is unavailable, solar arrays can be used as the sole source of electricity, usually by charging a storage battery. Stand-alone systems closely relate to microgeneration and distributed generation.

Costs and economy

The cost of producing photovoltaic cells has dropped because of economies of scale in production and technological advances in manufacturing. For large-scale installations, prices below $1.00 per watt were common by 2012. A price decrease of 50% had been achieved in Europe from 2006 to 2011, and there was a potential to lower the generation cost by 50% by 2020. Crystal silicon solar cells have largely been replaced by less expensive multicrystalline silicon solar cells, and thin film silicon solar cells have also been developed at lower costs of production. Although they are reduced in energy conversion efficiency from single crystalline "siwafers", they are also much easier to produce at comparably lower costs.

The table below shows the total (average) cost in US cents per kWh of electricity generated by a photovoltaic system. The row headings on the left show the total cost, per peak kilowatt (kWp), of a photovoltaic installation. Photovoltaic system costs have been declining and in Germany, for example, were reported to have fallen to USD 1389/kWp by the end of 2014. The column headings across the top refer to the annual energy output in kWh expected from each installed kWp. This varies by geographic region because the average insolation depends on the average cloudiness and the thickness of atmosphere traversed by the sunlight. It also depends on the path of the sun relative to the panel and the horizon. Panels are usually mounted at an angle based on latitude, and often they are adjusted seasonally to meet the changing solar declination. Solar tracking can also be utilized to access even more perpendicular sunlight, thereby raising the total energy output.

The calculated values in the table reflect the total (average) cost in cents per kWh produced. They assume a 10% total capital cost (for instance 4% interest rate, 1% operating and maintenance cost, and depreciation of the capital outlay over 20 years). Normally, photovoltaic modules have a 25-year warranty.

Cost of generated kilowatt-hour by a PV system (US¢/kWh)
depending on solar radiation and installation cost during 20 years of operation
Installation
cost in
$ per watt
Insolation annually generated kilowatt-hours per installed kW-capacity (kWh/(kWp•y))
2,400 2,200 2,000 1,800 1,600 1,400 1,200 1,000 800
$0.20 0.8 0.9 1.0 1.1 1.3 1.4 1.7 2.0 2.5
$0.60 2.5 2.7 3.0 3.3 3.8 4.3 5.0 6.0 7.5
$1.00 4.2 4.5 5.0 5.6 6.3 7.1 8.3 10.0 12.5
$1.40 5.8 6.4 7.0 7.8 8.8 10.0 11.7 14.0 17.5
$1.80 7.5 8.2 9.0 10.0 11.3 12.9 15.0 18.0 22.5
$2.20 9.2 10.0 11.0 12.2 13.8 15.7 18.3 22.0 27.5
$2.60 10.8 11.8 13.0 14.4 16.3 18.6 21.7 26.0 32.5
$3.00 12.5 13.6 15.0 16.7 18.8 21.4 25.0 30.0 37.5
$3.40 14.2 15.5 17.0 18.9 21.3 24.3 28.3 34.0 42.5
$3.80 15.8 17.3 19.0 21.1 23.8 27.1 31.7 38.0 47.5
$4.20 17.5 19.1 21.0 23.3 26.3 30.0 35.0 42.0 52.5
$4.60 19.2 20.9 23.0 25.6 28.8 32.9 38.3 46.0 57.5
$5.00 20.8 22.7 25.0 27.8 31.3 35.7 41.7 50.0 62.5
USA Japan Germany   Small rooftop system cost and average insolation applied to data table in 2013

Notes:

  1. Cost per watt for rooftop system in 2013: Japan $4.64, United States $4.92, and Germany $2.05
  2. Generated kilowatt-hour per installed watt-peak, based on average insolation for Japan (1500 kWh/m2/year), United States (5.0 to 5.5 kWh/m2/day), and Germany (1000 to 1200 kWh/m2/year).
  3. A 2013 study by the Fraunhofer ISE concludes LCOE cost for a small PV system to be $0.16 (€0.12) rather than $0.22 per kilowatt-hour as shown in table (Germany).

Learning curve

Photovoltaic systems demonstrate a learning curve in terms of levelized cost of electricity (LCOE), reducing its cost per kWh by 32.6% for every doubling of capacity. From the data of LCOE and cumulative installed capacity from International Renewable Energy Agency (IRENA) from 2010 to 2017, the learning curve equation for photovoltaic systems is given as

  • LCOE : levelized cost of electricity (in USD/kWh)
  • Capacity : cumulative installed capacity of photovoltaic systems (in MW)

Regulation

Standardization

Increasing use of photovoltaic systems and integration of photovoltaic power into existing structures and techniques of supply and distribution increases the need for general standards and definitions for photovoltaic components and systems.[citation needed] The standards are compiled at the International Electrotechnical Commission (IEC) and apply to efficiency, durability and safety of cells, modules, simulation programs, plug connectors and cables, mounting systems, overall efficiency of inverters etc.

National regulations

United Kingdom

In the UK, PV installations are generally considered permitted development and do not require planning permission. If the property is listed or in a designated area (National Park, Area of Outstanding Natural Beauty, Site of Special Scientific Interest or Norfolk Broads) then planning permission is required.

United States

In the United States, article 690 of the National Electric Code provides general guidelines for the installation of photovoltaic systems; these may be superseded by local laws and regulations. Often a permit is required necessitating plan submissions and structural calculations before work may begin. Additionally, many locales require the work to be performed under the guidance of a licensed electrician.

The Authority Having Jurisdiction (AHJ) will review designs and issue permits, before construction can lawfully begin. Electrical installation practices must comply with standards set forth within the National Electrical Code (NEC) and be inspected by the AHJ to ensure compliance with building code, electrical code, and fire safety code. Jurisdictions may require that equipment has been tested, certified, listed, and labeled by at least one of the Nationally Recognized Testing Laboratories (NRTL). Many localities require a permit to install a photovoltaic system. A grid-tied system normally requires a licensed electrician to connect between the system and the grid-connected wiring of the building. Installers who meet these qualifications are located in almost every state. Several states prohibit homeowners' associations from restricting solar devices.

Spain

Although Spain generates around 40% of its electricity via photovoltaic and other renewable energy sources, and cities such as Huelva and Seville boast nearly 3,000 hours of sunshine per year, in 2013 Spain issued a solar tax to account for the debt created by the investment done by the Spanish government. Those who do not connect to the grid can face up to a fine of 30 million euros (US$40 million). Such measures were finally withdrawn by 2018, when new legislation was introduced banning any taxes on renewable energy self-consumption.

Limitations

Impact on electricity network

With the increasing levels of rooftop photovoltaic systems, the energy flow becomes two-way. When there is more local generation than consumption, electricity is exported to the grid. However, electricity network traditionally is not designed to deal with the two-way energy transfer. Therefore, some technical issues may occur. For example, in Queensland, Australia, there have been more than 30% of households with rooftop PV by the end of 2017. The famous Californian 2020 duck curve appears very often for a lot of communities from 2015 onwards. An over-voltage issue may come out as the electricity flows back to the network. There are solutions to manage the over voltage issue, such as regulating PV inverter power factor, new voltage and energy control equipment at electricity distributor level, re-conductor the electricity wires, demand side management, etc. There are often limitations and costs related to these solutions.

Implication onto electricity bill management and energy investment

Customers have different specific situations, e.g. different comfort/convenience needs, different electricity tariffs, or different usage patterns. An electricity tariff may have a few elements, such as daily access and metering charge, energy charge (based on kWh, MWh) or peak demand charge (e.g. a price for the highest 30min energy consumption in a month). PV is a promising option for reducing energy charge when electricity price is reasonably high and continuously increasing, such as in Australia and Germany. However, for sites with peak demand charge in place, PV may be less attractive if peak demands mostly occur in the late afternoon to early evening, for example residential communities. Overall, energy investment is largely an economic decision and investment decisions are based on systematical evaluation of options in operational improvement, energy efficiency, onsite generation and energy storage.

Spouse

From Wikipedia, the free encyclopedia ...