Search This Blog

Thursday, February 23, 2023

Guillain–Barré syndrome

Guillain–Barré syndrome
Other namesGuillain–Barré–Strohl syndrome, Landry's paralysis, postinfectious polyneuritis
Pronunciation
SpecialtyNeurology
SymptomsMuscle weakness beginning in the feet and hands, usually ascending
ComplicationsBreathing difficulties, heart and blood pressure problems
Usual onsetRapid (hours to weeks)
CausesTypically triggered by an infection; occasionally by surgery and rarely by vaccination
Diagnostic methodBased on symptoms, nerve conduction studies, lumbar puncture
TreatmentSupportive care, intravenous immunoglobulin, plasmapheresis
PrognosisWeeks to years for recovery
Frequency2 per 100,000 people per year
Deaths7.5% of those affected

Guillain–Barré syndrome (GBS) is a rapid-onset muscle weakness caused by the immune system damaging the peripheral nervous system. Typically, both sides of the body are involved, and the initial symptoms are changes in sensation or pain often in the back along with muscle weakness, beginning in the feet and hands, often spreading to the arms and upper body. The symptoms may develop over hours to a few weeks. During the acute phase, the disorder can be life-threatening, with about 15% of people developing weakness of the breathing muscles and, therefore, requiring mechanical ventilation. Some are affected by changes in the function of the autonomic nervous system, which can lead to dangerous abnormalities in heart rate and blood pressure.

Although the cause is unknown, the underlying mechanism involves an autoimmune disorder in which the body's immune system mistakenly attacks the peripheral nerves and damages their myelin insulation. Sometimes this immune dysfunction is triggered by an infection or, less commonly, by surgery, and rarely, by vaccination. The diagnosis is usually based on the signs and symptoms through the exclusion of alternative causes and supported by tests such as nerve conduction studies and examination of the cerebrospinal fluid. There are a number of subtypes based on the areas of weakness, results of nerve conduction studies, and the presence of certain antibodies. It is classified as an acute polyneuropathy.

In those with severe weakness, prompt treatment with intravenous immunoglobulins or plasmapheresis, together with supportive care, will lead to good recovery in the majority of cases. Recovery may take weeks to years, with about a third having some permanent weakness. Globally, death occurs in approximately 7.5% of those affected. Guillain–Barré syndrome is rare, at 1 or 2 cases per 100,000 people every year. Both sexes and all parts of the world have similar rates of disease.

The syndrome is named after the French neurologists Georges Guillain and Jean Alexandre Barré, who, together with French physician André Strohl, described the condition in 1916.

Signs and symptoms

The first symptoms of Guillain–Barré syndrome are numbness, tingling, and pain, alone or in combination. This is followed by weakness of the legs and arms that affects both sides equally and worsens over time. The weakness can take half a day to over two weeks to reach maximum severity, and then becomes steady. In one in five people, the weakness continues to progress for as long as four weeks. The muscles of the neck may also be affected, and about half experience involvement of the cranial nerves that supply the head and face; this may lead to weakness of the muscles of the face, swallowing difficulties and sometimes weakness of the eye muscles. In 8%, the weakness affects only the legs (paraplegia or paraparesis). Involvement of the muscles that control the bladder and anus is unusual. In total, about a third of people with Guillain–Barré syndrome continue to be able to walk. Once the weakness has stopped progressing, it persists at a stable level ("plateau phase") before improvement occurs. The plateau phase can take between two days and six months, but the most common duration is a week. Pain-related symptoms affect more than half, and include back pain, painful tingling, muscle pain, and pain in the head and neck relating to irritation of the lining of the brain.

Many people with Guillain–Barré syndrome have experienced the signs and symptoms of an infection in the 3–6 weeks before the onset of the neurological symptoms. This may consist of upper respiratory tract infection (rhinitis, sore throat), or diarrhea.

Various patterns of manifestation of Guillain–Barré syndrome

In children, particularly those younger than six years old, the diagnosis can be difficult and the condition is often initially mistaken (sometimes for up to two weeks) for other causes of pains and difficulty walking, such as viral infections, or bone and joint problems.

On neurological examination, characteristic features are the reduced strength of muscles and reduced or absent tendon reflexes (hypo- or areflexia, respectively). However, a small proportion have normal reflexes in affected limbs before developing areflexia, and some may have exaggerated reflexes. In the Miller Fisher variant of Guillain–Barré syndrome (see below), a triad of weakness of the eye muscles, abnormalities in coordination, as well as absent reflexes can be found. The level of consciousness is normally unaffected in Guillain–Barré syndrome, but the Bickerstaff brainstem encephalitis subtype may feature drowsiness, sleepiness, or coma.

Respiratory failure

A quarter of all people with Guillain–Barré syndrome develop weakness of the breathing muscles leading to respiratory failure, the inability to breathe adequately to maintain healthy levels of oxygen, and/or carbon dioxide in the blood. This life-threatening scenario is complicated by other medical problems such as pneumonia, severe infections, blood clots in the lungs, and bleeding in the digestive tract in 60% of those who require artificial ventilation.

Autonomic dysfunction

The autonomic or involuntary nervous system, which is involved in the control of body functions such as heart rate and blood pressure, is affected in two-thirds of people with Guillain–Barré syndrome, but the impact is variable. Twenty percent may experience severe blood-pressure fluctuations and irregularities in the heart beat, sometimes to the point that the heart beat stops and requires pacemaker-based treatment. Other associated problems are abnormalities in perspiration and changes in the reactivity of the pupils. Autonomic nervous system involvement can affect even those who do not have severe muscle weakness.

Causes

Infection onset

A scanning electron microscope-derived image of Campylobacter jejuni, which triggers about 30% of cases of Guillain–Barré syndrome

Two-thirds of people with Guillain–Barré syndrome have experienced an infection before the onset of the condition. Most commonly, these are episodes of gastroenteritis or a respiratory tract infection. In many cases, the exact nature of the infection can be confirmed. Approximately 30% of cases are provoked by Campylobacter jejuni bacteria, which cause diarrhea. A further 10% are attributable to cytomegalovirus (CMV, HHV-5). Despite this, only very few people with Campylobacter or CMV infections develop Guillain–Barré syndrome (0.25–0.65 per 1000 and 0.6–2.2 per 1000 episodes, respectively). The strain of Campylobacter involved may determine the risk of GBS; different forms of the bacteria have different lipopolysaccharides on their surface, and some may induce illness (see below) while others will not.

Links between other infections and GBS are less certain. Two other herpes viruses (Epstein–Barr virus/HHV-4 and varicella zoster virus/HHV-3) and the bacterium Mycoplasma pneumoniae have been associated with GBS. GBS is known to occur after influenza, and influenza vaccination has been demonstrated to be associated with a reduced risk. The tropical flaviviral infections dengue fever and Zika virus have also been associated with episodes of GBS. Previous hepatitis E virus infection has been found to be more common in people with GBS.

Vaccine onset

An increased incidence of Guillain–Barré syndrome followed influenza immunization that followed the 1976 swine flu outbreak (H1N1 A/NJ/76); 8.8 cases per million (0.0088 per 1000) recipients developed it as a complication. GBS cases occurred in 362 patients during the 6 weeks after influenza vaccination of 45 million persons, an 8.8-fold increase over normal rates. The 1976 swine flu vaccination-induced GBS was an outlier; small increases in incidence have been observed in subsequent vaccination campaigns, but not to the same extent. The 2009 flu pandemic vaccine against pandemic swine flu virus H1N1/PDM09 did not cause a significant increase in cases. In fact, "studies found a small increase of approximately 1 case per million vaccines above the baseline rate, which is similar to that observed after administration of seasonal influenza vaccines over the past several years." Natural influenza infection is a stronger risk factor for the development of GBS than is influenza vaccination and the vaccination reduced the risk of GBS overall by lowering the risk of catching influenza.

In the United States, GBS after seasonal influenza vaccination is listed on the federal government's vaccine injury table. On March 24, 2021, after reviewing several post-marketing observational studies, where an increased risk of Guillain–Barré syndrome was observed after 42 days following vaccination with the Zoster vaccine Shingrix, the FDA required safety label changes from the manufacturer GlaxoSmithKline to include warnings for risk of Guillain–Barré syndrome.

COVID-19 infection or vaccine related

GBS has been reported in association with COVID-19, and may be a potential neurological complication of the disease. GBS has been reported as a very rare side effect of the Janssen and the Oxford–AstraZeneca COVID-19 vaccine for COVID-19 and European Medicines Agency (EMA) had issued warning to the patients and healthcare providers. The incidence of GBS following the vaccination with the Oxford-AstraZeneca vaccine was originally reported as being lower than the incidence of GBS following a COVID-19 infection. More recent studies, however, found no measurable link between COVID-19 infection and GBS, while correlations with a first dose of AstraZeneca or Janssen vaccines were still positive.

COVID-19 has been reported as causing peripheral neuropathy and more recently some evidence of aggravation of autoimmune disorders including GBS. Some studies are now finding Parkinson's Disease is more common in infection survivors.

Drug induced

Zimelidine, an antidepressant, had a very favorable safety profile but as a result of rare case reports of Guillain–Barré syndrome was withdrawn from the market.

Mechanism

Structure of a typical neuron
Neuron
Guillain–Barré syndrome – nerve damage

The nerve dysfunction in Guillain–Barré syndrome is caused by an immune attack on the nerve cells of the peripheral nervous system and their support structures. The nerve cells have their body (the soma) in the spinal cord and a long projection (the axon) that carries electrical nerve impulses to the neuromuscular junction, where the impulse is transferred to the muscle. Axons are wrapped in a sheath of Schwann cells that contain myelin. Between Schwann cells are gaps (nodes of Ranvier) where the axon is exposed. Different types of Guillain–Barré syndrome feature different types of immune attack. The demyelinating variant (AIDP, see below) features damage to the myelin sheath by white blood cells (T lymphocytes and macrophages); this process is preceded by activation of a group of blood proteins known as complement. In contrast, the axonal variant is mediated by IgG antibodies and complement against the cell membrane covering the axon without direct lymphocyte involvement.

Various antibodies directed at nerve cells have been reported in Guillain–Barré syndrome. In the axonal subtype, these antibodies have been shown to bind to gangliosides, a group of substances found in peripheral nerves. A ganglioside is a molecule consisting of ceramide bound to a small group of hexose-type sugars and containing various numbers of N-acetylneuraminic acid groups. The key four gangliosides against which antibodies have been described are GM1, GD1a, GT1a, and GQ1b, with different antiganglioside antibodies being associated with particular features; for instance, GQ1b antibodies have been linked with Miller Fisher variant GBS and related forms including Bickerstaff encephalitis. The production of these antibodies after an infection probably is the result of molecular mimicry, where the immune system is reacting to microbial substances, but the resultant antibodies also react with substances occurring naturally in the body. After a Campylobacter infection, the body produces antibodies of the IgA class; only a small proportion of people also produce IgG antibodies against bacterial substance cell wall substances (e.g. lipooligosaccharides) that cross react with human nerve cell gangliosides. It is not currently known how this process escapes central tolerance to gangliosides, which is meant to suppress the production of antibodies against the body's own substances. Not all antiganglioside antibodies cause disease, and it has recently been suggested that some antibodies bind to more than one type of epitope simultaneously (heterodimeric binding) and that this determines the response. Furthermore, the development of pathogenic antibodies may depend on the presence of other strains of bacteria in the bowel.

It has been suggested that a poor injection technique may also cause a direct injury to the axillary nerves adjacent to the injection site in deltoid muscle that may lead to peripheral neuropathy. The consequent vaccine transfection and translation in the nerves may spur an immune response against nerve cells potentially causing an autoimmune nerve damage, leading to conditions like Guillain–Barré syndrome.

Diagnosis

The diagnosis of Guillain–Barré syndrome depends on findings such as rapid development of muscle paralysis, absent reflexes, absence of fever, and absence of a likely cause. Cerebrospinal fluid analysis (through a lumbar spinal puncture) and nerve conduction studies are supportive investigations commonly performed in the diagnosis of GBS. Testing for antiganglioside antibodies is often performed, but their contribution to diagnosis is usually limited. Blood tests are generally performed to exclude the possibility of another cause for weakness, such as a low level of potassium in the blood. An abnormally low level of sodium in the blood is often encountered in Guillain–Barré syndrome. This has been attributed to the inappropriate secretion of antidiuretic hormone, leading to relative retention of water.

In many cases, magnetic resonance imaging of the spinal cord is performed to distinguish between Guillain–Barré syndrome and other conditions causing limb weakness, such as spinal cord compression. If an MRI scan shows enhancement of the nerve roots, this may be indicative of GBS. In children, this feature is present in 95% of scans, but it is not specific to Guillain–Barré syndrome, so other confirmation is also needed.

Spinal fluid

Cerebrospinal fluid envelops the brain and the spine, and lumbar puncture or spinal tap is the removal of a small amount of fluid using a needle inserted between the lumbar vertebrae. Characteristic findings in Guillain–Barré syndrome are an elevated protein level, usually greater than 0.55 g/L, and fewer than 10 white blood cells per cubic millimeter of fluid ("albuminocytological dissociation"). This pattern distinguishes Guillain–Barré syndrome from other conditions (such as lymphoma and poliomyelitis) in which both the protein and the cell count are elevated. Elevated CSF protein levels are found in approximately 50% of patients in the first 3 days after onset of weakness, which increases to 80% after the first week.

Repeating the lumbar puncture during the disease course is not recommended. The protein levels may rise after treatment has been administered.

Neurophysiology

Directly assessing nerve conduction of electrical impulses can exclude other causes of acute muscle weakness, as well as distinguish the different types of Guillain–Barré syndrome. Needle electromyography (EMG) and nerve conduction studies may be performed. In the first two weeks, these investigations may not show any abnormality. Neurophysiology studies are not required for the diagnosis.

Formal criteria exist for each of the main subtypes of Guillain–Barré syndrome (AIDP and AMAN/AMSAN, see below), but these may misclassify some cases (particularly where there is reversible conduction failure) and therefore changes to these criteria have been proposed. Sometimes, repeated testing may be helpful.

Clinical subtypes

A number of subtypes of Guillain–Barré syndrome are recognized. Despite this, many people have overlapping symptoms that can make the classification difficult in individual cases. All types have partial forms. For instance, some people experience only isolated eye-movement or coordination problems; these are thought to be a subtype of Miller Fisher syndrome and have similar antiganglioside antibody patterns.

Type Symptoms Population affected Nerve conduction studies Antiganglioside antibodies
Acute inflammatory demyelinating polyradiculoneuropathy (AIDP) Sensory symptoms and muscle weakness, often with cranial nerve weakness and autonomic involvement Most common in Europe and North America Demyelinating polyneuropathy No clear association
Acute motor axonal neuropathy (AMAN) Isolated muscle weakness without sensory symptoms in less than 10%; cranial nerve involvement uncommon Rare in Europe and North America, a substantial proportion (30–65%) in Asia and Central and South America; sometimes called "Chinese paralytic syndrome" Axonal polyneuropathy, normal sensory action potential GM1a/b, GD1a & GalNac-GD1a
Acute motor and sensory axonal neuropathy (AMSAN) Severe muscle weakness similar to AMAN but with sensory loss Axonal polyneuropathy, reduced or absent sensory action potential GM1, GD1a
Pharyngeal-cervical-brachial variant Weakness particularly of the throat muscles, and face, neck, and shoulder muscles Generally normal, sometimes axonal neuropathy in arms Mostly GT1a, occasionally GQ1b, rarely GD1a
Miller Fisher syndrome Ataxia, eye muscle weakness, areflexia but usually no limb weakness This variant occurs more commonly in men than in women (2:1 ratio). Cases typically occur in the spring and the average age of occurrence is 43 years old. Generally normal, sometimes discrete changes in sensory conduction or H-reflex detected GQ1b, GT1a

Other diagnostic entities are often included in the spectrum of Guillain–Barré syndrome. Bickerstaff's brainstem encephalitis (BBE), for instance, is part of the group of conditions now regarded as forms of Miller Fisher syndrome (anti-GQ1b antibody syndrome), as well as a related condition labelled "acute ataxic hypersomnolence" where coordination problems and drowsiness are present but no muscle weakness can be detected. BBE is characterized by the rapid onset of ophthalmoplegia, ataxia, and disturbance of consciousness, and may be associated with absent or decreased tendon reflexes and as well as Babinski's sign. The course of the disease is usually monophasic, but recurrent episodes have been reported. MRI abnormalities in the brainstem have been reported in 11%.

Whether isolated acute sensory loss can be regarded as a form of Guillain–Barré syndrome is a matter of dispute; this is a rare occurrence compared to GBS with muscle weakness but no sensory symptoms.

Treatment

Immunotherapy

Plasmapheresis and intravenous immunoglobulins (IVIG) are the two main immunotherapy treatments for GBS. Plasmapheresis attempts to reduce the body's attack on the nervous system by filtering antibodies out of the bloodstream. Similarly, administration of IVIG neutralizes harmful antibodies and inflammation. These two treatments are equally effective, but a combination of the two is not significantly better than either alone. Plasmapheresis speeds recovery when used within four weeks of the onset of symptoms. IVIG works as well as plasmapheresis when started within two weeks of the onset of symptoms, and has fewer complications. IVIG is usually used first because of its ease of administration and safety; the risks include occasionally causing liver inflammation, or in rare cases, kidney failure. Glucocorticoids alone have not been found to be effective in speeding recovery and could potentially delay recovery.

Respiratory failure

Respiratory failure may require intubation of the trachea and breathing support through mechanical ventilation, generally on an intensive care unit. The need for ventilatory support can be anticipated by measurement of two spirometry-based breathing tests: the forced vital capacity (FVC) and the negative inspiratory force (NIF). An FVC of less than 15 mL per kilogram body weight or an NIF of less than 60 cmH2O are considered markers of severe respiratory failure.

Pain

While pain is common in people with Guillain–Barré syndrome, studies comparing different types of pain medication are insufficient to make a recommendation as to which should be used.

Rehabilitation

Following the acute phase, around 40% of people require intensive rehabilitation with the help of a multidisciplinary team to focus on improving activities of daily living (ADLs). Studies into the subject have been limited, but it is likely that intensive rehabilitation improves long-term symptoms. Teams may include physical therapists, occupational therapists, speech language pathologists, social workers, psychologists, other allied health professionals and nurses. The team usually works under the supervision of a neurologist or rehabilitation physician directing treatment goals.

Physiotherapy interventions include strength, endurance, and gait training with graduated increases in mobility, maintenance of posture and alignment as well as joint function. Occupational therapy aims to improve everyday function with domestic and community tasks as well as driving and work. Home modifications, gait aids, orthotics, and splints may be provided. Speech-language pathology input may be required in those with speech and swallowing problems, as well as to support communication in those who require ongoing breathing support (often through a tracheostomy). Nutritional support may be provided by the team and by dietitians. Psychologists may provide counseling and support. Psychological interventions may also be required for anxiety, fear, and depression.

Prognosis

Guillain–Barré syndrome can lead to death as a result of many complications: severe infections, blood clots, and cardiac arrest likely due to autonomic neuropathy. Despite optimum care, this occurs in about 5% of cases.

There is a variation in the rate and extent of recovery. The prognosis of Guillain–Barré syndrome is determined mainly by age (those over 40 may have a poorer outcome), and by the severity of symptoms after two weeks. Furthermore, those who experienced diarrhea before the onset of the disease have a worse prognosis. On the nerve conduction study, the presence of conduction block predicts poorer outcome at 6 months. In those who have received intravenous immunoglobulins, a smaller increase in IgG in the blood two weeks after administration is associated with poorer mobility outcomes at six months than those whose IgG level increased substantially. If the disease continues to progress beyond four weeks, or there are multiple fluctuations in the severity (more than two in eight weeks), the diagnosis may be chronic inflammatory demyelinating polyneuropathy, which is treated differently.

In research studies, the outcome from an episode of Guillain–Barré syndrome is recorded on a scale from 0 to 6, where 0 denotes completely healthy; 1 very minor symptoms but able to run; 2 able to walk but not to run; 3 requiring a stick or other support; 4 confined to bed or chair; 5 requiring long-term respiratory support; 6 death.

The health-related quality of life (HRQL) after an attack of Guillain–Barré syndrome can be significantly impaired. About a fifth are unable to walk unaided after six months, and many experience chronic pain, fatigue and difficulty with work, education, hobbies and social activities. HRQL improves significantly in the first year.

Epidemiology

In Western countries, the number of new episodes per year has been estimated to be between 0.89 and 1.89 cases per 100,000 people. Children and young adults are less likely to be affected than the elderly: the relative risk increases by 20% for every decade of life. Men are more likely to develop Guillain–Barré syndrome than women; the relative risk for men is 1.78 compared to women.

The distribution of subtypes varies between countries. In Europe and the United States, 60–80% of people with Guillain–Barré syndrome have the demyelinating subtype (AIDP), and AMAN affects only a small number (6–7%). In Asia and Central and South America, that proportion is significantly higher (30–65%). This may be related to the exposure to different kinds of infection, but also the genetic characteristics of that population. Miller Fisher variant is thought to be more common in Southeast Asia.

History

Georges Guillain, together with Barré and Strohl, described two cases of self-limiting acute paralysis with peculiar changes in the cerebrospinal fluid. He succeeded his teacher Pierre Marie as professor of neurology at the Salpêtrière hospital in Paris in 1925.

Jean-Baptiste Octave Landry first described the disorder in 1859. In 1916, Georges Guillain, Jean Alexandre Barré, and André Strohl diagnosed two soldiers with the illness and described the key diagnostic abnormality—albuminocytological dissociation—of increased spinal fluid protein concentration but a normal cell count.

C. Miller Fisher described the variant that bears his name in 1956. British neurologist Edwin Bickerstaff described the encephalitis type in 1951 and made further contributions with another paper in 1957. Guillain had reported on some of these features before their full description in 1938. Further subtypes have been described since then, such as the form featuring pure ataxia and the type causing pharyngeal-cervical-brachial weakness. The axonal subtype was first described in 1986.

Diagnostic criteria were developed in the late 1970s after the series of cases associated with swine flu vaccination. These were refined in 1990. The case definition was revised by the Brighton Collaboration for vaccine safety in 2009, but is mainly intended for research. Plasma exchange was first used in 1978, and its benefit was confirmed in larger studies in 1985. Intravenous immunoglobulins were introduced in 1988, and studies in the early 1990s demonstrated that they were no less effective than plasma exchange.

Research directions

The understanding of the disease mechanism of Guillain–Barré syndrome has evolved in recent years. Development of new treatments has been limited since immunotherapy was introduced in the 1980s and 1990s. Current research is aimed at demonstrating whether some people who have received IVIg might benefit from a second course if the antibody levels measured in blood after treatment have shown only a small increase. Studies of the immunosuppressive drugs mycophenolate mofetil, brain-derived neurotrophic factor and interferon beta (IFN-β) have not demonstrated benefit to support their widespread use.

An animal model (experimental autoimmune neuritis in rats) is often used for studies, and some agents have shown promise: glatiramer acetate, quinpramine, fasudil (an inhibitor of the Rho-kinase enzyme), and the heart drug flecainide. An antibody targeted against the anti-GD3 antiganglioside antibody has shown benefit in laboratory research. Given the role of the complement system in GBS, it has been suggested that complement inhibitors (such as the drug eculizumab) may be effective.

In animals it is called acute polyradiculoneuritis or "coonhound paralysis", and may onset in the coonhound 7 to 10 days after transmission from raccoons. If the coonhound has not been around raccoons, the disease is called acute idiopathic polyradiculoneuritis.

Airway management

From Wikipedia, the free encyclopedia
Airway management
Glidescope 02.JPG
Photograph of an anesthesiologist using the Glidescope video laryngoscope to intubate the trachea of a morbidly obese elderly person with challenging airway anatomy

Airway management includes a set of maneuvers and medical procedures performed to prevent and relieve airway obstruction. This ensures an open pathway for gas exchange between a patient's lungs and the atmosphere. This is accomplished by either clearing a previously obstructed airway; or by preventing airway obstruction in cases such as anaphylaxis, the obtunded patient, or medical sedation. Airway obstruction can be caused by the tongue, foreign objects, the tissues of the airway itself, and bodily fluids such as blood and gastric contents (aspiration).

Airway management is commonly divided into two categories: basic and advanced.

Basic techniques are generally non-invasive and do not require specialized medical equipment or advanced training. These include head and neck maneuvers to optimize ventilation, abdominal thrusts, and back blows.

Advanced techniques require specialized medical training and equipment, and are further categorized anatomically into supraglottic devices (such as oropharyngeal and nasopharyngeal airways), infraglottic techniques (such as tracheal intubation), and surgical methods (such as cricothyrotomy and tracheotomy).

Airway management is a primary consideration in the fields of cardiopulmonary resuscitation, anaesthesia, emergency medicine, intensive care medicine, neonatology, and first aid. The "A" in the ABC treatment mnemonic is for airway.

Basic airway management

Basic airway management involves maneuvers that do not require specialized medical equipment (in contrast to advanced airway management). It is mainly used in first aid since it is non-invasive, quick, and relatively simple to perform. The simplest way to determine if the airway is obstructed is by assessing whether the patient is able to speak. Basic airway management can be divided into treatment and prevention of an obstruction in the airway.

Back slaps and abdominal thrusts are performed to relieve airway obstruction by foreign objects
 
Inward and upward force during abdominal thrusts

Treatment

Treatment includes different maneuvers that aim to remove the foreign body that is obstructing the airway. This type of obstruction most often occurs when someone is eating or drinking. Most modern protocols, including those of the American Heart Association, American Red Cross and the European Resuscitation Council, recommend several stages, designed to apply increasingly more pressure. Most protocols recommend first encouraging the victims to cough, and allowing them an opportunity to spontaneously clear the foreign body if they are coughing forcefully. If the person's airway continues to be blocked, more forceful maneuvers such as hard back slaps and abdominal thrusts (Heimlich maneuver) can be performed. Some guidelines recommend alternating between abdominal thrusts and back slaps while others recommend the same starting with the back slaps first. Having the person lean forward reduces the chances of the foreign body going back down the airway when coming up.

Performing abdominal thrusts on someone else involves standing behind them, and providing inward and upward forceful compressions in the upper abdomen, concretely in the area located between the chest and the belly button. The rescuer usually gives the compressions using a fist that is grasped with the other hand.

Abdominal thrusts can also be performed on oneself with the help of the objects near, for example: by leaning over a chair. Anyway, when the choking victim is oneself, one of the more reliable options is the usage of any specific anti-choking device. In adults, there is limited evidence that the head down position can be used for self-treatment of suffocation and appears to be an option only if other maneuvers do not work. In contrast, in children under 1 it is recommended that the child be placed in a head down position as this appears to help increase the effectiveness of back slaps and abdominal thrusts.

When the victim can not receive pressures on the abdomen (it can happen in case of pregnancy or excessive obesity, for example), chest thrusts are advised instead of abdominal thrusts. The chest thrusts are the same type of compressions but applied on the lower half of the chest bone (not in the very extreme, which is a point named xiphoid process and could be broken).

The American Medical Association and Australian Resuscitation Council advocate sweeping the fingers across the back of the throat to attempt to dislodge airway obstructions, once the choking victim becomes unconscious. However, many modern protocols and literature recommend against the use of the finger sweep. If the person is conscious, they should be able to remove the foreign object themselves, and if they are unconscious, a finger sweep can cause more harm. A finger sweep can push the foreign body further down the airway, making it harder to remove, or cause aspiration by inducing the person to vomit. Additionally, there is the potential for harm to the rescuer if they are unable to clearly see the oral cavity (for example, cutting a finger on jagged teeth).

Prevention

The head-tilt/chin-lift is the most reliable method of opening the airway.
 
The jaw thrust maneuver can also open up the airway with minimal spine manipulation

Prevention techniques focus on preventing airway obstruction by the tongue and reducing the likelihood of aspiration of stomach contents or blood. The head-tilt/chin-lift and jaw-thrust maneuvers are useful for the former while the recovery position is useful for the latter. If head-tilt/chin-lift and jaw-thrust maneuvers are performed with any objects in the airways it may dislodge them further down the airways and thereby cause more blockage and harder removal.

The head-tilt/chin-lift is the primary maneuver used in any patient in whom cervical spine injury is not a concern. This maneuver involves flexion of the neck and extension of the head at Atlanto-occipital joint (also called the sniffing position), which opens up the airway by lifting the tongue away from the back of the throat. Placing a folded towel behind the head accomplishes the same result.

All forms of the recovery position share basic principles. The head is in a dependent position so that fluid can drain from the patient's airway; the chin is well up to keep the epiglottis opened. Arms and legs are locked to stabilize the position of the patient

The jaw-thrust maneuver is an effective airway technique, particularly in the patient in whom cervical spine injury is a concern. It is easiest when the patient is positioned supine. The practitioner places their index and middle fingers behind the angle of the mandible to physically push the posterior aspects of the mandible upwards while their thumbs push down on the chin to open the mouth. When the mandible is displaced forward, it pulls the tongue forward and prevents it from occluding the entrance to the trachea.

The recovery position is an important prevention technique for an unconscious person that is breathing casually. This position entails having the person lie in a stable position on their side with the head in a dependent position so fluids do not drain down the airway, reducing the risk of aspiration.

Most airway maneuvers are associated with some movement of the cervical spine. When there is a possibility of cervical injury, collars are used to help hold the head in-line. Most of these airway maneuvers are associated with some movement of the cervical spine. Even though cervical collars can cause problems maintaining an airway and maintaining a blood pressure, it is not recommended to remove the collar without adequate personnel to manually hold the head in place.

Advanced airway management

In contrast to basic airway management maneuvers such as head-tilt or jaw-thrust, advanced airway management relies on the use of medical equipment. Advanced airway management can be performed "blindly" or with visualization of the glottis by using a laryngoscope. Advanced airway management is frequently performed in the critically injured, those with extensive pulmonary disease, or anesthetized patients to facilitate oxygenation and mechanical ventilation. Additionally, implementation of a cuffing system is used to prevent the possibility of asphyxiation or airway obstruction.

Many methods are used in Advanced airway management. Examples in increasing order of invasiveness include the use of supraglottic devices such as oropharyngeal or nasopharyngeal airways, infraglottic techniques such as tracheal intubation and finally surgical methods.

Removal of foreign objects

Foreign objects can be removed with a Magill forceps under inspection of the airway with a laryngoscope

The ingestion and aspiration of foreign objects pose a common and dangerous problem in young children. It remains one of the leading cause of death in children under the age of 5. Common food items (baby carrots, peanuts, etc.) and household objects (coins, metals, etc.) may lodge in various levels of the airway tract and cause significant obstruction of the airway. Complete obstruction of the airway represents a medical emergency. During such crisis, caretakers may attempt back blows, abdominal thrust, or the Heimlich maneuver to dislodge the inhaled object and reestablish airflow into the lungs.

In the hospital setting, healthcare practitioners will make the diagnosis of foreign body aspiration from the medical history and physical exam findings. In some cases, providers will order chest radiographs, which may show signs of air-trapping in the affected lung. In advanced airway management, the inhaled foreign objects, however, are either removed by using a simple plastic suction device (such as a Yankauer suction tip) or under direct inspection of the airway with a laryngoscope or bronchoscope. If removal is not possible, other surgical methods should be considered.

Supraglottic techniques

Supraglottic techniques use devices that are designed to have the distal tip resting above the level of the glottis when in its final seated position. Supraglottic devices ensure patency of the upper respiratory tract without entry into the trachea by bridging the oral and pharyngeal spaces. There are many methods of subcategorizing this family of devices including route of insertion, absence or presence of a cuff, and anatomic location of the device's distal end. The most commonly used devices are laryngeal masks and supraglottic tubes, such as oropharyngeal (OPA) and nasopharyngeal airways (NPA). In general, features of an ideal supraglottic airway include the ability to bypass the upper airway, produce low airway resistance, allow both positive pressure as well as spontaneous ventilation, protect the respiratory tract from gastric and nasal secretions, be easily inserted by even a nonspecialist, produce high first-time insertion rate, remain in place once in seated position, minimize risk of aspiration, and produce minimal side effects.

A nasopharyngeal airway is a soft rubber or plastic tube that is passed through the nose and into the posterior pharynx. Nasopharyngeal airways are produced in various lengths and diameters to accommodate for gender and anatomical variations. Functionally, the device is gently inserted through a patient's nose after careful lubrication with a viscous lidocaine gel. Successful placement will facilitate spontaneous ventilation, masked ventilation, or machine assisted ventilation with a modified nasopharyngeal airway designed with special attachments at the proximal end. Patients generally tolerate NPAs very well. NPAs are preferred over OPAs when the patient's jaw is clenched or if the patient is semiconscious and cannot tolerate an OPA. NPAs, however, are generally not recommended if there is suspicion of a fracture to the base of the skull. In these circumstances, insertion of the NPA can cause neurological damage by entering the cranium during placement. There is no consensus, however, regarding the risk of neurological damage secondary to a basilar skull fracture compared to hypoxia due to insufficient airway management. Other complications of Nasopharyngeal airways use includes laryngospasm, epistaxis, vomiting, and tissue necrosis with prolonged use.

Oropharyngeal airways in a range of sizes

Oropharyngeal airways are curved, rigid plastic devices, inserted into the patient's mouth. Oropharyngeal airways are produced in various lengths and diameters to accommodate for gender and anatomical variations. It is especially useful in patients with excessive tongue and other soft tissues. OPAs prevent airway obstruction by ensuring that the patient's tongue does not obstruct the epiglottis by creating a conduit. Because an oropharyngeal airway can mechanically stimulate the gag reflex, it should only be used in a deeply sedated or unresponsive patient to avoid vomiting and aspiration. Careful attention must be made while inserting an OPA. The user must avoid pushing the tongue further down the patient's throat. This is usually done by inserting the OPA with its curve facing cephalad and rotating it 180 degrees as you enter the posterior pharynx.

Extraglottic devices are another family of supraglottic devices that are inserted through the mouth to sit on top of the larynx. Extraglottic devices are used in the majority of operative procedures performed under general anaesthesia. Compared to a cuffed tracheal tube, extraglottic devices provide less protection against aspiration but are more easily inserted and causes less laryngeal trauma. Limitations of extraglottic devices arise in morbidly obese patients, lengthy surgical procedures, surgery involving the airways, laparoscopic procedures and others due to its bulkier design and inferior ability to prevent aspiration. In these circumstances, endotracheal intubation is generally preferred. The most commonly used extraglottic device is the laryngeal mask airway (LMA). An LMA is a cuffed perilaryngeal sealer that is inserted into the mouth and set over the glottis. Once it is in its seated position, the cuff is inflated. Other variations include devices with oesophageal access ports, so that a separate tube can be inserted from the mouth to the stomach to decompress accumulated gases and drain liquid contents. Other variations of the device can have an endotracheal tube passed through the LMA and into the trachea.

Infraglottic techniques

A cuffed endotracheal tube used in tracheal intubation

In contrast to supraglottic devices, infraglottic devices create a conduit between the mouth, passing through the glottis, and into the trachea. There are many infraglottic methods available and the chosen technique is reliant on the accessibility of medical equipment, competence of the clinician and the patient's injury or disease. Tracheal intubation, often simply referred to as intubation, is the placement of a flexible plastic or rubber tube into the trachea to maintain an open airway or to serve as a conduit through which to administer certain drugs. The most widely used route is orotracheal, in which an endotracheal tube is passed through the mouth and vocal apparatus into the trachea. In a nasotracheal procedure, an endotracheal tube is passed through the nose and vocal apparatus into the trachea. Alternatives to standard endotracheal tubes include laryngeal tube and combitube.

Surgical methods

In cricothyrotomy, the incision or puncture is made through the cricothyroid membrane in between the thyroid cartilage and the cricoid cartilage
In cricothyrotomy, the incision or puncture is made through the cricothyroid membrane in between the thyroid cartilage and the cricoid cartilage
 
Photograph of a tracheostomy tube

Surgical methods for airway management rely on making a surgical incision below the glottis in order to achieve direct access to the lower respiratory tract, bypassing the upper respiratory tract. Surgical airway management is often performed as a last resort in cases where orotracheal and nasotracheal intubation are impossible or contraindicated. Surgical airway management is also used when a person will need a mechanical ventilator for a longer period. Surgical methods for airway management include cricothyrotomy and tracheostomy.

A cricothyrotomy is an emergency surgical procedure in which an incision is made through the cricothyroid membrane to establish a patent airway during certain life-threatening situations, such as airway obstruction by a foreign body, angioedema, or massive facial trauma. Cricothyrotomy is much easier and quicker to perform than tracheotomy, does not require manipulation of the cervical spine and is associated with fewer immediate complications. Some complications of cricothyrotomy include bleeding, infection, and injury to surrounding skin and soft tissue structures.

A tracheotomy is a surgical procedure in which a surgeon makes incision in the neck and a breathing tube is inserted directly into the trachea. A common reason for performing a tracheotomy includes requiring to be put on a mechanical ventilator for a longer period. The advantages of a tracheotomy include less risk of infection and damage to the trachea during the immediate post-surgical period. Although rare, some long term complications of tracheotomies include tracheal stenosis and tracheoinnominate fistulas.

Airway management in specific situations

Cardiopulmonary resuscitation

The optimal method of airway management during CPR is not well established at this time given that the majority of studies on the topic are observational in nature. These studies, however, guide recommendations until prospective, randomized controlled trials are conducted.

Current evidence suggests that for out-of-hospital cardiac arrest, basic airway interventions (head-tilt–chin-lift maneuvers, bag-valve-masking or mouth-to-mouth ventilations, nasopharyngeal and/or oropharyngeal airways) resulted in greater short-term and long-term survival, as well as improved neurological outcomes in comparison to advanced airway interventions (endotracheal intubation, laryngeal mask airway, all types of supraglottic airways (SGA), and trans-tracheal or trans-cricothyroid membrane airways). Given that these are observational studies, caution must be given to the possibility of confounding by indication. That is, patients requiring an advanced airway may have had a poorer prognosis in relation to those requiring basic interventions to begin with.

For the management of in-hospital cardiac arrest however, studies currently support the establishment of an advanced airway. It is well documented that quality chest compressions with minimal interruption result in improved survival. This is suggested to be due, in part, to decreased no-flow-time in which vital organs, including the heart are not adequately perfused. Establishment of an advanced airway (endotracheal tube, laryngeal mask airway) allows for asynchronous ventilation, reducing the no-flow ratio, as compared to the basic airway (bag-valve mask) for which compressions must be paused to adequately ventilate the patient.

Bystanders without medical training who see an individual suddenly collapse should call for help and begin chest compressions immediately. The American Heart Association currently supports "Hands-only"™ CPR, which advocates chest compressions without rescue breaths for teens or adults. This is to minimize the reluctance to start CPR due to concern for having to provide mouth-to-mouth resuscitation.

Trauma

Bag-valve mashttps://en.wikipedia.org/wiki/Airway_managementk ventilation. Airway represents the "A" in the ABC mnemonic for trauma resuscitation.

Management of the airway in trauma can be particularly complicated, and is dependent on the mechanism, location, and severity of injury to the airway and its surrounding tissues. Injuries to the cervical spine, traumatic disruption of the airway itself, edema in the setting of caustic or thermal trauma, and the combative patient are examples of scenarios a provider may need to take into account in assessing the urgency of securing an airway and the means of doing so.

The pre-hospital setting provides unique challenges to management of the airway including tight spaces, neck immobilization, poor lighting, and often the added complexity of attempting procedures during transport. When possible, basic airway management should be prioritized including head-tilt-chin-lift maneuvers, and bag-valve masking. If ineffective, a supraglottic airway can be utilized to aid in oxygenation and maintenance of a patent airway. An oropharyngeal airway is acceptable, however nasopharyngeal airways should be avoided in trauma, particularly if a basilar skull fracture is suspected. Endotracheal intubation carries with it many risks, particularly when paralytics are used, as maintenance of the airway becomes a challenge if intubation fails. It should therefore be attempted by experienced personnel, only when less invasive methods fail or when it is deemed necessary for safe transport of the patient, to reduce risk of failure and the associated increase in morbidity and mortality due to hypoxia.

Laryngeal mask airway (LMA). Example of a supraglottic device.

Management of the airway in the emergency department is optimal given the presence of trained personnel from multiple specialties, as well as access to "difficult airway equipment" (videolaryngoscopy, eschmann tracheal tube introducer, fiberoptic bronchoscopy, surgical methods, etc.). Of primary concern is the condition and patency of the maxillofacial structures, larynx, trachea, and bronchi as these are all components of the respiratory tract and failure anywhere along this path may impede ventilation. Excessive facial hair, severe burns, and maxillofacial trauma may prevent acquisition of a good mask seal, rendering bag-valve mask ventilation difficult. Edema of the airway can make laryngoscopy difficult, and therefore in those with suspected thermal burns, intubation is recommended in attempts to quickly secure an airway prior to progression of the swelling. Furthermore, blood and vomitus in the airway may prove visualization of the vocal cords difficult rendering direct and video laryngoscopy, as well as fiberoptic bronchoscopy challenging. Establishment of a surgical airway is challenging in the setting of restricted neck extension (such as in a c-collar), laryngotracheal disruption, or distortion of the anatomy by a penetrating force or hematoma. Tracheotomy in the operating room by trained professionals is recommended over cricothyroidotomy in the case of complete laryngotracheal disruption or children under the age of 12.

Mechanical ventilation

From Wikipedia, the free encyclopedia

Mechanical ventilation
Servo I Ventilator.jpg
Servo-u Ventilator
ICD-993.90 96.7
MeSHD012121
OPS-301 code8-71

Mechanical ventilation, assisted ventilation or intermittent mandatory ventilation (IMV), is the medical term for using a machine called a ventilator to fully or partially provide artificial ventilation. Mechanical ventilation helps move air into and out of the lungs, with the main goal of helping the delivery of oxygen and removal of carbon dioxide. Mechanical ventilation is used for many reasons, including to protect the airway due to mechanical or neurologic cause, to ensure adequate oxygenation, or to remove excess carbon dioxide from the lungs. Various healthcare providers are involved with the use of mechanical ventilation and people who require ventilators are typically monitored in an intensive care unit.

Mechanical ventilation is termed invasive if it involves an instrument to create an airway that is placed inside the trachea. This is done through an endotracheal tube or nasotracheal tube.

For non-invasive ventilation in people who are conscious, face or nasal masks are used.

The two main types of mechanical ventilation include positive pressure ventilation where air is pushed into the lungs through the airways, and negative pressure ventilation where air is pulled into the lungs. There are many specific modes of mechanical ventilation, and their nomenclature has been revised over the decades as the technology has continually developed.

History

Hospital staff examine a patient in an Iron lung tank respirator during the polio epidemic. The machine creates a negative pressure around the thoracic cavity, thereby causing air to rush into the lungs to equalize intrapulmonary pressure.

The Greek physician Galen may have been the first to describe mechanical ventilation: "If you take a dead animal and blow air through its larynx [through a reed], you will fill its bronchi and watch its lungs attain the greatest distention." In the 1600s, Robert Hooke conducted experiments on dogs to demonstrate this concept. Vesalius too describes ventilation by inserting a reed or cane into the trachea of animals. These experiments predate the discovery of oxygen and its role in respiration. In 1908, George Poe demonstrated his mechanical respirator by asphyxiating dogs and seemingly bringing them back to life. These experiments all demonstrate positive pressure ventilation.

To achieve negative pressure ventilation, there must be a sub-atmospheric pressure to draw air into the lungs. This was first achieved in the late 19th century when John Dalziel and Alfred Jones independently developed tank ventilators, in which ventilation was achieved by placing a patient inside a box that enclosed the body in a box with sub-atmospheric pressures. This machine came to be known colloquially as the Iron lung, which went through many iterations of development. The use of the iron lung became widespread during the polio epidemic of the 1900s.

Early ventilators were control style with no support breaths integrated into them and were limited to an inspiration to expiration ration of 1:1. In the 1970s, intermittent mandatory ventilation was introduced as well as synchronized intermittent mandatory ventilation. These styles of ventilation had control breaths that patients could breath between.

Uses

Respiratory therapist (RT) examining a mechanically ventilated patient in an intensive care unit. RTs participate in the optimization of ventilation management, adjustment, and weaning.

Mechanical ventilation is indicated when a patient's spontaneous breathing is inadequate to maintain life. It may be indicated in anticipation of imminent respiratory failure, acute respiratory failure, acute hypoxemia, or prophylactically. Because mechanical ventilation serves only to provide assistance for breathing and does not cure a disease, the patient's underlying condition should be identified and treated in order to liberate them from the ventilator.

Common specific medical indications for mechanical ventilation include:

Mechanical ventilation is typically used as a short-term measure. It may, however, be used at home or in a nursing or rehabilitation institution for patients that have chronic illnesses that require long-term ventilatory assistance.

Risks and complications

Mechanical ventilation is often a life-saving intervention, but carries potential complications. A common complication of positive pressure ventilation stemming directly from the ventilator settings include volutrauma and barotrauma. Others include pneumothorax, subcutaneous emphysema, pneumomediastinum, and pneumoperitoneum. Another well-documented complication is ventilator-associated lung injury which presents as acute respiratory distress syndrome. Other complications include diaphragm atrophy, decreased cardiac output, and oxygen toxicity. One of the primary complications that presents in patients mechanically ventilated is acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). ALI/ARDS are recognized as significant contributors to patient morbidity and mortality.

In many healthcare systems, prolonged ventilation as part of intensive care is a limited resource. For this reason, decisions to commence and remove ventilation may raise ethical debate and often involve legal orders such as do-not-resuscitate orders.

Mechanical ventilation is often associated with many painful procedures and the ventilation itself can be uncomfortable. For infants who require opioids for pain, the potential side effects of opioids include problems with feeding, gastric and intestinal mobility problems, the potential for opioid dependence, and opioid tolerance.

Withdrawal from mechanical ventilation

Timing of withdrawal from mechanical ventilation—also known as weaning—is an important consideration. People who require mechanical ventilation should have their ventilation considered for withdrawal if they are able to support their own ventilation and oxygenation, and this should be assessed continuously. There are several objective parameters to look for when considering withdrawal, but there are no specific criteria that generalizes to all patients.

The Rapid Shallow Breathing Index (RSBI, the ratio of respiratory frequency to tidal volume (f/VT), previously referred to as the "Yang Tobin Index" or "Tobin Index" after Dr. Karl Yang and Prof. Martin J. Tobin of Loyola University Medical Center) is one of the best studied and most commonly used weaning predictors, with no other predictor having been shown to be superior. It was described in a prospective cohort study of mechanically ventilated patients which found that a RSBI > 105 breaths/min/L was associated with weaning failure, while a RSBI < 105 breaths/min/L.

Spontaneous breathing trials are conducted to assess the likelihood of a patient being able to maintain stability and breath on their own without the ventilator. This is done by changing the mode to one where they have to trigger breaths and ventilatory support is only given to compensate for the added resistance of the endotracheal tube.

A cuff leak test is done to detect if there is airway edema to show the chances of post-extubation stridor. This is done by deflating to the cuff to check if air begins leaking around the endotracheal tube.

Physiology

The function of the lungs is to provide gas exchange via oxygenation and ventilation. This phenomenon of respiration involves the physiologic concepts of air flow, tidal volume, compliance, resistance, and dead space. Other relevant concepts include alveolar ventilation, arterial PaCO2, alveolar volume, and FiO2. Alveolar ventilation is the amount of gas per unit of time that reaches the alveoli and becomes involved in gas exchange. PaCO2 is the partial pressure of carbon dioxide of arterial blood, which determines how well carbon dioxide is able to move out of the body. Alveolar volume is the volume of air entering and leaving the alveoli per minute. Mechanical dead space is another important parameter in ventilator design and function, and is defined as the volume of gas breathed again as the result of use in a mechanical device.

Image of endotracheal tube placement required to connect a patient's physiologic airway to the ventilator.

Due to the anatomy of the human pharynx, larynx, and esophagus and the circumstances for which ventilation is needed, additional measures are required to secure the airway during positive-pressure ventilation in order to allow unimpeded passage of air into the trachea and avoid air passing into the esophagus and stomach. The common method is by insertion of a tube into the trachea. Intubation, which provides a clear route for the air can be either an endotracheal tube, inserted through the natural openings of mouth or nose, or a tracheostomy inserted through an artificial opening in the neck. In other circumstances simple airway maneuvers, an oropharyngeal airway or laryngeal mask airway may be employed. If non-invasive ventilation or negative-pressure ventilation is used, then an airway adjunct is not needed.

Pain medicine such as opioids are sometimes used in adults and infants who require mechanical ventilation. For preterm or full term infants who require mechanical ventilation, there is no strong evidence to prescribe opioids or sedation routinely for these procedures, however, some select infants requiring mechanical ventilation may require pain medicine such as opioids. It is not clear if clonidine is safe or effective to be used as a sedative for preterm and full term infants who require mechanical ventilation.

When 100% oxygen (1.00 FiO
2
) is used initially for an adult, it is easy to calculate the next FiO
2
to be used, and easy to estimate the shunt fraction. The estimated shunt fraction refers to the amount of oxygen not being absorbed into the circulation. In normal physiology, gas exchange of oxygen and carbon dioxide occurs at the level of the alveoli in the lungs. The existence of a shunt refers to any process that hinders this gas exchange, leading to wasted oxygen inspired and the flow of un-oxygenated blood back to the left heart, which ultimately supplies the rest of the body with de-oxygenated blood. When using 100% oxygen, the degree of shunting is estimated as 700 mmHg - measured PaO
2
. For each difference of 100 mmHg, the shunt is 5%. A shunt of more than 25% should prompt a search for the cause of this hypoxemia, such as mainstem intubation or pneumothorax, and should be treated accordingly. If such complications are not present, other causes must be sought after, and positive end-expiratory pressure (PEEP) should be used to treat this intrapulmonary shunt. Other such causes of a shunt include:

Technique

Modes

Mechanical ventilation utilizes several separate systems for ventilation referred to as the mode. Modes come in many different delivery concepts but all conventional positive pressure ventilators modes fall into one of two categories; volume-cycled or pressure-cycled. A relatively new ventilation mode is flow-controlled ventilation (FCV). FCV is a fully dynamic mode without significant periods of 'no flow'. It is based on creating a stable gas flow into or out of the patient’s lungs to generate an inspiration or expiration, respectively. This results in linear increases and decreases in intratracheal pressure. In contrast to conventional modes of ventilation, there are no abrupt drop intrathoracic pressure drops, because of the controlled expiration. Further, this mode allows to use thin endotracheal tubes (~2 - 10 mm inner diameter) to ventilate a patient as expiration is actively supported. In general, the selection of which mode of mechanical ventilation to use for a given patient is based on the familiarity of clinicians with modes and the equipment availability at a particular institution.

Types of Ventilation

Carl Gunnar Engström invented in 1950 one of the first intermittent positive pressure ventilator, which delivers air straight into the lungs using an endotracheal tube placed into the windpipe.

Positive pressure

The design of the modern positive-pressure ventilators were based mainly on technical developments by the military during World War II to supply oxygen to fighter pilots in high altitude. Such ventilators replaced the iron lungs as safe endotracheal tubes with high-volume/low-pressure cuffs were developed. The popularity of positive-pressure ventilators rose during the polio epidemic in the 1950s in Scandinavia and the United States and was the beginning of modern ventilation therapy. Positive pressure through manual supply of 50% oxygen through a tracheostomy tube led to a reduced mortality rate among patients with polio and respiratory paralysis. However, because of the sheer amount of man-power required for such manual intervention, mechanical positive-pressure ventilators became increasingly popular.

Positive-pressure ventilators work by increasing the patient's airway pressure through an endotracheal or tracheostomy tube. The positive pressure allows air to flow into the airway until the ventilator breath is terminated. Then, the airway pressure drops to zero, and the elastic recoil of the chest wall and lungs push the tidal volume — the breath-out through passive exhalation.

Negative pressure

Negative pressure mechanical ventilators are produced in small, field-type and larger formats. The prominent design of the smaller devices is known as the cuirass, a shell-like unit used to create negative pressure only to the chest using a combination of a fitting shell and a soft bladder. In recent years this device has been manufactured using various-sized polycarbonate shells with multiple seals, and a high-pressure oscillation pump in order to carry out biphasic cuirass ventilation. Its main use has been in patients with neuromuscular disorders that have some residual muscular function. The latter, larger formats are in use, notably with the polio wing hospitals in England such as St Thomas' Hospital in London and the John Radcliffe in Oxford.

The larger units have their origin in the iron lung, also known as the Drinker and Shaw tank, which was developed in 1928 by J.H Emerson Company and was one of the first negative-pressure machines used for long-term ventilation. It was refined and used in the 20th century largely as a result of the polio epidemic that struck the world in the 1940s. The machine is, in effect, a large elongated tank, which encases the patient up to the neck. The neck is sealed with a rubber gasket so that the patient's face (and airway) are exposed to the room air. While the exchange of oxygen and carbon dioxide between the bloodstream and the pulmonary airspace works by diffusion and requires no external work, air must be moved into and out of the lungs to make it available to the gas exchange process. In spontaneous breathing, a negative pressure is created in the pleural cavity by the muscles of respiration, and the resulting gradient between the atmospheric pressure and the pressure inside the thorax generates a flow of air. In the iron lung by means of a pump, the air is withdrawn mechanically to produce a vacuum inside the tank, thus creating negative pressure. This negative pressure leads to expansion of the chest, which causes a decrease in intrapulmonary pressure, and increases flow of ambient air into the lungs. As the vacuum is released, the pressure inside the tank equalizes to that of the ambient pressure, and the elastic recoil of the chest and lungs leads to passive exhalation. However, when the vacuum is created, the abdomen also expands along with the lung, cutting off venous flow back to the heart, leading to pooling of venous blood in the lower extremities. The patients can talk and eat normally, and can see the world through a well-placed series of mirrors. Some could remain in these iron lungs for years at a time quite successfully.

Some of the problems with the full body design were such as being unable to control the inspiratory to expiratory ratio and the flow rate. This design also caused blood pooling in the legs.

Intermittent abdominal pressure ventilator

Another type is the intermittent abdominal pressure ventilator that applies pressure externally via an inflated bladder, forcing exhalation, sometimes termed exsufflation. The first such apparatus was the Bragg-Paul Pulsator. The name of one such device, the Pneumobelt made by Puritan Bennett has to a degree become a generic name for the type.

Oscillator

3100A Oscillator

The most commonly used high frequency ventilator and only one approved in the United States is the 3100A from Vyaire Medical. It works by using very small tidal volumes by setting amplitude and a high rate set in hertz. This type of ventilation is primarily used in neonates and pediatric patients who are failing conventional ventilation.

High Frequency Jet Ventilation

The first type of high frequency ventilator made for neonates and the only jet type is made by Bunnell Incorporated. It works in conjunction with a separate CMV ventilator to add pulses of air to the control breaths and PEEP.

Neonatal Jet ventilator

Monitoring

One of the main reasons why a patient is admitted to an ICU is for delivery of mechanical ventilation. Monitoring a patient in mechanical ventilation has many clinical applications: Enhance understanding of pathophysiology, aid with diagnosis, guide patient management, avoid complications, and assess trends.

In ventilated patients, pulse oximetry is commonly used when titrating FIO2. A reliable target of Spo2 is greater than 95%.

The total PEEP in the patient can be determined by doing an expiratory hold on the ventilator. If this is higher than the set PEEP, this indicates air trapping.

The plateau pressure can be found by doing an inspiratory hold. This shows the actual pressure the patient's lungs are experiencing.

Loops can be used to see what is occurring in the patient's lungs. These include flow-volume and pressure-volume loops. They can show changes in compliance and resistance.

Functional Residual Capacity can be determined when using the GE Carestation.

Modern ventilators have advanced monitoring tools. There are also monitors that work independently of the ventilator which allow for measuring patients after the ventilator has been removed, such as a Tracheal tube test.

Types of ventilators

SMART BAG MO Bag-Valve-Mask Resuscitator

Ventilators come in many different styles and method of giving a breath to sustain life. There are manual ventilators such as bag valve masks and anesthesia bags that require the users to hold the ventilator to the face or to an artificial airway and maintain breaths with their hands. Mechanical ventilators are ventilators not requiring operator effort and are typically computer-controlled or pneumatic-controlled. Mechanical ventilators typically require power by a battery or a wall outlet (DC or AC) though some ventilators work on a pneumatic system not requiring power. There are a variety of technologies available for ventilation, falling into two main (and then lesser categories), the two being the older technology of negative-pressure mechanisms, and the more common positive-pressure types.

Common positive-pressure mechanical ventilators include:

  1. Transport ventilators—These ventilators are small and more rugged, and can be powered pneumatically or via AC or DC power sources.
  2. Intensive-care ventilators—These ventilators are larger and usually run on AC power (though virtually all contain a battery to facilitate intra-facility transport and as a back-up in the event of a power failure). This style of ventilator often provides greater control of a wide variety of ventilation parameters (such as inspiratory rise time). Many ICU ventilators also incorporate graphics to provide visual feedback of each breath.
  3. Neonatal ventilators (bubble CPAP, HFJV, HFOV)—Designed with the preterm neonate in mind, these are a specialized subset of ICU ventilators that are designed to deliver smaller volumes and pressures to these patients. These may be conventional or high frequency types.
  4. Positive airway pressure ventilators (PAP) — These ventilators are specifically designed for non-invasive ventilation. This includes ventilators for use at home for treatment of chronic conditions such as sleep apnea or COPD and in the ICU setting.

Breath delivery mechanisms

Trigger

The trigger, either flow or pressure, is what causes a breath to be delivered by a mechanical ventilator. Breaths may be triggered by a patient taking their own breath, a ventilator operator pressing a manual breath button, or based on the set respiratory rate.

Cycle

The cycle is what causes the breath to transition from the inspiratory phase to the exhalation phase. Breaths may be cycled by a mechanical ventilator when a set time has been reached, or when a preset flow or percentage of the maximum flow delivered during a breath is reached depending on the breath type and the settings. Breaths can also be cycled when an alarm condition such as a high pressure limit has been reached.

Limit

Limit is how the breath is controlled. Breaths may be limited to a set maximum pressure or volume.

Breath exhalation

Exhalation in mechanical ventilation is almost always completely passive. The ventilator's expiratory valve is opened, and expiratory flow is allowed until the baseline pressure (PEEP) is reached. Expiratory flow is determined by patient factors such as compliance and resistance.

Artificial airways as a connection to the ventilator

There are various procedures and mechanical devices that provide protection against airway collapse, air leakage, and aspiration:

  • Face mask — In resuscitation and for minor procedures under anaesthesia, a face mask is often sufficient to achieve a seal against air leakage. Airway patency of the unconscious patient is maintained either by manipulation of the jaw or by the use of nasopharyngeal or oropharyngeal airway. These are designed to provide a passage of air to the pharynx through the nose or mouth, respectively. Poorly fitted masks often cause nasal bridge ulcers, a problem for some patients. Face masks are also used for non-invasive ventilation in conscious patients. A full-face mask does not, however, provide protection against aspiration. Non-invasive ventilation can be considered for epidemics of COVID-19 where sufficient invasive ventilation capacity is not available (or in some milder cases), but pressurized protection suits for caregivers are recommended due to the risks of poorly fitting masks emitting contaminating aerosols.
  • Tracheal intubation is often performed for mechanical ventilation of hours to weeks duration. A tube is inserted through the nose (nasotracheal intubation) or mouth (orotracheal intubation) and advanced into the trachea. In most cases, tubes with inflatable cuffs are used for protection against leakage and aspiration. Intubation with a cuffed tube is thought to provide the best protection against aspiration. Tracheal tubes inevitably cause pain and coughing. Therefore, unless a patient is unconscious or anaesthetized for other reasons, sedative drugs are usually given to provide tolerance of the tube. Other disadvantages of tracheal intubation include damage to the mucosal lining of the nasopharynx or oropharynx and subglottic stenosis.
  • Supraglottic airway — a supraglottic airway (SGA) is any airway device that is seated above and outside the trachea, as an alternative to endotracheal intubation. Most devices work via masks or cuffs that inflate to isolate the trachea for oxygen delivery. Newer devices feature esophageal ports for suctioning or ports for tube exchange to allow intubation. Supraglottic airways differ primarily from tracheal intubation in that they do not prevent aspiration. After the introduction of the laryngeal mask airway (LMA) in 1998, supraglottic airway devices have become mainstream in both elective and emergency anesthesia. There are many types of SGAs available including the esophageal-tracheal combitube (ETC), laryngeal tube (LT), and the obsolete esophageal obturator airway (EOA).
  • Cricothyrotomy — Patients requiring emergency airway management, in whom tracheal intubation has been unsuccessful, may require an airway inserted through a surgical opening in the cricothyroid membrane. This is similar to a tracheostomy but a cricothyrotomy is reserved for emergency access.
  • Tracheostomy — When patients require mechanical ventilation for several weeks, a tracheostomy may provide the most suitable access to the trachea. A tracheostomy is a surgically created passage into the trachea. Tracheostomy tubes are well tolerated and often do not necessitate any use of sedative drugs. Tracheostomy tubes may be inserted early during treatment in patients with pre-existing severe respiratory disease, or in any patient expected to be difficult to wean from mechanical ventilation, i.e., patients with little muscular reserve.
  • Mouthpiece — Less common interface, does not provide protection against aspiration. There are lipseal mouthpieces with flanges to help hold them in place if patient is unable.

Gait (human)

From Wikipedia, the free encyclopedia Humans using a running gait. The runner in the back and on the far ...