Search This Blog

Tuesday, October 3, 2023

Indus Valley Civilisation

From Wikipedia, the free encyclopedia
 
Indus Valley Civilisation
IVC major sites
Alternative namesHarappan civilisation
ancient Indus
Indus civilisation
Geographical rangeBasins of the Indus river, Pakistan and the seasonal Ghaggar-Hakra river, eastern Pakistan and northwestern India
PeriodBronze Age South Asia
Datesc.3300 – c.1300 BCE
Type siteHarappa
Major sitesHarappa, Mohenjo-daro, Dholavira, and Rakhigarhi
Preceded byMehrgarh
Followed byPainted Grey Ware culture
Excavated ruins of Mohenjo-daro, Sindh province, Pakistan, showing the Great Bath in the foreground. Mohenjo-daro, on the right bank of the Indus River, is a UNESCO World Heritage Site, the first site in South Asia to be so declared.
Miniature votive images or toy models from Harappa, c. 2500 BCE. Terracotta figurines indicate the yoking of zebu oxen for pulling a cart and the presence of the chicken, a domesticated jungle fowl.

The Indus Valley Civilisation (IVC), also known as the Indus Civilisation, was a Bronze Age civilisation in the northwestern regions of South Asia, lasting from 3300 BCE to 1300 BCE, and in its mature form 2600 BCE to 1900 BCE. Together with ancient Egypt and Mesopotamia, it was one of three early civilisations of the Near East and South Asia, and of the three, the most widespread, its sites spanning an area from much of Pakistan, to northeast Afghanistan, and northwestern India. The civilisation flourished both in the alluvial plain of the Indus River, which flows through the length of Pakistan, and along a system of perennial monsoon-fed rivers that once coursed in the vicinity of the Ghaggar-Hakra, a seasonal river in northwest India and eastern Pakistan.

The term Harappan is sometimes applied to the Indus civilisation after its type site Harappa, the first to be excavated early in the 20th century in what was then the Punjab province of British India and is now Punjab, Pakistan. The discovery of Harappa and soon afterwards Mohenjo-daro was the culmination of work that had begun after the founding of the Archaeological Survey of India in the British Raj in 1861. There were earlier and later cultures called Early Harappan and Late Harappan in the same area. The early Harappan cultures were populated from Neolithic cultures, the earliest and best-known of which is Mehrgarh, in Balochistan, Pakistan. Harappan civilisation is sometimes called Mature Harappan to distinguish it from the earlier cultures.

The cities of the ancient Indus were noted for their urban planning, baked brick houses, elaborate drainage systems, water supply systems, clusters of large non-residential buildings, and techniques of handicraft and metallurgy. Mohenjo-daro and Harappa very likely grew to contain between 30,000 and 60,000 individuals, and the civilisation may have contained between one and five million individuals during its florescence. A gradual drying of the region during the 3rd millennium BCE may have been the initial stimulus for its urbanisation. Eventually it also reduced the water supply enough to cause the civilisation's demise and to disperse its population to the east.

Although over a thousand Mature Harappan sites have been reported and nearly a hundred excavated, there are five major urban centres: Mohenjo-daro in the lower Indus Valley (declared a UNESCO World Heritage Site in 1980 as "Archaeological Ruins at Moenjodaro"), Harappa in the western Punjab region, Ganeriwala in the Cholistan Desert, Dholavira in western Gujarat (declared a UNESCO World Heritage Site in 2021 as "Dholavira: A Harappan City"), and Rakhigarhi in Haryana. The Harappan language is not directly attested, and its affiliations are uncertain, as the Indus script has remained undeciphered. A relationship with the Dravidian or Elamo-Dravidian language family is favoured by a section of scholars.

Etymology

The Indus civilisation is named after the Indus river system in whose alluvial plains the early sites of the civilisation were identified and excavated.

Following a tradition in archaeology, the civilisation is sometimes referred to as the Harappan, after its type site, Harappa, the first site to be excavated in the 1920s; this is notably true of usage employed by the Archaeological Survey of India after India's independence in 1947.

The term "Ghaggar-Hakra" figures prominently in modern labels applied to the Indus civilisation on account of a good number of sites having been found along the Ghaggar-Hakra River in northwest India and eastern Pakistan. The terms "Indus-Sarasvati Civilisation" and "Sindhu-Saraswati Civilisation" have also been employed in the literature after a posited identification of the Ghaggar-Hakra with the river Saraswati described in the early chapters of Rigveda, a collection of hymns in archaic Sanskrit composed in the second-millennium BCE.

Recent geophysical research suggests that unlike the Sarasvati, whose descriptions in the Rig Veda are those of a snow-fed river, the Ghaggar-Hakra was a system of perennial monsoon-fed rivers, which became seasonal around the time that the civilisation diminished, approximately 4,000 years ago.

Extent

Major sites and extent of the Indus Valley Civilisation

The Indus Valley Civilisation was roughly contemporary with the other riverine civilisations of the ancient world: Ancient Egypt along the Nile, Mesopotamia in the lands watered by the Euphrates and the Tigris, and China in the drainage basin of the Yellow River and the Yangtze. By the time of its mature phase, the civilisation had spread over an area larger than the others, which included a core of 1,500 kilometres (900 mi) up the alluvial plain of the Indus and its tributaries. In addition, there was a region with disparate flora, fauna, and habitats, up to ten times as large, which had been shaped culturally and economically by the Indus.

Around 6500 BCE, agriculture emerged in Balochistan, on the margins of the Indus alluvium. In the following millennia, settled life made inroads into the Indus plains, setting the stage for the growth of rural and urban settlements. The more organized sedentary life, in turn, led to a net increase in the birth rate. The large urban centres of Mohenjo-daro and Harappa very likely grew to containing between 30,000 and 60,000 individuals, and during the civilisation's florescence, the population of the subcontinent grew to between 4–6 million people. During this period the death rate increased, as the close living conditions of humans and domesticated animals led to an increase in contagious diseases. According to one estimate, the population of the Indus civilisation at its peak may have been between one and five million.

The civilisation extended from Balochistan in the west to western Uttar Pradesh in the east, from northeastern Afghanistan in the north to Gujarat state in the south. The largest number of sites are in the Punjab region, Gujarat, Haryana, Rajasthan, Uttar Pradesh, Jammu and Kashmir states, Sindh, and Balochistan. Coastal settlements extended from Sutkagan Dor in Western Baluchistan to Lothal in Gujarat. An Indus Valley site has been found on the Oxus River at Shortugai, in the Gomal River valley in northwestern Pakistan, at Manda, Jammu on the Beas River near Jammu, and at Alamgirpur on the Hindon River, only 28 km (17 mi) from Delhi. The southernmost site of the Indus Valley Civilisation is Daimabad in Maharashtra. Indus Valley sites have been found most often on rivers, but also on the ancient seacoast, for example, Balakot (Kot Bala), and on islands, for example, Dholavira.

Discovery and history of excavation

Alexander Cunningham, the first director general of the Archaeological Survey of India (ASI), interpreted a Harappan stamp seal in 1875.
R. D. Banerji, an officer of the ASI, visited Mohenjo-daro in 1919–1920, and again in 1922–1923, postulating the site's far-off antiquity.
John Marshall, the director-general of the ASI from 1902 to 1928, who oversaw the excavations in Harappa and Mohenjo-daro, shown in a 1906 photograph

"Three other scholars whose names I cannot pass over in silence, are the late Mr. R. D. Banerji, to whom belongs the credit of having discovered, if not Mohenjo-daro itself, at any rate its high antiquity, and his immediate successors in the task of excavation, Messrs. M.S. Vats and K.N. Dikshit. ... no one probably except myself can fully appreciate the difficulties and hardships which they had to face in the three first seasons at Mohenjo-daro"

 — From, John Marshall (ed), Mohenjo-daro and the Indus Civilization, London: Arthur Probsthain, 1931.

The first modern accounts of the ruins of the Indus civilisation are those of Charles Masson, a deserter from the East India Company's army. In 1829, Masson traveled through the princely state of Punjab, gathering useful intelligence for the Company in return for a promise of clemency. An aspect of this arrangement was the additional requirement to hand over to the Company any historical artifacts acquired during his travels. Masson, who had versed himself in the classics, especially in the military campaigns of Alexander the Great, chose for his wanderings some of the same towns that had featured in Alexander's campaigns, and whose archaeological sites had been noted by the campaign's chroniclers. Masson's major archaeological discovery in the Punjab was Harappa, a metropolis of the Indus civilisation in the valley of Indus's tributary, the Ravi river. Masson made copious notes and illustrations of Harappa's rich historical artifacts, many lying half-buried. In 1842, Masson included his observations of Harappa in the book Narrative of Various Journeys in Baluchistan, Afghanistan, and the Punjab. He dated the Harappa ruins to a period of recorded history, erroneously mistaking it to have been described earlier during Alexander's campaign. Masson was impressed by the site's extraordinary size and by several large mounds formed from long-existing erosion.

Two years later, the Company contracted Alexander Burnes to sail up the Indus to assess the feasibility of water travel for its army. Burnes, who also stopped in Harappa, noted the baked bricks employed in the site's ancient masonry, but noted also the haphazard plundering of these bricks by the local population.

Despite these reports, Harappa was raided even more perilously for its bricks after the British annexation of the Punjab in 1848–49. A considerable number were carted away as track ballast for the railway lines being laid in the Punjab. Nearly 160 km (100 mi) of railway track between Multan and Lahore, laid in the mid-1850s, was supported by Harappan bricks.

In 1861, three years after the dissolution of the East India Company and the establishment of Crown rule in India, archaeology on the subcontinent became more formally organised with the founding of the Archaeological Survey of India (ASI). Alexander Cunningham, the Survey's first director-general, who had visited Harappa in 1853 and had noted the imposing brick walls, visited again to carry out a survey, but this time of a site whose entire upper layer had been stripped in the interim. Although his original goal of demonstrating Harappa to be a lost Buddhist city mentioned in the seventh century CE travels of the Chinese visitor, Xuanzang, proved elusive,[45] Cunningham did publish his findings in 1875. For the first time, he interpreted a Harappan stamp seal, with its unknown script, which he concluded to be of an origin foreign to India.

Archaeological work in Harappa thereafter lagged until a new viceroy of India, Lord Curzon, pushed through the Ancient Monuments Preservation Act 1904, and appointed John Marshall to lead the ASI. Several years later, Hiranand Sastri, who had been assigned by Marshall to survey Harappa, reported it to be of non-Buddhist origin, and by implication more ancient. Expropriating Harappa for the ASI under the Act, Marshall directed ASI archaeologist Daya Ram Sahni to excavate the site's two mounds.

Farther south, along the main stem of the Indus in Sind province, the largely undisturbed site of Mohenjo-daro had attracted notice. Marshall deputed a succession of ASI officers to survey the site. These included D. R. Bhandarkar (1911), R. D. Banerji (1919, 1922–1923), and M. S. Vats (1924). In 1923, on his second visit to Mohenjo-daro, Baneriji wrote to Marshall about the site, postulating an origin in "remote antiquity", and noting a congruence of some of its artifacts with those of Harappa. Later in 1923, Vats, also in correspondence with Marshall, noted the same more specifically about the seals and the script found at both sites. On the weight of these opinions, Marshall ordered crucial data from the two sites to be brought to one location and invited Banerji and Sahni to a joint discussion. By 1924, Marshall had become convinced of the significance of the finds, and on 24 September 1924, made a tentative but conspicuous public intimation in the Illustrated London News:

"Not often has it been given to archaeologists, as it was given to Schliemann at Tiryns and Mycenae, or to Stein in the deserts of Turkestan, to light upon the remains of a long forgotten civilisation. It looks, however, at this moment, as if we were on the threshold of such a discovery in the plains of the Indus."

In the next issue, a week later, the British Assyriologist Archibald Sayce was able to point to very similar seals found in Bronze Age levels in Mesopotamia and Iran, giving the first strong indication of their date; confirmations from other archaeologists followed. Systematic excavations began in Mohenjo-daro in 1924–25 with that of K. N. Dikshit, continuing with those of H. Hargreaves (1925–1926), and Ernest J. H. Mackay (1927–1931). By 1931, much of Mohenjo-daro had been excavated, but occasional excavations continued, such as the one led by Mortimer Wheeler, a new director-general of the ASI appointed in 1944, and including Ahmad Hasan Dani.

After the partition of India in 1947, when most excavated sites of the Indus Valley Civilisation lay in territory awarded to Pakistan, the Archaeological Survey of India, its area of authority reduced, carried out large numbers of surveys and excavations along the Ghaggar-Hakra system in India. Some speculated that the Ghaggar-Hakra system might yield more sites than the Indus river basin. According to archaeologist Ratnagar, many Ghaggar-Hakra sites in India and Indus Valley sites in Pakistan are actually those of local cultures; some sites display contact with Harappan civilisation, but only a few are fully developed Harappan ones. As of 1977, about 90% of the Indus script seals and inscribed objects discovered were found at sites in Pakistan along the Indus river, while other sites accounts only for the remaining 10%. By 2002, over 1,000 Mature Harappan cities and settlements had been reported, of which just under a hundred had been excavated, mainly in the general region of the Indus and Ghaggar-Hakra rivers and their tributaries; however, there are only five major urban sites: Harappa, Mohenjo-daro, Dholavira, Ganeriwala and Rakhigarhi. As of 2008, about 616 sites have been reported in India, whereas 406 sites have been reported in Pakistan.

Unlike India, in which after 1947, the ASI attempted to "Indianise" archaeological work in keeping with the new nation's goals of national unity and historical continuity, in Pakistan the national imperative was the promotion of Islamic heritage, and consequently archaeological work on early sites was left to foreign archaeologists. After the partition, Mortimer Wheeler, the Director of ASI from 1944, oversaw the establishment of archaeological institutions in Pakistan, later joining a UNESCO effort tasked to conserve the site at Mohenjo-daro. Other international efforts at Mohenjo-daro and Harappa have included the German Aachen Research Project Mohenjo-daro, the Italian Mission to Mohenjo-daro, and the US Harappa Archaeological Research Project (HARP) founded by George F. Dales. Following a chance flash flood which exposed a portion of an archaeological site at the foot of the Bolan Pass in Balochistan, excavations were carried out in Mehrgarh by French archaeologist Jean-François Jarrige and his team in the early 1970s.

Chronology

The cities of the ancient Indus had "social hierarchies, their writing system, their large planned cities and their long-distance trade [which] mark them to archaeologists as a full-fledged 'civilisation.'" The mature phase of the Harappan civilisation lasted from c. 2600–1900 BCE. With the inclusion of the predecessor and successor cultures – Early Harappan and Late Harappan, respectively – the entire Indus Valley Civilisation may be taken to have lasted from the 33rd to the 14th centuries BCE. It is part of the Indus Valley Tradition, which also includes the pre-Harappan occupation of Mehrgarh, the earliest farming site of the Indus Valley.

Several periodisations are employed for the IVC. The most commonly used classifies the Indus Valley Civilisation into Early, Mature and Late Harappan Phase. An alternative approach by Shaffer divides the broader Indus Valley Tradition into four eras, the pre-Harappan "Early Food Producing Era", and the Regionalisation, Integration, and Localisation eras, which correspond roughly with the Early Harappan, Mature Harappan, and Late Harappan phases.

Dates (BCE) Main phase Mehrgarh phases Harappan phases Post-Harappan phases Era
7000–5500 Pre-Harappan Mehrgarh I and Bhirrana
(aceramic Neolithic)


Early Food Producing Era
5500–3300 Pre-Harappan/Early Harappan Mehrgarh II–VI
(ceramic Neolithic)


Regionalisation Era
c. 4000–2500/2300 (Shaffer)
c. 5000–3200 (Coningham & Young)
3300–2800 Early Harappan
c. 3300–2800 (Mughal)
c. 5000–2800 (Kenoyer)

Harappan 1
(Ravi Phase; Hakra Ware)

2800–2600 Mehrgarh VII Harappan 2
(Kot Diji Phase,
Nausharo I)

2600–2450 Mature Harappan
(Indus Valley Civilisation)

Harappan 3A (Nausharo II)
Integration Era
2450–2200
Harappan 3B
2200–1900
Harappan 3C
1900–1700 Late Harappan
Harappan 4 Cemetery H
Ochre Coloured Pottery
Localisation Era
1700–1300
Harappan 5
1300–600 Post-Harappan
Iron Age India


Painted Grey Ware (1200–600)
Vedic period (c. 1500–500)
Regionalisation
c. 1200–300 (Kenoyer)
c. 1500–600 (Coningham & Young)
600–300

Northern Black Polished Ware (Iron Age) (700–200)
Second urbanisation (c. 500–200)
Integration

Pre-Harappan era: Mehrgarh

Mehrgarh is a Neolithic (7000 BCE to c. 2500 BCE) mountain site in the Balochistan province of Pakistan, which gave new insights on the emergence of the Indus Valley Civilisation. Mehrgarh is one of the earliest sites with evidence of farming and herding in South Asia. Mehrgarh was influenced by the Near Eastern Neolithic, with similarities between "domesticated wheat varieties, early phases of farming, pottery, other archaeological artefacts, some domesticated plants and herd animals."

Jean-Francois Jarrige argues for an independent origin of Mehrgarh. Jarrige notes "the assumption that farming economy was introduced full-fledged from Near-East to South Asia," and the similarities between Neolithic sites from eastern Mesopotamia and the western Indus valley, which are evidence of a "cultural continuum" between those sites. But given the originality of Mehrgarh, Jarrige concludes that Mehrgarh has an earlier local background, and is not a "'backwater' of the Neolithic culture of the Near East".

Lukacs and Hemphill suggest an initial local development of Mehrgarh, with a continuity in cultural development but a change in population. According to Lukacs and Hemphill, while there is a strong continuity between the neolithic and chalcolithic (Copper Age) cultures of Mehrgarh, dental evidence shows that the chalcolithic population did not descend from the neolithic population of Mehrgarh, which "suggests moderate levels of gene flow." Mascarenhas et al. (2015) note that "new, possibly West Asian, body types are reported from the graves of Mehrgarh beginning in the Togau phase (3800 BCE)."

Gallego Romero et al. (2011) state that their research on lactose tolerance in India suggests that "the west Eurasian genetic contribution identified by Reich et al. (2009) principally reflects gene flow from Iran and the Middle East." They further note that "[t]he earliest evidence of cattle herding in south Asia comes from the Indus River Valley site of Mehrgarh and is dated to 7,000 YBP."

Early Harappan

Early Harappan Period, c. 3300–2600 BCE
Terracotta boat in the shape of a bull, and female figurines. Kot Diji period (c. 2800–2600 BC).

The Early Harappan Ravi Phase, named after the nearby Ravi River, lasted from c. 3300 BCE until 2800 BCE. It started when farmers from the mountains gradually moved between their mountain homes and the lowland river valleys, and is related to the Hakra Phase, identified in the Ghaggar-Hakra River Valley to the west, and predates the Kot Diji Phase (2800–2600 BCE, Harappan 2), named after a site in northern Sindh, Pakistan, near Mohenjo-daro. The earliest examples of the Indus script date to the 3rd millennium BCE.

The mature phase of earlier village cultures is represented by Rehman Dheri and Amri in Pakistan. Kot Diji represents the phase leading up to Mature Harappan, with the citadel representing centralised authority and an increasingly urban quality of life. Another town of this stage was found at Kalibangan in India on the Hakra River.

Trade networks linked this culture with related regional cultures and distant sources of raw materials, including lapis lazuli and other materials for bead-making. By this time, villagers had domesticated numerous crops, including peas, sesame seeds, dates, and cotton, as well as animals, including the water buffalo. Early Harappan communities turned to large urban centres by 2600 BCE, from where the mature Harappan phase started. The latest research shows that Indus Valley people migrated from villages to cities.

The final stages of the Early Harappan period are characterised by the building of large walled settlements, the expansion of trade networks, and the increasing integration of regional communities into a "relatively uniform" material culture in terms of pottery styles, ornaments, and stamp seals with Indus script, leading into the transition to the Mature Harappan phase.

Mature Harappan

Mature Harappan Period, c. 2600–1900 BCE
Mature Harappan
View of Granary and Great Hall on Mound F in Harappa
 
Archaeological remains of washroom drainage system at Lothal
 
Dholavira in Gujarat, India, is one of the largest cities of Indus Valley civilisation, with stepwell steps to reach the water level in artificially constructed reservoirs.

According to Giosan et al. (2012), the slow southward migration of the monsoons across Asia initially allowed the Indus Valley villages to develop by taming the floods of the Indus and its tributaries. Flood-supported farming led to large agricultural surpluses, which in turn supported the development of cities. The IVC residents did not develop irrigation capabilities, relying mainly on the seasonal monsoons leading to summer floods. Brooke further notes that the development of advanced cities coincides with a reduction in rainfall, which may have triggered a reorganisation into larger urban centres.

According to J.G. Shaffer and D.A. Lichtenstein, the Mature Harappan civilisation was "a fusion of the Bagor, Hakra, and Kot Diji traditions or 'ethnic groups' in the Ghaggar-Hakra valley on the borders of India and Pakistan".

Also, according to a more recent summary by Maisels (2003), "The Harappan oecumene formed from a Kot Dijian/Amri-Nal synthesis". He also says that, in the development of complexity, the site of Mohenjo-daro has priority, along with the Hakra-Ghaggar cluster of sites, "where Hakra wares actually precede the Kot Diji related material". He sees these areas as "catalytic in producing the fusion from Hakra, Kot Dijian and Amri-Nal cultural elements that resulted in the gestalt we recognize as Early Harappan (Early Indus)."

By 2600 BCE, the Early Harappan communities turned into large urban centres. Such urban centres include Harappa, Ganeriwala, Mohenjo-daro in modern-day Pakistan, and Dholavira, Kalibangan, Rakhigarhi, Rupar, and Lothal in modern-day India. In total, more than 1,000 settlements have been found, mainly in the general region of the Indus and Ghaggar-Hakra Rivers and their tributaries.

Cities

A sophisticated and technologically advanced urban culture is evident in the Indus Valley Civilisation, making them the first urban centre in the region. The quality of municipal town planning suggests the knowledge of urban planning and efficient municipal governments which placed a high priority on hygiene, or, alternatively, accessibility to the means of religious ritual.

As seen in Harappa, Mohenjo-daro and the recently partially excavated Rakhigarhi, this urban plan included the world's first known urban sanitation systems. Within the city, individual homes or groups of homes obtained water from wells. From a room that appears to have been set aside for bathing, waste water was directed to covered drains, which lined the major streets. Houses opened only to inner courtyards and smaller lanes. The housebuilding in some villages in the region still resembles in some respects the housebuilding of the Harappans.

The ancient Indus systems of sewerage and drainage that were developed and used in cities throughout the Indus region were far more advanced than any found in contemporary urban sites in the Middle East and even more efficient than those in many areas of Pakistan and India today. The advanced architecture of the Harappans is shown by their dockyards, granaries, warehouses, brick platforms, and protective walls. The massive walls of Indus cities most likely protected the Harappans from floods and may have dissuaded military conflicts.

The purpose of the citadel remains debated. In sharp contrast to this civilisation's contemporaries, Mesopotamia and ancient Egypt, no large monumental structures were built. There is no conclusive evidence of palaces or temples. Some structures are thought to have been granaries. Found at one city is an enormous well-built bath (the "Great Bath"), which may have been a public bath. Although the citadels were walled, it is far from clear that these structures were defensive.

Most city dwellers appear to have been traders or artisans, who lived with others pursuing the same occupation in well-defined neighbourhoods. Materials from distant regions were used in the cities for constructing seals, beads and other objects. Among the artefacts discovered were beautiful glazed faïence beads. Steatite seals have images of animals, people (perhaps gods), and other types of inscriptions, including the yet un-deciphered writing system of the Indus Valley Civilisation. Some of the seals were used to stamp clay on trade goods.

Although some houses were larger than others, Indus civilisation cities were remarkable for their apparent, if relative, egalitarianism. All the houses had access to water and drainage facilities. This gives the impression of a society with relatively low wealth concentration.

Authority and governance

Archaeological records provide no immediate answers for a centre of power or for depictions of people in power in Harappan society. But, there are indications of complex decisions being taken and implemented. For instance, the majority of the cities were constructed in a highly uniform and well-planned grid pattern, suggesting they were planned by a central authority; extraordinary uniformity of Harappan artefacts as evident in pottery, seals, weights and bricks; presence of public facilities and monumental architecture; heterogeneity in the mortuary symbolism and in grave goods (items included in burials).

These are some major theories:

  • There was a single state, given the similarity in artefacts, the evidence for planned settlements, the standardised ratio of brick size, and the establishment of settlements near sources of raw material.
  • There was no single ruler but several cities like Mohenjo-daro had a separate ruler, Harappa another, and so forth.

Metallurgy

Harappans evolved some new techniques in metallurgy and produced copper, bronze, lead, and tin.

A touchstone bearing gold streaks was found in Banawali, which was probably used for testing the purity of gold (such a technique is still used in some parts of India).

Metrology

Harappan weights found in the Indus Valley, (National Museum, New Delhi)

The people of the Indus civilisation achieved great accuracy in measuring length, mass, and time. They were among the first to develop a system of uniform weights and measures. A comparison of available objects indicates large scale variation across the Indus territories. Their smallest division, which is marked on an ivory scale found in Lothal in Gujarat, was approximately 1.704 mm, the smallest division ever recorded on a scale of the Bronze Age. Harappan engineers followed the decimal division of measurement for all practical purposes, including the measurement of mass as revealed by their hexahedron weights.

These chert weights were in a ratio of 5:2:1 with weights of 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, and 500 units, with each unit weighing approximately 28 grams, similar to the English Imperial ounce or Greek uncia, and smaller objects were weighed in similar ratios with the units of 0.871 . However, as in other cultures, actual weights were not uniform throughout the area. The weights and measures later used in Kautilya's Arthashastra (4th century BCE) are the same as those used in Lothal.

Arts and crafts

Many Indus Valley seals and items in pottery and terracotta have been found, along with a very few stone sculptures and some gold jewellery and bronze vessels. Some anatomically detailed figurines in terracotta, bronze, and steatite have been found at excavation sites, the former probably mostly toys. The Harappans also made various toys and games, among them cubical dice (with one to six holes on the faces), which were found in sites like Mohenjo-daro.

The terracotta figurines included cows, bears, monkeys, and dogs. The animal depicted on a majority of seals at sites of the mature period has not been clearly identified. Part bull, part zebra, with a majestic horn, it has been a source of speculation. As yet, there is insufficient evidence to substantiate claims that the image had religious or cultic significance, but the prevalence of the image raises the question of whether or not the animals in images of the IVC are religious symbols.

Many crafts including, "shell working, ceramics, and agate and glazed steatite bead making" were practised and the pieces were used in the making of necklaces, bangles, and other ornaments from all phases of Harappan culture. Some of these crafts are still practised in the subcontinent today. Some make-up and toiletry items (a special kind of combs (kakai), the use of collyrium and a special three-in-one toiletry gadget) that were found in Harappan contexts still have similar counterparts in modern India. Terracotta female figurines were found (c. 2800–2600 BCE) which had red colour applied to the "manga" (line of partition of the hair).

The finds from Mohenjo-daro were initially deposited in the Lahore Museum, but later moved to the ASI headquarters at New Delhi, where a new "Central Imperial Museum" was being planned for the new capital of the British Raj, in which at least a selection would be displayed. It became apparent that Indian independence was approaching, but the Partition of India was not anticipated until late in the process. The new Pakistani authorities requested the return of the Mohenjo-daro pieces excavated on their territory, but the Indian authorities refused. Eventually an agreement was reached, whereby the finds, totalling some 12,000 objects (most sherds of pottery), were split equally between the countries; in some cases this was taken very literally, with some necklaces and girdles having their beads separated into two piles. In the case of the "two most celebrated sculpted figures", Pakistan asked for and received the so-called Priest-King figure, while India retained the much smaller Dancing Girl.

Though written considerably later, the arts treatise Natya Shastra (c. 200 BCE – 200 CE) classifies musical instruments into four groups based on their means of acoustical production—strings, membranes, solid materials and air—and it is probable that such instruments had existed since the IVC. Archeological evidence indicates the use of simple rattles and vessel flutes, while iconographical evidence suggests early harps and drums were also used. An ideogram in the IVC contains the earliest known depiction of an arched harp, dated sometime before 1800 BCE.

Human statuettes

A handful of realistic statuettes have been found at IVC sites, of which much the most famous is the lost-wax casting bronze statuette of a slender-limbed Dancing Girl adorned with bangles, found in Mohenjo-daro. Two other realistic incomplete statuettes have been found in Harappa in proper stratified excavations, which display near-Classical treatment of the human shape: the statuette of a dancer who seems to be male, and the Hapappa Torso, a red jasper male torso, both now in the Delhi National Museum. Sir John Marshall reacted with surprise when he saw these two statuettes from Harappa:

When I first saw them I found it difficult to believe that they were prehistoric; they seemed to completely upset all established ideas about early art, and culture. Modelling such as this was unknown in the ancient world up to the Hellenistic age of Greece, and I thought, therefore, that some mistake must surely have been made; that these figures had found their way into levels some 3000 years older than those to which they properly belonged ... Now, in these statuettes, it is just this anatomical truth which is so startling; that makes us wonder whether, in this all-important matter, Greek artistry could possibly have been anticipated by the sculptors of a far-off age on the banks of the Indus.

These statuettes remain controversial, due to their advanced style in representing the human body. Regarding the red jasper torso, the discoverer, Vats, claims a Harappan date, but Marshall considered this statuette is probably historical, dating to the Gupta period, comparing it to the much later Lohanipur torso. A second rather similar grey stone torso of a dancing male was also found about 150 meters away in a secure Mature Harappan stratum. Overall, anthropologist Gregory Possehl tends to consider that these statuettes probably form the pinnacle of Indus art during the Mature Harappan period.

Seals

Stamp seals and (right) impressions, some of them with Indus script; probably made of steatite; British Museum (London)

Thousands of steatite seals have been recovered, and their physical character is fairly consistent. In size they range from squares of side 2 to 4 cm (34 to 1+12 in). In most cases they have a pierced boss at the back to accommodate a cord for handling or for use as personal adornment. In addition a large number of sealings have survived, of which only a few can be matched to the seals. The great majority of examples of the Indus script are short groups of signs on seals.

Seals have been found at Mohenjo-daro depicting a figure standing on its head, and another, on the Pashupati seal, sitting cross-legged in what some call a yoga-like pose (see image, the so-called Pashupati, below). This figure has been variously identified. Sir John Marshall identified a resemblance to the Hindu god, Shiva.

A human deity with the horns, hooves and tail of a bull also appears in the seals, in particular in a fighting scene with a horned tiger-like beast. This deity has been compared to the Mesopotamian bull-man Enkidu. Several seals also show a man fighting two lions or tigers, a "Master of Animals" motif common to civilisations in Western and South Asia.

Trade and transportation

Archaeological discoveries suggest that trade routes between Mesopotamia and the Indus were active during the 3rd millennium BCE, leading to the development of Indus–Mesopotamia relations.
Boat with direction-finding birds to find land. Model of Mohenjo-daro tablet, 2500–1750 BCE.(National Museum, New Delhi). Flat-bottomed river row-boats appear in two Indus seals, but their seaworthiness is debatable.

The Indus Valley civilisation may have had bullock carts identical to those seen throughout South Asia today, as well as boats. Most of these boats were probably small, flat-bottomed craft, perhaps driven by sail, similar to those one can see on the Indus River today;. An extensive canal network, used for irrigation, has however also been discovered by H.-P. Francfort.

During 4300–3200 BCE of the chalcolithic period (copper age), the Indus Valley Civilisation area shows ceramic similarities with southern Turkmenistan and northern Iran which suggest considerable mobility and trade. During the Early Harappan period (about 3200–2600 BCE), similarities in pottery, seals, figurines, ornaments, etc. document intensive caravan trade with Central Asia and the Iranian plateau.

Judging from the dispersal of Indus civilisation artefacts, the trade networks economically integrated a huge area, including portions of Afghanistan, the coastal regions of Persia, northern and western India, and Mesopotamia, leading to the development of Indus-Mesopotamia relations. Studies of tooth enamel from individuals buried at Harappa suggest that some residents had migrated to the city from beyond the Indus Valley. Ancient DNA studies of graves at Bronze Age sites at Gonur Depe, Turkmenistan, and Shahr-e Sukhteh, Iran, have identified 11 individuals of South Asian descent, who are presumed to be of mature Indus Valley origin.

There was an extensive maritime trade network operating between the Harappan and Mesopotamian civilisations as early as the middle Harappan Phase, with much commerce being handled by "middlemen merchants from Dilmun" (modern Bahrain, Eastern Arabia and Failaka located in the Persian Gulf). Such long-distance sea trade became feasible with the development of plank-built watercraft, equipped with a single central mast supporting a sail of woven rushes or cloth.

However, the evidence of sea-borne trade involving the Harappan civilisation is not firm. In their book Rise of Civilization in India and Pakistan archaeologists Bridget Allchin and Raymond Allchin write:

... (p. 173) the settlement at Lothal ... along the east side was a brick basin. It is claimed by its excavator to have been a dockyard, connected by channels to a neighbouring estuary. ... On its edge the excavator discovered several heavily-pierced stones, similar to modern anchor stones employed by traditional seafaring communities of Western India. This interpretation, however, has been challenged, and indeed the published levels of the basin and its entrance relative to the modern sea level seem to argue against it. Leshnik has cogently suggested that it was a tank for the reception of sweet water, channelled from higher ground inland to an area where the local water supplies were anciently, as still today, saline. We regard either interpretation as still unproven, but favour the latter. ... (p. 188–189) The discussion of trade focuses attention upon methods of transport. Several representations of ships are found on seals and graffiti at Harappa, Mohenjo-daro (Figs. 7.15–7.16], etc, and a terracotta model of a ship, with a stick impressed socket for the mast and eyeholes for fixing rigging comes from Lothal. We have already seen above that the great brick tank, interpreted by Rao as a dock at Lothal, cannot yet be certainly identified. The evidence of sea trade and contact during the Harappan period is largely circumstantial, or derived from inferences from the Mesopotamian texts, as detailed above. (Figure 7. 15 had caption: Mohenjo-daro: representation of ship on a stone seal (length 4.3 cm) (after Mackay). Figure 7.16 Mohenjo-daro: representation of ship on terracotta amulet (length 4.5 cm) after Dales)

Daniel T. Potts writes:

It is generally assumed that most trade between the Indus Valley (ancient Meluhha?) and western neighbors proceeded up the Persian Gulf rather than overland. Although there is no incontrovertible proof that this was indeed the case, the distribution of Indus-type artifacts on the Oman peninsula, on Bahrain and in southern Mesopotamia makes it plausible that a series of maritime stages linked the Indus Valley and the Gulf region. If this is accepted, then the presence of etched carnelian beads, a Harappan-style cubical stone weight, and a Harappan-style cylinder seal at Susa (Amiet 1986a, Figs. 92-94) may be evidence of maritime trade between Susa and the Indus Valley in the late 3rd millennium BCE. On the other hand, given that similar finds, particularly etched carnelian beads, are attested at landlocked sites including Tepe Hissar (Tappe Heṣār), Shah Tepe (Šāh-Tappe), Kalleh Nisar (Kalla Nisār), Jalalabad (Jalālābād), Marlik (Mārlik) and Tepe Yahya (Tappe Yaḥyā) (Possehl 1996, pp. 153-54), other mechanisms, including overland traffic by peddlers or caravans, may account for their presence at Susa.

In the 1980s, important archaeological discoveries were made at Ras al-Jinz (Oman), demonstrating maritime Indus Valley connections with the Arabian Peninsula.

Agriculture

According to Gangal et al. (2014), there is strong archeological and geographical evidence that neolithic farming spread from the Near East into north-west India, but there is also "good evidence for the local domestication of barley and the zebu cattle at Mehrgarh."

According to Jean-Francois Jarrige, farming had an independent local origin at Mehrgarh, which he argues is not merely a "'backwater' of the Neolithic culture of the Near East", despite similarities between Neolithic sites from eastern Mesopotamia and the western Indus valley which are evidence of a "cultural continuum" between those sites. Archaeologist Jim G. Shaffer writes that the Mehrgarh site "demonstrates that food production was an indigenous South Asian phenomenon" and that the data support interpretation of "the prehistoric urbanisation and complex social organisation in South Asia as based on indigenous, but not isolated, cultural developments".

Jarrige notes that the people of Mehrgarh used domesticated wheats and barley, while Shaffer and Liechtenstein note that the major cultivated cereal crop was naked six-row barley, a crop derived from two-row barley. Gangal agrees that "Neolithic domesticated crops in Mehrgarh include more than 90% barley," noting that "there is good evidence for the local domestication of barley." Yet, Gangal also notes that the crop also included "a small amount of wheat," which "are suggested to be of Near-Eastern origin, as the modern distribution of wild varieties of wheat is limited to Northern Levant and Southern Turkey."

The cattle that are often portrayed on Indus seals are humped Indian aurochs (Bos primigenius namadicus), which are similar to Zebu cattle. Zebu cattle is still common in India, and in Africa. It is different from the European cattle (Bos primigenius taurus), and are believed to have been independently domesticated on the Indian subcontinent, probably in the Baluchistan region of Pakistan.

Research by J. Bates et al. (2016) confirms that Indus populations were the earliest people to use complex multi-cropping strategies across both seasons, growing foods during summer (rice, millets and beans) and winter (wheat, barley and pulses), which required different watering regimes. Bates et al. (2016) also found evidence for an entirely separate domestication process of rice in ancient South Asia, based around the wild species Oryza nivara. This led to the local development of a mix of "wetland" and "dryland" agriculture of local Oryza sativa indica rice agriculture, before the truly "wetland" rice Oryza sativa japonica arrived around 2000 BCE.

Food

According to archeological finds, Indus valley civilization had dominance of meat diet of animals such as cattle, buffalo, goat, pig and chicken. Remnants of dairy products were also discovered. According to Akshyeta Suryanarayan et al., available evidence indicates culinary practices to be common over the region; food-constituents were dairy products (in low proportion), ruminant carcass meat, and either non-ruminant adipose fats, plants, or mixtures of these products. The dietary pattern remained same throughout the decline.

Seven food-balls ("laddus") were found in intact form, along with two figurines of bulls and a hand-held copper adze, during excavations in 2017 from western Rajasthan. Dated to about 2600 BCE, they were likely composed of legumes, primarily mung, and cereals. The authors speculated the food-balls to be of a ritualistic significance, given the finds of bull figurines, adze and a seal in immediate vicinity.

Language

It has often been suggested that the bearers of the IVC corresponded to proto-Dravidians linguistically, the break-up of proto-Dravidian corresponding to the break-up of the Late Harappan culture. Finnish Indologist Asko Parpola concludes that the uniformity of the Indus inscriptions precludes any possibility of widely different languages being used, and that an early form of Dravidian language must have been the language of the Indus people. Today, the Dravidian language family is concentrated mostly in southern India and northern and eastern Sri Lanka, but pockets of it still remain throughout the rest of India and Pakistan (the Brahui language), which lends credence to the theory.

According to Heggarty and Renfrew, Dravidian languages may have spread into the Indian subcontinent with the spread of farming. According to David McAlpin, the Dravidian languages were brought to India by immigration into India from Elam. In earlier publications, Renfrew also stated that proto-Dravidian was brought to India by farmers from the Iranian part of the Fertile Crescent, but more recently Heggarty and Renfrew note that "a great deal remains to be done in elucidating the prehistory of Dravidian." They also note that "McAlpin's analysis of the language data, and thus his claims, remain far from orthodoxy." Heggarty and Renfrew conclude that several scenarios are compatible with the data, and that "the linguistic jury is still very much out." In a 2021 study, Bahata Ansumali Mukhopadhyay presented a linguistic analysis to posit a Proto-Dravidian presence in the ancient Indus area, using Dravidian root words for tooth, toothbrush and elephant in various contemporary ancient civilisations.

Possible writing system

Ten Indus characters from the northern gate of Dholavira, dubbed the Dholavira signboard

Between 400 and as many as 600 distinct Indus symbols have been found on stamp seals, small tablets, ceramic pots and more than a dozen other materials, including a "signboard" that apparently once hung over the gate of the inner citadel of the Indus city of Dholavira. Typical Indus inscriptions are around five characters in length, most of which (aside from the Dholavira "signboard") are tiny; the longest on any single object (inscribed on a copper plate) has a length of 34 symbols.

While the Indus Valley Civilisation is generally characterised as a literate society on the evidence of these inscriptions, this description has been challenged by Farmer, Sproat, and Witzel (2004) who argue that the Indus system did not encode language, but was instead similar to a variety of non-linguistic sign systems used extensively in the Near East and other societies, to symbolise families, clans, gods, and religious concepts. Others have claimed on occasion that the symbols were exclusively used for economic transactions, but this claim leaves unexplained the appearance of Indus symbols on many ritual objects, many of which were mass-produced in moulds. No parallels to these mass-produced inscriptions are known in any other early ancient civilisations.

In a 2009 study by P.N. Rao et al. published in Science, computer scientists, comparing the pattern of symbols to various linguistic scripts and non-linguistic systems, including DNA and a computer programming language, found that the Indus script's pattern is closer to that of spoken words, supporting the hypothesis that it codes for an as-yet-unknown language.

Farmer, Sproat, and Witzel have disputed this finding, pointing out that Rao et al. did not actually compare the Indus signs with "real-world non-linguistic systems" but rather with "two wholly artificial systems invented by the authors, one consisting of 200,000 randomly ordered signs and another of 200,000 fully ordered signs, that they spuriously claim represent the structures of all real-world non-linguistic sign systems". Farmer et al. have also demonstrated that a comparison of a non-linguistic system like medieval heraldic signs with natural languages yields results similar to those that Rao et al. obtained with Indus signs. They conclude that the method used by Rao et al. cannot distinguish linguistic systems from non-linguistic ones.

The messages on the seals have proved to be too short to be decoded by a computer. Each seal has a distinctive combination of symbols and there are too few examples of each sequence to provide a sufficient context. The symbols that accompany the images vary from seal to seal, making it impossible to derive a meaning for the symbols from the images. There have, nonetheless, been a number of interpretations offered for the meaning of the seals. These interpretations have been marked by ambiguity and subjectivity.

Photos of many of the thousands of extant inscriptions are published in the Corpus of Indus Seals and Inscriptions (1987, 1991, 2010), edited by Asko Parpola and his colleagues. The most recent volume republished photos taken in the 1920s and 1930s of hundreds of lost or stolen inscriptions, along with many discovered in the last few decades; formerly, researchers had to supplement the materials in the Corpus by study of the tiny photos in the excavation reports of Marshall (1931), MacKay (1938, 1943), Wheeler (1947), or reproductions in more recent scattered sources.

Religion

The Pashupati seal, showing a seated figure surrounded by animals
Swastika seals of Indus Valley Civilisation in British Museum

The religion and belief system of the Indus Valley people has received considerable attention, especially from the view of identifying precursors to deities and religious practices of Indian religions that later developed in the area. However, due to the sparsity of evidence, which is open to varying interpretations, and the fact that the Indus script remains undeciphered, the conclusions are partly speculative and largely based on a retrospective view from a much later Hindu perspective.

Early and influential work in the area that set the trend for Hindu interpretations of archaeological evidence from the Harappan sites was that of John Marshall, who in 1931 identified the following as prominent features of the Indus religion: a Great Male God and a Mother Goddess; deification or veneration of animals and plants; a symbolic representation of the phallus (linga) and vulva (yoni); and, use of baths and water in religious practice. Marshall's interpretations have been much debated, and sometimes disputed over the following decades.

One Indus Valley seal shows a seated figure with a horned headdress, possibly tricephalic and possibly ithyphallic, surrounded by animals. Marshall identified the figure as an early form of the Hindu god Shiva (or Rudra), who is associated with asceticism, yoga, and linga; regarded as a lord of animals, and often depicted as having three eyes. The seal has hence come to be known as the Pashupati Seal, after Pashupati (lord of all animals), an epithet of Shiva. While Marshall's work has earned some support, many critics and even supporters have raised several objections. Doris Srinivasan has argued that the figure does not have three faces or yogic posture and that in Vedic literature Rudra was not a protector of wild animals. Herbert Sullivan and Alf Hiltebeitel also rejected Marshall's conclusions, with the former claiming that the figure was female, while the latter associated the figure with Mahisha, the Buffalo God and the surrounding animals with vahanas (vehicles) of deities for the four cardinal directions. Writing in 2002, Gregory L. Possehl concluded that while it would be appropriate to recognise the figure as a deity, its association with the water buffalo, and its posture as one of ritual discipline, regarding it as a proto-Shiva would be going too far. Despite the criticisms of Marshall's association of the seal with a proto-Shiva icon, it has been interpreted as the Tirthankara Rishabhanatha by some scholars of Jainism like Vilas Sangave. Historians such as Heinrich Zimmer and Thomas McEvilley believe that there is a connection between first Jain Tirthankara Rishabhanatha and the Indus Valley Civilisation.

Marshall hypothesised the existence of a cult of Mother Goddess worship based upon excavation of several female figurines and thought that this was a precursor of the Hindu sect of Shaktism. However the function of the female figurines in the life of Indus Valley people remains unclear, and Possehl does not regard the evidence for Marshall's hypothesis to be "terribly robust". Some of the baetyls interpreted by Marshall to be sacred phallic representations are now thought to have been used as pestles or game counters instead, while the ring stones that were thought to symbolise yoni were determined to be architectural features used to stand pillars, although the possibility of their religious symbolism cannot be eliminated. Many Indus Valley seals show animals, with some depicting them being carried in processions, while others show chimeric creations. One seal from Mohenjo-daro shows a half-human, a half-buffalo monster attacking a tiger, which may be a reference to the Sumerian myth of such a monster created by goddess Aruru to fight Gilgamesh.

In contrast to contemporary Egyptian and Mesopotamian civilisations, Indus Valley lacks any monumental palaces, even though excavated cities indicate that the society possessed the requisite engineering knowledge. This may suggest that religious ceremonies if any, may have been largely confined to individual homes, small temples, or the open air. Several sites have been proposed by Marshall and later scholars as possibly devoted to religious purposes, but at present only the Great Bath at Mohenjo-daro is widely thought to have been so used, as a place for ritual purification. The funerary practices of the Harappan civilisation are marked by fractional burial (in which the body is reduced to skeletal remains by exposure to the elements before final interment), and even cremation.

Late Harappan

Late Harappan Period, c. 1900–1300 BCE
Bronze Late Harappan figures from a hoard at Daimabad, c. 2000 BCE (Prince of Wales Museum, Bombay)

Around 1900 BCE signs of a gradual decline began to emerge, and by around 1700 BCE most of the cities had been abandoned. Recent examination of human skeletons from the site of Harappa has demonstrated that the end of the Indus civilisation saw an increase in inter-personal violence and in infectious diseases like leprosy and tuberculosis.

According to historian Upinder Singh, "the general picture presented by the late Harappan phase is one of a breakdown of urban networks and an expansion of rural ones."

During the period of approximately 1900 to 1700 BCE, multiple regional cultures emerged within the area of the Indus civilisation. The Cemetery H culture was in Punjab, Haryana, and Western Uttar Pradesh, the Jhukar culture was in Sindh, and the Rangpur culture (characterised by Lustrous Red Ware pottery) was in Gujarat. Other sites associated with the Late phase of the Harappan culture are Pirak in Balochistan, Pakistan, and Daimabad in Maharashtra, India.

The largest Late Harappan sites are Kudwala in Cholistan, Bet Dwarka in Gujarat, and Daimabad in Maharashtra, which can be considered as urban, but they are smaller and few in number compared with the Mature Harappan cities. Bet Dwarka was fortified and continued to have contacts with the Persian Gulf region, but there was a general decrease of long-distance trade. On the other hand, the period also saw a diversification of the agricultural base, with a diversity of crops and the advent of double-cropping, as well as a shift of rural settlement towards the east and the south.

The pottery of the Late Harappan period is described as "showing some continuity with mature Harappan pottery traditions", but also distinctive differences. Many sites continued to be occupied for some centuries, although their urban features declined and disappeared. Formerly typical artifacts such as stone weights and female figurines became rare. There are some circular stamp seals with geometric designs, but lacking the Indus script which characterised the mature phase of the civilisation. Script is rare and confined to potsherd inscriptions. There was also a decline in long-distance trade, although the local cultures show new innovations in faience and glass making, and carving of stone beads. Urban amenities such as drains and the public bath were no longer maintained, and newer buildings were "poorly constructed". Stone sculptures were deliberately vandalised, valuables were sometimes concealed in hoards, suggesting unrest, and the corpses of animals and even humans were left unburied in the streets and in abandoned buildings.

During the later half of the 2nd millennium BCE, most of the post-urban Late Harappan settlements were abandoned altogether. Subsequent material culture was typically characterised by temporary occupation, "the campsites of a population which was nomadic and mainly pastoralist" and which used "crude handmade pottery". However, there is greater continuity and overlap between Late Harappan and subsequent cultural phases at sites in Punjab, Haryana, and western Uttar Pradesh, primarily small rural settlements.

Aryan migration

Painted pottery urns from Harappa (Cemetery H culture, c. 1900–1300 BCE), National Museum, New Delhi

In 1953 Sir Mortimer Wheeler proposed that the invasion of an Indo-European tribe from Central Asia, the "Aryans", caused the decline of the Indus civilisation. As evidence, he cited a group of 37 skeletons found in various parts of Mohenjo-daro, and passages in the Vedas referring to battles and forts. However, scholars soon started to reject Wheeler's theory, since the skeletons belonged to a period after the city's abandonment and none were found near the citadel. Subsequent examinations of the skeletons by Kenneth Kennedy in 1994 showed that the marks on the skulls were caused by erosion, and not by violence.

In the Cemetery H culture (the late Harappan phase in the Punjab region), some of the designs painted on the funerary urns have been interpreted through the lens of Vedic literature: for instance, peacocks with hollow bodies and a small human form inside, which has been interpreted as the souls of the dead, and a hound that can be seen as the hound of Yama, the god of death. This may indicate the introduction of new religious beliefs during this period, but the archaeological evidence does not support the hypothesis that the Cemetery H people were the destroyers of the Harappan cities.

Climate change and drought

Suggested contributory causes for the localisation of the IVC include changes in the course of the river, and climate change that is also signaled for the neighboring areas of the Middle East. As of 2016 many scholars believe that drought, and a decline in trade with Egypt and Mesopotamia, caused the collapse of the Indus civilisation. The climate change which caused the collapse of the Indus Valley Civilisation was possibly due to "an abrupt and critical mega-drought and cooling 4,200 years ago," which marks the onset of the Meghalayan Age, the present stage of the Holocene.

The Ghaggar-Hakra system was rain-fed, and water-supply depended on the monsoons. The Indus Valley climate grew significantly cooler and drier from about 1800 BCE, linked to a general weakening of the monsoon at that time. The Indian monsoon declined and aridity increased, with the Ghaggar-Hakra retracting its reach towards the foothills of the Himalaya, leading to erratic and less extensive floods that made inundation agriculture less sustainable.

Aridification reduced the water supply enough to cause the civilisation's demise, and scatter its population eastward. According to Giosan et al. (2012), the IVC residents did not develop irrigation capabilities, relying mainly on the seasonal monsoons leading to summer floods. As the monsoons kept shifting south, the floods grew too erratic for sustainable agricultural activities. The residents then migrated towards the Ganges basin in the east, where they established smaller villages and isolated farms. The small surplus produced in these small communities did not allow the development of trade, and the cities died out.

Continuity and coexistence

Archaeological excavations indicate that the decline of Harappa drove people eastward. According to Possehl, after 1900 BCE the number of sites in today's India increased from 218 to 853. According to Andrew Lawler, "excavations along the Gangetic plain show that cities began to arise there starting about 1200 BCE, just a few centuries after Harappa was deserted and much earlier than once suspected." According to Jim Shaffer there was a continuous series of cultural developments, just as in most areas of the world. These link "the so-called two major phases of urbanisation in South Asia".

At sites such as Bhagwanpura (in Haryana), archaeological excavations have discovered an overlap between the final phase of Late Harappan pottery and the earliest phase of Painted Grey Ware pottery, the latter being associated with the Vedic culture and dating from around 1200 BCE. This site provides evidence of multiple social groups occupying the same village but using different pottery and living in different types of houses: "over time the Late Harappan pottery was gradually replaced by Painted Grey ware pottery," and other cultural changes indicated by archaeology include the introduction of the horse, iron tools, and new religious practices.

There is also a Harappan site called Rojdi in Rajkot district of Saurashtra. Its excavation started under an archaeological team from Gujarat State Department of Archaeology and the Museum of the University of Pennsylvania in 1982–83. In their report on archaeological excavations at Rojdi, Gregory Possehl and M.H. Raval write that although there are "obvious signs of cultural continuity" between the Harappan civilisation and later South Asian cultures, many aspects of the Harappan "sociocultural system" and "integrated civilization" were "lost forever," while the Second Urbanisation of India (beginning with the Northern Black Polished Ware culture, c. 600 BCE) "lies well outside this sociocultural environment".

Post-Harappan

Previously, scholars believed that the decline of the Harappan civilisation led to an interruption of urban life in the Indian subcontinent. However, the Indus Valley Civilisation did not disappear suddenly, and many elements of the Indus civilisation appear in later cultures. The Cemetery H culture may be the manifestation of the Late Harappan over a large area in the region of Punjab, Haryana and western Uttar Pradesh, and the Ochre Coloured Pottery culture its successor. David Gordon White cites three other mainstream scholars who "have emphatically demonstrated" that Vedic religion derives partially from the Indus Valley Civilisations.

As of 2016, archaeological data suggests that the material culture classified as Late Harappan may have persisted until at least c. 1000–900 BCE and was partially contemporaneous with the Painted Grey Ware culture. Harvard archaeologist Richard Meadow points to the late Harappan settlement of Pirak, which thrived continuously from 1800 BCE to the time of the invasion of Alexander the Great in 325 BCE.

In the aftermath of the Indus civilisation's localisation, regional cultures emerged, to varying degrees showing the influence of the Indus civilisation. In the formerly great city of Harappa, burials have been found that correspond to a regional culture called the Cemetery H culture. At the same time, the Ochre Coloured Pottery culture expanded from Rajasthan into the Gangetic Plain. The Cemetery H culture has the earliest evidence for cremation; a practice dominant in Hinduism today.

The inhabitants of the Indus Valley Civilisation migrated from the river valleys of Indus and Ghaggar-Hakra, towards the Himalayan foothills of the Ganga-Yamuna basin.

Geology of North America

From Wikipedia, the free encyclopedia
USGS Geologic Map of North America
Relief map showing the varying age of bedrock underlying North America.
This is the legend for the North American geological map above.
Geologic map of North America

The geology of North America is a subject of regional geology and covers the North American continent, the third-largest in the world. Geologic units and processes are investigated on a large scale to reach a synthesized picture of the geological development of the continent.

The divisions of regional geology are drawn in different ways, but are usually outlined by a common geologic history, geographic vicinity or political boundaries. The regional geology of North America usually encompasses the geographic regions of Alaska, Canada, Greenland, the continental United States, Mexico, Central America, and the Caribbean. The parts of the North American Plate that are not occupied by North American countries are usually not discussed as part of the regional geology. The regions that are not geographically North American but reside on the North American Plate include parts of Siberia (see the Geology of Russia), and Iceland, and Bermuda. A discussion of North American geology can also include other continental plates including the Cocos and Juan de Fuca plates being subducted beneath western North America. A portion of the Pacific Plate underlies Baja California and part of California west of the San Andreas Fault.

North American Craton

The stable core of the continent is the North American Craton. Much of it was also the core of an earlier supercontinent, Laurentia. The part of the craton where the basement rock is exposed is called the Canadian Shield. Surrounding this is a stable platform where the basement is covered by sediment; and surrounding that are a series of orogenic zones.

Canadian Shield

On a map showing only metamorphic rocks, the Canadian Shield forms a circular pattern north of the Great Lakes around Hudson Bay.

The Canadian Shield is a large area of Archean through Proterozoic igneous and metamorphic rocks in eastern Canada and north central and northeastern United States.

The earliest part of the shield is metamorphosed Archean rocks, originally volcanic in origin. Numerous terranes were accreted onto this Archean core during the Proterozoic to form the Canadian Shield. The southern Archean province is the Superior Craton, it is formed by the combination of a greenstone-granite and a gneiss terrane. The margins of the Canadian Shield have been covered by sedimentary rocks, such as in Michigan where a series of sediments has filled in the Michigan Basin. The exposed sections are often where glaciers have removed this overlying regolith to reveal the underlying glacially scarred crystalline rock.

Stable platform

The North American craton

The stable platform is an area in which the North American Craton forms a basement and is covered by sediment. This area now forms much of the Interior Plains and the slope of the Appalachians below the mountains proper. This area has been covered by a shallow inland sea, which became the site of deposition for most of the overlying sedimentary rock. The sea receded as the continent rose becoming covered by stream, lake, and wind deposits. Orogenies in the surrounding provinces have had little effect on the craton, making it an epeirogenic region, and, as such, the stable platform is mostly a crystalline basement, covered by sedimentary rocks, interrupted only by occasional domes, such as the Cincinnati Arch, Wisconsin Dome, and Ozark Dome.

Midcontinent rift system

One billion years ago, the Midcontinent Rift System began to extend along a 2,000 kilometres (1,200 mi) path, across both the Canadian Shield and the Stable Platform. The rift failed, then crustal movement reversed. A range formed then eroded, forming basins on either side of a horst. These rocks have been buried beneath sediment in many areas, but are exposed in some areas, especially around Lake Superior.

Grenville Orogen

The Grenville Orogen developed during the Proterozoic along eastern and southern margin of the North American Craton. The largest outcrop of Grenville age rocks is an approximately 400 kilometres (250 mi) wide band southeast of the Grenville Front which stretches from the central Labrador coast southwest across southern Quebec and southeastern Ontario to Georgian Bay on Lake Huron. The southeastern boundary of this area is approximately the St. Lawrence River. Rocks of the Grenville outcrop in the Adirondack Mountains of northern New York and throughout the Appalachians. The Llano Uplift of central Texas and the Franklin and Hueco Mountains of west Texas have been correlated with the Grenville as have occurrences in Mexico.

Appalachian Orogen

Map of Appalachian geological provinces

The fold and thrust belt of the Appalachians is continuously exposed for 2,000 kilometres (1,200 mi) from Pennsylvania to Alabama. In the south, it extends under the coastal plain, but is covered by Mesozoic sediments. North of this fold and thrust belt, the Acadian Orogen of the middle Devonian is an area where deformation has exposed granite plutons. The center of the range is a pair of provinces running north and south parallel to each other, the eastern Blue Ridge Province and the western Valley and Ridge provinces. These are surrounded by the Appalachian Plateau on the west, and the Piedmont Province to the east. Faulting extends throughout the region and is caused by numerous spatially and temporally varied sources.

Inliers of Late Mesoproterozoic age are present on the west of the core of the Appalachians, and these inliers are associated with the Grenville orogeny. During the Proterozoic terranes were accreted onto the province. During the Taconic orogeny 445 to 435 million years ago, accretion continued, an island arc collided with the North American continent, and mountains were raised. These mountains slowly eroded and deposited sediment into the Catskill delta, stretching from New York to Pennsylvania.

Piedmont

The eastern portion of the orogen is made up of the Piedmont plateau, a 150 to 300 metres (490 to 980 ft) elevation area composed of Paleozoic marine and volcanic sediments deformed into crystalline metamorphic rocks and intruded by granite domes.

During the Proterozoic a series of terranes were accreted onto the North American craton, forming the Piedmont of the central Appalachians. Following the Grenville orogeny, mountains eroded, and the sediments from this erosion were deposited below the mountains. The bedrock of the plateau formed about 470 million years ago during the Taconic orogeny, when a volcanic island arc collided with the ancestral North American Continent.

Passive Margin

As the Atlantic Ocean opened the Atlantic Coast turned from an active margin into a passive one. Terranes were no longer accreted onto the margin; instead, sediment eroded off the Appalachians began to be deposited on the coast, forming a coastal plain and continental shelf. During the Jurassic and Triassic, marine and other sediment was deposited to form the Atlantic coastline. The sediment has formed a clastic wedge making up most of the coastal plain and continental shelf.

The passive margin of the Gulf of Mexico is a series of sedimentary deposits from upland areas surrounding the margin. The environment of deposition for these sediments has changed, varying spatially and temporally. When the ocean level was high shallow marine deposits occurred; when they were low fluvial and deltaic deposits form the majority of mass. From the Triassic until the early Jurassic, faulting localized as extension faulting and wrench faulting. As the basement subsided, sediment accumulated, during the Mesozoic and Cenozoic, forming the modern wedge, containing salt basins.

The passive margin in eastern Mexico is made up of a series of basins. These basins are mostly igneous or metamorphic rocks covered by sediments, except in the Burgos Basin, where Cenozoic volcanism has occurred. Much of the sediment is from erosion of the thrust belts west of the margin.

The Yucatan Platform is a Cretaceous to Oligocene carbonate platform. Uplift started in the Oligocene and lasted till the Pleistocene. Today the platform is exposed and under the influence of karstification.

North American Cordillera

On a map showing only volcanic rocks, the west coast of North America shows a striking continuous north–south structure, the American Cordillera.

The North American Cordillera extends up and down the coast of North America and roughly from the Great Plains westward to the Pacific Ocean, narrowing somewhat from north to south. It includes the Cascades, Sierra Nevada, and Basin and Range province; the Rocky Mountains are sometimes excluded from the cordillera proper, in spite of their tectonic history. The geology of Alaska is typical of that of the cordillera.

A rupture in Rodinia 750 million years ago formed a passive margin in the eastern Pacific Northwest. The breakup of Pangea 200 million years ago began the westward movement of the North American plate, creating an active margin on the western continent. As the continent drifted West, accretion of various terranes onto the west coast occurred. As these accretions occurred, crustal shortening accompanied them during the Sevier orogeny and during the Mesozoic into the early Cenozoic, and was accompanied by faulting. During the Cenozoic, crustal extension began accompanied by magmatism that came to characterize much of the area.

Rocky Mountains

The Rocky Mountains were formed by a series of events, the last of which is the Laramide Orogeny. One of the outstanding features of the Rocky Mountains is the distance of the range from a subducting plate; this has led to the theory that the Laramide Orogeny took place when the Farallon plate subducted at a low angle, causing uplift far from the margin under which the plate subducted.

The lithology of the Rocky Mountains in western Canada includes a thin-skinned fold and thrust belt involving Neoproterozoic through Mississippian series of carbonates, shales, argillites and sandstones.

The Colorado Plateau is a stable region dating back at least 600 million years. As a relative lowland, it had been a site of deposition for sediments eroded from surrounding mountain regions. Then, during the Laramide Orogeny, the entire plateau was uplifted until about six million years ago. Erosion during and following the uplift removed sediment from the plateau. This load removal resulted in isostatic uplift and a second passive rise for the plateau.

Intermontane Province

Cedar Breaks National Monument, Utah.

Between the Rocky Mountains and the coast ranges is an area dominated by extensional forces. The extension of this region has occurred both regionally and locally in events beginning in the Jurassic; however, most extension was localized until the mid Miocene. These local events occurred in the Jurassic, late Cretaceous, and one spanning from the Eocene until the Oligocene. Regional extension occurred during the middle of the Miocene from around 20 million years ago until 10 million years ago.

The Basin and Range Province is a series of linear block fault mountains with adjacent sediment-filled downfaulted valleys, having been caused by crustal extension around 17 million years ago. The valley floors are made up of thick sediment deposits which have eroded off the mountains and filled the valleys, so that the region is a regular series of ridges spaced out by flat sediment valleys.

Coast

On the West coast of North America, the coast ranges and the coastal plain form the margin, which is partially bounded by the San Andreas Fault, a transform boundary of the Pacific Plate. Most of the land is made of terranes that have been accreted onto the margin. In the north, the insular belt is an accreted terrane, forming the margin. This belt extends from the Wrangellia Terrane in Alaska to the Chilliwack group of Canada.

The timing of the accretion of the insular belt is uncertain, although the closure did not occur until at least 115 million years ago. Other Mesozoic terranes that accreted onto the continent include the Klamath Mountains, the Sierra Nevada, and the Guerrero super-terrane of western Mexico. 80 to 90 million years ago the subducting Farallon plate split and formed the Kula Plate to the North. Many of the major batholiths date from the late Cretaceous. As the Laramide Orogeny ended around 48 million years ago, the accretion of the Siletzia terrane began in the Pacific Northwest. This began the volcanic activity in the Cascadia subduction zone, forming the modern Cascade Range, and lasted into the Miocene. As extension in the Basin and Range Province slowed by a change in North American Plate movement circa 7 to 8 Million years ago, rifting began on the Gulf of California.

Southern Cordillera

The Sierra Madre mountain ranges of Mexico are separated by the Mexican Plateau, and transected by the Trans-Mexican Volcanic Belt. The Southern extent of the American Cordillera makes up Western Mexico and northern Central America. This includes the Sierra Madre Occidental, the Sierra Madre del Sur, and the Trans-Mexican Volcanic Belt.

The Cordillera ends in the south in a belt of miogeoclines, including the Sierra Madre Oriental fold and thrust belt, the Mesa Central, and parts of the Sierra Madre del Sur. This belt also extends into Guatemala and Honduras in Central America.

1999 Oklahoma tornado outbreak

From Wikipedia, the free encyclopedia
 
1999 Oklahoma tornado outbreak
A tornado near Anadarko, Oklahoma, on May 3, 1999


DurationMay 2–8, 1999


Highest winds


Tornadoes
confirmed
152
Max. rating1F5 tornado
Duration of
tornado outbreak2
6 days, 1 hour and 35 minutes


Largest hail4.5 in (11 cm) in diameter (multiple locations on May 3)


Fatalities50 fatalities (+7 non-tornadic), 895 injuries
Damage$1.5 billion
Areas affectedCentral and Eastern United States

The 1999 Oklahoma tornado outbreak was a significant tornado outbreak that affected much of the Central and parts of the Eastern United States, with the highest record-breaking wind speeds of 301 ± 20 mph (484 ± 32 km/h). During this week-long event, 154 tornadoes touched down (including one in Canada). More than half of them were on May 3 and 4 when activity reached its peak over Oklahoma, Kansas, Nebraska, Texas, and Arkansas.

The most significant tornado first touched down southwest of Chickasha, Oklahoma, and became an F5 before dissipating near Midwest City. The tornado tore through southern and eastern parts of Oklahoma City and its suburbs of Bridge Creek, Moore, Del City, Tinker Air Force Base and Midwest City, directly killed 40 people and 45 people total, destroyed more than 8,000 homes, and caused $1 billion in damage. With a total of 72 tornadoes, it was the most prolific tornado outbreak in Oklahoma history, although not the deadliest.

Meteorological synopsis

A map of the meteorological setup of the 1999 Oklahoma tornado outbreak. The map displays surface and upper level atmospheric features associated with the outbreak.

The outbreak was caused by a vigorous upper-level trough that moved into the Central and Southern Plains states on the morning of May 3. That morning, low stratus clouds overspread much of Oklahoma, with clear skies along and west of a dry line located from Gage to Childress, Texas. Air temperatures at 7:00 a.m. Central Daylight Time ranged in the mid to upper 60s °F (upper 10s to near 20 °C) across the region, while dew point values ranged in the low to mid 60s °F (mid to upper 10s °C). The Storm Prediction Center (SPC) in Norman, Oklahoma, a division of the National Weather Service, initially issued a slight risk of severe thunderstorms early that morning stretching from the Kansas-Nebraska border to parts of southern Texas, with an intended threat of large hail, damaging winds and tornadoes.

Depicts radar imagery (reflectivity) taken by the National Weather Service NEXRAD radar, KTLX, in Central Oklahoma during the May 1999 tornado outbreak. This imagery is from May 3.

By late morning, the low cloud cover began to dissipate in advance of the dry line, but during the afternoon hours high cirrus clouds overspread the region, resulting in filtered sunshine in some areas that caused atmospheric destabilization. The sunshine and heating, combined with abundant low-level moisture, combined to produce a very unstable air mass. Upper air balloon soundings observed strong directional wind shear, cooling temperatures at high atmospheric levels, and the increased potential of CAPE values potentially exceeding 4000 J/kg, levels that are considered favorable for supercells and tornadoes.

As observations and forecasts began to indicate an increasing likelihood of widespread severe weather conditions even more favorable for strong tornadoes, the SPC issued a moderate risk of severe weather at 11:15 a.m. CDT for portions of Kansas, Oklahoma and Texas along and near the Interstate 40 corridor. By 3:00 p.m. CDT, it had become evident that a widespread severe weather event was imminent; the Storm Prediction Center upgraded locations within the moderate risk area to a high risk of severe weather around 4:00 p.m. CDT as wind shear profiles, combined with volatile atmospheric conditions, had made conditions highly conducive for a significant tornadic event across most of Oklahoma, southern Kansas and north Texas, including the likelihood of violent, damaging tornadoes. The SPC issued a tornado watch by mid-afternoon as conditions gathered together for what would be a historic tornado outbreak. By the time thunderstorms began developing in the late-afternoon hours, CAPE values over the region had reached to near 6,000 J/kg. Large supercell thunderstorms developed, and in the late afternoon through the mid-evening hours of that Monday, tornadoes began to break out across the state.

Confirmed tornadoes

Confirmed tornadoes by Fujita rating
FU F0 F1 F2 F3 F4 F5 Total
0 73 44 20 10 4 1 152
  • Note: The above amount refers to the rest of the outbreak, not just the ones confirmed in Oklahoma.

Bridge Creek–Moore, Oklahoma

Bridge Creek-Moore, Oklahoma
F5 tornado
Oklahoma City NEXRAD image at 7:12 pm. The radar shows a classic hook echo at the location of the Bridge Creek/Moore tornado.


Highest winds
  • 301 ± 20 mph (484 ± 32 km/h)


Max. rating1F5 tornado


Fatalities36 fatalities (+5 indirect), 583 injuries
Damage$1 billion (1999 USD)
1Most severe tornado damage; see Fujita scale

At approximately 3:30 p.m. CDT, a severe thunderstorm began forming in Tillman County in southwestern Oklahoma; a severe thunderstorm warning was issued for this storm by the National Weather Service Weather Forecast Office in Norman at 4:15 p.m. CDT. The storm quickly developed supercell characteristics and began exhibiting potentially tornadic rotation, resulting in the National Weather Service issuing the first tornado warning of the event for Comanche, Caddo and Grady counties approximately 35 minutes later at 4:50 p.m. CDT.

The first tornado from this supercell touched down 7 miles (11 km) east-northeast of Medicine Park at 4:51 p.m. CDT; it produced four additional tornadoes as it tracked northeast into Caddo County, the strongest of which (rated as an F3) touched down 2 miles (3.2 km) west-southwest of Laverty and dissipated 2.5 miles (4.0 km) west-northwest of downtown Chickasha. This large tornado had exhibited a companion satellite tornado for a few minutes.

The storm produced the most significant tornado of the outbreak, which touched down just southwest of the Grady County community of Amber at 6:23 p.m. CDT and headed northeast, parallel to Interstate 44, just after another tornado had passed over the airport in Chickasha. The storm continued moving northeast, destroying the community of Bridge Creek and crossing I-44 just north of Newcastle. The tornado then crossed the Canadian River, passing into far southern Oklahoma City. As it passed over Bridge Creek, around 6:54 p.m., a Doppler On Wheels mobile Doppler weather radar detected wind speeds of 302 ± 22 mph (486 ± 35 km/h) inside the tornado at an elevation of 105 ft (32 m). These winds, however, occurred above the ground, and winds at the surface may not have been quite this intense. The tornado continued on into Moore, then passed over the intersection of Shields Boulevard and Interstate 35 and back into Oklahoma City, crossing Interstate 240 near Bryant Avenue. The storm then turned more northerly, striking parts of Del City and Tinker Air Force Base near Sooner Road as an F4. The storm damaged and/or destroyed several businesses, homes and churches in Midwest City. Some damage in this area was rated as high-end F4, although F5 was considered. The tornado diminished over Midwest City and finally lifted near the intersection of Reno Avenue and Woodcrest Drive.

Thirty-six people died in this tornado, and over 8,000 homes were badly damaged or destroyed. The tornado caused $1 billion in damage, making it the second-costliest tornado in U.S. history, and the most costly in history from 1999 to 2011, at which point it was surpassed by the 2011 Tuscaloosa–Birmingham tornado and again by the 2011 Joplin tornado. It was also the deadliest tornado to hit the U.S. since the April 10, 1979 F4 tornado that hit Wichita Falls, Texas, which killed 42 people.

Cimarron City–Mulhall–Perry, Oklahoma

Cimarron City–Mulhall–Perry, Oklahoma
F4 tornado


Highest winds
  • 257 mph (414 km/h)


Max. ratingF4 tornado


Fatalities2 fatalities, 26 injuries
Damage>$100,000,000

Late in the evening on May 3 at 9:25 p.m. CDT, a destructive tornado touched down 3 miles (4.8 km) southwest of Cimarron City in Logan County, Oklahoma, eventually hitting the town of Mulhall, located north of Guthrie. This wedge tornado, which tracked a 35-mile (56 km) path, was very wide and at times exceeded one mile (1.6 km) in width. According to storm chasing meteorologist Roger Edwards, it may have been as violent or more than the F5 Bridge Creek–Moore tornado (however, it was officially rated as an F4).

A Doppler On Wheels (DOW) mobile radar observed this tornado as it crossed Mulhall. The DOW documented the largest-ever-observed core flow circulation with a distance of 1,600 m (5,200 ft) between peak velocities on either side of the tornado, and a roughly 7 km (4.3 mi) width of peak wind gusts exceeding 43 m/s (96 mph), making the Mulhall tornado the largest tornado ever measured quantitatively. The DOW measured a complex multi-vortex structure, with several vortices containing winds of up to 115 m/s (260 mph) rotating around the tornado. The 3D structure of the tornado has been analyzed in a 2005 article in the Journal of the Atmospheric Sciences by Wen-Chau Lee and Joshua Wurman. The tornado severely damaged or destroyed approximately 60–70% of the 130 homes in Mulhall, destroying the Mulhall/Orlando Elementary School and toppling the city's water tower.

After the tornado dissipated at approximately 10:45 p.m. CDT in southeastern Noble County, 3 miles (4.8 km) northeast of Perry, many of the same areas of Logan County struck by the Mulhall tornado were hit again by an F3 tornado produced by a separate supercell that touched down 2.5 miles (4.0 km) south of Crescent at 10:56 p.m. CDT. Damage caused by this tornado was indistinguishable from damage caused by the earlier F4 tornado. 25 homes were destroyed and 30 others were damaged near Crescent, with much of the damage believed to have been caused by both tornadoes.

Stroud, Oklahoma

Stroud, Oklahoma
F3 tornado


Max. ratingF3 tornado


Fatalities7 injuries

At 10:10 p.m. CDT, a damaging tornado touched down 3 miles (4.8 km) north-northeast of Sparks in Lincoln County, Oklahoma, with only sporadic tree damage occurring as it tracked north-northeast toward Davenport. Scattered damage of high-end F0 to low-end F1 intensity occurred to some homes and businesses on the southeast side of Davenport, though a house located just south of town lost more than half of its roof. As the tornado continued to track northeast, parallel with Interstate 44 and State Highway 66, Stroud took a direct hit as the storm intensified to F2 strength; the trucking terminal of the Sygma food distribution warehouse on the west side of town was destroyed with some girders and siding from the warehouse thrown northwest across State Highway 66, and the Stroud Municipal Hospital suffered significant roof damage, which resulted in significant water damage within the building. The most severe damage, consistent with an F3 tornado, occurred at the Tanger Outlet Mall at 10:39 p.m. CDT with almost all of the stores suffering roof damage at minimum, though sections of seven storefronts were destroyed and the exterior walls of the Levi's store were collapsed inward. The mall was evacuated in advance of the tornado, resulting in no injuries or loss of life in the building. The tornado finally dissipated 1 mile (1.6 km) south of Stroud Lake at 10:50 p.m. CDT.

While there were no fatalities overall in Stroud, the economic impact of the tornado has been compared to the loss of Tinker Air Force Base, General Motors, and a major regional hospital for the Stroud region as compared to Oklahoma City at that time. Approximately 800 jobs were lost in a community of approximately 3,400 people due to the damage of the Sygma distribution warehouse and Tanger Outlet Mall, neither of which were rebuilt. Stroud's recovery was later complicated by the September 11, 2001, terrorist attacks, although the town has since recovered as a result of higher oil and gas prices. Local leading industries include Service King, an oilfield manufacturing facility, and Mint Turbines, a helicopter engine reconditioning facility. Stroud is also now a downloading facility location for oil produced in the northern United States into the Cushing pipeline network.

Other tornadoes

The May 3 tornado event was part of a three-day event that included tornadoes in the states of Kansas, Texas and Tennessee. A deadly F4 tornado that tracked 24 miles (39 km) across south-central Kansas killed six people in Haysville and Wichita during the late evening of May 3. Other fatalities during the event included one person killed in Texas on May 4 by an F3 tornado that tracked 71.5 miles (115.1 km) from near Winfield, Texas, to southwest of Mineral Springs, Arkansas, and three people killed in Tennessee on May 5 and 6 by an F4 tornado that struck the town of Linden.

Non-tornadic events

Flash flooding killed one person in Camden County, Missouri, on May 4. On May 6, lightning struck and killed a man in Cobbtown, Georgia.

Aftermath

Disaster assistance

Structural damage in Oklahoma

Oklahoma and
Cleveland counties
Other
counties
Homes destroyed 1,780 534
Homes damaged 6,550 878
Businesses destroyed 85 79
Businesses damaged 42 54
Public buildings destroyed 4 7
Apartments destroyed 473 568

On May 3–4, the day after the initial outbreak event, President Bill Clinton signed a federal disaster declaration for eleven Oklahoma counties. In a press statement by the Federal Emergency Management Agency (FEMA), then-director James Lee Witt stated that "The President is deeply concerned about the tragic loss of life and destruction caused by these devastating storms." The American Red Cross opened ten shelters overnight, housing 1,600 people immediately following the disaster, decreasing to 500 people by May 5. On May 5, several emergency response and damage assessment teams from FEMA were deployed to the region. The United States Department of Defense deployed the 249th Engineering Battalion and placed the U.S. Army Corps of Engineers on standby for assistance. Medical and mortuary teams were also sent by the U.S. Department of Health and Human Services. By May 6, donation centers and phone banks were being established to create funds for victims of the tornadoes. Within the first few days of the disaster declaration, relief funds were sent to families requesting aid. Roughly $180,000 had been approved by FEMA for disaster housing assistance by May 9.

Debris removal began on May 12 as seven cleanup teams were sent to the region with more teams expected to join over the following days. That day, FEMA also granted seven Oklahoma counties (Canadian, Craig, Grady, Lincoln, Logan, Noble and Oklahoma) eligibility for federal financial assistance. Roughly $1.6 million in disaster funds had been approved for housing and businesses loans by May 13, increasing to more than $5.9 million over the following five days. Applications for federal aid continued through June, with state aid approvals reaching $54 million on June 3. According to FEMA, more than 9,500 Oklahoma residents applied for federal aid during the allocated period in the wake of the tornadoes, including 3,800 in Oklahoma County and 3,757 in Cleveland County. Disaster recovery aid for the tornadoes totaled to roughly $67.8 million by July 2.

Concerns with using overpasses as storm shelters

Outbreak death toll
State Fatalities County County total
Kansas 6 Sedgwick 6
Oklahoma 40 Cleveland 11
Grady 12
Kingfisher 1
Logan 1
McClain 1
Payne 1
Pottawatomie 1
Oklahoma 12
Tennessee 3 Perry 3
Texas 1 Titus 1
Total 50
All deaths were tornado-related

From a meteorological and safety standpoint, the tornado called into question the use of highway overpasses as shelters from tornadoes. Prior to the events on May 3, 1999, videos of people taking shelter in overpasses during tornadoes in the past (such as an infamous video from the April 26, 1991 tornado outbreak taken by a news crew from Wichita NBC affiliate KSNW) created public misunderstanding and complacency that overpasses provided adequate shelter from tornadoes. Although meteorologists had questioned the safety of these structures for nearly 20 years, there had been no evidence supporting incidents involving loss of life. Three overpasses were directly struck by tornadoes during the May 3 outbreak, resulting in fatalities at each location. Two occurred as a result of the Bridge Creek–Moore F5, while the third occurred in rural Payne County, which was struck by an F2 tornado. According to a study by the National Oceanic and Atmospheric Administration, seeking shelter in an overpass "is to become a stationary target for flying debris"; the wind channeling effect that occurs within these structures along with an increase in wind speeds above ground level, changing of wind direction when the tornado vortex passes, and the fact most overpasses do not have girders for people to take shelter between also provide little to no protection.

Copper in biology

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cop...