Search This Blog

Wednesday, November 15, 2023

Cancer Breakthroughs 2020

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Cancer_Breakthroughs_2020
 
Cancer Breakthroughs 2020
Mission statementTo accelerate the potential of combination immunotherapies as the next generation standard of care in patients with cancer
ProductsCancer treatments immunotherapy
FounderDr. Patrick Soon-Shiong
Key peopleDr. Patrick Soon-Shiong
EstablishedJanuary 2016
FundingPrivate & Public
StatusActive
Websitewww.cancerbreakthroughs2020.org

Cancer Breakthroughs 2020, also known as Cancer Moonshot 2020 is a coalition with the goal of finding vaccine-based immunotherapies against cancer. By pooling the resources of multinational pharmaceutical, biotechnology companies, academic centers and oncologists, it intends to create access to over 60 novel and approved agents under exploration in the war against cancer and is expected to enable rapid testing of novel immunotherapy combination protocols. The initiative is being managed by a consortium of companies called The National Immunotherapy Coalition.

The difficulty of treating cancer has led researchers to develop more and more targeted drugs and immune therapies, with the future goal of hitting "cancers with several such treatments at once, much the way AIDS was tamed when researchers developed drugs to strike the virus at its vulnerable points." This new form of combination therapy is needed as cancer is heterogeneous and multiple methods are needed to target multiple types of cancer.

Some cancer specialists have expressed optimism that science has entered a "new era with the ability to rapidly determine the sequences of genes in tumor cells, searching for mutations that may be driving the cancer’s growth." Others call it "unrealistic".

National Immunotherapy Coalition (NIC)

Cancer Breakthroughs 2020 is led by the National Immunotherapy Coalition (NIC), an initiative reportedly led by Los Angeles billionaire Patrick Soon-Shiong. Participating members include pharmaceutical companies Amgen and Celgene, biotech companies including NantWorks, NantKwest, Etubics, Altor BioScience, and Precision Biologics, a subsidiary of NantWorks, major academic cancer centers, community oncologists, health insurer Independence Blue Cross, and Bank of America, reportedly one of the largest self-insured companies in the U.S.

Research scope

The scope of the project is to conduct dozens of small-scale clinical trials over the next few years in the field of immunotherapy, with as many as 20,000 patients. These trials are intended to be followed by larger trials. The project's goals will be considered met when long-lasting remission is achieved for cancer patients.

Themes pursued

Cancer Breakthroughs 2020 is pursuing immunotherapy and the following themes:

  • Validation of Big Science: Complex science involving the human immune system and the validation of the safety and efficacy of combination therapy must be tested by reputable scientific enterprises in an unbiased manner without any prejudices other than the interest of the patient.
  • Access to novel agents and approved drugs: One of the major challenges facing rapid progress in this field is that numerous pharmaceutical and biotech companies each have their own immunotherapeutic agents in the form of antibodies, immune cells, and vaccines in preclinical and clinical studies.
  • FDA Regulation: Novel approaches for the adaptive combination of novel agents in this new paradigm where the combined multi-agents serve as a systems biological approach to the treatment of cancer.
  • Care coordination and real-time monitoring of safety and outcomes with integration of complex molecular data, phenotypic data obtained from disparate electronic records.
  • Ability to measure outcomes and cost in real time to enable payers to pay for value rather than procedures and establish an adaptive learning system for enhanced predictive modeling.
  • Network Infrastructure: Highly secure bandwidth to transmit big data and interrogate complex molecular information in a large scale.

QUILT

Cancer Breakthroughs 2020 incorporates a concept called QUILT, which stands for QUantitative Integrative Lifelong Trial. QUILT is designed to leverage patients' immune systems, such as dendritic cell, T cell (lymphocyte) and natural killer cell (NK cell) therapies, and testing a variety of treatments including novel combinations of vaccines, cell-based immunotherapy, metronomic (regularly administered) chemotherapy, low dose radiotherapy and immunomodulators, as well as check point inhibitors, in patients who have undergone next generation whole genome, transcriptome and quantitative proteomic analysis.

Related initiatives

Partnership for Accelerating Cancer Therapies

The Partnership for Accelerating Cancer Therapies (PACT) was announced in October 2017 as a collaboration between the National Institutes of Health and eleven pharmaceutical companies. This agreement provides $215 million in funding over the next five years. This initiative is mainly focused on immunotherapy.

The participating pharmaceutical companies, which have each agreed to contribute $1 million each year, include AbbVie, Amgen, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Genentech, Gilead, GlaxoSmithKline, Janssen (Johnson & Johnson), Novartis, and Pfizer.

Criticism

Critics said that the idea of curing cancer according to a Breakthroughs analogy was "entirely unrealistic", and cited President Richard Nixon's "failed" War on Cancer. Cancer turned out to be not one disease, but hundreds, and the idea of curing cancer once and for all is "misleading and outdated".

The New York Times reported how Andrew von Eschenbach, director of the National Cancer Institute, announced in 2003 that his goal was to “eliminate suffering and death” caused by cancer by 2015. During an appropriations hearing, Senator Arlen Specter (R-PA) asked von Eschenbach what it would take to move the date up to 2010. Von Eschenbach said he could do it with a proposed budget of $600 million a year. Specter died of cancer in 2012.

Health oriented news website STAT News published an editorial criticizing Cancer Breakthroughs as a program that is designed to support Soon-Shiong's companies while making little progress to cure cancer. The article stated, "At its core, the initiative appears to be an elaborate marketing tool for Soon-Shiong — a way to promote his pricey new cancer diagnostic tool at a time when he badly needs a business success, as his publicly-traded companies are losing tens of millions per quarter."

The budget for Cancer Breakthroughs 2020 is undisclosed.

21st Century Cures Act

From Wikipedia, the free encyclopedia
 
21st Century Cures Act
Great Seal of the United States
Other short titlesHelping Families in Mental Health Crisis Reform Act of 2016
Increasing Choice, Access, and Quality in Health Care for Americans Act
Long titleAn Act to accelerate the discovery, development, and delivery of 21st century cures, and for other purposes.
Enacted bythe 114th United States Congress
Citations
Public lawPub. L.Tooltip Public Law (United States) 114–255 (text) (PDF)
Legislative history

The 21st Century Cures Act is a United States law enacted by the 114th United States Congress in December 2016 and then signed into law on December 13, 2016. It authorized $6.3 billion in funding, mostly for the National Institutes of Health. The act was supported especially by large pharmaceutical manufacturers and was opposed especially by some consumer organizations.

The approval of drugs and devices would be streamlined, according to supporters, and treatments would reach the market more quickly. The argument made by opponents was that it would allow the marketing of riskier or less effective treatments by allowing the approval of drugs and devices on the basis of flimsier evidence, bypassing randomized, controlled trials.

The bill incorporated the Helping Families In Mental Health Crisis Act, first introduced by then-Congressman Tim Murphy, R-Pa., which increased the availability of psychiatric hospital beds and established a new assistant secretary for mental health and substance use disorders.

Content

Research and drug development

Division A, titled "21st Century Cures," contains provisions related to National Institutes of Health funding and administration, reducing opioid abuse, medical research, and drug development.

Opioid epidemic

The Comprehensive Addiction and Recovery Act (CARA) was passed a few months earlier. This act authorized many harm-reduction strategies, including increased access to the overdose reversal drug naloxone for the opioid crisis, but didn't provide any federal funding for implementation. The 21st Century Cures Act designated $1 billion in grants for states over two years to fight the opioid epidemic. The money may be used to improve prescription drug monitoring programs, to make treatment programs more accessible, to train healthcare professionals in best practices of addiction treatment, and to research the most effective approaches to prevent dependency.

FDA drug approval process

The 21st Century Cures Act modified the FDA Drug Approval process. It was intended to expedite the process by which new drugs and devices are approved by easing the requirements put on drug companies looking for FDA approval on new products or new indications on existing drugs. For instance, under certain conditions, the act allows companies to provide "data summaries" and "real world evidence" such as observational studies, insurance claims data, patient input, and anecdotal data rather than full clinical trial results.

Targeted drugs for rare diseases

The 21st Century Cures Act facilitates the development and approval of genetically targeted and variant protein targeted drugs for treatment of rare diseases.

Informed consent

In section 3024, the 21st Century Cures Act allows researchers to waive the requirement for "informed consent" in cases where clinical testing of drugs or devices "poses no more than minimal risk" and "includes appropriate safeguards to protect the rights, safety, and welfare of the human subject."

One example is a high-tech bandage that monitors blood flow. Standard procedure requires researchers to obtain the patient's permission before testing any new device on them. However, in this example, researchers might want to test the bandage on unconscious patients. In such circumstances, researchers may waive an informed consent requirement since the patient is still getting the standard, medically accepted care of blood pressure and heart rate monitoring. Researchers would still need to obey standard research protocols including institutional review boards to approve their research design and ethics.

Human research subject protections

The 21st Century Cures Act calls on the Secretary of Health and Human Services to harmonize differences between the HHS Human Subject Regulations and FDA Human Subject Regulations. In so doing, the Secretary may change rules applying to vulnerable populations in order "to reduce regulatory duplication and unnecessary delays" and "modernize such provisions in the context of multisite and cooperative research projects."

Section 3023 provides for joint or shared review of research, review by institutional review boards other than that of the sponsor of research, and use of other means "to avoid duplication of effort."

Medical research

The act allocates $4.8 billion to the National Institutes of Health for precision medicine and biomedical research. Of this, $1.5 billion is earmarked for research on brain disease. Another $1.8 billion is dedicated to cancer research in what is called the "Beau Biden Cancer Moonshot" initiative, named in honor of Vice President Joe Biden's son, who died of brain cancer in 2015. In October 2016, the Cohort Program was renamed as the All of Us Research Program. (This is unrelated to the privately funded Cancer Breakthroughs 2020, also known as "Cancer Moonshot 2020".)

When Joe Biden became president, his administration revived the cancer initiative. On the 60th anniversary of the John F. Kennedy moonshot speech, President Biden gave a speech at the JFK library, promoting the revival of the Beau Biden Cancer Moonshot, including the new Advanced Research Projects Agency for Health.

Strategic Petroleum Reserve sales

The act requires sale of 25 million barrels of crude oil (10,000,000 in 2017, 9,000,000 in 2018, and 6,000,000 in 2019) from the Strategic Petroleum Reserve. Revenue from these sales will provide part of the NIH funding provided in the law.

Electronic health records information blocking

The Act defined interoperability and prohibited information blocking. Information blocking is defined as a practice that interferes with or prevents access to electronic health information, that is, information about a patient's medical history or treatment.

Under section 4004, information blocking can expose entities to fines of up to $1 million per violation.

Medical software

Medical software is regulated as a medical device by the FDA in the Federal Food, Drug, and Cosmetic Act. Section 3060 of the 21st Century Cures Act was created as an amendment to section 520 of the FD&C Act, which addressed how medical devices are defined. It outlined software functions that would be exempt from FDA regulation, such as those used for administrative purposes, encouraging a healthy lifestyle, electronic health records, clinical laboratory test results and related information, and clinical decision tools.

Behavioral health

Division B, titled "Helping Families in Mental Health Crisis," addresses the prevention and treatment of mental illnesses and substance abuse, treatment coverage, communication permitted by HIPAA, and interactions with law enforcement and the criminal justice system.

The law strengthens mental health parity regulation, which require insurance companies to cover mental health treatments to the same extent and in the same way as medical treatments. It also includes grants to provide community mental health resources, suicide prevention and intervention programs, and de-escalation training for law enforcement. It also provides five-year grants for a demonstration program in which psychiatry residents and other mental health clinicians will practice in underserved areas. Provisions for reform of HIPAA, elevating the standing of families in commitment decisions, and reforms of procedures for challenging release decisions, were not included in the final bill.

Some of these provisions were originally proposed in earlier bills, including the Mental Health Reform Act of 2016 (S. 2680); the Mental Health and Safe Communities Act of 2015 (H.R. 3722, S. 2002); the Helping Families in Mental Health Crisis Act of 2016 (H.R. 2646); the Comprehensive Justice and Mental Health Act of 2015 (H.R. 1854, S. 993); the Mental Health Awareness and Improvement Act of 2015 (H.R. 5327, S. 1893); the Justice and Mental Health Collaboration Act of 2015 (H.R. 731); and the Behavioral Health Care Integration Act of 2016 (H.R. 4388).

Healthcare access and quality improvement

Division C, titled "Increasing Choice, Access, and Quality in Health Care for Americans," concerns Medicare programs and federal tax laws related to health plans for small employers.

The Small Business HRA (QSEHRA)

The 21st Century Cures Act also included provisions that created a QSEHRA (Qualified Small Employer Health Reimbursement Arrangement), a more efficient way for small businesses and non-profits to offer health insurance to their employees.

Legislative history

The 21st Century Cures Act was originally introduced as H.R. 6 by Fred Upton (RMI) on May 19, 2015. It passed the House on July 10, 2015, but did not pass in the Senate.

More than 1,400 registered lobbyists worked on this bill, representing more than 400 different organizations, mostly pharmaceutical companies.

Of 455 organizations registered to lobby on the bill, the top five by number of reports and specific issues according to OpenSecrets were:

The bill passed the House first by a wide margin. Only five senators voted against it: Elizabeth Warren of Massachusetts; Bernie Sanders of Vermont; Ron Wyden and Jeff Merkley, both of Oregon, all Democrats; and Mike Lee, a Republican of Utah. Warren, Sanders, and Merkley, in particular, objected to the pharmaceutical industry's influence on the bill. In early December 2016, the act had support from both houses of congress.

President Obama signed the act on December 13, 2016. The reasons stated for his support included combatting opioid abuse, advancing cancer research, advancing the BRAIN Initiative, advancing the Precision Medicine Initiative, and addressing bipartisan health issues.

Reception

Stakeholders who praised the passing of the act include drug companies; medical device manufacturers; the National Institutes of Health; people advocating for lowered barriers to collecting human subject research data; Representatives Fred Upton (R-MI), Diana DeGette (D-CO), Timothy F. Murphy (R-PA); Senator Lamar Alexander (R-TN); and Vice President Joe Biden. Hospitals and universities, as well as the American Cancer Society Action Network, Research!America, and FasterCures supported the bill for its commitment toward funding research. The American Psychological Association supported the bill due to its mental health provisions. The Advanced Medical Technology Association supported the bill for easing the process of introducing new medical technologies. The American Society of Human Genetics (ASHG) commended the passage of the bill for strengthened genetic privacy for research participants. Prison Fellowship supported the bill due to its inclusion of the Comprehensive Justice and Mental Health Act, a portion designed to encourage collaboration among criminal justice, juvenile justice, mental health treatment, and substance abuse systems.

Stakeholders who criticized the passing of the act include the FDA, advocates for strong protections in clinical research, consumer organizations, and advocates of regenerative medicine. The expedited drug approval process has been one topic of concern and debate. The Public Citizen's Health Research Group and the National Center for Health Research campaigned against the Cures Act in fear that it will endanger public health by weakening FDA standards. Senator Elizabeth Warren said that the bill had been "hijacked" by the pharmaceutical industry. She said the legislation watered down safety requirements for new drugs and devices and then, as a trade-off, called for research funding — at levels that must be appropriated on an annual basis. John LaMattina, former head of Pfizer research and development and current commentator on the pharmaceutical industry, said that full clinical trials are necessary to prove effectiveness, and suggests some drugs may now be approved based on early data and only later proved ineffective. The Public Citizen's Health Research Group says the designation of "breakthrough" devices is too broad, and could lead to clearance of devices that aren't ready for the market.

Lupkin points out that the NIH's funding will need to be appropriated each year through the normal budget process, and therefore may be reduced from what this bill promised. The NIH funding was actually less than many advocates hoped for, and earlier versions of the bill had promised.

One of the goals of the bill was streamlining approval, but Jerry Avorn and Aaron Kesselheim pointed out that a third of medicines are approved from a single clinical trial averaging fewer than 700 patients; ultimately, however, the law did not allow real-world evidence for approving drugs, but rather for label expansions.

Dissection

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Dissection

Dissection
Dissection of a pregnant rat in a biology class
 
Ginkgo seed in dissection, showing embryo and gametophyte.
 
Identifiers
MeSHD004210

Dissection (from Latin dissecare "to cut to pieces"; also called anatomization) is the dismembering of the body of a deceased animal or plant to study its anatomical structure. Autopsy is used in pathology and forensic medicine to determine the cause of death in humans. Less extensive dissection of plants and smaller animals preserved in a formaldehyde solution is typically carried out or demonstrated in biology and natural science classes in middle school and high school, while extensive dissections of cadavers of adults and children, both fresh and preserved are carried out by medical students in medical schools as a part of the teaching in subjects such as anatomy, pathology and forensic medicine. Consequently, dissection is typically conducted in a morgue or in an anatomy lab.

Dissection has been used for centuries to explore anatomy. Objections to the use of cadavers have led to the use of alternatives including virtual dissection of computer models.

In the field of surgery, the term "dissection" or "dissecting" means more specifically to the practice of separating an anatomical structure (an organ, nerve or blood vessel) from its surrounding connective tissue in order to minimize unwanted damage during a surgical procedure.

Overview

Plant and animal bodies are dissected to analyze the structure and function of its components. Dissection is practised by students in courses of biology, botany, zoology, and veterinary science, and sometimes in arts studies. In medical schools, students dissect human cadavers to learn anatomy. Zoötomy is sometimes used to describe "dissection of an animal".

Human dissection

A key principle in the dissection of human cadavers (sometimes called androtomy) is the prevention of human disease to the dissector. Prevention of transmission includes the wearing of protective gear, ensuring the environment is clean, dissection technique and pre-dissection tests to specimens for the presence of HIV and hepatitis viruses. Specimens are dissected in morgues or anatomy labs. When provided, they are evaluated for use as a "fresh" or "prepared" specimen. A "fresh" specimen may be dissected within some days, retaining the characteristics of a living specimen, for the purposes of training. A "prepared" specimen may be preserved in solutions such as formalin and pre-dissected by an experienced anatomist, sometimes with the help of a diener. This preparation is sometimes called prosection.

Dissection tools. Left to right: scalpels with No. 20 and No. 12 blades, two forceps and scissors

Most dissection involves the careful isolation and removal of individual organs, called the Virchow technique. An alternative more cumbersome technique involves the removal of the entire organ body, called the Letulle technique. This technique allows a body to be sent to a funeral director without waiting for the sometimes time-consuming dissection of individual organs. The Rokitansky method involves an in situ dissection of the organ block, and the technique of Ghon involves dissection of three separate blocks of organs - the thorax and cervical areas, gastrointestinal and abdominal organs, and urogenital organs. Dissection of individual organs involves accessing the area in which the organ is situated, and systematically removing the anatomical connections of that organ to its surroundings. For example, when removing the heart, connects such as the superior vena cava and inferior vena cava are separated. If pathological connections exist, such as a fibrous pericardium, then this may be deliberately dissected along with the organ.

Autopsy and necropsy

Dissection is used to help to determine the cause of death in autopsy (called necropsy in other animals) and is an intrinsic part of forensic medicine.

History

Galen (129–c.200 AD), Opera omnia, dissection of a pig. Engraving made in Venice, 1565

Classical antiquity

Human dissections were carried out by the Greek physicians Herophilus of Chalcedon and Erasistratus of Chios in the early part of the third century BC. During this period, the first exploration into full human anatomy was performed rather than a base knowledge gained from 'problem-solution' delving. While there was a deep taboo in Greek culture concerning human dissection, there was at the time a strong push by the Ptolemaic government to build Alexandria into a hub of scientific study. For a time, Roman law forbade dissection and autopsy of the human body, so anatomists relied on the cadavers of animals or made observations of human anatomy from injuries of the living. Galen, for example, dissected the Barbary macaque and other primates, assuming their anatomy was basically the same as that of humans, and supplemented these observations with knowledge of human anatomy which he acquired while tending to wounded gladiators.

Celsus wrote in On Medicine I Proem 23, "Herophilus and Erasistratus proceeded in by far the best way: they cut open living men - criminals they obtained out of prison from the kings and they observed, while their subjects still breathed, parts that nature had previously hidden, their position, color, shape, size, arrangement, hardness, softness, smoothness, points of contact, and finally the processes and recesses of each and whether any part is inserted into another or receives the part of another into itself."

Galen was another such writer who was familiar with the studies of Herophilus and Erasistratus.

India

The Ayurvedic Man., c. 18th century

The ancient societies that were rooted in India left behind artwork on how to kill animals during a hunt. The images showing how to kill most effectively depending on the game being hunted relay an intimate knowledge of both external and internal anatomy as well as the relative importance of organs. The knowledge was mostly gained through hunters preparing the recently captured prey. Once the roaming lifestyle was no longer necessary it was replaced in part by the civilization that formed in the Indus Valley. Unfortunately, there is little that remains from this time to indicate whether or not dissection occurred, the civilization was lost to the Aryan people migrating.

Early in the history of India (2nd to 3rd century), the Arthashastra described the 4 ways that death can occur and their symptoms: drowning, hanging, strangling, or asphyxiation. According to that source, an autopsy should be performed in any case of untimely demise.

The practice of dissection flourished during the 7th and 8th century. It was under their rule that medical education was standardized. This created a need to better understand human anatomy, so as to have educated surgeons. Dissection was limited by the religious taboo on cutting the human body. This changed the approach taken to accomplish the goal. The process involved the loosening of the tissues in streams of water before the outer layers were sloughed off with soft implements to reach the musculature. To perfect the technique of slicing, the prospective students used gourds and squash. These techniques of dissection gave rise to an advanced understanding of the anatomy and the enabled them to complete procedures used today, such as rhinoplasty.

During medieval times the anatomical teachings from India spread throughout the known world; however, the practice of dissection was stunted by Islam. The practice of dissection at a university level was not seen again until 1827, when it was performed by the student Pandit Madhusudan Gupta. Through the 1900s, the university teachers had to continually push against the social taboos of dissection, until around 1850 when the universities decided that it was more cost effective to train Indian doctors than bring them in from Britain. Indian medical schools were, however, training female doctors well before those in England.

The current state of dissection in India is deteriorating. The number of hours spent in dissection labs during medical school has decreased substantially over the last twenty years. The future of anatomy education will probably be an elegant mix of traditional methods and integrative computer learning. The use of dissection in early stages of medical training has been shown more effective in the retention of the intended information than their simulated counterparts. However, there is use for the computer-generated experience as review in the later stages. The combination of these methods is intended to strengthen the students' understanding and confidence of anatomy, a subject that is infamously difficult to master. There is a growing need for anatomist—seeing as most anatomy labs are taught by graduates hoping to complete degrees in anatomy—to continue the long tradition of anatomy education.

Islamic world

Page from a 1531 Latin translation by Peter Argellata of Al-Zahrawi's c. 1000 treatise on surgical and medical instruments

From the beginning of the Islamic faith in 610 A.D., Shari'ah law has applied to a greater or lesser extent within Muslim countries, supported by Islamic scholars such as Al-Ghazali. Islamic physicians such as Ibn Zuhr (Avenzoar) (1091–1161) in Al-Andalus, Saladin's physician Ibn Jumay during the 12th century, Abd el-Latif in Egypt c. 1200, and Ibn al-Nafis in Syria and Egypt in the 13th century may have practiced dissection, but it remains ambiguous whether or not human dissection was practiced. Ibn al-Nafis, a physician and Muslim jurist, suggested that the "precepts of Islamic law have discouraged us from the practice of dissection, along with whatever compassion is in our temperament", indicating that while there was no law against it, it was nevertheless uncommon. Islam dictates that the body be buried as soon as possible, barring religious holidays, and that there be no other means of disposal such as cremation. Prior to the 10th century, dissection was not performed on human cadavers. The book Al-Tasrif, written by Al-Zahrawi in 1000 A.D., details surgical procedure that differed from the previous standards. The book was an educational text of medicine and surgery which included detailed illustrations. It was later translated and took the place of Avicenna's The Canon of Medicine as the primary teaching tool in Europe from the 12th century to the 17th century. There were some that were willing to dissect humans up to the 12th century, for the sake of learning, after which it was forbidden. This attitude remained constant until 1952, when the Islamic School of Jurisprudence in Egypt ruled that "necessity permits the forbidden". This decision allowed for the investigation of questionable deaths by autopsy. In 1982, the decision was made by a fatwa that if it serves justice, autopsy is worth the disadvantages. Though Islam now approves of autopsy, the Islamic public still disapproves. Autopsy is prevalent in most Muslim countries for medical and judicial purposes. In Egypt it holds an important place within the judicial structure, and is taught at all the country's medical universities. In Saudi Arabia, whose law is completely dictated by Shari'ah, autopsy is viewed poorly by the population but can be compelled in criminal cases; human dissection is sometimes found at university level. Autopsy is performed for judicial purposes in Qatar and Tunisia. Human dissection is present in the modern day Islamic world, but is rarely published on due to the religious and social stigma.

Tibet

Tibetan medicine developed a rather sophisticated knowledge of anatomy, acquired from long-standing experience with human dissection. Tibetans had adopted the practice of sky burial because of the country's hard ground, frozen for most of the year, and the lack of wood for cremation. A sky burial begins with a ritual dissection of the deceased, and is followed by the feeding of the parts to vultures on the hill tops. Over time, Tibetan anatomical knowledge found its way into Ayurveda and to a lesser extent into Chinese medicine.

Christian Europe

A dissection in Realdo Colombo's De Re Anatomica, 1559

Throughout the history of Christian Europe, the dissection of human cadavers for medical education has experienced various cycles of legalization and proscription in different countries. Dissection was rare during the Middle Ages, but it was practised, with evidence from at least as early as the 13th century. The practice of autopsy in Medieval Western Europe is "very poorly known" as few surgical texts or conserved human dissections have survived. A modern Jesuit scholar has claimed that the Christian theology contributed significantly to the revival of human dissection and autopsy by providing a new socio-religious and cultural context in which the human cadaver was no longer seen as sacrosanct.

An edict of the 1163 Council of Tours, and an early 14th-century decree of Pope Boniface VIII have mistakenly been identified as prohibiting dissection and autopsy, misunderstanding or extrapolation from these edicts may have contributed to reluctance to perform such procedures. The Middle Ages witnessed the revival of an interest in medical studies, including human dissection and autopsy.

Mondino de Luzzi's Anathomia, 1541

Frederick II (1194–1250), the Holy Roman emperor, ruled that any that were studying to be a physician or a surgeon must attend a human dissection, which would be held no less than every five years. Some European countries began legalizing the dissection of executed criminals for educational purposes in the late 13th and early 14th centuries. Mondino de Luzzi carried out the first recorded public dissection around 1315. At this time, autopsies were carried out by a team consisting of a Lector, who lectured, the Sector, who did the dissection, and the Ostensor who pointed to features of interest.

The Italian Galeazzo di Santa Sofia made the first public dissection north of the Alps in Vienna in 1404.

Vesalius with a dissected cadaver in his De humani corporis fabrica, 1543

Vesalius in the 16th century carried out numerous dissections in his extensive anatomical investigations. He was attacked frequently for his disagreement with Galen's opinions on human anatomy. Vesalius was the first to lecture and dissect the cadaver simultaneously.

The Catholic Church is known to have ordered an autopsy on conjoined twins Joana and Melchiora Ballestero in Hispaniola in 1533 to determine whether they shared a soul. They found that there were two distinct hearts, and hence two souls, based on the ancient Greek philosopher Empedocles, who believed the soul resided in the heart.

Renaissance artists such as Antonio del Pollaiuolo studied anatomy to improve their artwork, as seen in this figurine of Hercules, 1470

Human dissection was also practised by Renaissance artists. Though most chose to focus on the external surfaces of the body, some like Michelangelo Buonarotti, Antonio del Pollaiuolo, Baccio Bandinelli, and Leonardo da Vinci sought a deeper understanding. However, there were no provisions for artists to obtain cadavers, so they had to resort to unauthorised means, as indeed anatomists sometimes did, such as grave robbing, body snatching, and murder.

Anatomization was sometimes ordered as a form of punishment, as, for example, in 1806 to James Halligan and Dominic Daley after their public hanging in Northampton, Massachusetts.

In modern Europe, dissection is routinely practised in biological research and education, in medical schools, and to determine the cause of death in autopsy. It is generally considered a necessary part of learning and is thus accepted culturally. It sometimes attracts controversy, as when Odense Zoo decided to dissect lion cadavers in public before a "self-selected audience".

Britain

Body snatching headstone of an 1823 grave in Stirling

In Britain, dissection remained entirely prohibited from the end of the Roman conquest and through the Middle Ages to the 16th century, when a series of royal edicts gave specific groups of physicians and surgeons some limited rights to dissect cadavers. The permission was quite limited: by the mid-18th century, the Royal College of Physicians and Company of Barber-Surgeons were the only two groups permitted to carry out dissections, and had an annual quota of ten cadavers between them. As a result of pressure from anatomists, especially in the rapidly growing medical schools, the Murder Act 1752 allowed the bodies of executed murderers to be dissected for anatomical research and education. By the 19th century this supply of cadavers proved insufficient, as the public medical schools were growing, and the private medical schools lacked legal access to cadavers. A thriving black market arose in cadavers and body parts, leading to the creation of the profession of body snatching, and the infamous Burke and Hare murders in 1828, when 16 people were murdered for their cadavers, to be sold to anatomists. The resulting public outcry led to the passage of the Anatomy Act 1832, which increased the legal supply of cadavers for dissection.

By the 21st century, the availability of interactive computer programs and changing public sentiment led to renewed debate on the use of cadavers in medical education. The Peninsula College of Medicine and Dentistry in the UK, founded in 2000, became the first modern medical school to carry out its anatomy education without dissection.

United States

A teenage school pupil dissecting an eye

In the United States, dissection of frogs became common in college biology classes from the 1920s, and were gradually introduced at earlier stages of education. By 1988, some 75 to 80 percent of American high school biology students were participating in a frog dissection, with a trend towards introduction in elementary schools. The frogs are most commonly from the genus Rana. Other popular animals for high-school dissection at the time of that survey were, among vertebrates, fetal pigs, perch, and cats; and among invertebrates, earthworms, grasshoppers, crayfish, and starfish. About six million animals are dissected each year in United States high schools (2016), not counting medical training and research. Most of these are purchased already dead from slaughterhouses and farms.

Dissection in U.S. high schools became prominent in 1987, when a California student, Jenifer Graham, sued to require her school to let her complete an alternative project. The court ruled that mandatory dissections were permissible, but that Graham could ask to dissect a frog that had died of natural causes rather than one that was killed for the purposes of dissection; the practical impossibility of procuring a frog that had died of natural causes in effect let Graham opt out of the required dissection. The suit gave publicity to anti-dissection advocates. Graham appeared in a 1987 Apple Computer commercial for the virtual-dissection software Operation Frog. The state of California passed a Student's Rights Bill in 1988 requiring that objecting students be allowed to complete alternative projects. Opting out of dissection increased through the 1990s.

In the United States, 17 states along with Washington, D.C. have enacted dissection-choice laws or policies that allow students in primary and secondary education to opt out of dissection. Other states including Arizona, Hawaii, Minnesota, Texas, and Utah have more general policies on opting out on moral, religious, or ethical grounds. To overcome these concerns, J. W. Mitchell High School in New Port Richey, Florida, in 2019 became the first US high school to use synthetic frogs for dissection in its science classes, instead of preserved real frogs.

As for the dissection of cadavers in undergraduate and medical school, traditional dissection is supported by professors and students, with some opposition, limiting the availability of dissection. Upper-level students who have experienced this method along with their professors agree that "Studying human anatomy with colorful charts is one thing. Using a scalpel and an actual, recently-living person is an entirely different matter."

Acquisition of cadavers

The way in which cadaveric specimens are obtained differs greatly according to country. In the UK, donation of a cadaver is wholly voluntary. Involuntary donation plays a role in about 20 percent of specimens in the US and almost all specimens donated in some countries such as South Africa and Zimbabwe. Countries that practice involuntary donation may make available the bodies of dead criminals or unclaimed or unidentified bodies for the purposes of dissection. Such practices may lead to a greater proportion of the poor, homeless and social outcasts being involuntarily donated. Cadavers donated in one jurisdiction may also be used for the purposes of dissection in another, whether across states in the US, or imported from other countries, such as with Libya. As an example of how a cadaver is donated voluntarily, a funeral home in conjunction with a voluntary donation program identifies a body who is part of the program. After broaching the subject with relatives in a diplomatic fashion, the body is then transported to a registered facility. The body is tested for the presence of HIV and hepatitis viruses. It is then evaluated for use as a "fresh" or "prepared" specimen.

Disposal of specimens

Cadaveric specimens for dissection are, in general, disposed of by cremation. The deceased may then be interred at a local cemetery. If the family wishes, the ashes of the deceased are then returned to the family. Many institutes have local policies to engage, support and celebrate the donors. This may include the setting up of local monuments at the cemetery.

Use in education

Cadaveric dissection at Siriraj Medical School, Thailand

Human cadavers are often used in medicine to teach anatomy or surgical instruction. Cadavers are selected according to their anatomy and availability. They may be used as part of dissection courses involving a "fresh" specimen so as to be as realistic as possible—for example, when training surgeons. Cadavers may also be pre-dissected by trained instructors. This form of dissection involves the preparation and preservation of specimens for a longer time period and is generally used for the teaching of anatomy.

Alternatives

Some alternatives to dissection may present educational advantages over the use of animal cadavers, while eliminating perceived ethical issues. These alternatives include computer programs, lectures, three dimensional models, films, and other forms of technology. Concern for animal welfare is often at the root of objections to animal dissection. Studies show that some students reluctantly participate in animal dissection out of fear of real or perceived punishment or ostracism from their teachers and peers, and many do not speak up about their ethical objections.

One alternative to the use of cadavers is computer technology. At Stanford Medical School, software combines X-ray, ultrasound and MRI imaging for display on a screen as large as a body on a table. In a variant of this, a "virtual anatomy" approach being developed at New York University, students wear three dimensional glasses and can use a pointing device to "[swoop] through the virtual body, its sections as brightly colored as living tissue." This method is claimed to be "as dynamic as Imax [cinema]".

Advantages and disadvantages

Proponents of animal-free teaching methodologies argue that alternatives to animal dissection can benefit educators by increasing teaching efficiency and lowering instruction costs while affording teachers an enhanced potential for the customization and repeat-ability of teaching exercises. Those in favor of dissection alternatives point to studies which have shown that computer-based teaching methods "saved academic and nonacademic staff time … were considered to be less expensive and an effective and enjoyable mode of student learning [and] … contributed to a significant reduction in animal use" because there is no set-up or clean-up time, no obligatory safety lessons, and no monitoring of misbehavior with animal cadavers, scissors, and scalpels.

With software and other non-animal methods, there is also no expensive disposal of equipment or hazardous material removal. Some programs also allow educators to customize lessons and include built-in test and quiz modules that can track student performance. Furthermore, animals (whether dead or alive) can be used only once, while non-animal resources can be used for many years—an added benefit that could result in significant cost savings for teachers, school districts, and state educational systems.

Several peer-reviewed comparative studies examining information retention and performance of students who dissected animals and those who used an alternative instruction method have concluded that the educational outcomes of students who are taught basic and advanced biomedical concepts and skills using non-animal methods are equivalent or superior to those of their peers who use animal-based laboratories such as animal dissection.

Some reports state that students' confidence, satisfaction, and ability to retrieve and communicate information was much higher for those who participated in alternative activities compared to dissection. Three separate studies at universities across the United States found that students who modeled body systems out of clay were significantly better at identifying the constituent parts of human anatomy than their classmates who performed animal dissection.

Another study found that students preferred using clay modeling over animal dissection and performed just as well as their cohorts who dissected animals.

In 2008, the National Association of Biology Teachers (NABT) affirmed its support for classroom animal dissection stating that they "Encourage the presence of live animals in the classroom with appropriate consideration to the age and maturity level of the students …NABT urges teachers to be aware that alternatives to dissection have their limitations. NABT supports the use of these materials as adjuncts to the educational process but not as exclusive replacements for the use of actual organisms."

The National Science Teachers Association (NSTA) "supports including live animals as part of instruction in the K-12 science classroom because observing and working with animals firsthand can spark students' interest in science as well as a general respect for life while reinforcing key concepts" of biological sciences. NSTA also supports offering dissection alternatives to students who object to the practice.

The NORINA database lists over 3,000 products which may be used as alternatives or supplements to animal use in education and training. These include alternatives to dissection in schools. InterNICHE has a similar database and a loans system.

Vivisection

From Wikipedia, the free encyclopedia
Mice are the most commonly used mammal species for live animal research. Such research is sometimes described as vivisection.

Vivisection (from Latin vivus 'alive', and sectio 'cutting') is surgery conducted for experimental purposes on a living organism, typically animals with a central nervous system, to view living internal structure. The word is, more broadly, used as a pejorative catch-all term for experimentation on live animals by organizations opposed to animal experimentation, but the term is rarely used by practising scientists. Human vivisection, such as live organ harvesting, has been perpetrated as a form of torture.

Animal vivisection

An anesthetized pig used for training a surgeon

Research requiring vivisection techniques that cannot be met through other means is often subject to an external ethics review in conception and implementation, and in many jurisdictions use of anesthesia is legally mandated for any surgery likely to cause pain to any vertebrate.

In the United States, the Animal Welfare Act explicitly requires that any procedure that may cause pain use "tranquilizers, analgesics, and anesthetics" with exceptions when "scientifically necessary". The act does not define "scientific necessity" or regulate specific scientific procedures, but approval or rejection of individual techniques in each federally funded lab is determined on a case-by-case basis by the Institutional Animal Care and Use Committee, which contains at least one veterinarian, one scientist, one non-scientist, and one other individual from outside the university.

In the United Kingdom, any experiment involving vivisection must be licensed by the Home Secretary. The Animals (Scientific Procedures) Act 1986 "expressly directs that, in determining whether to grant a licence for an experimental project, 'the Secretary of State shall weigh the likely adverse effects on the animals concerned against the benefit likely to accrue.'"

In Australia, the Code of Practice "requires that all experiments must be approved by an Animal Experimentation Ethics Committee" that includes a "person with an interest in animal welfare who is not employed by the institution conducting the experiment, and an additional independent person not involved in animal experimentation."

Anti-vivisectionists have played roles in the emergence of the animal welfare and animal rights movements, arguing that animals and humans have the same natural rights as living creatures, and that it is inherently immoral to inflict pain or injury on another living creature, regardless of the purpose or potential benefit to mankind.

Vivisection and anti-vivisection in the 19th century

At the turn of the 19th century, medicine was undergoing a transformation. The emergence of hospitals and the development of more advanced medical tools such as the stethoscope are but a few of the changes in the medical field. There was also an increased recognition that medical practices needed to be improved, as many of the current therapeutics were based on unproven, traditional theories that may or may not have helped the patient recover. The demand for more effective treatment shifted emphasis to research with the goal of understanding disease mechanisms and anatomy. This shift had a few effects, one of which was the rise in patient experimentation, leading to some moral questions about what was acceptable in clinical trials and what was not. An easy solution to the moral problem was to use animals in vivisection experiments, so as not to endanger human patients. This, however, had its own set of moral obstacles, leading to the anti-vivisection movement.

François Magendie (1783–1855)

Pro-vivisection cartoon in 1911

One polarizing figure in the anti-vivisection movement was François Magendie. Magendie was a physiologist at the Académie Royale de Médecine in France, established in the first half of the 19th century. Magendie made several groundbreaking medical discoveries, but was far more aggressive than some of his other contemporaries with his use of animal experimentation. For example, the discovery of the different functionalities of dorsal and ventral spinal nerve roots was achieved by both Magendie, as well as a Scottish anatomist named Charles Bell. Bell used an unconscious rabbit because of "the protracted cruelty of the dissection", which caused him to miss that the dorsal roots were also responsible for sensory information. Magendie, on the other hand, used conscious, six-week-old puppies for his own experiments. While Magendie's approach was more of an infringement on what would today be referred to as animal rights, both Bell and Magendie used the same rationalization for vivisection: the cost of animal lives and experimentation was well worth it for the benefit of humanity.

Many viewed Magendie's work as cruel and unnecessarily torturous. One note is that Magendie carried out many of his experiments before the advent of anesthesia, but even after ether was discovered it was not used in any of his experiments or classes. Even during the period before anesthesia, other physiologists expressed their disgust with how he conducted his work. One such visiting American physiologist describes the animals as "victims" and the apparent sadism that Magendie displayed when teaching his classes. The cruelty in such experiments actually even led to Magendie's role as an important figure in animal-rights legislation, such as his experiments being cited in the drafting of the British Cruelty to Animals Act 1876 and Cruel Treatment of Cattle Act 1822, otherwise known as Martin's Act, with its namesake, Irish MP and well known anti-cruelty campaigner Richard Martin describing Magendle as "disgrace to Society" after one of Magendle's public vivisections, described by Martin as "anatomical theatres", which was widely commented on at the time reportedly involving a greyhound's dissection potentially over two days. Magendle faced widespread opposition in British society, among the general public but also his contemporaries, including William Sharpey who described his experiments aside from cruel as "purposeless" and "without sufficient object", a feeling he claimed was shared among other physiologists.

David Ferrier and the Cruelty to Animals Act 1876

Prior to vivisection for educational purposes, chloroform was administered as an anesthetic to this common sand frog.

The Cruelty to Animals Act, 1876 in Britain determined that one could only conduct vivisection on animals with the appropriate license from the state, and that the work the physiologist was doing had to be original and absolutely necessary. The stage was set for such legislation by physiologist David Ferrier. Ferrier was a pioneer in understanding the brain and used animals to show that certain locales of the brain corresponded to bodily movement elsewhere in the body in 1873. He put these animals to sleep, and caused them to move unconsciously with a probe. Ferrier was successful, but many decried his use of animals in his experiments. Some of these arguments came from a religious standpoint. Some were concerned that Ferrier's experiments would separate God from the mind of man in the name of science. Some of the anti-vivisection movement in England had its roots in Evangelicalism and Quakerism. These religions already had a distrust for science, only intensified by the recent publishing of Darwin's Theory of Evolution in 1859.

Neither side was pleased with how the Cruelty to Animals Act 1876 was passed. The scientific community felt as though the government was restricting their ability to compete with the quickly advancing France and Germany with new regulations. The anti-vivisection movement was also unhappy, but because they believed that it was a concession to scientists for allowing vivisection to continue at all. Ferrier would continue to vex the anti-vivisection movement in Britain with his experiments when he had a debate with his German opponent, Friedrich Goltz. They would effectively enter the vivisection arena, with Ferrier presenting a monkey, and Goltz presenting a dog, both of which had already been operated on. Ferrier won the debate, but did not have a license, leading the anti-vivisection movement to sue him in 1881. Ferrier was not found guilty, as his assistant was the one operating, and his assistant did have a license. Ferrier and his practices gained public support, leaving the anti-vivisection movement scrambling. They made the moral argument that given recent developments, scientists would venture into more extreme practices to operating on "the cripple, the mute, the idiot, the convict, the pauper, to enhance the 'interest' of [the physiologist's] experiments".

Human vivisection

It is possible that human vivisection was practised by some Greek anatomists in Alexandria in the 3rd century BCE. Celsus in De Medicina states that Herophilos of Alexandria vivisected some criminals sent by the king. The early Christian writer Tertullian states that Herophilos vivisected at least 600 live prisoners, although the accuracy of this claim is disputed by many historians.

In the 12th century CE, Andalusian Arab Ibn Tufail elaborated on human vivisection in his treatise called Hayy ibn Yaqzan. In an extensive article on the subject, Iranian academic Nadia Maftouni believes him to be among the early supporters of autopsy and vivisection.

Unit 731, a biological and chemical warfare research and development unit of the Imperial Japanese Army, undertook lethal human experimentation during the period that comprised both the Second Sino-Japanese War and the Second World War (1937–1945). In the Filipino island of Mindanao, Moro Muslim prisoners of war were subjected to various forms of vivisection by the Japanese, in many cases without anesthesia.

Nazi human experimentation involved many medical experiments on live subjects, such as vivisections by Josef Mengele, usually without anesthesia.

Politics of Europe

From Wikipedia, the free encyclopedia ...