Search This Blog

Thursday, January 18, 2024

Postal voting

From Wikipedia, the free encyclopedia
   No postal voting system in place
   Postal voting available only for some/all citizens abroad
   Postal voting available for some/all citizens abroad, and for citizens at home meeting certain conditions
   Postal voting available for all citizens on demand

Ballot and other documents for postal voting for the 2015 Luxembourg constitutional referendum

Postal voting is voting in an election where ballot papers are distributed to electors (and typically returned) by post, in contrast to electors voting in person at a polling station or electronically via an electronic voting system.

In an election, postal votes may be available on demand or limited to individuals meeting certain criteria, such as a proven inability to travel to a designated polling place. Most electors are required to apply for a postal vote, although some may receive one by default. In some elections postal voting is the only voting method allowed and is referred to as all-postal voting. With the exception of those elections, postal votes constitute a form of early voting and may be considered an absentee ballot.

Typically, postal votes must be mailed back before the scheduled election day. However, in some jurisdictions return methods may allow for dropping off the ballot in person via secure drop boxes or at voting centers. Postal votes may be processed by hand or scanned and counted electronically. The history of postal voting dates back to the 19th century, and modern-day procedures and availability vary by jurisdiction. Research, focused on the United States and using data from states where postal voting is widely available—California, Oregon and Washington—shows that the availability of postal voting tends to increase voter turnout.

Electoral laws typically stipulate a series of checks to protect against voter fraud and allow for the integrity and secrecy of the submitted ballot to be maintained. Known instances of fraud are very rare. Coordinated, large-scale fraud by postal voting is likely hard to pull off undetected because the large number of interested parties (such as officials, political operators, and journalists) as well as a large number of scholars and analysts who are capable of detecting statistical outliers in vote totals signifying large-scale fraud. Officials can confirm instances of fraud by checking signatures and conducting basic detective work.

All-postal voting

All-postal voting is a form of postal voting in which all electors receive their ballot papers through the post, not just those who requested an absentee ballot. Depending on the country, electors may have to return their ballot papers by post or they may be allowed to deliver them by hand to specified drop-off locations. All-postal voting is used in several states in the United States and in Switzerland, and was used in 2016 in the Australian Marriage Law Postal Survey as well as in four regions of the United Kingdom in the 2004 European Parliament election.

There is some evidence that all-postal voting leads to higher turnout than in-person voting or mail-in voting that requires voters to first request a ballot (rather than receive it automatically).

By country

Australia

At the 2016 Australian federal election, there were 1.2 million postal votes cast, amounting to 8.5 percent of total votes.

Postal voting in Australia was introduced for federal elections in 1902, and first used at the 1903 election. It was abolished by the Fisher government in 1910, following claims that it was open to abuse and biased towards rural voters. The Cook government's bill to restore postal voting was one of the "triggers" for the double dissolution prior to the 1914 election. Postal voting was eventually restored by the Hughes government in 1918 and has not been challenged since, although the provisions and requirements have been amended on a number of occasions.

Prior to Federation in 1901, Western Australia introduced a form of postal voting in 1877 with strict eligibility criteria. South Australia introduced postal voting for seamen in 1890, and a further act in 1896 gave postal votes to any elector who would be more than 15 miles (24 km) from home on election day, as well as for any woman unable to travel "by reason of her health". Victoria passed a similar law in 1899, and the first federal postal voting legislation was also modelled on the 1896 South Australian act.

Procedure

Postal voting at a federal level is governed by the Commonwealth Electoral Act 1918 and administered by the Australian Electoral Commission (AEC). Postal votes are available to those who will be absent from their electoral division through travel, or who those are unable to attend a polling booth due to illness, infirmity, "approaching childbirth", caring responsibilities, reasonable fears for their safety, religious beliefs, imprisonment, status as a silent elector, or employment reasons.

Eligible voters may make a postal vote application (PVA) prior to each election, or apply for status as a "general postal voter" and receive a postal ballot automatically. Postal voters receive their ballot(s) and a prepaid envelope containing their name and address, as well as a predetermined security question from the PVA. Voters are required to sign the envelope and provide the correct answer to the security question. They are also required to have a witness sign and date the envelope. As of 2016, postal votes were able to be received and entered into the count up to 13 days after election day. Following the 2016 election, it was observed that the strict scrutiny process afforded to postal votes was a "significant contributor" to delays in declaring the results of close elections.

Austria

Austria enabled postal voting in 2007 by amending Article 26 of the Constitution of Austria. Electors request an electoral card that can be completed in person or in private and sent via post. In the 2017 election, roughly 780,000 postal ballots were cast representing 15% of all ballots. In 2019, this number has increased to 1,070,000.

Canada

The ability to vote when in-person voting is not possible was first introduced with the federal Military Voters Act in 1917, giving all Canadian soldiers and their spouses the right to vote. Public servants became eligible in 1970. The right was further extended to civilian support personnel on Canadian Forces bases in the 1977. In 1993, Bill C-114 extended the special ballot vote (Special Voting Rules) by mail to all Canadian citizens.

Use of special voting rules, including mail voting, has grown with each election. In the 42nd general election (2015), the number of voters increased by 117 percent over the previous election to roughly 619,000. This number grew to roughly 660,000 in the 43rd election (2019) representing 3.6 percent of electors.

Finland

Finland introduced vote by post in 2019 for eligible voters living permanently abroad and eligible voters staying abroad at the time of the elections.

France

Postal voting existed in France until 1975, when it was banned (except in very limited circumstances) due to fears of voter fraud. The highly publicized use of widespread postal voting in the 2020 United States presidential election has reignited debate in France about the use of postal voting, but no consensus or concrete plans exist for reintroducing it.

Germany

Postal voting is common in Germany, with 47% of the electorate voting by post in the 2021 general election. Absentee voting has existed in Germany since 1957, originally in order to ensure that all German citizens, especially the old, sick, and disabled, and citizens living abroad, have the opportunity to participate in elections. At first, postal voters had to state why they could not cast their vote in person on Election Day; but this requirement was dropped in 2008, allowing everyone to use postal voting. Like in many other countries, in more recent years voting by mail has become increasingly popular among younger and non-disabled citizens residing within the country; as such, various tools Archived 2021-03-10 at the Wayback Machine are being developed to help citizens, both domestic and abroad, more easily apply for postal voting.

Greece

Prime Minister Kyriakos Mitsotakis announced that postal voting will be used in the European Parliament Elections on June 9, 2024. He also said that the adoption of this option in European Parliament elections serves as a precursor to its implementation in national elections, which will be held in 2027

Hungary

Hungarian citizens living abroad who do not have an official address in Hungary are allowed to vote by mail. They are only allowed to vote for party lists, but not for local representatives. In the last parliamentary election in 2018, 267,233 votes (4.6% of all votes) were submitted via mail. 48% of all valid postal votes were submitted from Romania.

India

Postal voting in India is done only through the Electronically Transmitted Postal Ballot Papers (ETPB) system of Election Commission of India, where ballot papers are distributed to the registered eligible voters and they return the votes by post. When the counting of votes commences, these postal votes are counted first before the counting of votes from the electronic voting machines of all other voters. Only certain categories of people are eligible to register as postal voters. People working in the union armed forces and state police as well as their wives, and employees working for the Government of India who are officially posted abroad can register for the postal vote, these are also called service voters. Additionally, people in preventive detention, disabled and those above the age of 65 years old can use postal vote. Prisoners can not vote at all. Media persons too have been allowed to use the postal ballot to cast their vote. The Communist Party of India (Marxist) has alleged that postal ballots "will adversely effect the verifiability of a large number of voters, thus, transparency and integrity of the process", and expressed concerns with "instances of manipulation and malpractice" with postal ballots.

Indonesia

Postal voting documents sent to an Indonesian voter in the United Kingdom during the 2019 Indonesian general election

Eligible Indonesians living abroad are able to vote by mail in national elections by registering at the Indonesian overseas election commission in their country of residence. Beside presidential elections, they are also able to vote in DPR elections. All overseas Indonesian voters are included in the Jakarta 2nd constituency, which also contains Central and South Jakarta.

Italy

Electoral package sent to an Italian voter in South America during the 2013 Italian general election

Since 2001 Italian citizens living abroad have the right to vote by mail in all referendums and national elections being held in Italy (provided they had registered their residence abroad with their relevant consulate).

Malaysia

In Malaysia, opposition leader and former deputy prime minister Anwar Ibrahim alleged that postal votes have been used by the ruling Barisan Nasional coalition in securing seats in certain constituencies. He also said that in one particular constituency (Setiawangsa), he claimed that his Parti Keadilan Rakyat had actually won during the 2008 elections, before 14,000 postal votes came in awarding the incumbent BN parliamentarian the seat with a majority of 8,000 votes. In Malaysia, only teachers, military personnel, and policemen based away from their constituencies are eligible to submit postal votes.

Mexico

Postal ballot paper for Mexico federal election 2012

In Mexico, since the 2006 federal elections, postal voting for people living abroad has been permitted. A request can be made to the National Electoral Institute which then sends the ballots outside the country.

Norway

Postal voting is accepted for voters who are staying abroad and are not close to a foreign station or other voting place. Voters can request ballots to be sent to them. Voters are also allowed to write their own ballots.

Philippines

Mail-in ballots are an option for Overseas Filipinos in select countries only. The general practise for local and overseas absentee voting in Philippine elections requires that ballots be cast in person at select polling places, such as a consulate office.

Singapore

Singaporean citizens living abroad may vote by post in presidential and parliamentary elections.

Spain

In Spain, for European, regional and municipal elections, voters who will be absent from their town on election day or are ill or disabled, may request a postal vote at a post office. The application must be submitted personally or through a representative in case of illness or disability certified by a medical certificate.

Switzerland

Swiss federal law allows postal voting in all federal elections and referendums, and all cantons also allow it for cantonal ballot issues. All voters receive their personal ballot by mail and may either cast it at a polling station or mail it back. As of 2019, approximately 90% of Swiss voters cast ballots using Remote Postal Voting.

United Kingdom

Absentee voting in the United Kingdom is allowed by proxy or post (known as postal voting on demand) for any elector. Postal voting does not require a reason, apart from in Northern Ireland, where postal voting is available only if it would be unreasonable to expect a voter to go to a polling station on polling day as a result of employment, disability or education restrictions. Postal voting is common in the United Kingdom, 8.4 million postal votes were issued, 18% of the UK electorate (18.2% England, 19.4% Scotland, 19.4% Wales and 1.9% N.Ireland) in the 2017 general election.

Proxy voting is allowed for people who will be away, working, or medically disabled, anyone eligible to vote in the election may be a proxy for close relatives and two unrelated people. The proxy voter for an elector can also be a postal voter, known as Postal Proxy voting. If a person becomes unable to vote in person within 6 days of an election, including up to 5pm on the polling day, they can apply for another person to vote on their behalf as an emergency proxy.

Postal voting in the UK has been (allegedly) subject to fraud, undue influence, theft and tampering, other forms of voting have also been subject to fraud. The number of cases reported to or by the Electoral Commission however is low. "[T]hese concerns need to be balanced by the fact that it is entirely legitimate for political parties to encourage electors to vote, be it in person or by post".

United States

No-excuse postal voting.
  All-mail voting
  No-excuse absentee voting
  Excuse-needed absentee voting

In the United States, postal voting (commonly referred to as mail-in voting, vote-by-mail or vote from home) is a process in which a ballot is mailed to the home of a registered voter, who fills it out and returns it via postal mail or by dropping it off in-person at a voting center or into a secure drop box. Deadlines are set under state law, with some states requiring ballots be received by election day and others allowing ballots to be received after election day so long as they are postmarked by election day. Vote-by-mail is available in both Republican and Democratic states, with research showing that the availability of postal voting increases voter turnout. Five states—Colorado, Hawaii, Oregon, Utah and Washington—hold elections almost entirely by mail.

It has been argued that postal voting has a greater risk of fraud than in-person voting, though there are few known instances of such fraud. Mail-in ballots pose other challenges, including signature verification, prompt delivery of ballots, and issues that have led to evidence suggesting younger voters, as well as voters from racial and ethnic minorities, are more likely to have their vote-by-mail ballots rejected.

In the 2016 general election, approximately 33 million postal ballots were cast, about a quarter of all ballots cast. Some jurisdictions used only vote-by-mail and others used absentee voting by mail.

In April 2020, during lockdowns for the COVID-19 pandemic, an NBC News/Wall Street Journal poll found that 58% of those polled would favor nationwide election reform to allow everyone to vote by mail. President Donald Trump has brought up doubts about the integrity of unsolicited mail-in voting in the 2020 election.

Following false claim of widespread voter fraud in the 2020 presidential election, Republican state lawmakers began an effort to roll back access to postal voting.

Voting machine

From Wikipedia, the free encyclopedia

Voting machines differ in usability, security, cost, speed, accuracy, and ability of the public to oversee elections. Machines may be more or less accessible to voters with different disabilities.

Tallies are simplest in parliamentary systems where just one choice is on the ballot, and these are often tallied manually. In other political systems where many choices are on the same ballot, tallies are often done by machines to give faster results.

Historical machines

In ancient Athens (5th and 4th centuries BCE) voting was done by different colored pebbles deposited in urns, and later by bronze markers created by the state and officially stamped. This procedure served for elected positions, jury procedures, and ostracisms. The first use of paper ballots was in Rome in 139 BCE, and their first use in the United States was in 1629 to select a pastor for the Salem Church.

Mechanical voting

Balls

The first major proposal for the use of voting machines came from the Chartists in the United Kingdom in 1838. Among the radical reforms called for in The People's Charter were universal suffrage and voting by secret ballot. This required major changes in the conduct of elections, and as responsible reformers, the Chartists not only demanded reforms but described how to accomplish them, publishing Schedule A, a description of how to run a polling place, and Schedule B, a description of a voting machine to be used in such a polling place.

The Chartist voting machine, attributed to Benjamin Jolly of 19 York Street in Bath, allowed each voter to cast one vote in a single race. This matched the requirements of a British parliamentary election. Each voter was to cast his vote by dropping a brass ball into the appropriate hole in the top of the machine by the candidate's name. Each voter could only vote once because each voter was given just one brass ball. The ball advanced a clockwork counter for the corresponding candidate as it passed through the machine, and then fell out the front where it could be given to the next voter.

Buttons

In 1875, Henry Spratt of Kent received a U.S. patent for a voting machine that presented the ballot as an array of push buttons, one per candidate. Spratt's machine was designed for a typical British election with a single plurality race on the ballot.

In 1881, Anthony Beranek of Chicago patented the first voting machine appropriate for use in a general election in the United States. Beranek's machine presented an array of push buttons to the voter, with one row per office on the ballot, and one column per party. Interlocks behind each row prevented voting for more than one candidate per race, and an interlock with the door of the voting booth reset the machine for the next voter as each voter left the booth.

Tokens

The psephograph was patented by Italian inventor Eugenio Boggiano in 1907. It worked by dropping a metal token into one of several labeled slots. The psephograph would automatically tally the total tokens deposited in each slot. The psephograph was first used in a theatre in Rome, where it was used to gauge audience reception to a play: "good", "bad", or "indifferent".

Analog computers

Lenna Winslow's 1910 voting machine was designed to offer all the questions on the ballot to men and only some to women because women often had partial suffrage, e.g. being allowed to vote on issues but not candidates. The machine had two doors, one marked "Gents" and the other marked "Ladies". The door used to enter the voting booth would activate a series of levers and switches to display the full ballot for men and the partial ballot for women.

Dials

By July 1936, IBM had mechanized voting and ballot tabulation for single transferable vote elections. Using a series of dials, the voter could record up to twenty ranked preferences to a punched card, one preference at a time. Write-in votes were permitted. The machine prevented a voter from spoiling their ballot by skipping rankings and by giving the same ranking to more than one candidate. A standard punched-card counting machine would tabulate ballots at a rate of 400 per minute.

Demo version of lever style voting machine on display at the National Museum of American History

Levers

Lever machines were commonly used in the United States until the 1990s. In 1889, Jacob H. Myers of Rochester, New York, received a patent for a voting machine that was based on Beranek's 1881 push button machine. This machine saw its first use in Lockport, New York, in 1892. In 1894, Sylvanus Davis added a straight-party lever and significantly simplified the interlocking mechanism used to enforce the vote-for-one rule in each race. By 1899, Alfred Gillespie introduced several refinements. It was Gillespie who replaced the heavy metal voting booth with a curtain that was linked to the cast-vote lever, and Gillespie introduced the lever by each candidate name that was turned to point to that name in order to cast a vote for that candidate. Inside the machine, Gillespie worked out how to make the machine programmable so that it could support races in which voters were allowed to vote for, for example, 3 out of 5 candidates.

On December 14, 1900, the U.S. Standard Voting Machine Company was formed, with Alfred Gillespie as one of its directors, to combine the companies that held the Myers, Davis, and Gillespie patents. By the 1920s, this company (under various names) had a monopoly on voting machines, until, in 1936, Samuel and Ransom Shoup obtained a patent for a competing voting machine. By 1934, about a sixth of all presidential ballots were being cast on mechanical voting machines, essentially all made by the same manufacturer.

Commonly, a voter enters the machine and pulls a lever to close the curtain, thus unlocking the voting levers. The voter then makes his or her selection from an array of small voting levers denoting the appropriate candidates or measures. The machine is configured to prevent overvotes by locking out other candidates when one candidate's lever is turned down. When the voter is finished, a lever is pulled which opens the curtain and increments the appropriate counters for each candidate and measure. At the close of the election, the results are hand copied by the precinct officer, although some machines could automatically print the totals. New York was the last state to stop using these machines, under court order, by the fall of 2009.

Punched card voting

The Votomatic vote recorder, a punched card voting machine originally developed in the mid-1960s.

Punched card systems employ a card (or cards) and a small clipboard-sized device for recording votes. Voters punch holes in the cards with a ballot marking device. Typical ballot marking devices carry a ballot label that identifies the candidates or issues associated with each punching position on the card, although in some cases, the names and issues are printed directly on the card. After voting, the voter may place the ballot in a ballot box, or the ballot may be fed into a computer vote tabulating device at the precinct.

The idea of voting by punching holes on paper or cards originated in the 1890s and inventors continued to explore this in the years that followed. By the late 1890s John McTammany's voting machine was used widely in several states. In this machine, votes were recorded by punching holes in a roll of paper comparable to those used in player pianos, and then tabulated after the polls closed using a pneumatic mechanism.

Punched-card voting was proposed occasionally in the mid-20th century, but the first major success for punched-card voting came in 1965, with Joseph P. Harris' development of the Votomatic punched-card system. This was based on IBM's Port-A-Punch technology. Harris licensed the Votomatic to IBM. William Rouverol built the prototype system.

The Votomatic system was very successful and widely distributed. By the 1996 Presidential election, some variation of the punched card system was used by 37.3% of registered voters in the United States.

Votomatic style systems and punched cards received considerable notoriety in 2000 when their uneven use in Florida was alleged to have affected the outcome of the U.S. presidential election. The Help America Vote Act of 2002 "effectively banned pre-scored punched card ballots." Votomatics were "last used in 2 counties in Idaho in the 2014 General Election".

Current voting machines

An electronic voting machine is a voting machine based on electronics.

Two main technologies exist: optical scanning and direct recording (DRE).

Optical scanning

In an optical scan voting system, or marksense, each voter's choices are marked on one or more pieces of paper, which then go through a scanner. The scanner creates an electronic image of each ballot, interprets it, creates a tally for each candidate, and usually stores the image for later review.

The voter may mark the paper directly, usually in a specific location for each candidate. Or the voter may select choices on an electronic screen, which then prints the chosen names, and a bar code or QR code summarizing all choices, on a sheet of paper to put in the scanner.

Hundreds of errors in optical scan systems have been found, from feeding ballots upside down, multiple ballots pulled through at once in central counts, paper jams, broken, blocked or overheated sensors which misinterpret some or many ballots, printing which does not align with the programming, programming errors, and loss of files. The cause of each programming error is rarely found, so it is not known how many were accidental or intentional.

Direct-recording electronic (DRE)

DRE with paper for voter to verify (VVPAT)

In a DRE voting machine system, a touch screen displays choices to the voter, who selects choices, and can change their mind as often as needed, before casting the vote. Staff initialize each voter once on the machine, to avoid repeat voting. Voting data are recorded in memory components, and can be copied out at the end of the election.

Some of these machines also print names of chosen candidates on paper for the voter to verify, though less than 40% verify. These names on paper are kept behind glass in the machine, and can be used for election audits and recounts if needed. The tally of the voting data is printed on the end of the paper tape. The paper tape is called a Voter-verified paper audit trail (VVPAT). The VVPATs can be tallied at 20–43 seconds of staff time per vote (not per ballot).

For machines without VVPAT, there is no record of individual votes to check. For machines with VVPAT, checking is more expensive than with paper ballots, because on the flimsy thermal paper in a long continuous roll, staff often lose their place, and the printout has each change by each voter, not just their final decisions.

Problems have included public web access to the software, before it is loaded into machines for each election, and programming errors which increment different candidates than voters select. The Federal Constitutional Court of Germany found that with existing machines could not be allowed because they could not be monitored by the public.

Successful hacks have been demonstrated under laboratory conditions.

Location of tallying

Optical scans can be done either at the place of voting,"precinct", or in another location. DRE machines always tally at the precinct.

Precinct-count voting system

A precinct-count voting system is a voting system that tallies ballots at the polling place. Precinct-count machines typically analyze ballots as they are cast. This approach allows for voters to be notified of voting errors such as overvotes and can prevent spoilt votes. After the voter has a chance to correct any errors, the precinct-count machine tallies that ballot. Vote totals are made public only after the close of polling. DREs and precinct scanners have electronic storage of the vote tallies and may transmit results to a central location over public telecommunication networks.

Central-count voting system

A medium-speed central-count ballot scanner, the DS450 made by Election Systems & Software can scan and sort about 4000 ballots per hour.

A central count voting system is a voting system that tallies ballots from multiple precincts at a central location. Central count systems are also commonly used to process absentee ballots.

Central counting can be done by hand, and in some jurisdictions, central counting is done using the same type of voting machine deployed at polling places, but since the introduction of the Votomatic punched-card voting system and the Norden Electronic Vote Tallying System in the 1960s, high speed ballot tabulators have been in widespread use, particularly in large metropolitan jurisdictions. Today, commodity high-speed scanners sometimes serve this purpose, but special-purpose ballot scanners are also available that incorporate sorting mechanisms to separate tallied ballots from those requiring human interpretation.

Voted ballots are typically placed into secure ballot boxes at the polling place. Stored ballots and/or Precinct Counts are transported or transmitted to a central counting location. The system produces a printed report of the vote count, and may produce a report stored on electronic media suitable for broadcasting, or release on the Internet.

Electronic voting

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Electronic_voting
 
Electronic voting (also known as e-voting) is voting that uses electronic means to either aid or take care of casting and counting ballots.

Depending on the particular implementation, e-voting may use standalone electronic voting machines (also called EVM) or computers connected to the Internet (online voting). It may encompass a range of Internet services, from basic transmission of tabulated results to full-function online voting through common connectable household devices. The degree of automation may be limited to marking a paper ballot, or may be a comprehensive system of vote input, vote recording, data encryption and transmission to servers, and consolidation and tabulation of election results.

A worthy e-voting system must perform most of these tasks while complying with a set of standards established by regulatory bodies, and must also be capable to deal successfully with strong requirements associated with security, accuracy, integrity, swiftness, privacy, auditability, accessibility, cost-effectiveness, scalability and ecological sustainability.

Electronic voting technology can include punched cards, optical scan voting systems and specialized voting kiosks (including self-contained direct-recording electronic voting systems, or DRE). It can also involve transmission of ballots and votes via telephones, private computer networks, or the Internet.

In general, two main types of e-voting can be identified:

  • e-voting which is physically supervised by representatives of governmental or independent electoral authorities (e.g. electronic voting machines located at polling stations);
  • remote e-voting via the Internet (also called i-voting) where the voter submits his or her vote electronically to the election authorities, from any location.

Electronic voting systems are used everywhere in many countries across the whole world, incl. Argentina, Australia, Bangladesh, Belgium, Brazil, Canada, France, Germany, India, Italy, Japan, Kazakhstan, South Korea, Malaysia, the Netherlands, Norway, Pakistan, the Philippines, Spain, Switzerland, Thailand, the United Kingdom and the United States.

Benefits

Electronic voting technology intends to speed the counting of ballots, reduce the cost of paying staff to count votes manually and can provide improved accessibility for disabled voters. Also in the long term, expenses are expected to decrease. Results can be reported and published faster. Voters save time and cost by being able to vote independently from their location. This may increase overall voter turnout. The citizen groups benefiting most from electronic elections are the ones living abroad, citizens living in rural areas far away from polling stations and the disabled with mobility impairments.

Concerns

It has been demonstrated that as voting systems become more complex and include software, different methods of election fraud become possible. Others also challenge the use of electronic voting from a theoretical point of view, arguing that humans are not equipped for verifying operations occurring within an electronic machine and that because people cannot verify these operations, the operations cannot be trusted. Furthermore, some computing experts have argued for the broader notion that people cannot trust any programming they did not author.

The use of electronic voting in elections remains a contentious issue. Some countries such as Netherlands and Germany have stopped using it after it was shown to be unreliable, while the Indian Election commission recommends it. The involvement of numerous stakeholders including companies that manufacture these machines as well as political parties that stand to gain from rigging complicates this further.

Critics of electronic voting, including security analyst Bruce Schneier, note that "computer security experts are unanimous on what to do (some voting experts disagree, but it is the computer security experts who need to be listened to; the problems here are with the computer, not with the fact that the computer is being used in a voting application)... DRE machines must have a voter-verifiable paper audit trails... Software used on DRE machines must be open to public scrutiny" to ensure the accuracy of the voting system. Verifiable ballots are necessary because computers can and do malfunction, and because voting machines can be compromised.

Many insecurities have been found in commercial voting machines, such as using a default administration password. Cases have also been reported of machines making unpredictable, inconsistent errors. Key issues with electronic voting are therefore the openness of a system to public examination from outside experts, the creation of an authenticatable paper record of votes cast and a chain of custody for records. And, there is a risk that commercial voting machines results are changed by the company providing the machine. There is no guarantee that results are collected and reported accurately.

There has been contention, especially in the United States, that electronic voting, especially DRE voting, could facilitate electoral fraud and may not be fully auditable. In addition, electronic voting has been criticised as unnecessary and expensive to introduce. While countries like India continue to use electronic voting, several countries have cancelled e-voting systems or decided against a large-scale rollout, notably the Netherlands, Ireland, Germany and the United Kingdom due to issues in reliability of EVMs.

Moreover, people without internet access and/or the skills to use it are excluded from the service. The so-called digital divide describes the gap between those who have access to the internet and those who do not. Depending on the country or even regions in a country the gap differs. This concern is expected to become less important in future since the number of internet users tends to increase.

The main psychological issue is trust. Voters fear that their vote could be changed by a virus on their PC or during transmission to governmental servers.

Expenses for the installation of an electronic voting system are high. For some governments they may be too high so that they do not invest. This aspect is even more important if it is not sure whether electronic voting is a long-term solution.

New South Wales 2021 iVote failures

During the 2021 NSW Local Government Elections the online voting system "iVote" had technical issues that caused some access problems for some voters. Analysis done of these failures indicated a significant chance of the outages having impacted on the electoral results for the final positions. In the Kempsey ward, where the margin between the last elected and first non-elected candidates was only 69 votes, the electoral commission determined that the outage caused a 60% chance that the wrong final candidate was elected. Singleton had a 40% chance of having elected the wrong councillor, Shellharbour was a 7% chance and two other races were impacted by a sub-1% chance of having elected the wrong candidate. The NSW Supreme Court ordered the elections in Kempsey, Singleton and Shellharbour Ward A to be re-run. In the 2022 Kempsey re-vote the highest placed non-elected candidate from 2021, Dean Saul, was instead one of the first councillors elected. This failure caused the NSW Government to suspend the iVote system from use in the 2023 New South Wales state election.

Types of system

Electronic voting machines

Electronic voting systems for electorates have been in use since the 1960s when punched card systems debuted. Their first widespread use was in the US where 7 counties switched to this method for the 1964 presidential election. The newer optical scan voting systems allow a computer to count a voter's mark on a ballot. DRE voting machines which collect and tabulate votes in a single machine, are used by all voters in all elections in Brazil and India, and also on a large scale in Venezuela and the United States. They have been used on a large scale in the Netherlands but have been decommissioned after public concerns. In Brazil, the use of DRE voting machines has been associated with a decrease in error-ridden and uncounted votes, promoting a larger enfranchisement of mainly less educated people in the electoral process, shifting government spending toward public healthcare, particularly beneficial to the poor.

Paper-based electronic voting system

A cart holding an ES&S M100 ballot scanner and an AutoMARK assistive device, as used in Johnson County, Iowa, United States in 2010

Paper-based voting systems originated as a system where votes are cast and counted by hand, using paper ballots. With the advent of electronic tabulation came systems where paper cards or sheets could be marked by hand, but counted electronically. These systems included punched card voting, marksense and later digital pen voting systems.

These systems can include a ballot marking device or electronic ballot marker that allows voters to make their selections using an electronic input device, usually a touch screen system similar to a DRE. Systems including a ballot marking device can incorporate different forms of assistive technology. In 2004, Open Voting Consortium demonstrated the 'Dechert Design', a General Public License open source paper ballot printing system with open source bar codes on each ballot.

Direct-recording electronic (DRE) voting system

A direct-recording electronic (DRE) voting machine records votes by means of a ballot display provided with mechanical or electro-optical components that can be activated by the voter (typically buttons or a touchscreen); that processes data with computer software; and that records voting data and ballot images in memory components. After the election it produces a tabulation of the voting data stored in a removable memory component and as a printed copy. The system may also provide a means for transmitting individual ballots or vote totals to a central location for consolidating and reporting results from precincts at the central location. These systems use a precinct count method that tabulates ballots at the polling place. They typically tabulate ballots as they are cast and print the results after the close of polling.

In 2002, in the United States, the Help America Vote Act mandated that one handicapped accessible voting system be provided per polling place, which most jurisdictions have chosen to satisfy with the use of DRE voting machines, some switching entirely over to DRE. In 2004, 28.9% of the registered voters in the United States used some type of direct recording electronic voting system, up from 7.7% in 1996.

VVPAT used with Indian electronic voting machines in Indian Elections

In 2004, India adopted Electronic Voting Machines (EVM) for its elections to its parliament with 380 million voters casting their ballots using more than one million voting machines. The Indian EVMs are designed and developed by two government-owned defence equipment manufacturing units, Bharat Electronics Limited (BEL) and Electronics Corporation of India Limited (ECIL). Both systems are identical, and are developed to the specifications of Election Commission of India. The system is a set of two devices running on 7.5 volt batteries. One device, the voting Unit is used by the voter, and another device called the control unit is operated by the electoral officer. Both units are connected by a five-metre cable. The voting unit has a blue button for each candidate. The unit can hold 16 candidates, but up to four units can be chained, to accommodate 64 candidates. The control unit has three buttons on the surface – one button to release a single vote, one button to see the total number of votes cast till now, and one button to close the election process. The result button is hidden and sealed. It cannot be pressed unless the close button has already been pressed. A controversy was raised when the voting machine malfunctioned which was shown in Delhi assembly. On 9 April 2019, the Supreme Court ordered the ECI to increase voter-verified paper audit trail (VVPAT) slips vote count to five randomly selected EVMs per assembly constituency, which means ECI has to count VVPAT slips of 20,625 EVMs before it certifies the final election results.

Public network DRE voting system

A public network DRE voting system is an election system that uses electronic ballots and transmits vote data from the polling place to another location over a public network. Vote data may be transmitted as individual ballots as they are cast, periodically as batches of ballots throughout the election day, or as one batch at the close of voting. Public network DRE voting system can utilize either precinct count or central count method. The central count method tabulates ballots from multiple precincts at a central location.

Online voting

Smartphones are the mainstream for online voting used by the Japanese private sector, but e-voting is not possible due to the law in public office elections in Japan.

Internet voting systems have gained popularity and have been used for government and membership organization elections and referendums in Estonia, and Switzerland as well as municipal elections in Canada and party primary elections in the United States and France. Internet voting has also been widely used in sub-national participatory budgeting processes, including in Brazil, France, United States, Portugal and Spain.

Security experts have found security problems in every attempt at online voting, including systems in Australia, Estonia, Switzerland, Russia, and the United States.

It has been argued political parties that have more support from the less fortunate—who are unfamiliar with the Internet—may suffer in the elections due to e-voting, which tends to increase voting in the upper/middle class. It is unsure as to whether narrowing the digital divide would promote equal voting opportunities for people across various social, economic, and ethnic backgrounds. In the long run, this is contingent not only on internet accessibility but also depends on people's level of familiarity with the Internet.

The effects of internet voting on overall voter turnout are unclear. A 2017 study of online voting in two Swiss cantons found that it had no effect on turnout, and a 2009 study of Estonia's national election found similar results. To the contrary, however, the introduction of online voting in municipal elections in the Canadian province of Ontario resulted in an average increase in turnout of around 3.5 percentage points. Similarly, a further study of the Swiss case found that while online voting did not increase overall turnout, it did induce some occasional voters to participate who would have abstained were online voting not an option.

A paper on “remote electronic voting and turnout in the Estonian 2007 parliamentary elections” showed that rather than eliminating inequalities, e-voting might have enhanced the digital divide between higher and lower socioeconomic classes. People who lived greater distances from polling areas voted at higher levels with this service now available. The 2007 Estonian elections yielded a higher voter turnout from those who lived in higher income regions and who received formal education. Still regarding the Estonian Internet voting system, it was proved to be more cost-efficient than the rest of the voting systems offered in 2017 local elections.

Cost range per ballot (in euro) for the 2017 Local Elections 
Voting system Minimum Maximum
Advance voting in county centres 5.48 5.92
Advance voting in ordinary polling stations 16.24 17.36
Early voting in county centres 5.83 6.30
Election day voting in county centres 4.97 5.58
Election day voting in ordinary polling stations 2.83 3.01
Internet voting 2.17 2.26

Electronic voting is perceived to be favored moreover by a certain demographic, namely the younger generation such as Generation X and Y voters. However, in recent elections about a quarter of e-votes were cast by the older demographic, such as individuals over the age of 55. Including this, about 20% of e-votes came from voters between the ages of 45 and 54. This goes to show that e-voting is not supported exclusively by the younger generations, but finding some popularity amongst Gen X and Baby Boomers as well. In terms of electoral results as well, the expectation that online voting would favor younger candidates has not been borne out in the data, with mayors in Ontario, Canada who were elected in online elections actually being slightly older on average than those elected by pencil and paper.

Online voting is widely used privately for shareholder votes, and other private organizations. The election management companies do not promise accuracy or privacy. In fact one company uses an individual's past votes for research, and to target ads.

Corporations and organizations routinely use Internet voting to elect officers and board members and for other proxy elections. Internet voting systems have been used privately in many modern nations and publicly in the United States, the UK, Switzerland and Estonia. In Switzerland, where it is already an established part of local referendums, voters get their passwords to access the ballot through the postal service. Most voters in Estonia can cast their vote in local and parliamentary elections, if they want to, via the Internet, as most of those on the electoral roll have access to an e-voting system, the largest run by any European Union country. It has been made possible because most Estonians carry a national identity card equipped with a computer-readable microchip and it is these cards which they use to get access to the online ballot. All a voter needs is a computer, an electronic card reader, their ID card and its PIN, and they can vote from anywhere in the world. Estonian e-votes can only be cast during the days of advance voting. On election day itself people have to go to polling stations and fill in a paper ballot.

Hybrid systems

There are also hybrid systems that include an electronic ballot marking device (usually a touch screen system similar to a DRE) or other assistive technology to print a voter verified paper audit trail, then use a separate machine for electronic tabulation. Hybrid voting often includes both e-voting and mail-in paper ballots. 

Internet voting can use remote locations (voting from any Internet capable computer) or can use traditional polling locations with voting booths consisting of Internet connected voting systems.

Analysis

ISG TopVoter, a machine designed specifically to be used by voters with disabilities

Electronic voting systems may offer advantages compared to other voting techniques. An electronic voting system can be involved in any one of a number of steps in the setup, distributing, voting, collecting, and counting of ballots, and thus may or may not introduce advantages into any of these steps. Potential disadvantages exist as well including the potential for flaws or weakness in any electronic component.

Charles Stewart of the Massachusetts Institute of Technology estimates that 1 million more ballots were counted in the 2004 US presidential election than in 2000 because electronic voting machines detected votes that paper-based machines would have missed.

In May 2004 the U.S. Government Accountability Office released a report titled "Electronic Voting Offers Opportunities and Presents Challenges", analyzing both the benefits and concerns created by electronic voting. A second report was released in September 2005 detailing some of the concerns with electronic voting, and ongoing improvements, titled "Federal Efforts to Improve Security and Reliability of Electronic Voting Systems Are Under Way, but Key Activities Need to Be Completed".

Electronic ballots

Electronic voting systems may use electronic ballot to store votes in computer memory. Systems which use them exclusively are called DRE voting systems. When electronic ballots are used there is no risk of exhausting the supply of ballots. Additionally, these electronic ballots remove the need for printing of paper ballots, a significant cost. When administering elections in which ballots are offered in multiple languages (in some areas of the United States, public elections are required by the National Voting Rights Act of 1965), electronic ballots can be programmed to provide ballots in multiple languages for a single machine. The advantage with respect to ballots in different languages appears to be unique to electronic voting. For example, King County, Washington's demographics require them under U.S. federal election law to provide ballot access in Chinese. With any type of paper ballot, the county has to decide how many Chinese-language ballots to print, how many to make available at each polling place, etc. Any strategy that can assure that Chinese-language ballots will be available at all polling places is certain, at the very least, to result in a significant number of wasted ballots. (The situation with lever machines would be even worse than with paper: the only apparent way to reliably meet the need would be to set up a Chinese-language lever machine at each polling place, few of which would be used at all.)

Critics argue the need for extra ballots in any language can be mitigated by providing a process to print ballots at voting locations. They argue further, the cost of software validation, compiler trust validation, installation validation, delivery validation and validation of other steps related to electronic voting is complex and expensive, thus electronic ballots are not guaranteed to be less costly than printed ballots.

Accessibility

A Hart eSlate DRE voting machine with jelly buttons for people with manual dexterity disabilities

Electronic voting machines can be made fully accessible for persons with disabilities. Punched card and optical scan machines are not fully accessible for the blind or visually impaired, and lever machines can be difficult for voters with limited mobility and strength. Electronic machines can use headphones, sip and puff, foot pedals, joy sticks and other adaptive technology to provide the necessary accessibility.

Organizations such as the Verified Voting Foundation have criticized the accessibility of electronic voting machines and advocate alternatives. Some disabled voters (including the visually impaired) could use a tactile ballot, a ballot system using physical markers to indicate where a mark should be made, to vote a secret paper ballot. These ballots can be designed identically to those used by other voters. However, other disabled voters (including voters with dexterity disabilities) could be unable to use these ballots.

Cryptographic verification

The concept of election verifiability through cryptographic solutions has emerged in the academic literature to introduce transparency and trust in electronic voting systems. It allows voters and election observers to verify that votes have been recorded, tallied and declared correctly, in a manner independent from the hardware and software running the election. Three aspects of verifiability are considered: individual, universal, and eligibility. Individual verifiability allows a voter to check that her own vote is included in the election outcome, universal verifiability allows voters or election observers to check that the election outcome corresponds to the votes cast, and eligibility verifiability allows voters and observers to check that each vote in the election outcome was cast by a uniquely registered voter.

Voter intent

Electronic voting machines are able to provide immediate feedback to the voter detecting such possible problems as undervoting and overvoting which may result in a spoiled ballot. This immediate feedback can be helpful in successfully determining voter intent.

Transparency

It has been alleged by groups such as the UK-based Open Rights Group that a lack of testing, inadequate audit procedures, and insufficient attention given to system or process design with electronic voting leaves "elections open to error and fraud".

In 2009, the Federal Constitutional Court of Germany found that when using voting machines the "verification of the result must be possible by the citizen reliably and without any specialist knowledge of the subject." The DRE Nedap-computers used till then did not fulfill that requirement. The decision did not ban electronic voting as such, but requires all essential steps in elections to be subject to public examinability.

In 2013, The California Association of Voting Officials was formed to maintain efforts toward publicly owned General Public License open source voting systems

Coercion evidence

In 2013, researchers from Europe proposed that the electronic voting systems should be coercion evident. There should be a public evidence of the amount of coercion that took place in a particular elections. An internet voting system called "Caveat Coercitor" shows how coercion evidence in voting systems can be achieved.

Audit trails

A fundamental challenge with any voting machine is to produce evidence that the votes were recorded as cast and tabulated as recorded. Election results produced by voting systems that rely on voter-marked paper ballots can be verified with manual hand counts (either valid sampling or full recounts). Paperless ballot voting systems must support auditability in different ways. An independently auditable system, sometimes called an Independent Verification, can be used in recounts or audits. These systems can include the ability for voters to verify how their votes were cast or enable officials to verify that votes were tabulated correctly.

A discussion draft argued by researchers at the National Institute of Standards and Technology (NIST) states, "Simply put, the DRE architecture’s inability to provide for independent audits of its electronic records makes it a poor choice for an environment in which detecting errors and fraud is important." The report does not represent the official position of NIST, and misinterpretations of the report has led NIST to explain that "Some statements in the report have been misinterpreted. The draft report includes statements from election officials, voting system vendors, computer scientists and other experts in the field about what is potentially possible in terms of attacks on DREs. However, these statements are not report conclusions."

A Diebold Election Systems, Inc. model AccuVote-TSx DRE voting machine with VVPAT attachment

Various technologies can be used to assure DRE voters that their votes were cast correctly, and allow officials to detect possible fraud or malfunction, and to provide a means to audit the tabulated results. Some systems include technologies such as cryptography (visual or mathematical), paper (kept by the voter or verified and left with election officials), audio verification, and dual recording or witness systems (other than with paper).

Dr. Rebecca Mercuri, the creator of the Voter Verified Paper Audit Trail (VVPAT) concept (as described in her Ph.D. dissertation in October 2000 on the basic voter verifiable ballot system), proposes to answer the auditability question by having the voting machine print a paper ballot or other paper facsimile that can be visually verified by the voter before being entered into a secure location. Subsequently, this is sometimes referred to as the "Mercuri method." To be truly voter-verified, the record itself must be verified by the voter and able to be done without assistance, such as visually or audibly. If the voter must use a bar-code scanner or other electronic device to verify, then the record is not truly voter-verifiable, since it is actually the electronic device that is verifying the record for the voter. VVPAT is the form of Independent Verification most commonly found in elections in the United States and other countries such as Venezuela.

End-to-end auditable voting systems can provide the voter with a receipt that can be taken home. This receipt does not allow voters to prove to others how they voted, but it does allow them to verify that the system detected their vote correctly. End-to-end (E2E) systems include Punchscan, ThreeBallot and Prêt à Voter. Scantegrity is an add-on that extends current optical scan voting systems with an E2E layer. The city of Takoma Park, Maryland used Scantegrity II for its November 2009 election.

Systems that allow the voter to prove how they voted are never used in U.S. public elections, and are outlawed by most state constitutions. The primary concerns with this solution are voter intimidation and vote selling.

An audit system can be used in measured random recounts to detect possible malfunction or fraud. With the VVPAT method, the paper ballot is often treated as the official ballot of record. In this scenario, the ballot is primary and the electronic records are used only for an initial count. In any subsequent recounts or challenges, the paper, not the electronic ballot, would be used for tabulation. Whenever a paper record serves as the legal ballot, that system will be subject to the same benefits and concerns as any paper ballot system.

To successfully audit any voting machine, a strict chain of custody is required.

The solution was first demonstrated (New York City, March 2001) and used (Sacramento, California 2002) by AVANTE International Technology, Inc.. In 2004 Nevada was the first state to successfully implement a DRE voting system that printed an electronic record. The $9.3 million voting system provided by Sequoia Voting Systems included more than 2,600 AVC EDGE touchscreen DREs equipped with the VeriVote VVPAT component.  The new systems, implemented under the direction of then Secretary of State Dean Heller replaced largely punched card voting systems and were chosen after feedback was solicited from the community through town hall meetings and input solicited from the Nevada Gaming Control Board.

Hardware

Brazilian DRE voting machine

Inadequately secured hardware can be subject to physical tampering. Some critics, such as the group "Wij vertrouwen stemcomputers niet" ("We do not trust voting machines"), charge that, for instance, foreign hardware could be inserted into the machine, or between the user and the central mechanism of the machine itself, using a man in the middle attack technique, and thus even sealing DRE machines may not be sufficient protection. This claim is countered by the position that review and testing procedures can detect fraudulent code or hardware, if such things are present, and that a thorough, verifiable chain of custody would prevent the insertion of such hardware or software. Security seals are commonly employed in an attempt to detect tampering, but testing by Argonne National Laboratory and others demonstrates that existing seals can usually be quickly defeated by a trained person using low-tech methods.

Software

Security experts, such as Bruce Schneier, have demanded that voting machine source code should be publicly available for inspection. Others have also suggested publishing voting machine software under a free software license as is done in Australia.

Testing and certification

One method to detect errors with voting machines is parallel testing, which are conducted on the Election Day with randomly picked machines. The ACM published a study showing that, to change the outcome of the 2000 U.S. Presidential election, only 2 votes in each precinct would have needed to be changed.

Cost

Cost of having electronic machines receive the voter's choices, print a ballot and scan the ballots to tally results is higher than the cost of printing blank ballots, having voters mark them directly (with machine-marking only when voters want it) and scanning ballots to tally results, according to studies in Georgia, New York and Pennsylvania.

Adoption worldwide

Electronic voting by country varies and may include voting machines in polling places, centralized tallying of paper ballots, and internet voting. Many countries use centralized tallying. Some also use electronic voting machines in polling places. Very few use internet voting. Several countries have tried electronic approaches and stopped because of difficulties or concerns about security and reliability.

Electronic voting requires capital spending every few years to update equipment, as well as annual spending for maintenance, security, and supplies. If it works well, its speed can be an advantage where many contests are on each ballot. Hand-counting is more feasible in parliamentary systems where each level of government is elected at different times, and only one contest is on each ballot, for the national or regional member of parliament, or for a local council member.

Polling place electronic voting or Internet voting examples have taken place in Australia, Belgium, Brazil, Estonia, France, Germany, India, Italy, Namibia, the Netherlands ( Rijnland Internet Election System), Norway, Peru, Switzerland, the UK, Venezuela, Pakistan and the Philippines.

In popular culture

In the 2006 film Man of the Year starring Robin Williams, the character played by Williams—a comedic host of political talk show—wins the election for President of the United States when a software error in the electronic voting machines produced by the fictional manufacturer Delacroy causes votes to be tallied inaccurately.

In Runoff, a 2007 novel by Mark Coggins, a surprising showing by the Green Party candidate in a San Francisco Mayoral election forces a runoff between him and the highly favored establishment candidate—a plot line that closely parallels the actual results of the 2003 election. When the private-eye protagonist of the book investigates at the behest of a powerful Chinatown businesswoman, he determines that the outcome was rigged by someone who defeated the security on the city's newly installed e-voting system.

"Hacking Democracy" is a 2006 documentary film shown on HBO. Filmed over three years, it documents American citizens investigating anomalies and irregularities with electronic voting systems that occurred during America's 2000 and 2004 elections, especially in Volusia County, Florida. The film investigates the flawed integrity of electronic voting machines, particularly those made by Diebold Election Systems and culminates in the hacking of a Diebold election system in Leon County, Florida.

The central conflict in the MMO video game Infantry resulted from the global institution of direct democracy through the use of personal voting devices sometime in the 22nd century AD. The practice gave rise to a 'voting class' of citizens composed mostly of homemakers and retirees who tended to be at home all day. Because they had the most free time to participate in voting, their opinions ultimately came to dominate politics.

Politics of Europe

From Wikipedia, the free encyclopedia ...