From Wikipedia, the free encyclopedia
In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the “useful” work obtainable from a closed thermodynamic system at a constant temperature. The negative of the difference in the Helmholtz energy is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. If the volume is not held constant, part of this work will be performed as boundary work. The Helmholtz energy is commonly used for systems held at constant volume. Since in this case no work is performed on the environment, the drop in the Helmholtz energy is equal to the maximum amount of useful work that can be extracted from the system. For a system at constant temperature and volume, the Helmholtz energy is minimized at equilibrium.
The Helmholtz free energy was developed by Hermann von Helmholtz, a German physicist, and is usually denoted by the letter A (from the German “Arbeit” or work), or the letter F . The IUPAC recommends the letter A as well as the use of name Helmholtz energy.[1] In physics, the letter F can also be used to denote the Helmholtz energy, as Helmholtz energy is sometimes referred to as the Helmholtz function, Helmholtz free energy, or simply free energy (not to be confused with Gibbs free energy).
While Gibbs free energy is most commonly used as a measure of thermodynamic potential, especially in the field of chemistry, it is inconvenient for some applications that do not occur at constant pressure. For example, in explosives research, Helmholtz free energy is often used since explosive reactions by their nature induce pressure changes. It is also frequently used to define fundamental equations of state of pure substances.
The expression for the internal energy becomes
The maximum energy that can be freed for work is the negative of the change in A. The process is nominally isothermal, but it is only required that the system has the same initial and final temperature, and not that the temperature stays constant along the process.
Now, imagine that our system is also kept at constant volume to prevent work from being done. If temperature and volume are kept constant, then dA = 0; this is a necessary, but not sufficient condition for equilibrium. For any spontaneous process, the change in Helmholtz free energy must be negative, that is . Therefore, to prevent a spontaneous change, we must also require that A be at a minimum.
Since the thermodynamical variables of the system are well defined in the initial state and the final state, the internal energy increase, , the entropy increase , and the total amount of work that can be extracted, performed by the system, , are well-defined quantities. Conservation of energy implies:
This result seems to contradict the equation , as keeping T and V constant seems to imply and hence . In reality there is no contradiction. After the spontaneous change, the system, as described by thermodynamics, is a different system with a different free energy function than it was before the spontaneous change. Thus, we can say that where the are different thermodynamic functions of state.
One can imagine that the spontaneous change is carried out in a sequence of infinitesimally small steps. To describe such a system thermodynamically, one needs to enlarge the thermodynamical state space of the system. In case of a chemical reaction, one must specify the number of particles of each type. The differential of the free energy then generalizes to:
In case there are other external parameters the above equation generalizes to:
The average internal energy of the system is the expectation value of the energy and can be expressed in terms of Z as follows:
Suppose we replace the real Hamiltonian of the model by a trial Hamiltonian , which has different interactions and may depend on extra parameters that are not present in the original model. If we choose this trial Hamiltonian such that
The Bogoliubov inequality is often formulated in a slightly different but equivalent way. If we write the Hamiltonian as:
We can write the inequality as:
We can easily generalize this proof to the case of quantum mechanical models. We denote the eigenstates of by . We denote the diagonal components of the density matrices for the canonical distributions for and in this basis as:
We assume again that the averages of H and in the canonical ensemble defined by are the same:
The Helmholtz free energy was developed by Hermann von Helmholtz, a German physicist, and is usually denoted by the letter A (from the German “Arbeit” or work), or the letter F . The IUPAC recommends the letter A as well as the use of name Helmholtz energy.[1] In physics, the letter F can also be used to denote the Helmholtz energy, as Helmholtz energy is sometimes referred to as the Helmholtz function, Helmholtz free energy, or simply free energy (not to be confused with Gibbs free energy).
While Gibbs free energy is most commonly used as a measure of thermodynamic potential, especially in the field of chemistry, it is inconvenient for some applications that do not occur at constant pressure. For example, in explosives research, Helmholtz free energy is often used since explosive reactions by their nature induce pressure changes. It is also frequently used to define fundamental equations of state of pure substances.
Definition
The Helmholtz energy is defined as:[2]- A is the Helmholtz free energy (SI: joules, CGS: ergs),
- U is the internal energy of the system (SI: joules, CGS: ergs),
- T is the absolute temperature (kelvins),
- S is the entropy (SI: joules per kelvin, CGS: ergs per kelvin).
Mathematical development
From the first law of thermodynamics (with a constant number of particles) we have- ,
- ,
Work in an Isothermal Process and Equilibrium Conditions
The fundamental thermodynamic relation isThe expression for the internal energy becomes
- (isothermal process)
The maximum energy that can be freed for work is the negative of the change in A. The process is nominally isothermal, but it is only required that the system has the same initial and final temperature, and not that the temperature stays constant along the process.
Now, imagine that our system is also kept at constant volume to prevent work from being done. If temperature and volume are kept constant, then dA = 0; this is a necessary, but not sufficient condition for equilibrium. For any spontaneous process, the change in Helmholtz free energy must be negative, that is . Therefore, to prevent a spontaneous change, we must also require that A be at a minimum.
Minimum free energy and maximum work principles
The laws of thermodynamics are only directly applicable to systems in thermal equilibrium. If we wish to describe phenomena like chemical reactions, then the best we can do is to consider suitably chosen initial and final states in which the system is in (metastable) thermal equilibrium. If the system is kept at fixed volume and is in contact with a heat bath at some constant temperature, then we can reason as follows.Since the thermodynamical variables of the system are well defined in the initial state and the final state, the internal energy increase, , the entropy increase , and the total amount of work that can be extracted, performed by the system, , are well-defined quantities. Conservation of energy implies:
This result seems to contradict the equation , as keeping T and V constant seems to imply and hence . In reality there is no contradiction. After the spontaneous change, the system, as described by thermodynamics, is a different system with a different free energy function than it was before the spontaneous change. Thus, we can say that where the are different thermodynamic functions of state.
One can imagine that the spontaneous change is carried out in a sequence of infinitesimally small steps. To describe such a system thermodynamically, one needs to enlarge the thermodynamical state space of the system. In case of a chemical reaction, one must specify the number of particles of each type. The differential of the free energy then generalizes to:
In case there are other external parameters the above equation generalizes to:
Relation to the canonical partition function
A system kept at constant volume, temperature, and particle number is described by the canonical ensemble. The probability to find the system in some energy eigenstate r is given by:The average internal energy of the system is the expectation value of the energy and can be expressed in terms of Z as follows:
Bogoliubov inequality
Computing the free energy is an intractable problem for all but the simplest models in statistical physics. A powerful approximation method is mean field theory, which is a variational method based on the Bogoliubov inequality. This inequality can be formulated as follows.Suppose we replace the real Hamiltonian of the model by a trial Hamiltonian , which has different interactions and may depend on extra parameters that are not present in the original model. If we choose this trial Hamiltonian such that
The Bogoliubov inequality is often formulated in a slightly different but equivalent way. If we write the Hamiltonian as:
Proof
For a classical model we can prove the Bogoliubov inequality as follows. We denote the canonical probability distributions for the Hamiltonian and the trial Hamiltonian by and , respectively. The inequality:We can write the inequality as:
We can easily generalize this proof to the case of quantum mechanical models. We denote the eigenstates of by . We denote the diagonal components of the density matrices for the canonical distributions for and in this basis as:
We assume again that the averages of H and in the canonical ensemble defined by are the same: