Search This Blog

Friday, October 13, 2023

Escitalopram

From Wikipedia, the free encyclopedia
Escitalopram
Clinical data
Pronunciation/ˌɛsəˈtæləˌpræm/ pronunciation
Trade namesCipralex, Lexapro, others
AHFS/Drugs.comMonograph
MedlinePlusa603005
License data
Pregnancy
category
  • AU: C
Routes of
administration
By mouth
Drug classSelective serotonin reuptake inhibitor (SSRI)
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • BR: Class C1 (Other controlled substances)
  • CA: ℞-only
  • UK: POM (Prescription only)
  • US: ℞-only
  • EU: Rx-only
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability80%
Protein binding~56%
MetabolismLiver, specifically the enzymes CYP3A4 and CYP2C19
Metabolitesdesmethylcitalopram, didesmethylcitalopram
Elimination half-life27–32 hours

Escitalopram, sold under the brand names Lexapro and Cipralex, among others, is an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class. Escitalopram is mainly used to treat major depressive disorder and generalized anxiety disorder. It is taken by mouth, available commercially as an oxalate salt exclusively.

Common side effects include trouble sleeping, nausea, sexual problems, and feeling tired. More serious side effects may include suicidal thoughts in people up to the age of 24 years. It is unclear if use during pregnancy or breastfeeding is safe. Escitalopram is the (S)-enantiomer of citalopram (which exists as a racemate), hence the name es-citalopram.

Escitalopram was approved for medical use in the United States in 2002. Escitalopram is rarely replaced by twice the dose of citalopram, though escitalopram is safer and more effective. It is on the World Health Organization's List of Essential Medicines. In 2020, it was the fifteenth most commonly prescribed medication in the United States, with more than 30 million prescriptions.

Medical uses

Escitalopram has FDA approval for the treatment of major depressive disorder in adolescents and adults, and generalized anxiety disorder in adults. In European countries and the United Kingdom, it is approved for depression (MDD) and anxiety disorders; these include: general anxiety disorder (GAD), social anxiety disorder (SAD), obsessive-compulsive disorder (OCD), and panic disorder with or without agoraphobia. In Australia it is approved for major depressive disorder.

Depression

Escitalopram is among the most effective and well-tolerated antidepressants for the short-term (acute) treatment of major depressive disorder in adults. It is also the safest one to give to children and adolescents.

Controversy existed regarding the effectiveness of escitalopram compared with its predecessor, citalopram. The importance of this issue followed from the greater cost of escitalopram relative to the generic mixture of isomers of citalopram, prior to the expiration of the escitalopram patent in 2012, which led to charges of evergreening. Accordingly, this issue has been examined in at least 10 different systematic reviews and meta analyses. As of 2012, reviews had concluded (with caveats in some cases) that escitalopram is modestly superior to citalopram in efficacy and tolerability.

Anxiety disorders

Escitalopram appears to be effective in treating generalized anxiety disorder, with relapse on escitalopram at 20% rather than placebo at 50%, which translates to a number needed to treat of 3.33. Escitalopram appears effective in treating social anxiety disorder as well.

Other

Escitalopram is effective in reducing the symptoms of premenstrual syndrome, whether taken continuously or in the luteal phase only.

Side effects

Escitalopram, like other SSRIs, has been shown to affect sexual function, causing side effects such as decreased libido, delayed ejaculation, and anorgasmia.

There is also evidence that SSRIs may cause an increase in suicidal ideation. An analysis conducted by the FDA found a statistically insignificant 1.5 to 2.4-fold (depending on the statistical technique used) increase of suicidality among the adults treated with escitalopram for psychiatric indications. The authors of a related study note the general problem with statistical approaches: due to the rarity of suicidal events in clinical trials, it is hard to draw firm conclusions with a sample smaller than two million patients.

Citalopram and escitalopram are associated with dose-dependent QT interval prolongation and should not be used in those with congenital long QT syndrome or known pre-existing QT interval prolongation, or in combination with other medicines that prolong the QT interval. ECG measurements should be considered for patients with cardiac disease, and electrolyte disturbances should be corrected before starting treatment. In December 2011, the UK implemented new restrictions on the maximum daily doses at 20 mg for adults and 10 mg for those older than 65 years or with liver impairment. There are concerns of higher rates of QT prolongation and torsades de pointes compared with other SSRIs. The US Food and Drug Administration and Health Canada did not similarly order restrictions on escitalopram dosage, only on its predecessor citalopram.

Very common effects

Very common effects (>10% incidence) include:

  • Headache (24%)
  • Nausea (18%)
  • Ejaculation disorder (9–14%)
  • Somnolence (4–13%)
  • Insomnia (7–12%)

Common (1–10% incidence)

Common effects (1–10% incidence) include:

Psychomotor effects

The most common effect is fatigue or somnolence, particularly in older adults, although patients with pre-existing daytime sleepiness and fatigue may experience paradoxical improvement of these symptoms. Escitalopram has not been shown to affect serial reaction time, logical reasoning, serial subtraction, multitask, or Mackworth Clock task performance.

Discontinuation symptoms

Escitalopram discontinuation, particularly abruptly, may cause certain withdrawal symptoms such as "electric shock" sensations, colloquially called "brain shivers" or "brain zaps" by those affected. Frequent symptoms in one study were dizziness (44%), muscle tension (44%), chills (44%), confusion or trouble concentrating (40%), amnesia (28%), and crying (28%). Very slow tapering was recommended. There have been spontaneous reports of discontinuation of Lexapro and other SSRIs and SNRIs, especially when abrupt, leading to dysphoric mood, irritability, agitation, anxiety, headache, lethargy, emotional lability, insomnia, and hypomania. Other symptoms such as panic attacks, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), mania, worsening of depression, and suicidal ideation can emerge when the dose is adjusted down.

Sexual dysfunction

Some people experience persistent sexual side effects when taking SSRIs or after discontinuing them. Symptoms of medication-induced sexual dysfunction from antidepressants include difficulty with orgasm, erection, or ejaculation. Other symptoms may be genital anesthesia, anhedonia, decreased libido, vaginal lubrication issues, and nipple insensitivity in women. Rates are unknown, and there is no established treatment.

Pregnancy

Antidepressant exposure (including escitalopram) is associated with shorter duration of pregnancy (by three days), increased risk of preterm delivery (by 55%), lower birth weight (by 75 g), and lower Apgar scores (by <0.4 points). Antidepressant exposure is not associated with an increased risk of spontaneous abortion. There is a tentative association of SSRI use during pregnancy with heart problems in the baby. The advantages of their use during pregnancy may thus outweigh the possible negative effects on the baby.

Overdose

Excessive doses of escitalopram usually cause relatively minor untoward effects, such as agitation and tachycardia. However, dyskinesia, hypertonia, and clonus may occur in some cases. Therapeutic blood levels of escitalopram are usually in the range of 20–80 μg/L but may reach 80–200 μg/L in the elderly, patients with hepatic dysfunction, those who are poor CYP2C19 metabolizers or following acute overdose. Monitoring of the drug in plasma or serum is generally accomplished using chromatographic methods. Chiral techniques are available to distinguish escitalopram from its racemate, citalopram.

Pharmacology

Mechanism of action

Binding profile
Site Ki (nM)
SERT 0.8-1.1
NET 7,800
DAT 27,400
5-HT1A >1,000
5-HT2A >1,000
5-HT2C 2,500
α1 3,900
α2 >1,000
D2 >1,000
H1 2,000
mACh 1,240
hERG 2,600 (IC50)

Escitalopram increases intrasynaptic levels of the neurotransmitter serotonin by blocking the reuptake of the neurotransmitter into the presynaptic neuron. Over time, this leads to a downregulation of pre-synaptic 5-HT1A receptors, which is associated with an improvement in passive stress tolerance, and delayed downstream increase in expression of brain-derived neurotrophic factor, which may contribute to a reduction in negative affective biases.

Of the SSRIs currently available, escitalopram has the highest selectivity for the serotonin transporter (SERT) compared to the norepinephrine transporter (NET), making the side-effect profile relatively mild in comparison to less-selective SSRIs.

Escitalopram is a substrate of P-glycoprotein and hence P-glycoprotein inhibitors such as verapamil and quinidine may improve its blood brain barrier penetrability. In a preclinical study in rats combining escitalopram with a P-glycoprotein inhibitor, its antidepressant-like effects were enhanced.

Interactions

Escitalopram, similarly to other SSRIs, may increase bleed risk with NSAIDs (ibuprofen, naproxen, mefenamic acid), antiplatelet drugs, anticoagulants, omega-3 fatty acids, vitamin E, and garlic supplements due to escitalopram's inhibitory effects on platelet aggregation via blocking serotonin transporters on platelets. Escitalopram inhibits CYP2D6, and hence may increase plasma levels of a number of CYP2D6 substrates such as aripiprazole, risperidone, tramadol, codeine, etc. As escitalopram is only a weak inhibitor of CYP2D6, analgesia from tramadol may not be affected. Escitalopram should be taken with caution when using St. John's wort, ginseng, dextromethorphan (DXM), linezolid, tramadol, and other serotonergic drugs due to the risk of serotonin syndrome. Exposure to escitalopram is increased moderately, by about 50%, when it is taken with omeprazole. The authors of this study suggested that this increase is unlikely to be of clinical concern.

Bupropion has been found to significantly increase citalopram plasma concentration and systemic exposure; as of April 2018 the interaction with escitalopram had not been studied, but some monographs warned of the potential interaction.

Escitalopram can also prolong the QT interval, and hence it is not recommended in patients that are concurrently on other medications that also have the ability to prolong the QT interval. These drugs include antiarrhythmics, antipsychotics, tricyclic antidepressants, some antihistamines (astemizole, mizolastine), macrolide and fluoroquinolone antibiotics, some 5-HT3 receptor antagonists (except palonosetron), and some antiretrovirals (ritonavir, saquinavir, lopinavir). As an SSRI, escitalopram should not be given concurrently with MAOIs.

Chemistry

Escitalopram is the (S)-enantiomer (left-handed version) of the racemate citalopram, which is responsible for its name: escitalopram. The (R)-enantiomer (R-citalopram, the right-handed version).

History

Cipralex brand escitalopram 10mg package and tablet sheet. It is a reference escitalopram formulation, and was produced by Lundbeck.

Escitalopram was developed in cooperation between Lundbeck and Forest Laboratories. Its development was initiated in 1997, and the resulting new drug application was submitted to the US FDA in March 2001. The short time (3.5 years) it took to develop escitalopram can be attributed to the previous experience of Lundbeck and Forest with citalopram, which has similar pharmacology.

Society and culture

Legal status

The FDA issued the approval of escitalopram for major depression in August 2002, and for generalized anxiety disorder in December 2003. In May 2006, the FDA approved a generic version of escitalopram by Teva. In July 2006, the U.S. District Court of Delaware decided in favor of Lundbeck regarding a patent infringement dispute and ruled the patent on escitalopram valid.

In 2006, Forest Laboratories was granted an 828-day (2 years and 3 months) extension on its US patent for escitalopram. This pushed the patent expiration date from 7 December 2009, to 14 September 2011. Together with the 6-month pediatric exclusivity, the final expiration date was 14 March 2012.

Allegations of illegal marketing

In 2004, separate civil suits alleging illegal marketing of citalopram and escitalopram for use by children and teenagers by Forest were initiated by two whistleblowers: a physician named Joseph Piacentile and a Forest salesman named Christopher Gobble. In February 2009, the suits were joined. Eleven states and the District of Columbia filed notices of intent to intervene as plaintiffs in the action.

The suits alleged that Forest illegally engaged in off-label promotion of Lexapro for use in children; hid the results of a study showing lack of effectiveness in children; paid kickbacks to physicians to induce them to prescribe Lexapro to children; and conducted so-called "seeding studies" that were, in reality, marketing efforts to promote the drug's use by doctors. Forest denied the allegations but ultimately agreed to settle with the plaintiffs for over $313 million.

Brand names

Escitalopram is sold under many brand names worldwide such as Cipralex, Lexapro, Lexam, Mozarin, Aciprex, Depralin, Ecytara, Elicea, Gatosil, Nexpram, Nexito, Nescital, Szetalo, Pramatis, Betesda and Rexipra.

Reuptake inhibitor

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Reuptake_inhibitor
Escitalopram, a selective serotonin reuptake inhibitor (SSRI) used as an antidepressant.

A reuptake inhibitor (RI) is a type of drug known as a reuptake modulator that inhibits the plasmalemmal transporter-mediated reuptake of a neurotransmitter from the synapse into the pre-synaptic neuron. This leads to an increase in extracellular concentrations of the neurotransmitter and an increase in neurotransmission. Various drugs exert their psychological and physiological effects through reuptake inhibition, including many antidepressants and psychostimulants.

Most known reuptake inhibitors affect the monoamine neurotransmitters serotonin, norepinephrine (and epinephrine), and dopamine. However, there are also a number of pharmaceuticals and research chemicals that act as reuptake inhibitors for other neurotransmitters such as glutamate, γ-aminobutyric acid (GABA), glycine, adenosine, choline (the precursor of acetylcholine), and the endocannabinoids, among others.

Mechanism of action

Active site transporter substrates

Tiagabine, a selective GABA reuptake inhibitor used as an anticonvulsant in the treatment of epilepsy and seizures.

Standard reuptake inhibitors are believed to act simply as competitive substrates that work by binding directly to the plasmalemma transporter of the neurotransmitter in question. They occupy the transporter in place of the respective neurotransmitter and competitively block it from being transported from the nerve terminal or synapse into the pre-synaptic neuron. With high enough doses, occupation becomes as much as 80–90%. At this level of inhibition, the transporter will be considerably less efficient at removing excess neurotransmitter from the synapse and this causes a substantial increase in the extracellular concentrations of the neurotransmitter and therefore an increase in overall neurotransmission.

Allosteric site transporter substrates

Alternatively, some reuptake inhibitors bind to allosteric sites and inhibit reuptake indirectly and noncompetitively.

Phencyclidine and related drugs such as benocyclidine, tenocyclidine, ketamine, and dizocilpine (MK-801), have been shown to inhibit the reuptake of the monoamine neurotransmitters. They appear to exert their reuptake inhibition by binding to vaguely characterized allosteric sites on each of the respective monoamine transporters. Benztropine, mazindol, and vanoxerine also bind to these sites and have similar properties. In addition to their high affinity for the main site of the monoamine transporters, several competitive transporter substrates such as cocaine and indatraline have lower affinity for these allosteric sites as well.

A few of the selective serotonin reuptake inhibitors (SSRIs) such as the dextro-enantiomer of citalopram appear to be allosteric reuptake inhibitors of serotonin. Instead of binding to the active site on the serotonin transporter, they bind to an allosteric site, which exerts its effects by causing conformational changes in the transporter protein and thereby modulating the affinity of substrates for the active site. As a result, escitalopram has been marketed as an allosteric serotonin reuptake inhibitor. Notably, this allosteric site may be directly related to the above-mentioned PCP binding sites.

Vesicular transporter substrates

Reserpine, a vesicular reuptake inhibitor that was used in the past to deplete serotonin, norepinephrine, and dopamine stores as an antipsychotic and antihypertensive. It was notorious for causing anxiety and depression, and as a result, was replaced by newer, more modern drugs instead.

A second type of reuptake inhibition affects vesicular transport, and blocks the intracellular repackaging of neurotransmitters into cytoplasmic vesicles. In contrast to plasmalemmal reuptake inhibitors, vesicular reuptake inhibitors do not increase the synaptic concentrations of a neurotransmitter, only the cytoplasmic concentrations; unless, that is, they also act as plasmalemmal transporter reversers via phosphorylation of the transporter protein, also known as a releasing agent. Pure vesicular reuptake inhibitors tend to actually lower synaptic neurotransmitter concentrations, as blocking the repackaging of, and storage of the neurotransmitter in question leaves them vulnerable to degradation via enzymes such as monoamine oxidase (MAO) that exist in the cytoplasm. With vesicular transport blocked, neurotransmitter stores quickly become depleted.

Reserpine (Serpasil) is an irreversible inhibitor of the vesicular monoamine transporter 2 (VMAT2), and is a prototypical example of a vesicular reuptake inhibitor.

Indirect unknown mechanism

Hyperforin, the primary active constituent responsible for the therapeutic benefits of extracts of the herb Hypericum perforatum (St. John's Wort), which is used as an antidepressant.

Two of the primary active constituents of the medicinal herb Hypericum perforatum (St. John's Wort) are hyperforin and adhyperforin. Hyperforin and adhyperforin are wide-spectrum inhibitors of the reuptake of serotonin, norepinephrine, dopamine, glutamate, GABA, glycine, and choline, and they exert these effects by binding to and activating the transient receptor potential cation channel TRPC6. Activation of TRPC6 induces the entry of calcium (Ca2+) and sodium (Na+) into the cell, which causes the effect through unknown mechanism.

Types

Typical

Atypical

Plasmalemmal

Vesicular

Adenosine

From Wikipedia, the free encyclopedia
Adenosine
Clinical data
Trade namesAdenocard; Adenocor; Adenic; Adenoco; Adeno-Jec; Adenoscan; Adenosin; Adrekar; Krenosin
Other namesSR-96225 (developmental code name)
AHFS/Drugs.comMonograph
Pregnancy
category
  • C

(adenosine may be safe to the fetus in pregnant women)

Routes of
administration
Intravenous
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
BioavailabilityRapidly cleared from circulation via cellular uptake
Protein bindingNo
MetabolismRapidly converted to inosine and adenosine monophosphate
Elimination half-lifecleared plasma <30 seconds; half-life <10 seconds
Excretioncan leave cell intact or can be degraded to hypoxanthine, xanthine, and ultimately uric acid
Identifiers

CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.000.354 Edit this at Wikidata
Chemical and physical data
FormulaC10H13N5O4
Molar mass267.245 g·mol−1

Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside building blocks of RNA (and its derivative deoxyadenosine is a building block of DNA), which are essential for all life on earth. Its derivatives include the energy carriers adenosine mono-, di-, and triphosphate, also known as AMP/ADP/ATP. Cyclic adenosine monophosphate (cAMP) is pervasive in signal transduction. Adenosine is used as an intravenous medication for some cardiac arrhythmias.

Adenosyl (abbreviated Ado or 5'-dAdo) is the chemical group formed by removal of the 5′-hydroxy (OH) group. It is found in adenosylcobalamin (an active form of vitamin B12) and as a radical in the radical SAM enzymes.

Medical uses

Supraventricular tachycardia

In individuals with supraventricular tachycardia (SVT), adenosine is used to help identify and convert the rhythm.

Certain SVTs can be successfully terminated with adenosine. This includes any re-entrant arrhythmias that require the AV node for the re-entry, e.g., AV reentrant tachycardia (AVRT) and AV nodal reentrant tachycardia (AVNRT). In addition, atrial tachycardia can sometimes be terminated with adenosine.

Fast rhythms of the heart that are confined to the atria (e.g., atrial fibrillation and atrial flutter) or ventricles (e.g., monomorphic ventricular tachycardia), and do not involve the AV node as part of the re-entrant circuit, are not typically converted by adenosine. However, the ventricular response rate is temporarily slowed with adenosine in such cases.

Because of the effects of adenosine on AV node-dependent SVTs, adenosine is considered a class V antiarrhythmic agent. When adenosine is used to cardiovert an abnormal rhythm, it is normal for the heart to enter ventricular asystole for a few seconds. This can be disconcerting to a normally conscious patient, and is associated with angina-like sensations in the chest.

Nuclear stress test

Adenosine is used as an adjunct to thallium (TI 201) or technetium (Tc99m) myocardial perfusion scintigraphy (nuclear stress test) in patients unable to undergo adequate stress testing with exercise.

Dosage

When given for the evaluation or treatment of a supraventricular tachycardia (SVT), the initial dose is 6 mg to 12 mg, depending on standing orders or provider preference, given as a rapid parenteral infusion. Due to adenosine's extremely short half-life, the IV line is started as proximal (near) to the heart as possible, such as the antecubital fossa. The IV push is often followed with a flush of 10–20 mL of normal saline. If this has no effect (i.e., no evidence of transient AV block), a dose of 12 mg can be given 1–2 minutes after the first dose. When given to dilate the arteries, such as in a "stress test", the dosage is typically 0.14 mg/kg/min, administered for 4 or 6 minutes, depending on the protocol.

The recommended dose may be increased in patients on theophylline since methylxanthines prevent binding of adenosine at receptor sites. The dose is often decreased in patients on dipyridamole (Persantine) and diazepam (Valium) because adenosine potentiates the effects of these drugs. The recommended dose is also reduced by half in patients presenting congestive heart failure, myocardial infarction, shock, hypoxia, and/or chronic liver disease or chronic kidney disease, and in elderly patients.

Drug interactions

Dipyridamole potentiates the action of adenosine, requiring the use of lower doses.

Caffeine's principal mode of action is as an antagonist of adenosine receptors in the brain.

Methylxanthines (e.g. caffeine found in coffee, theophylline found in tea, or theobromine found in chocolate) have a purine structure and bind to some of the same receptors as adenosine. Methylxanthines act as competitive antagonists of adenosine and can blunt its pharmacological effects. Individuals taking large quantities of methylxanthines may require increased doses of adenosine.

Caffeine acts by blocking binding of adenosine to the adenosine A1 receptor, which enhances release of the neurotransmitter acetylcholine. Caffeine also increases cyclic AMP levels through nonselective inhibition of phosphodiesterase. "Caffeine has a three-dimensional structure similar to that of adenosine," which allows it to bind and block its receptors.

Contraindications

Common contraindications for adenosine include

  • Asthma, traditionally considered an absolute contraindication. This is being contended, and it is now considered a relative contraindication (however, selective adenosine antagonists are being investigated for use in treatment of asthma)

Pharmacological effects

Adenosine is an endogenous purine nucleoside that modulates many physiological processes. Cellular signaling by adenosine occurs through four known adenosine receptor subtypes (A1, A2A, A2B, and A3).

Extracellular adenosine concentrations from normal cells are approximately 300 nM; however, in response to cellular damage (e.g., in inflammatory or ischemic tissue), these concentrations are quickly elevated (600–1,200 nM). Thus, in regard to stress or injury, the function of adenosine is primarily that of cytoprotection preventing tissue damage during instances of hypoxia, ischemia, and seizure activity. Activation of A2A receptors produces a constellation of responses that in general can be classified as anti-inflammatory. Enzymatic production of adenosine can be anti-inflammatory or immunosuppressive.

Adenosine receptors

All adenosine receptor subtypes (A1, A2A, A2B, and A3) are G-protein-coupled receptors. The four receptor subtypes are further classified based on their ability to either stimulate or inhibit adenylate cyclase activity. The A1 receptors couple to Gi/o and decrease cAMP levels, while the A2 adenosine receptors couple to Gs, which stimulates adenylate cyclase activity. In addition, A1 receptors couple to Go, which has been reported to mediate adenosine inhibition of Ca2+ conductance, whereas A2B and A3 receptors also couple to Gq and stimulate phospholipase activity. Researchers at Cornell University have recently shown adenosine receptors to be key in opening the blood-brain barrier (BBB). Mice dosed with adenosine have shown increased transport across the BBB of amyloid plaque antibodies and prodrugs associated with Parkinson's disease, Alzheimer's, multiple sclerosis, and cancers of the central nervous system.

Ghrelin/growth hormone secretagogue receptor

Adenosine is an endogenous agonist of the ghrelin/growth hormone secretagogue receptor. However, while it is able to increase appetite, unlike other agonists of this receptor, adenosine is unable to induce the secretion of growth hormone and increase its plasma levels.

Mechanism of action

When it is administered intravenously, adenosine causes transient heart block in the atrioventricular (AV) node. This is mediated via the A1 receptor, inhibiting adenylyl cyclase, reducing cAMP and so causing cell hyperpolarization by increasing K+ efflux via inward rectifier K+ channels, subsequently inhibiting Ca2+ current. It also causes endothelial-dependent relaxation of smooth muscle as is found inside the artery walls. This causes dilation of the "normal" segments of arteries, i.e. where the endothelium is not separated from the tunica media by atherosclerotic plaque. This feature allows physicians to use adenosine to test for blockages in the coronary arteries, by exaggerating the difference between the normal and abnormal segments.

The administration of adenosine also reduces blood flow to coronary arteries past the occlusion. Other coronary arteries dilate when adenosine is administered while the segment past the occlusion is already maximally dilated, which is a process called coronary steal. This leads to less blood reaching the ischemic tissue, which in turn produces the characteristic chest pain.

Metabolism

Adenosine used as a second messenger can be the result of de novo purine biosynthesis via adenosine monophosphate (AMP), though it is possible other pathways exist.

When adenosine enters the circulation, it is broken down by adenosine deaminase, which is present in red blood cells and the vessel wall.

Dipyridamole, an inhibitor of adenosine nucleoside transporter, allows adenosine to accumulate in the blood stream. This causes an increase in coronary vasodilatation.

Adenosine deaminase deficiency is a known cause of immunodeficiency.

Research

Viruses

The adenosine analog NITD008 has been reported to directly inhibit the recombinant RNA-dependent RNA polymerase of the dengue virus by terminating its RNA chain synthesis. This interaction suppresses peak viremia and rise in cytokines and prevents lethality in infected animals, raising the possibility of a new treatment for this flavivirus. The 7-deaza-adenosine analog has been shown to inhibit the replication of the hepatitis C virus. BCX4430 is protective against Ebola and Marburg viruses. Such adenosine analogs are potentially clinically useful since they can be taken orally.

Anti-inflammatory properties

Adenosine is believed to be an anti-inflammatory agent at the A2A receptor. Topical treatment of adenosine to foot wounds in diabetes mellitus has been shown in lab animals to drastically increase tissue repair and reconstruction. Topical administration of adenosine for use in wound-healing deficiencies and diabetes mellitus in humans is currently under clinical investigation.

Methotrexate's anti-inflammatory effect may be due to its stimulation of adenosine release.

Central nervous system

In general, adenosine has an inhibitory effect in the central nervous system (CNS). Caffeine's stimulatory effects are credited primarily (although not entirely) to its capacity to block adenosine receptors, thereby reducing the inhibitory tonus of adenosine in the CNS. This reduction in adenosine activity leads to increased activity of the neurotransmitters dopamine and glutamate. Experimental evidence suggests that adenosine and adenosine agonists can activate Trk receptor phosphorylation through a mechanism that requires the adenosine A2A receptor.

Hair

Adenosine has been shown to promote thickening of hair on people with thinning hair. A 2013 study compared topical adenosine with minoxidil in male androgenetic alopecia, finding it was as potent as minoxidil (in overall treatment outcomes) but with higher satisfaction rate with patients due to “faster prevention of hair loss and appearance of the newly grown hairs” (further trials were called for to clarify the findings).

Sleep

Adenosine is a key factor in regulating the body's sleep-wake cycle. Adenosine levels rise during periods of wakefulness and lowers during sleep. Higher adenosine levels correlate with a stronger feeling of sleepiness, also known as sleep drive or sleep pressure. Cognitive behavioral therapy for insomnia (CBT-I), which is considered one of the most effective treatments for insomnia, utilizes short-term sleep deprivation to raise and regulate adenosine levels in the body, for the intended promotion of consistent and sustained sleep in the long term.

A principal component of cannabis delta-9-tetrahydrocannabinol (THC) and the endocannabinoid anandamide (AEA) induces sleep in rats by increasing adenosine levels in the basal forebrain. These components also significantly increase slow-wave sleep during the sleep cycle, mediated by CB1 receptor activation. These findings identify a potential therapeutic use of cannabinoids to induce sleep in conditions where sleep may be severely attenuated.

Vasodilation

It also plays a role in regulation of blood flow to various organs through vasodilation.

Technoself studies

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Technoself_studies Technoself studies , commonly referred to as ...