Search This Blog

Tuesday, May 14, 2019

Pesticide

From Wikipedia, the free encyclopedia

A crop-duster spraying pesticide on a field
 
A Lite-Trac four-wheeled self-propelled crop sprayer spraying pesticide on a field
 
Pesticides are substances that are meant to control pests, including weeds. The term pesticide includes all of the following: herbicide, insecticides (which may include insect growth regulators, termiticides, etc.) nematicide, molluscicide, piscicide, avicide, rodenticide, bactericide, insect repellent, animal repellent, antimicrobial, and fungicide. The most common of these are herbicides which account for approximately 80% of all pesticide use. Most pesticides are intended to serve as plant protection products (also known as crop protection products), which in general, protect plants from weeds, fungi, or insects

In general, a pesticide is a chemical or biological agent (such as a virus, bacterium, or fungus) that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

Definition

Type of pesticide Target pest group
Algicides or algaecides Algae
Avicides Birds
Bactericides Bacteria
Fungicides Fungi and oomycetes
Herbicides Plant
Insecticides Insects
Miticides or acaricides Mites
Molluscicides Snails
Nematicides Nematodes
Rodenticides Rodents
Virucides Viruses
The Food and Agriculture Organization (FAO) has defined pesticide as
any substance or mixture of substances intended for preventing, destroying, or controlling any pest, including vectors of human or animal disease, unwanted species of plants or animals, causing harm during or otherwise interfering with the production, processing, storage, transport, or marketing of food, agricultural commodities, wood and wood products or animal feedstuffs, or substances that may be administered to animals for the control of insects, arachnids, or other pests in or on their bodies. The term includes substances intended for use as a plant growth regulator, defoliant, desiccant, or agent for thinning fruit or preventing the premature fall of fruit. Also used as substances applied to crops either before or after harvest to protect the commodity from deterioration during storage and transport.
Pesticides can be classified by target organism (e.g., herbicides, insecticides, fungicides, rodenticides, and pediculicides – see table), chemical structure (e.g., organic, inorganic, synthetic, or biological (biopesticide), although the distinction can sometimes blur), and physical state (e.g. gaseous (fumigant)). Biopesticides include microbial pesticides and biochemical pesticides. Plant-derived pesticides, or "botanicals", have been developing quickly. These include the pyrethroids, rotenoids, nicotinoids, and a fourth group that includes strychnine and scilliroside.

Many pesticides can be grouped into chemical families. Prominent insecticide families include organochlorines, organophosphates, and carbamates. Organochlorine hydrocarbons (e.g., DDT) could be separated into dichlorodiphenylethanes, cyclodiene compounds, and other related compounds. They operate by disrupting the sodium/potassium balance of the nerve fiber, forcing the nerve to transmit continuously. Their toxicities vary greatly, but they have been phased out because of their persistence and potential to bioaccumulate. Organophosphate and carbamates largely replaced organochlorines. Both operate through inhibiting the enzyme acetylcholinesterase, allowing acetylcholine to transfer nerve impulses indefinitely and causing a variety of symptoms such as weakness or paralysis. Organophosphates are quite toxic to vertebrates and have in some cases been replaced by less toxic carbamates. Thiocarbamate and dithiocarbamates are subclasses of carbamates. Prominent families of herbicides include phenoxy and benzoic acid herbicides (e.g. 2,4-D), triazines (e.g., atrazine), ureas (e.g., diuron), and Chloroacetanilides (e.g., alachlor). Phenoxy compounds tend to selectively kill broad-leaf weeds rather than grasses. The phenoxy and benzoic acid herbicides function similar to plant growth hormones, and grow cells without normal cell division, crushing the plant's nutrient transport system. Triazines interfere with photosynthesis. Many commonly used pesticides are not included in these families, including glyphosate.

The application of pest control agents is usually carried out by dispersing the chemical in a (often hydrocarbon-based) solvent-surfactant system to give a homogeneous preparation. A virus lethality study performed in 1977 demonstrated that a particular pesticide did not increase the lethality of the virus, however combinations which included some surfactants and the solvent clearly showed that pretreatment with them markedly increased the viral lethality in the test mice.

Pesticides can be classified based upon their biological mechanism function or application method. Most pesticides work by poisoning pests. A systemic pesticide moves inside a plant following absorption by the plant. With insecticides and most fungicides, this movement is usually upward (through the xylem) and outward. Increased efficiency may be a result. Systemic insecticides, which poison pollen and nectar in the flowers, may kill bees and other needed pollinators.

In 2010, the development of a new class of fungicides called paldoxins was announced. These work by taking advantage of natural defense chemicals released by plants called phytoalexins, which fungi then detoxify using enzymes. The paldoxins inhibit the fungi's detoxification enzymes. They are believed to be safer and greener.

History

Since before 2000 BC, humans have utilized pesticides to protect their crops. The first known pesticide was elemental sulfur dusting used in ancient Sumer about 4,500 years ago in ancient Mesopotamia. The Rig Veda, which is about 4,000 years old, mentions the use of poisonous plants for pest control. By the 15th century, toxic chemicals such as arsenic, mercury, and lead were being applied to crops to kill pests. In the 17th century, nicotine sulfate was extracted from tobacco leaves for use as an insecticide. The 19th century saw the introduction of two more natural pesticides, pyrethrum, which is derived from chrysanthemums, and rotenone, which is derived from the roots of tropical vegetables. Until the 1950s, arsenic-based pesticides were dominant. Paul Müller discovered that DDT was a very effective insecticide. Organochlorines such as DDT were dominant, but they were replaced in the U.S. by organophosphates and carbamates by 1975. Since then, pyrethrin compounds have become the dominant insecticide. Herbicides became common in the 1960s, led by "triazine and other nitrogen-based compounds, carboxylic acids such as 2,4-dichlorophenoxyacetic acid, and glyphosate".

The first legislation providing federal authority for regulating pesticides was enacted in 1910; however, decades later during the 1940s manufacturers began to produce large amounts of synthetic pesticides and their use became widespread. Some sources consider the 1940s and 1950s to have been the start of the "pesticide era." Although the U.S. Environmental Protection Agency was established in 1970 and amendments to the pesticide law in 1972, pesticide use has increased 50-fold since 1950 and 2.3 million tonnes (2.5 million short tons) of industrial pesticides are now used each year. Seventy-five percent of all pesticides in the world are used in developed countries, but use in developing countries is increasing. A study of USA pesticide use trends through 1997 was published in 2003 by the National Science Foundation's Center for Integrated Pest Management.

In the 1960s, it was discovered that DDT was preventing many fish-eating birds from reproducing, which was a serious threat to biodiversity. Rachel Carson wrote the best-selling book Silent Spring about biological magnification. The agricultural use of DDT is now banned under the Stockholm Convention on Persistent Organic Pollutants, but it is still used in some developing nations to prevent malaria and other tropical diseases by spraying on interior walls to kill or repel mosquitoes.

Uses

Pesticides are used to control organisms that are considered to be harmful. For example, they are used to kill mosquitoes that can transmit potentially deadly diseases like West Nile virus, yellow fever, and malaria. They can also kill bees, wasps or ants that can cause allergic reactions. Insecticides can protect animals from illnesses that can be caused by parasites such as fleas. Pesticides can prevent sickness in humans that could be caused by moldy food or diseased produce. Herbicides can be used to clear roadside weeds, trees, and brush. They can also kill invasive weeds that may cause environmental damage. Herbicides are commonly applied in ponds and lakes to control algae and plants such as water grasses that can interfere with activities like swimming and fishing and cause the water to look or smell unpleasant. Uncontrolled pests such as termites and mold can damage structures such as houses. Pesticides are used in grocery stores and food storage facilities to manage rodents and insects that infest food such as grain. Each use of a pesticide carries some associated risk. Proper pesticide use decreases these associated risks to a level deemed acceptable by pesticide regulatory agencies such as the United States Environmental Protection Agency (EPA) and the Pest Management Regulatory Agency (PMRA) of Canada.

DDT, sprayed on the walls of houses, is an organochlorine that has been used to fight malaria since the 1950s. Recent policy statements by the World Health Organization have given stronger support to this approach. However, DDT and other organochlorine pesticides have been banned in most countries worldwide because of their persistence in the environment and human toxicity. DDT use is not always effective, as resistance to DDT was identified in Africa as early as 1955, and by 1972 nineteen species of mosquito worldwide were resistant to DDT.

Amount used

In 2006 and 2007, the world used approximately 2.4 megatonnes (5.3×109 lb) of pesticides, with herbicides constituting the biggest part of the world pesticide use at 40%, followed by insecticides (17%) and fungicides (10%). In 2006 and 2007 the U.S. used approximately 0.5 megatonnes (1.1×109 lb) of pesticides, accounting for 22% of the world total, including 857 million pounds (389 kt) of conventional pesticides, which are used in the agricultural sector (80% of conventional pesticide use) as well as the industrial, commercial, governmental and home & garden sectors. The state of California alone used 117 million pounds. Pesticides are also found in majority of U.S. households with 88 million out of the 121.1 million households indicating that they use some form of pesticide in 2012. As of 2007, there were more than 1,055 active ingredients registered as pesticides, which yield over 20,000 pesticide products that are marketed in the United States.

The US used some 1 kg (2.2 pounds) per hectare of arable land compared with: 4.7 kg in China, 1.3 kg in the UK, 0.1 kg in Cameroon, 5.9 kg in Japan and 2.5 kg in Italy. Insecticide use in the US has declined by more than half since 1980 (.6%/yr), mostly due to the near phase-out of organophosphates. In corn fields, the decline was even steeper, due to the switchover to transgenic Bt corn.

For the global market of crop protection products, market analysts forecast revenues of over 52 billion US$ in 2019.

Benefits

Pesticides can save farmers' money by preventing crop losses to insects and other pests; in the U.S., farmers get an estimated fourfold return on money they spend on pesticides. One study found that not using pesticides reduced crop yields by about 10%. Another study, conducted in 1999, found that a ban on pesticides in the United States may result in a rise of food prices, loss of jobs, and an increase in world hunger.

There are two levels of benefits for pesticide use, primary and secondary. Primary benefits are direct gains from the use of pesticides and secondary benefits are effects that are more long-term.

Primary benefits

Controlling pests and plant disease vectors:
  • Improved crop yields
  • Improved crop/livestock quality
  • Invasive species controlled
Controlling human/livestock disease vectors and nuisance organisms:
  • Human lives saved and disease reduced. Diseases controlled include malaria, with millions of lives having been saved or enhanced with the use of DDT alone.
  • Animal lives saved and disease reduced
Controlling organisms that harm other human activities and structures:
  • Drivers view unobstructed
  • Tree/brush/leaf hazards prevented
  • Wooden structures protected

Monetary

In one study, it was estimated that for every dollar ($1) that is spent on pesticides for crops can yield up to four dollars ($4) in crops saved. This means based that, on the amount of money spent per year on pesticides, $10 billion, there is an additional $40 billion savings in crop that would be lost due to damage by insects and weeds. In general, farmers benefit from having an increase in crop yield and from being able to grow a variety of crops throughout the year. Consumers of agricultural products also benefit from being able to afford the vast quantities of produce available year-round.

Costs

On the cost side of pesticide use there can be costs to the environment, costs to human health, as well as costs of the development and research of new pesticides.

Health effects

A sign warning about potential pesticide exposure

Pesticides may cause acute and delayed health effects in people who are exposed. Pesticide exposure can cause a variety of adverse health effects, ranging from simple irritation of the skin and eyes to more severe effects such as affecting the nervous system, mimicking hormones causing reproductive problems, and also causing cancer. A 2007 systematic review found that "most studies on non-Hodgkin lymphoma and leukemia showed positive associations with pesticide exposure" and thus concluded that cosmetic use of pesticides should be decreased. There is substantial evidence of associations between organophosphate insecticide exposures and neurobehavioral alterations. Limited evidence also exists for other negative outcomes from pesticide exposure including neurological, birth defects, and fetal death.

The American Academy of Pediatrics recommends limiting exposure of children to pesticides and using safer alternatives.

Owing to inadequate regulation and safety precautions, 99% of pesticide related deaths occur in developing countries that account for only 25% of pesticide usage.

One study found pesticide self-poisoning the method of choice in one third of suicides worldwide, and recommended, among other things, more restrictions on the types of pesticides that are most harmful to humans.

A 2014 epidemiological review found associations between autism and exposure to certain pesticides, but noted that the available evidence was insufficient to conclude that the relationship was causal.

Large quantities of presumably nontoxic petroleum oil by-products are introduced into the environment as pesticide dispersal agents and emulsifiers. A 1976 study found that an increase in viral lethality with a concomitant influence on the liver and central nervous system occurs in young mice previously primed with such chemicals.

The World Health Organization and the UN Environment Programme estimate that each year, 3 million workers in agriculture in the developing world experience severe poisoning from pesticides, about 18,000 of whom die. According to one study, as many as 25 million workers in developing countries may suffer mild pesticide poisoning yearly. There are several careers aside from agriculture that may also put individuals at risk of health effects from pesticide exposure including pet groomers, groundskeepers, and fumigators.

Pesticide use is widespread in Latin America, as around US $3 billion are spend each year in the region. It has been recorded that pesticide poisonings have been increasing each year for the past two decades. It was estimated that 50–80% of the cases are unreported. It is indicated by studies that organophosphate and carbamate insecticides are the most frequent source of pesticide poisoning.

Environmental effects

Pesticide use raises a number of environmental concerns. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, including non-target species, air, water and soil. Pesticide drift occurs when pesticides suspended in the air as particles are carried by wind to other areas, potentially contaminating them. Pesticides are one of the causes of water pollution, and some pesticides are persistent organic pollutants and contribute to soil and flower (pollen, nectar) contamination.

In addition, pesticide use reduces biodiversity, contributes to pollinator decline, destroys habitat (especially for birds), and threatens endangered species.

Pests can develop a resistance to the pesticide (pesticide resistance), necessitating a new pesticide. Alternatively a greater dose of the pesticide can be used to counteract the resistance, although this will cause a worsening of the ambient pollution problem.

The Stockholm Convention on Persistent Organic Pollutants, listed 9 of the 12 most dangerous and persistent organic chemicals that were (now mostly obsolete) organochlorine pesticides. Since chlorinated hydrocarbon pesticides dissolve in fats and are not excreted, organisms tend to retain them almost indefinitely. Biological magnification is the process whereby these chlorinated hydrocarbons (pesticides) are more concentrated at each level of the food chain. Among marine animals, pesticide concentrations are higher in carnivorous fishes, and even more so in the fish-eating birds and mammals at the top of the ecological pyramid. Global distillation is the process whereby pesticides are transported from warmer to colder regions of the Earth, in particular the Poles and mountain tops. Pesticides that evaporate into the atmosphere at relatively high temperature can be carried considerable distances (thousands of kilometers) by the wind to an area of lower temperature, where they condense and are carried back to the ground in rain or snow.

In order to reduce negative impacts, it is desirable that pesticides be degradable or at least quickly deactivated in the environment. Such loss of activity or toxicity of pesticides is due to both innate chemical properties of the compounds and environmental processes or conditions. For example, the presence of halogens within a chemical structure often slows down degradation in an aerobic environment. Adsorption to soil may retard pesticide movement, but also may reduce bioavailability to microbial degraders.

Economics

Harm Annual US cost
Public health $1.1 billion
Pesticide resistance in pest $1.5 billion
Crop losses caused by pesticides $1.4 billion
Bird losses due to pesticides $2.2 billion
Groundwater contamination $2.0 billion
Other costs $1.4 billion
Total costs $9.6 billion
In one study, the human health and environmental costs due to pesticides in the United States was estimated to be $9.6 billion: offset by about $40 billion in increased agricultural production.

Additional costs include the registration process and the cost of purchasing pesticides: which are typically borne by agrichemical companies and farmers respectively. The registration process can take several years to complete (there are 70 different types of field test) and can cost $50–70 million for a single pesticide. At the beginning of the 21st century, the United States spent approximately $10 billion on pesticides annually.

Alternatives

Alternatives to pesticides are available and include methods of cultivation, use of biological pest controls (such as pheromones and microbial pesticides), genetic engineering, and methods of interfering with insect breeding. Application of composted yard waste has also been used as a way of controlling pests. These methods are becoming increasingly popular and often are safer than traditional chemical pesticides. In addition, EPA is registering reduced-risk conventional pesticides in increasing numbers.

Cultivation practices include polyculture (growing multiple types of plants), crop rotation, planting crops in areas where the pests that damage them do not live, timing planting according to when pests will be least problematic, and use of trap crops that attract pests away from the real crop. Trap crops have successfully controlled pests in some commercial agricultural systems while reducing pesticide usage; however, in many other systems, trap crops can fail to reduce pest densities at a commercial scale, even when the trap crop works in controlled experiments. In the U.S., farmers have had success controlling insects by spraying with hot water at a cost that is about the same as pesticide spraying.

Release of other organisms that fight the pest is another example of an alternative to pesticide use. These organisms can include natural predators or parasites of the pests. Biological pesticides based on entomopathogenic fungi, bacteria and viruses cause disease in the pest species can also be used.

Interfering with insects' reproduction can be accomplished by sterilizing males of the target species and releasing them, so that they mate with females but do not produce offspring. This technique was first used on the screwworm fly in 1958 and has since been used with the medfly, the tsetse fly, and the gypsy moth. However, this can be a costly, time consuming approach that only works on some types of insects.

Push pull strategy

The term "push-pull" was established in 1987 as an approach for integrated pest management (IPM). This strategy uses a mixture of behavior-modifying stimuli to manipulate the distribution and abundance of insects. "Push" means the insects are repelled or deterred away from whatever resource that is being protected. "Pull" means that certain stimuli (semiochemical stimuli, pheromones, food additives, visual stimuli, genetically altered plants, etc.) are used to attract pests to trap crops where they will be killed. There are numerous different components involved in order to implement a Push-Pull Strategy in IPM.

Many case studies testing the effectiveness of the push-pull approach have been done across the world. The most successful push-pull strategy was developed in Africa for subsistence farming. Another successful case study was performed on the control of Helicoverpa in cotton crops in Australia. In Europe, the Middle East, and the United States, push-pull strategies were successfully used in the controlling of Sitona lineatus in bean fields.

Some advantages of using the push-pull method are less use of chemical or biological materials and better protection against insect habituation to this control method. Some disadvantages of the push-pull strategy is that if there is a lack of appropriate knowledge of behavioral and chemical ecology of the host-pest interactions then this method becomes unreliable. Furthermore, because the push-pull method is not a very popular method of IPM operational and registration costs are higher.

Effectiveness

Some evidence shows that alternatives to pesticides can be equally effective as the use of chemicals. For example, Sweden has halved its use of pesticides with hardly any reduction in crops. In Indonesia, farmers have reduced pesticide use on rice fields by 65% and experienced a 15% crop increase. A study of Maize fields in northern Florida found that the application of composted yard waste with high carbon to nitrogen ratio to agricultural fields was highly effective at reducing the population of plant-parasitic nematodes and increasing crop yield, with yield increases ranging from 10% to 212%; the observed effects were long-term, often not appearing until the third season of the study.

However, pesticide resistance is increasing. In the 1940s, U.S. farmers lost only 7% of their crops to pests. Since the 1980s, loss has increased to 13%, even though more pesticides are being used. Between 500 and 1,000 insect and weed species have developed pesticide resistance since 1945.

Types

Pesticides are often referred to according to the type of pest they control. Pesticides can also be considered as either biodegradable pesticides, which will be broken down by microbes and other living beings into harmless compounds, or persistent pesticides, which may take months or years before they are broken down: it was the persistence of DDT, for example, which led to its accumulation in the food chain and its killing of birds of prey at the top of the food chain. Another way to think about pesticides is to consider those that are chemical pesticides are derived from a common source or production method.

Insecticides

Neonicotinoids are a class of neuro-active insecticides chemically similar to nicotine. Imidacloprid, of the neonicotanoid family, is the most widely used insecticide in the world. In the late 1990s neonicotinoids came under increasing scrutiny over their environmental impact and were linked in a range of studies to adverse ecological effects, including honey-bee colony collapse disorder (CCD) and loss of birds due to a reduction in insect populations. In 2013, the European Union and a few non EU countries restricted the use of certain neonicotinoids.

Organophosphate and carbamate insecticides have a similar mode of action. They affect the nervous system of target pests (and non-target organisms) by disrupting acetylcholinesterase activity, the enzyme that regulates acetylcholine, at nerve synapses. This inhibition causes an increase in synaptic acetylcholine and over-stimulation of the parasympathetic nervous system. Many of these insecticides, first developed in the mid 20th century, are very poisonous. Although commonly used in the past, many older chemicals have been removed from the market due to their health and environmental effects (e.g. DDT, chlordane, and toxaphene). However, many organophosphates are not persistent in the environment. 

Pyrethroid insecticides were developed as a synthetic version of the naturally occurring pesticide pyrethrin, which is found in chrysanthemums. They have been modified to increase their stability in the environment. Some synthetic pyrethroids are toxic to the nervous system.

Herbicides

A number of sulfonylureas have been commercialized for weed control, including: amidosulfuron, flazasulfuron, metsulfuron-methyl, rimsulfuron, sulfometuron-methyl, terbacil, nicosulfuron, and triflusulfuron-methyl. These are broad-spectrum herbicides that kill plants weeds or pests by inhibiting the enzyme acetolactate synthase. In the 1960s, more than 1 kg/ha (0.89 lb/acre) crop protection chemical was typically applied, while sulfonylureates allow as little as 1% as much material to achieve the same effect.

Biopesticides

Biopesticides are certain types of pesticides derived from such natural materials as animals, plants, bacteria, and certain minerals. For example, canola oil and baking soda have pesticidal applications and are considered biopesticides. Biopesticides fall into three major classes:
  • Microbial pesticides which consist of bacteria, entomopathogenic fungi or viruses (and sometimes includes the metabolites that bacteria or fungi produce). Entomopathogenic nematodes are also often classed as microbial pesticides, even though they are multi-cellular.
  • Biochemical pesticides or herbal pesticides are naturally occurring substances that control (or monitor in the case of pheromones) pests and microbial diseases.
  • Plant-incorporated protectants (PIPs) have genetic material from other species incorporated into their genetic material (i.e. GM crops). Their use is controversial, especially in many European countries.

Classified by type of pest

Pesticides that are related to the type of pests are: 

Type Action
Algicides Control algae in lakes, canals, swimming pools, water tanks, and other sites
Antifouling agents Kill or repel organisms that attach to underwater surfaces, such as boat bottoms
Antimicrobials Kill microorganisms (such as bacteria and viruses)
Attractants Attract pests (for example, to lure an insect or rodent to a trap). (However, food is not considered a pesticide when used as an attractant.)
Biopesticides Biopesticides are certain types of pesticides derived from such natural materials as animals, plants, bacteria, and certain minerals
Biocides Kill microorganisms
Disinfectants and sanitizers Kill or inactivate disease-producing microorganisms on inanimate objects
Fungicides Kill fungi (including blights, mildews, molds, and rusts)
Fumigants Produce gas or vapor intended to destroy pests in buildings or soil
Herbicides Kill weeds and other plants that grow where they are not wanted
Insecticides Kill insects and other arthropods
Miticides Kill mites that feed on plants and animals
Microbial pesticides Microorganisms that kill, inhibit, or out compete pests, including insects or other microorganisms
Molluscicides Kill snails and slugs
Nematicides Kill nematodes (microscopic, worm-like organisms that feed on plant roots)
Ovicides Kill eggs of insects and mites
Pheromones Biochemicals used to disrupt the mating behavior of insects
Repellents Repel pests, including insects (such as mosquitoes) and birds
Rodenticides Control mice and other rodents

Further types

The term pesticide also include these substances:

Defoliants: Cause leaves or other foliage to drop from a plant, usually to facilitate harvest.
Desiccants: Promote drying of living tissues, such as unwanted plant tops.
Insect growth regulators: Disrupt the molting, maturity from pupal stage to adult, or other life processes of insects.
Plant growth regulators: Substances (excluding fertilizers or other plant nutrients) that alter the expected growth, flowering, or reproduction rate of plants.
Wood preservatives: They are used to make wood resistant to insects, fungus, and other pests.

Regulation

International

In many countries, pesticides must be approved for sale and use by a government agency.

In Europe, EU legislation has been approved banning the use of highly toxic pesticides including those that are carcinogenic, mutagenic or toxic to reproduction, those that are endocrine-disrupting, and those that are persistent, bioaccumulative and toxic (PBT) or very persistent and very bioaccumulative (vPvB) and measures have been approved to improve the general safety of pesticides across all EU member states.

Though pesticide regulations differ from country to country, pesticides, and products on which they were used are traded across international borders. To deal with inconsistencies in regulations among countries, delegates to a conference of the United Nations Food and Agriculture Organization adopted an International Code of Conduct on the Distribution and Use of Pesticides in 1985 to create voluntary standards of pesticide regulation for different countries. The Code was updated in 1998 and 2002. The FAO claims that the code has raised awareness about pesticide hazards and decreased the number of countries without restrictions on pesticide use.

Three other efforts to improve regulation of international pesticide trade are the United Nations London Guidelines for the Exchange of Information on Chemicals in International Trade and the United Nations Codex Alimentarius Commission. The former seeks to implement procedures for ensuring that prior informed consent exists between countries buying and selling pesticides, while the latter seeks to create uniform standards for maximum levels of pesticide residues among participating countries.

Pesticides safety education and pesticide applicator regulation are designed to protect the public from pesticide misuse, but do not eliminate all misuse. Reducing the use of pesticides and choosing less toxic pesticides may reduce risks placed on society and the environment from pesticide use. Integrated pest management, the use of multiple approaches to control pests, is becoming widespread and has been used with success in countries such as Indonesia, China, Bangladesh, the U.S., Australia, and Mexico. IPM attempts to recognize the more widespread impacts of an action on an ecosystem, so that natural balances are not upset. New pesticides are being developed, including biological and botanical derivatives and alternatives that are thought to reduce health and environmental risks. In addition, applicators are being encouraged to consider alternative controls and adopt methods that reduce the use of chemical pesticides.

Pesticides can be created that are targeted to a specific pest's lifecycle, which can be environmentally more friendly. For example, potato cyst nematodes emerge from their protective cysts in response to a chemical excreted by potatoes; they feed on the potatoes and damage the crop. A similar chemical can be applied to fields early, before the potatoes are planted, causing the nematodes to emerge early and starve in the absence of potatoes.

United States

Preparation for an application of hazardous herbicide in the US
 
In the United States, the Environmental Protection Agency (EPA) is responsible for regulating pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Food Quality Protection Act (FQPA).

Studies must be conducted to establish the conditions in which the material is safe to use and the effectiveness against the intended pest(s). The EPA regulates pesticides to ensure that these products do not pose adverse effects to humans or the environment, with an emphasis on the health and safety of children. Pesticides produced before November 1984 continue to be reassessed in order to meet the current scientific and regulatory standards. All registered pesticides are reviewed every 15 years to ensure they meet the proper standards. During the registration process, a label is created. The label contains directions for proper use of the material in addition to safety restrictions. Based on acute toxicity, pesticides are assigned to a Toxicity Class. Pesticides are the most thoroughly tested chemicals after drugs in the United States; those used on food requires more than 100 tests to determine a range of potential impacts.

Some pesticides are considered too hazardous for sale to the general public and are designated restricted use pesticides. Only certified applicators, who have passed an exam, may purchase or supervise the application of restricted use pesticides. Records of sales and use are required to be maintained and may be audited by government agencies charged with the enforcement of pesticide regulations. These records must be made available to employees and state or territorial environmental regulatory agencies.

In addition to the EPA, the United States Department of Agriculture (USDA) and the United States Food and Drug Administration (FDA) set standards for the level of pesticide residue that is allowed on or in crops. The EPA looks at what the potential human health and environmental effects might be associated with the use of the pesticide.

In addition, the U.S. EPA uses the National Research Council's four-step process for human health risk assessment: (1) Hazard Identification, (2) Dose-Response Assessment, (3) Exposure Assessment, and (4) Risk Characterization.

Recently Kaua'i County (Hawai'i) passed Bill No. 2491 to add an article to Chapter 22 of the county's code relating to pesticides and GMOs. The bill strengthens protections of local communities in Kaua'i where many large pesticide companies test their products.

Residue

Pesticide residue refers to the pesticides that may remain on or in food after they are applied to food crops. The maximum allowable levels of these residues in foods are often stipulated by regulatory bodies in many countries. Regulations such as pre-harvest intervals also often prevent harvest of crop or livestock products if recently treated in order to allow residue concentrations to decrease over time to safe levels before harvest. Exposure of the general population to these residues most commonly occurs through consumption of treated food sources, or being in close contact to areas treated with pesticides such as farms or lawns.

Many of these chemical residues, especially derivatives of chlorinated pesticides, exhibit bioaccumulation which could build up to harmful levels in the body as well as in the environment. Persistent chemicals can be magnified through the food chain and have been detected in products ranging from meat, poultry, and fish, to vegetable oils, nuts, and various fruits and vegetables.

Pesticide contamination in the environment can be monitored through bioindicators such as bee pollinators.

Decline in insect populations

From Wikipedia, the free encyclopedia

An annual decline of 5.2% in flying insect biomass found in nature reserves in Germany – about 75% loss in 26 years.
 
Several studies report what appears to be a substantial decline in insect populations. Some of the insects most affected include bees, butterflies, moths, beetles, dragonflies and damselflies. Anecdotal evidence has been offered of much greater apparent abundance of insects in the 20th century; recollections of the windscreen phenomenon are an example.

Possible causes of the decline have been identified as habitat destruction, including intensive agriculture, the use of pesticides (particularly insecticides), urbanization, and industralization; introduced species; and climate change. Not all insect orders are affected in the same way; many groups are the subject of limited research, and comparative figures from earlier decades are often not available. 

In 2018 the German government initiated an "Action Programme for Insect Protection", and in 2019 a group of 27 British entomologists and ecologists wrote an open letter calling on the research establishment in the UK "to enable intensive investigation of the real threat of ecological disruption caused by insect declines without delay".

History

A 1902 illustration of a Rocky Mountain locust. These insects were seen in swarms estimated at over 10 trillion members as late as 1875. Soon after, their population rapidly declined, with the last recorded sighting in 1902, and the species formally declared extinct in 2014.
 
The fossil record concerning insects stretches back hundreds of millions of years. It suggests there are ongoing background levels of both new species appearing and extinctions. Very occasionally, the record also appears to show mass extinctions of insects, understood to be caused by natural phenomena such as volcanic activity or meteor impact. The Permian–Triassic extinction event saw the greatest level of insect extinction, and the Cretaceous–Paleogene the second highest. Insect diversity has recovered after mass extinctions, as a result of periods in which new species originate with increased frequency, although the recovery can take millions of years.

Concern about a human-caused Holocene extinction has been growing since the late 20th century, although much of the early concern was not focused on insects. In a report on the world's invertebrates, the Zoological Society of London suggested in 2012 that insect populations were in decline globally, affecting pollination and food supplies for other animals. It estimated that about 20 percent of all invertebrate species were threatened with extinction, and that species with the least mobility and smallest ranges were most at risk.

Studies finding insect decline have been available for decades—one study tracked a decline from 1840 to 2013—but it was the 2017 re-publication of the German nature reserves study that saw the issue receive widespread attention in the media. The press reported the decline with alarming headlines, including "Insect Apocalypse". Ecologist Dave Goulson told The Guardian in 2017: "We appear to be making vast tracts of land inhospitable to most forms of life, and are currently on course for ecological Armageddon." For many studies, factors such as abundance, biomass, and species richness are often found to be declining for some, but not all locations; some species are in decline while others are not. The insects studied have mostly been butterflies and moths, bees, beetles, dragonflies, damselflies and stoneflies. Every species is affected in different ways by changes in the environment, and it cannot be inferred that there is a consistent decrease across different insect groups. When conditions change, some species adapt easily to the change while others struggle to survive.

Causes and consequences

Suggested causes

The decline has been attributed to habitat destruction caused by intensive farming and urbanisation, pesticide use, introduced species, climate change, and artificial lighting. The use of increased quantities of insecticides and herbicides on crops have affected not only non-target insect species, but also the plants on which they feed. Climate change and the introduction of exotic species that compete with the indigenous ones put the native species under stress, and as a result they are more likely to succumb to pathogens and parasites. While some species such as flies and cockroaches might increase as a result, the total biomass of insects is estimated to be decreasing by about 2.5% per year.

Effects

Insect population decline affects ecosystems, other animal populations, and humanity. Insects are at "the structural and functional base of many of the world's ecosystems." A 2019 global review warned that, if not mitigated by decisive action, the decline would have a catastrophic impact on the planet's ecosystems. Birds and larger mammals that eat insects can be directly affected by the decline. Declining insect populations can reduce the ecosystem services provided by beneficial bugs, such as pollination of agricultural crops, and biological waste disposal. According to the Zoological Society of London, in addition to such loss of instrumental value, the decline also represents a loss of the declining species' intrinsic value.

Evidence

Rothamsted Insect Survey, UK

The Rothamsted Insect Survey at Rothamsted Research, Harpenden, England, began monitoring insect suction traps across the UK in 1964. According to the group, these have produced "the most comprehensive standardised long-term data on insects in the world". The traps are "effectively upside-down Hoovers running 24/7, continually sampling the air for migrating insects," according to James Bell, the survey leader, in an interview in 2017 with the journal Science. Between 1970 and 2002, the insect biomass caught in the traps declined by over two-thirds in southern Scotland, although it remained stable in England. The scientists speculate that insect abundance was already lost in England by 1970 (figures in Scotland were higher than in England when the survey began), or that aphids and other pests increased there in the absence of their insect predators.

Dirzo et al. 2014

Insects with population trends documented by the International Union for Conservation of Nature, for orders Collembola, Hymenoptera, Lepidoptera, Odonata, and Orthoptera.
 
A 2014 review by Rodolfo Dirzo and others in Science noted: "Of all insects with IUCN-documented population trends [203 insect species in five orders], 33% are declining, with strong variation among orders." In the UK, "30 to 60% of species per order have declining ranges". Insect pollinators, "needed for 75% of all the world's food crops", appear to be "strongly declining globally in both abundance and diversity", which has been linked in Northern Europe to the decline of plant species that rely on them. The study referred to the human-caused loss of vertebrates and invertebrates as the "Anthropocene defaunation".

Krefeld study, Germany

Malaise traps in German nature reserves
 
In 2013 the Krefeld Entomological Society reported a "huge reduction in the biomass of insects" caught in malaise traps in 63 nature reserves in Germany (57 in Nordrhein-Westfalen, one in Rheinland-Pfalz and one in Brandenburg). A reanalysis published in 2017 suggested that, in 1989–2016, there had been a "seasonal decline of 76%, and mid-summer decline of 82%, in flying insect biomass over the 27 years of study". The decline was "apparent regardless of habitat type" and could not be explained by "changes in weather, land use, and habitat characteristics". The authors suggested that not only butterflies, moths and wild bees appear to be in decline, as previous studies indicated, but "the flying insect community as a whole".

According to The Economist, the study was the "third most frequently cited scientific study (of all kinds) in the media in 2017". The British entomologist Simon Leather said that he hoped media reports, following the study, of an "ecological Armageddon" had been exaggerated; he argued that the Krefeld and other studies should be a wake-up call, and that more funding is needed to support long-term studies. The Krefeld study's authors were not able to link the decline to climate change or pesticides, he wrote, but they suggested that intensive farming was involved. While agreeing with their conclusions, he cautioned that "the data are based on biomass, not species, and the sites were not sampled continuously and are not globally representative". As a result of the Krefeld and other studies, the German government established an "Action Programme for Insect Protection".

El Yunque National Forest, Puerto Rico

A 2018 study of the El Yunque National Forest in Puerto Rico reported a decline in arthropods, and in lizards, frogs, and birds (insect-eating species) based on measurements in 1976 and 2012. The American entomologist David Wagner called the study a "clarion call" and "one of the most disturbing articles" he had ever read. The researchers reported "biomass losses between 98% and 78% for ground-foraging and canopy-dwelling arthropods over a 36-year period, with respective annual losses between 2.7% and 2.2%". The decline was attributed to a rise in the average temperature; tropical insect species cannot tolerate a wide range of temperatures. The lead author, Brad Lister, told The Economist that the researchers were shocked by the results: "We couldn’t believe the first results. I remember [in the 1970s] butterflies everywhere after rain. On the first day back [in 2012], I saw hardly any."

Netherlands and Switzerland

In 2019 a study by Statistics Netherlands and the Vlinderstichting (Dutch Butterfly Conservation) of butterfly numbers in the Netherlands from 1890 to 2017 reported an estimated decline of 84 percent. When analysed by type of habitat, the decline was found to have stabilised in grassland and woodland but had continued in recent decades in heathland. A report by the Swiss Academy of Natural Sciences in April 2019 reported that 60 percent of the insects that had been studied in Switzerland were at risk, mostly in farming and aquatic areas; that there had been a 60 percent decline in insect-eating birds since 1990 in rural areas; and that urgent action was needed to address the causes.

2019 Sánchez-Bayo and Wyckhuys review

Except for taxa regarded as beneficial or charismatic, such as the pictured dragonfly, there is relatively little population decline data available for specific insect species.
 
A 2019 review by Francisco Sánchez-Bayo and Kris A. G. Wyckhuys in the journal Biological Conservation analysed 73 long-term insect surveys that had shown decline, most of them in the United States and Western Europe. While noting population increases for certain species of insects in particular areas, the authors reported an annual 2.5% loss of biomass. They wrote that the review "revealed dramatic rates of decline that may lead to the extinction of 40% of the world's insect species over the next few decades", a conclusion that was challenged. They did note the review's limitations, namely that the studies were largely concentrated on popular insect groups (butterflies and moths, bees, dragonflies and beetles); few had been done on groups as Diptera (flies), Orthoptera (which includes grasshoppers and crickets), and Hemiptera (such as aphids); data from the past from which to calculate trends is largely unavailable; and the data that does exist mostly relates to Western Europe and North America, with the tropics and southern hemisphere (major insect habitats) under-represented.

The methodology and strong language of the review were questioned. The keywords used for a database search of the scientific literature were [insect*] and [declin*] + [survey], which mostly returned studies finding declines, not increases. Sánchez-Bayo responded that two thirds of the reviewed studies had come from outside the database search. David Wagner wrote that many studies have shown "no significant changes in insect numbers or endangerment", despite a reporting bias against "non-significant findings". According to Wagner, the papers' greatest mistake was to equate "40% geographic or population declines from small countries with high human densities and about half or more of their land in agriculture to 'the extinction of 40% of the world's insect species over the next few decades'." He wrote that 40 percent extinction would amount to the loss of around 2.8 million species, while fewer than 100 insect species are known to have become extinct. While it is true that insects are declining, he wrote, the review did not provide evidence to support its conclusion. Other criticism included that the authors attributed the decline to particular threats based on the studies they reviewed, even when those studies had simply suggested threats rather than clearly identifying them. The British ecologist Georgina Mace agreed that the review lacked detailed information needed to assess the situation, but said it might underestimate the rate of insect decline in the tropics.

Global assessment report on biodiversity and ecosystem services

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services reported its assessment of global biodiversity in 2019. Its summary for insect life was that "Global trends in insect populations are not known but rapid declines have been well documented in some places. ... Local declines of insect populations such as wild bees and butterflies have often been reported, and insect abundance has declined very rapidly in some places even without large-scale land-use change, but the global extent of such declines is not known. ... The proportion of insect species threatened with extinction is a key uncertainty, but available evidence supports a tentative estimate of 10 per cent."

Anecdotal evidence

Bug splats, New South Wales, 2009
 
Anecdotal evidence for insect decline has been offered by those who recall apparently greater insect abundance in the 20th century. Entomologist Simon Leather recalls that, in the 1970s, windows of Yorkshire houses he visited on his early-morning paper round would be "plastered with tiger moths" attracted by the house's lighting during the night. Tiger moths have now largely disappeared from the area. Another anecdote is recalled by environmentalist Michael McCarthy concerning the vanishing of the "moth snowstorms", a relatively common sight in the UK in the 1970s and earlier. Moth snowstorms occurred when moths congregated with such density that they could appear like a blizzard in the beam of automobile headlights.

The windshield phenomenon—car windscreens covered in dead insects after even a short drive through a rural area in Europe and North America—seems also largely to have disappeared; in the 21st century, drivers find they can go an entire summer without noticing it. John Rawlins, head of invertebrate zoology at the Carnegie Museum of Natural History, speculated in 2006 that more aerodynamic car design could explain the change. Entomologist Martin Sorg told Science in 2017: "I drive a Land Rover, with the aerodynamics of a refrigerator, and these days it stays clean." Rawlins added that land next to high-speed highways has become more manicured and therefore less attractive to insects. In 2004 the Royal Society for the Protection of Birds organised a Big Bug Count, issuing "splatometers" to about 40,000 volunteers to help count the number of insects colliding with their number plates. They found an average of one insect per 5 miles (8 km), which was less than expected.

Reception

Responses

Chris D. Thomas and other scientists warned of the need for "joined‐up thinking" in responding to the decline, ideally backed up by more robust data than is available so far. In particular, they warned that excessive focus on reducing pesticide use could be counter productive. Pests already cause a 35 percent yield loss for crops, which can rise to 70 percent when pesticides are not used, they wrote. If the crop shortfall is compensated for by expanding agricultural land with deforestation and other habitat destruction, it could exacerbate insect decline.

In the UK, 27 ecologists and entomologists signed an open letter to The Guardian in March 2019, calling on the British research establishment to investigate the decline. Signatories included Simon Leather, Stuart Reynolds (former president of the Royal Entomological Society), John Krebs and John Lawton (both former presidents of the Natural Environment Research Council), Paul Brakefield, George McGavin, Michael Hassell, Dave Goulson, Richard Harrington (editor of the Royal Entomological Society's magazine, Antenna), Kathy Willis and Jeremy Thomas.

In April 2019, in response to the studies about insect decline, Carol Ann Duffy released several poems, by herself and others, to mark the end of her tenure as Britain's poet laureate and to coincide with protests that month by the environmentalist movement Extinction Rebellion. The poets included Fiona Benson, Imtiaz Dharker, Matthew Hollis, Michael Longley, Daljit Nagra, Alice Oswald, and Denise Riley. Duffy's contribution was "The Human Bee".

Conservation measures

Much of the world's efforts to retain biodiverity at national level is reported to the United Nations as part of the Convention on Biological Diversity. Reports typically describe policies to prevent the loss of diversity generally, such as habitat preservation, rather than specifying measures to protect particular taxa. Pollinators are the main exception to this, with several countries reporting efforts to reduce the decline of their pollinating insects. 

Following the 2017 Krefeld and other studies, the German environment ministry, the BMU, started an Action Programme for Insect Protection (Aktionsprogramm Insektenschutz). Their goals include promoting insect habitats in the agricultural landscape; and reducing pesticide use, light pollution, and pollutants in soil and water.

In a 2019 paper, scientists Olivier Dangles and Jérôme Casas listed 100 studies and other references suggesting that insects can help meet the Sustainable Development Goals (SDG) adopted in 2015 by the United Nations. They argued that the global policy-making community should continue its transition from seeing insects as enemies, to the current view of insects as "providers of ecosystem services", and should advance to a view of insects as "solutions for SDGs" (such as using them as food and biological pest control).

The Entomological Society of America suggests that people maintain plant diversity in their gardens and leave "natural habitat, like leaf litter and dead wood". The Xerces Society is a US based environmental organization that collaborates with both federal and state agencies, scientists, educators, and citizens to promote invertebrate conservation, applied research, advocacy, public outreach and education. Ongoing projects include the rehabilitation of habitat for endangered species, public education about the importance of native pollinators, and the restoration and protection of watersheds. They have been doing a Western Monarch Thanksgiving Count which includes observations from volunteers for 22 years.

Phone apps such as iNaturalist can be used to photograph and identify specimens; these are used in programs such as the City Nature Challenge. Activities and projects may focus upon a particular type of insect, such as National Moth Week and monarch butterfly conservation in California.

Decline of insect studies

One reason that studies into the decline are limited is that entomology and taxonomy are themselves in decline. At the 2019 Entomology Congress, leading entomologist Jürgen Gross said that "We are ourselves an endangered species" while Wolfgang Wägele – an expert in systematic zoology – said that "in the universities we have lost nearly all experts". General biology courses in college give less attention to insects, and the number of biologists specialising in entomology is decreasing as specialties such as genetics expand. In addition, studies investigating the decline tend to be done by collecting insects and killing them in traps, which poses an ethical problem for conservationists.

Defaunation (local or functional extinction of animal populations or species)

From Wikipedia, the free encyclopedia

Defaunation is the global, local or functional extinction of animal populations or species from ecological communities. The growth of the human population, combined with advances in harvesting technologies, has led to more intense and efficient exploitation of the environment. This has resulted in the depletion of large vertebrates from ecological communities, creating what has been termed "empty forest". Defaunation differs from extinction; it includes both the disappearance of species and declines in abundance. Defaunation effects were first implied at the Symposium of Plant-Animal Interactions at the University of Campinas, Brazil in 1988 in the context of neotropical forests. Since then, the term has gained broader usage in conservation biology as a global phenomenon.

It is estimated that more than 50 percent of all wildlife has been lost in the last 40 years. in 2020 it is estimated that 68% of the world's wildlife will be lost. In South America, there is believed to be a 70 percent loss.

In November 2017, over 15,000 scientists around the world issued a second warning to humanity, which, among other things, urged for the development and implementation of policies to halt "defaunation, the poaching crisis, and the exploitation and trade of threatened species."

Drivers

Overexploitation

Rhino poaching
 
The intensive hunting and harvesting of animals threatens endangered vertebrate species across the world. Game vertebrates are considered valuable products of tropical forests and savannas. In Brazilian Amazonia, 23 million vertebrates are killed every year; large-bodied primates, tapirs, white-lipped peccaries, giant armadillos, and tortoises are some of the animals most sensitive to harvest. Overhunting can reduce the local population of such species by more than half, as well as reducing population density. Populations located nearer to villages are significantly more at risk of depletion. Abundance of local game species declines as density of local settlements, such as villages, increases.

Hunting and poaching may lead to local population declines or extinction in some species. Most affected species undergo pressure from multiple sources but the scientific community is still unsure of the complexity of these interactions and their feedback loops.

One case study in Panama found an inverse relationship between poaching intensity and abundance for 9 of 11 mammal species studied. In addition, preferred game species experienced greater declines and had higher spatial variation in abundance.

Habitat destruction and fragmentation

Lacanja burn shows deforestation
 
Human population growth results in changes in land-use, which can cause natural habitats to become fragmented, altered, or destroyed. Large mammals are often more vulnerable to extinction than smaller animals because they require larger home ranges and thus are more prone to suffer the effects of deforestation. Large species such as elephants, rhinoceroses, large primates, tapirs and peccaries are the first animals to disappear in fragmented rainforests.

A case study from Amazonian Ecuador analyzed two oil-road management approaches and their effects on the surrounding wildlife communities. The free-access road had forests that were cleared and fragmented and the other had enforced access control. Fewer species were found along the first road with density estimates being almost 80% lower than at the second site that which had minimal disturbance. This finding suggests that disturbances affected the local animals' willingness and ability to travel between patches.

Fishbone deforestation pattern. This was found in Brazil and is visible from satellite
 
Fragmentation lowers populations while increasing extinction risk when the remaining habitat size is small. When there is more unfragmented land, there is more habitat for more diverse species. A larger land patch also means it can accommodate more species with larger home ranges. However, when patch size decreases, there is an increase in the number of isolated fragments which can remain unoccupied by local fauna. If this persists, species may become extinct in the area.

A study on deforestation in the Amazon looked at two patterns of habitat fragmentation: "fish-bone" in smaller properties and another unnamed large property pattern. The large property pattern contained fewer fragments than the smaller fish-bone pattern. The results suggested that higher levels of fragmentation within the fish-bone pattern led to the loss of species and decreased diversity of large vertebrates. Human impacts, such as the fragmentation of forests, may cause large areas to lose the ability to maintain biodiversity and ecosystem function due to loss of key ecological processes. This can consequently cause changes within environments and skew evolutionary processes.

Invasive species

Human influences, such as colonization and agriculture, have caused species to become distributed outside of their native ranges. Fragmentation also has cascading effects on native species, beyond reducing habitat and resource availability; it leaves areas vulnerable to non-native invasions. Invasive species can out-compete or directly prey upon native species, as well as alter the habitat so that native species can no longer survive.

In extinct animal species for which the cause of extinction is known, over 50% were affected by invasive species. For 20% of extinct animal species, invasive species are the only cited cause of extinction. Invasive species are the second-most important cause of extinction for mammals.

Global patterns

Tropical regions are the most heavily impacted by defaunation. These regions, which include the Brazilian Amazon, the Congo Basin of Central Africa, and Indonesia, experience the greatest rates of overexploitation and habitat degradation. However, specific causes are varied, and areas with one endangered group (such as birds) do not necessarily also have other endangered groups (such as mammals, insects, or amphibians).

Deforestation of the Brazilian Amazon leads to habitat fragmentation and overexploitation. Hunting pressure in the Amazon rainforest has increased as traditional hunting techniques have been replaced by modern weapons such as shotguns. Access roads built for mining and logging operations fragment the forest landscape and allow hunters to move into forested areas which previously were untouched. The bushmeat trade in Central Africa incentivizes the overexploitation of local fauna. Indonesia has the most endangered animal species of any area in the world. International trade in wild animals, as well as extensive logging, mining and agriculture operations, drive the decline and extinction of numerous species.

Ecological impacts

Genetic loss

Inbreeding and genetic diversity loss often occur with endangered species populations because they have small and/or declining populations. Loss of genetic diversity lowers the ability of a population to deal with change in their environment and can make individuals within the community homogeneous. If this occurs, these animals are more susceptible to disease and other occurrences that may target a specific genome. Without genetic diversity, one disease could eradicate an entire species. Inbreeding lowers reproduction and survival rates. It is suggested that these genetic factors contribute to the extinction risk in threatened/endangered species.

Seed dispersal

Effects on plants and forest structure

The consequences of defaunation can be expected to affect the plant community. There are three non-mutually exclusive conclusions as to the consequences on tropical forest plant communities:
  1. If seed dispersal agents are targeted by hunters, the effectiveness and amount of dispersal for those plant species will be reduced
  2. The species composition of the seedling and sapling layers will be altered by hunting, and
  3. Selective hunting of medium/large-sized animals instead of small-sized animals will lead to different seed predation patterns, with an emphasis on smaller seeds
One recent study analyzed seedling density and composition from two areas, Los Tuxtlas and Montes Azules. Los Tuxtlas, which is affected more by human activity, showed higher seedling density and a smaller average number of different species than in the other area. Results suggest that an absence of vertebrate dispersers can change the structure and diversity of forests. As a result, a plant community that relies on animals for dispersal could potentially have an altered biodiversity, species dominance, survival, demography, and spatial and genetic structure.

Poaching is likely to alter plant composition because the interactions between game and plant species varies in strength. Some game species interact strongly, weakly, or not at all with species. A change in plant species composition is likely to be a result because the net effect removal of game species varies among the plant species they interact with.

Effects on small-bodied seed dispersers and predators

As large-bodied vertebrates are increasingly lost from seed-dispersal networks, small-bodied seed dispersers (i.e. bats, birds, dung beetles) and seed predators (i.e. rodents) are affected. Defaunation leads to reduced species diversity. This is due to relaxed competition; small-bodied species normally compete with large-bodied vertebrates for food and other resources. As an area becomes defaunated, dominant small-bodied species take over, crowding out other similar species and leading to an overall reduced species diversity. The loss of species diversity is reflective of a larger loss of biodiversity, which has consequences for the maintenance of ecosystem services.

The quality of the physical habitat may also suffer. Bird and bat species (many of who are small bodied seed dispersers) rely on mineral licks as a source of sodium, which is not available elsewhere in their diets. In defaunated areas in the Western Amazon, mineral licks are more thickly covered by vegetation and have lower water availability. Bats were significantly less likely to visit these degraded mineral licks. The degradation of such licks will thus negatively affect the health and reproduction of bat populations.

Defaunation has negative consequences for seed dispersal networks as well. In the western Amazon, birds and bats have separate diets and thus form separate guilds within the network. It is hypothesized that large-bodied vertebrates, being generalists, connect separate guilds, creating a stable, resilient network. Defaunation results in a highly modular network in which specialized frugivores instead act as the connector hubs.

Ecosystem services

Changes in predation dynamics, seed predation, seed dispersal, carrion removal, dung removal, vegetation trampling, and other ecosystem processes as a result of defaunation can affect ecosystem supporting and regulatory services, such as nutrient cycling and decomposition, crop pollination, pest control, and water quality.

Conservation

Efforts against defaunation include wildlife overpasses and riparian corridors. Both of these can be otherwise known as wildlife crossing mechanisms. Wildlife overpasses are specifically used for the purpose of protecting many animal species from the roads. Many countries use them and they have been found to be very effective in protecting species and allowing forests to be connected. These overpasses look like bridges of forest that cross over many roads, like a walk bridge for humans, allowing animals to migrate from one side of the forest to the other safely since the road cut off the original connectivity. It was concluded in a study done by Pell and Jones, looking at bird use of these corridors in Australia, that many birds did, in fact, use these corridors to travel from one side of forest to the other and although they did not spend much time in the corridor specifically, they did commonly use them. Riparian corridors are very similar to overpasses they are just on flat land and not on bridges, however, they also work as connective "bridges" between fragmented pieces of forest. One study done connected the corridors with bird habitat and use for seed dispersal. The conclusions of this study showed that some species of birds are highly dependent on these corridors as connections between forest, as flying across the open land is not ideal for many species. Overall both of these studies agree that some sort of connectivity needs to be established between fragments in order to keep the forest ecosystem in the best health possible and that they have in fact been very effective.

Marine

Defaunation in the ocean has occurred later and less intensely than on land. A relatively small number of marine species have been driven to extinction. However, many species have undergone local, ecological, and commercial extinction. Most large marine animal species still exist, such that the size distribution of global species assemblages has changed little since the Pleistocene, but individuals of each species are smaller on average, and overfishing has caused reductions in genetic diversity. Most extinctions and population declines to date have been driven by human overexploitation.

Consequences

Marine defaunation has a wide array of effects on ecosystem structure and function. The loss of animals can have both top-down (cascading) and bottom-up effects, as well as consequences for biogeochemical cycling and ecosystem stability

Two of the most important ecosystem services threatened by marine defaunation are the provision of food and coastal storm protection.

Regulation of gene expression

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Regulation_of_g...