Search This Blog

Saturday, May 18, 2019

Rabies

From Wikipedia, the free encyclopedia

Rabies
Dog with rabies.jpg
A dog with rabies in the paralytic (post-furious) stage
SpecialtyInfectious disease
SymptomsFever, fear of water, confusion, excessive salivation, hallucinations, trouble sleeping, paralysis, coma
CausesRabies virus and Australian bat lyssavirus
PreventionRabies vaccine, animal control, rabies immunoglobulin
PrognosisNearly always death
Deaths17,400 (2015)

Rabies is a viral disease that causes inflammation of the brain in humans and other mammals. Early symptoms can include fever and tingling at the site of exposure. These symptoms are followed by one or more of the following symptoms: violent movements, uncontrolled excitement, fear of water, an inability to move parts of the body, confusion, and loss of consciousness. Once symptoms appear, the result is nearly always death. The time period between contracting the disease and the start of symptoms is usually one to three months, but can vary from less than one week to more than one year. The time depends on the distance the virus must travel along peripheral nerves to reach the central nervous system.

Rabies is caused by lyssaviruses, including the rabies virus and Australian bat lyssavirus. It is spread when an infected animal scratches or bites another animal or human. Saliva from an infected animal can also transmit rabies if the saliva comes into contact with the eyes, mouth, or nose. Globally, dogs are the most common animal involved. More than 99% of rabies cases in countries where dogs commonly have the disease are the direct result of dog bites. In the Americas, bat bites are the most common source of rabies infections in humans, and less than 5% of cases are from dogs. Rodents are very rarely infected with rabies. The disease can be diagnosed only after the start of symptoms.

Animal control and vaccination programs have decreased the risk of rabies from dogs in a number of regions of the world. Immunizing people before they are exposed is recommended for those at high risk, including those who work with bats or who spend prolonged periods in areas of the world where rabies is common. In people who have been exposed to rabies, the rabies vaccine and sometimes rabies immunoglobulin are effective in preventing the disease if the person receives the treatment before the start of rabies symptoms. Washing bites and scratches for 15 minutes with soap and water, povidone-iodine, or detergent may reduce the number of viral particles and may be somewhat effective at preventing transmission. As of 2016, only fourteen people had survived a rabies infection after showing symptoms.

Rabies caused about 17,400 deaths worldwide in 2015. More than 95% of human deaths from rabies occur in Africa and Asia. About 40% of deaths occur in children under the age of 15. Rabies is present in more than 150 countries and on all continents but Antarctica. More than 3 billion people live in regions of the world where rabies occurs. A number of countries, including Australia and Japan, as well as much of Western Europe, do not have rabies among dogs. Many Pacific islands do not have rabies at all. It is classified as a neglected tropical disease.

Signs and symptoms

A person with rabies, 1959
 
The period between infection and the first symptoms (incubation period) is typically 1–3 months in humans. Incubation periods as short as four days and longer than six years have been documented, depending on the location and severity of the contaminated wound and the amount of virus introduced. Initial signs and symptoms of rabies are often nonspecific such as fever and headache. As rabies progresses and causes inflammation of the brain and/or meninges, signs and symptoms can include slight or partial paralysis, anxiety, insomnia, confusion, agitation, abnormal behavior, paranoia, terror, and hallucinations, progressing to delirium, and coma. The person may also have hydrophobia. Death usually occurs 2 to 10 days after first symptoms. Survival is almost unknown once symptoms have presented, even with the administration of proper and intensive care.

Hydrophobia

A rabid dog
 
Hydrophobia ("fear of water") is the historic name for rabies. It refers to a set of symptoms in the later stages of an infection in which the person has difficulty swallowing, shows panic when presented with liquids to drink, and cannot quench their thirst. Any mammal infected with the virus may demonstrate hydrophobia.

Saliva production is greatly increased, and attempts to drink, or even the intention or suggestion of drinking, may cause excruciatingly painful spasms of the muscles in the throat and larynx. This can be attributed to the fact that the virus multiplies and assimilates in the salivary glands of the infected animal with the effect of further transmission through biting. The ability to transmit the virus would decrease significantly if the infected individual could swallow saliva and water.

Hydrophobia is commonly associated with furious rabies, which affects 80% of rabies-infected people. The remaining 20% may experience a paralytic form of rabies that is marked by muscle weakness, loss of sensation, and paralysis; this form of rabies does not usually cause fear of water.

Cause

TEM micrograph with numerous rabies virions (small, dark grey, rodlike particles) and Negri bodies (the larger pathognomonic cellular inclusions of rabies infection)
 
Rabies is caused by a number of lyssaviruses including the rabies virus and Australian bat lyssavirus.

The rabies virus is the type species of the Lyssavirus genus, in the family Rhabdoviridae, order Mononegavirales. Lyssavirions have helical symmetry, with a length of about 180 nm and a cross-section of about 75 nm. These virions are enveloped and have a single-stranded RNA genome with negative sense. The genetic information is packed as a ribonucleoprotein complex in which RNA is tightly bound by the viral nucleoprotein. The RNA genome of the virus encodes five genes whose order is highly conserved: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and the viral RNA polymerase (L).

Once within a muscle or nerve cell, the virus undergoes replication. The trimeric spikes on the exterior of the membrane of the virus interact with a specific cell receptor, the most likely one being the acetylcholine receptor. The cellular membrane pinches in a procession known as pinocytosis and allows entry of the virus into the cell by way of an endosome. The virus then uses the acidic environment, which is necessary, of that endosome and binds to its membrane simultaneously, releasing its five proteins and single strand RNA into the cytoplasm.

The L protein then transcribes five mRNA strands and a positive strand of RNA all from the original negative strand RNA using free nucleotides in the cytoplasm. These five mRNA strands are then translated into their corresponding proteins (P, L, N, G and M proteins) at free ribosomes in the cytoplasm. Some proteins require post-translative modifications. For example, the G protein travels through the rough endoplasmic reticulum, where it undergoes further folding, and is then transported to the Golgi apparatus, where a sugar group is added to it (glycosylation).

Where there are enough proteins, the viral polymerase will begin to synthesize new negative strands of RNA from the template of the positive strand RNA. These negative strands will then form complexes with the N, P, L and M proteins and then travel to the inner membrane of the cell, where a G protein has embedded itself in the membrane. The G protein then coils around the N-P-L-M complex of proteins taking some of the host cell membrane with it, which will form the new outer envelope of the virus particle. The virus then buds from the cell.

From the point of entry, the virus is neurotropic, traveling along the neural pathways into the central nervous system. The virus usually first infects muscle cells close to the site of infection, where they are able to replicate without being 'noticed' by the host's immune system. Once enough virus has been replicated, they begin to bind to acetylcholine receptors (p75NR) at the neuromuscular junction. The virus then travels through the nerve cell axon via retrograde transport, as its P protein interacts with dynein, a protein present in the cytoplasm of nerve cells. Once the virus reaches the cell body it travels rapidly to the central nervous system (CNS), replicating in motor neurons and eventually reaching the brain. After the brain is infected, the virus travels centrifugally to the peripheral and autonomic nervous systems, eventually migrating to the salivary glands, where it is ready to be transmitted to the next host.

Transmission

All warm-blooded species, including humans, may become infected with the rabies virus and develop symptoms. Birds were first artificially infected with rabies in 1884; however, infected birds are largely, if not wholly, asymptomatic, and recover. Other bird species have been known to develop rabies antibodies, a sign of infection, after feeding on rabies-infected mammals.

The virus has also adapted to grow in cells of cold-blooded vertebrates. Most animals can be infected by the virus and can transmit the disease to humans. Infected bats, monkeys, raccoons, foxes, skunks, cattle, wolves, coyotes, dogs, cats, and mongooses (normally either the small Asian mongoose or the yellow mongoose) present the greatest risk to humans. 

Rabies may also spread through exposure to infected bears, domestic farm animals, groundhogs, weasels, and other wild carnivorans. However, lagomorphs, such as hares and rabbits, and small rodents such as chipmunks, gerbils, guinea pigs, hamsters, mice, rats, and squirrels, are almost never found to be infected with rabies and are not known to transmit rabies to humans. Bites from mice, rats, or squirrels rarely require rabies prevention because these rodents are typically killed by any encounter with a larger, rabid animal, and would, therefore, not be carriers. The Virginia opossum is resistant but not immune to rabies.

The virus is usually present in the nerves and saliva of a symptomatic rabid animal. The route of infection is usually, but not always, by a bite. In many cases, the infected animal is exceptionally aggressive, may attack without provocation, and exhibits otherwise uncharacteristic behavior. This is an example of a viral pathogen modifying the behavior of its host to facilitate its transmission to other hosts. 

Transmission between humans is extremely rare. A few cases have been recorded through transplant surgery. The only well-documented cases of rabies caused by human-to-human transmission occurred among eight recipients of transplanted corneas and among three recipients of solid organs. In addition to transmission from cornea and organ transplants, bite and non-bite exposures inflicted by infected humans could theoretically transmit rabies, but no such cases have been documented, since infected humans are usually hospitalized and necessary precautions taken. Casual contact, such as touching a person with rabies or contact with non-infectious fluid or tissue (urine, blood, feces) does not constitute an exposure and does not require post-exposure prophylaxis. Additionally, as the virus is present in sperm or vaginal secretions, spread through sex may be possible.

After a typical human infection by bite, the virus enters the peripheral nervous system. It then travels along the afferent nerves toward the central nervous system. During this phase, the virus cannot be easily detected within the host, and vaccination may still confer cell-mediated immunity to prevent symptomatic rabies. When the virus reaches the brain, it rapidly causes encephalitis, the prodromal phase, which is the beginning of the symptoms. Once the patient becomes symptomatic, treatment is almost never effective and mortality is over 99%. Rabies may also inflame the spinal cord, producing transverse myelitis.

Diagnosis

Rabies can be difficult to diagnose, because, in the early stages, it is easily confused with other diseases or with aggressiveness. The reference method for diagnosing rabies is the fluorescent antibody test (FAT), an immunohistochemistry procedure, which is recommended by the World Health Organization (WHO). The FAT relies on the ability of a detector molecule (usually fluorescein isothiocyanate) coupled with a rabies-specific antibody, forming a conjugate, to bind to and allow the visualisation of rabies antigen using fluorescent microscopy techniques. Microscopic analysis of samples is the only direct method that allows for the identification of rabies virus-specific antigen in a short time and at a reduced cost, irrespective of geographical origin and status of the host. It has to be regarded as the first step in diagnostic procedures for all laboratories. Autolysed samples can, however, reduce the sensitivity and specificity of the FAT. The RT PCR assays proved to be a sensitive and specific tool for routine diagnostic purposes, particularly in decomposed samples or archival specimens. The diagnosis can be reliably made from brain samples taken after death. The diagnosis can also be made from saliva, urine, and cerebrospinal fluid samples, but this is not as sensitive or reliable as brain samples. Cerebral inclusion bodies called Negri bodies are 100% diagnostic for rabies infection but are found in only about 80% of cases. If possible, the animal from which the bite was received should also be examined for rabies.

Some light microscopy techniques may also be used to diagnose rabies at a tenth of the cost of traditional fluorescence microscopy techniques, allowing identification of the disease in less-developed countries. A test for rabies, known as LN34, is easier to run on a dead animal's brain and might help determine who does and does not need post-exposure prevention. The test was developed by the CDC in 2018.

Differential diagnosis

The differential diagnosis in a case of suspected human rabies may initially include any cause of encephalitis, in particular infection with viruses such as herpesviruses, enteroviruses, and arboviruses such as West Nile virus. The most important viruses to rule out are herpes simplex virus type one, varicella zoster virus, and (less commonly) enteroviruses, including coxsackieviruses, echoviruses, polioviruses, and human enteroviruses 68 to 71.

New causes of viral encephalitis are also possible, as was evidenced by the 1999 outbreak in Malaysia of 300 cases of encephalitis with a mortality rate of 40% caused by Nipah virus, a newly recognized paramyxovirus. Likewise, well-known viruses may be introduced into new locales, as is illustrated by the outbreak of encephalitis due to West Nile virus in the eastern United States. Epidemiologic factors, such as season, geographic location, and the patient's age, travel history, and possible exposure to bites, rodents, and ticks, may help direct the diagnosis.

Prevention

Almost all human cases of rabies were fatal until a vaccine was developed in 1885 by Louis Pasteur and Émile Roux. Their original vaccine was harvested from infected rabbits, from which the virus in the nerve tissue was weakened by allowing it to dry for five to ten days. Similar nerve tissue-derived vaccines are still used in some countries, as they are much cheaper than modern cell culture vaccines.

The human diploid cell rabies vaccine was started in 1967. Less expensive purified chicken embryo cell vaccine and purified vero cell rabies vaccine are now available. A recombinant vaccine called V-RG has been used in Belgium, France, Germany, and the United States to prevent outbreaks of rabies in undomesticated animals. Immunization before exposure has been used in both human and nonhuman populations, where, as in many jurisdictions, domesticated animals are required to be vaccinated.

The Missouri Department of Health and Senior Services Communicable Disease Surveillance 2007 Annual Report states the following can help reduce the risk of contracting rabies:
  • Vaccinating dogs, cats, and ferrets against rabies
  • Keeping pets under supervision
  • Not handling wild animals or strays
  • Contacting an animal control officer upon observing a wild animal or a stray, especially if the animal is acting strangely
  • If bitten by an animal, washing the wound with soap and water for 10 to 15 minutes and contacting a healthcare provider to determine if post-exposure prophylaxis is required
28 September is World Rabies Day, which promotes the information, prevention, and elimination of the disease.

Vaccinating other animals

In Asia and in parts of the Americas and Africa, dogs remain the principal host. Mandatory vaccination of animals is less effective in rural areas. Especially in developing countries, pets may not be privately kept and their destruction may be unacceptable. Oral vaccines can be safely distributed in baits, a practice that has successfully reduced rabies in rural areas of Canada, France, and the United States. In Montreal, Quebec, Canada, baits are successfully used on raccoons in the Mount-Royal Park area. Vaccination campaigns may be expensive, and cost-benefit analysis suggests baits may be a cost-effective method of control. In Ontario, a dramatic drop in rabies was recorded when an aerial bait-vaccination campaign was launched.

The number of recorded human deaths from rabies in the United States has dropped from 100 or more annually in the early 20th century to one or two per year due to widespread vaccination of domestic dogs and cats and the development of human vaccines and immunoglobulin treatments. Most deaths now result from bat bites, which may go unnoticed by the victim and hence untreated.

Treatment

Treatment after exposure can prevent the disease if administered promptly, generally within 10 days of infection. Thoroughly washing the wound as soon as possible with soap and water for approximately five minutes is effective in reducing the number of viral particles. Povidone-iodine or alcohol is then recommended to reduce the virus further.

In the US, the Centers for Disease Control and Prevention recommends people receive one dose of human rabies immunoglobulin (HRIG) and four doses of rabies vaccine over a 14-day period. The immunoglobulin dose should not exceed 20 units per kilogram body weight. HRIG is expensive and constitutes most of the cost of post exposure treatment, ranging as high as several thousand dollars. As much as possible of this dose should be injected around the bites, with the remainder being given by deep intramuscular injection at a site distant from the vaccination site.

The first dose of rabies vaccine is given as soon as possible after exposure, with additional doses on days 3, 7 and 14 after the first. Patients who have previously received pre-exposure vaccination do not receive the immunoglobulin, only the postexposure vaccinations on days 0 and 3.

The pain and side effects of modern cell-based vaccines are similar to flu shots. The old nerve-tissue-based vaccinations that require multiple painful injections into the abdomen with a large needle are inexpensive, but are being phased out and replaced by affordable World Health Organization intradermal-vaccination regimens.

Intramuscular vaccination should be given into the deltoid, not the gluteal area, which has been associated with vaccination failure due to injection into fat rather than muscle. In infants, the lateral thigh is recommended.

Awakening to find a bat in the room, or finding a bat in the room of a previously unattended child or mentally disabled or intoxicated person, is an indication for post-exposure prophylaxis (PEP). The recommendation for the precautionary use of PEP in bat encounters where no contact is recognized has been questioned in the medical literature, based on a cost–benefit analysis. However, a 2002 study has supported the protocol of precautionary administering of PEP where a child or mentally compromised individual has been alone with a bat, especially in sleep areas, where a bite or exposure may occur with the victim being unaware. Begun with little or no delay, PEP is 100% effective against rabies. In the case in which there has been a significant delay in administering PEP, the treatment should be administered regardless, as it may still be effective. Every year, more than 15 million people get vaccination after potential exposure. While this works well, the cost is significant.

Milwaukee protocol

The Milwaukee protocol, sometimes referred to as the Wisconsin protocol, is a method of attempted treatment of rabies infection in a human being. The treatment involves putting the person into a chemically induced coma and giving antiviral drugs. Jeanna Giese, who in 2004 was the first patient treated with the Milwaukee protocol, became the first person ever recorded to have survived rabies without receiving successful post-exposure prophylaxis. An intention-to-treat analysis has since found this protocol has a survival rate of about 8%. The protocol is not an effective treatment for rabies and its use is not recommended.

Prognosis

In unvaccinated humans, rabies is almost always fatal after neurological symptoms have developed.

Vaccination after exposure, PEP, is highly successful in preventing the disease if administered promptly, in general within 6 days of infection. Begun with little or no delay, PEP is 100% effective against rabies. In the case of significant delay in administering PEP, the treatment still has a chance of success.

Epidemiology

Deaths from rabies per million persons in 2012
  0
  1
  2–4
  5–9
  10–17
  18–69

Rabies-free countries (in green) as of 2010.
 always rabies-free  rabies eliminated before 1990  rabies eliminated in or after 1990  year of rabies elimination unknown

In 2010, an estimated 26,000 people died from rabies, down from 54,000 in 1990. The majority of the deaths occurred in Asia and Africa. As of 2015, India, followed by China (approximately 6,000), and the Democratic Republic of the Congo (5,600) had the most cases. A 2015 collaboration between the World Health Organization, World Organization of Animal Health (OIE), Food and Agriculture Organization of the United Nation (FAO), and Global Alliance for Rabies Control has a goal of eliminating deaths from rabies by 2030.

India

India has the highest rate of human rabies in the world, primarily because of stray dogs, whose number has greatly increased since a 2001 law forbade the killing of dogs. Effective control and treatment of rabies in India is hindered by a form of mass hysteria known as puppy pregnancy syndrome (PPS). Dog bite victims with PPS, male as well as female, become convinced that puppies are growing inside them, and often seek help from faith healers rather than medical services. An estimated 20,000 people die every year from rabies in India, more than a third of the global total.

Australia

The rabies virus survives in widespread, varied, rural animal reservoirs. Despite Australia's official rabies-free status, Australian bat lyssavirus (ABLV), discovered in 1996, is a strain of rabies prevalent in native bat populations. There have been three human cases of ABLV in Australia, all of them fatal.

North America

While canine-specific rabies does not circulate among dogs, about a hundred dogs become infected from other wildlife per year in the US. Rabies is common among wild animals in the United States. Bats, raccoons, skunks and foxes account for almost all reported cases (98% in 2009). Rabid bats are found in all 48 contiguous states. Other reservoirs are more limited geographically; for example, the raccoon rabies virus variant is only found in a relatively narrow band along the East Coast. Due to a high public awareness of the virus, efforts at vaccination of domestic animals and curtailment of feral populations, and availability of postexposure prophylaxis, incidence of rabies in humans is very rare. A total of 49 cases of the disease was reported in the country between 1995 and 2011; of these, 11 are thought to have been acquired abroad. Almost all domestically acquired cases are attributed to bat bites.

Europe

Either no or very few cases of rabies are reported each year in Europe; cases are contracted both during travel and in Europe.

In Switzerland the disease was virtually eliminated after scientists placed chicken heads laced with live attenuated vaccine in the Swiss Alps. The foxes of Switzerland, proven to be the main source of rabies in the country, ate the chicken heads and immunized themselves.

Italy, after being declared rabies-free from 1997 to 2008, has witnessed a reemergence of the disease in wild animals in the Triveneto regions (Trentino-Alto Adige/Südtirol, Veneto and Friuli-Venezia Giulia), due to the spreading of an epidemic in the Balkans that also affected Austria. An extensive wild animal vaccination campaign eliminated the virus from Italy again, and it regained the rabies-free country status in 2013, the last reported case of rabies being reported in a red fox in early 2011.

Great Britain has been free of rabies since the beginning of the twentieth century except for a rabies-like virus in a few Daubenton's bats; there has been one, fatal, case of transmission to a human. There have been four deaths from rabies, transmitted abroad by dog bite, since 2000. The last infection in the UK occurred in 1922, and the last death from indigenous rabies was in 1902. Unlike the other countries of Europe it is protected by being an island, and by strict quarantine procedures.

History

A woodcut from the Middle Ages showing a rabid dog.
 
François Boissier de Sauvages de Lacroix, Della natura e causa della rabbia (Dissertation sur la nature et la cause de la Rage), 1777
 
Rabies has been known since around 2000 B.C. The first written record of rabies is in the Mesopotamian Codex of Eshnunna (circa 1930 BC), which dictates that the owner of a dog showing symptoms of rabies should take preventive measure against bites. If another person were bitten by a rabid dog and later died, the owner was heavily fined.

Ineffective folk remedies abounded in the medical literature of the ancient world. The physician Scribonius Largus prescribed a poultice of cloth and hyena skin; Antaeus recommended a preparation made from the skull of a hanged man.

Rabies appears to have originated in the Old World, the first epizootic in the New World occurring in Boston in 1768. It spread from there, over the next few years, to various other states, as well as to the French West Indies, eventually becoming common all across North America. 

Rabies was considered a scourge for its prevalence in the 19th century. In France and Belgium, where Saint Hubert was venerated, the "St Hubert's Key" was heated and applied to cauterize the wound. By an application of magical thinking, dogs were branded with the key in hopes of protecting them from rabies. The fear of rabies was almost irrational, due to the number of vectors (mostly rabid dogs) and the absence of any efficacious treatment. It was not uncommon for a person bitten by a dog merely suspected of being rabid to commit suicide or to be killed by others.

In ancient times the attachment of the tongue (the lingual frenulum, a mucous membrane) was cut and removed as this was where rabies was thought to originate. This practice ceased with the discovery of the actual cause of rabies. Louis Pasteur's 1885 nerve tissue vaccine was successful, and was progressively improved to reduce often severe side-effects.

In modern times, the fear of rabies has not diminished, and the disease and its symptoms, particularly agitation, have served as an inspiration for several works of zombie or similarly-themed fiction, often portraying rabies as having mutated into a stronger virus which fills humans with murderous rage or incurable illness, bringing about a devastating, widespread pandemic.

Milwaukee protocol

The Milwaukee protocol was developed and named by Rodney Willoughby, Jr., following its use in the treatment of Jeanna Giese. Giese, a teenager from Wisconsin, became the first patient known to have survived rabies without receiving the rabies vaccine. It is unclear precisely why Giese survived, but her case led to sustained and heavy advocacy for the Milwaukee protocol. Subsequent medical research determined that the Milwaukee protocol is not an effective treatment for rabies infection, and its use is not recommended.

Etymology

The term is derived from the Latin rabies, "madness". This, in turn, may be related to the Sanskrit rabhas, "to rage". The Greeks derived the word lyssa, from lud or "violent"; this root is used in the genus name of the rabies virus, Lyssavirus.

Other animals

Rabies is infectious to mammals; three stages of central nervous system infection are recognized. The first stage is a one- to three-day period characterized by behavioral changes and is known as the prodromal stage. The second is the excitative stage, which lasts three to four days. This stage is often known as "furious rabies" for the tendency of the affected animal to be hyper-reactive to external stimuli and bite at anything near. The third is the paralytic stage and is caused by damage to motor neurons. Incoordination is seen, owing to rear limb paralysis, and drooling and difficulty swallowing is caused by paralysis of facial and throat muscles. Death is usually caused by respiratory arrest.

Research

The outer shell of the rabies virus, stripped of its RNA contents and thus unable to cause disease, may be used as a vector for the delivery of unrelated genetic material in a research setting. It has the advantage over other pseudotyping methods for gene delivery that the cell targeting (tissue tropism) is more specific for the central nervous system, a difficult-to-reach site, obviating the need for invasive delivery methods. It is also capable of infecting neighboring "upstream" cells, moving from one cell to axons of the next at synapses, and is thus used for retrograde tracing in neuronal circuits.

Evidence indicates artificially increasing the permeability of the blood–brain barrier, which normally does not allow most immune cells across, promotes viral clearance.

Fight-or-flight response

From Wikipedia, the free encyclopedia

Dog and cat showing acute stress responses
The fight-or-flight response (also called hyperarousal, or the acute stress response) is a physiological reaction that occurs in response to a perceived harmful event, attack, or threat to survival. It was first described by Walter Bradford Cannon. His theory states that animals react to threats with a general discharge of the sympathetic nervous system, preparing the animal for fighting or fleeing. More specifically, the adrenal medulla produces a hormonal cascade that results in the secretion of catecholamines, especially norepinephrine and epinephrine. The hormones estrogen, testosterone, and cortisol, as well as the neurotransmitters dopamine and serotonin, also affect how organisms react to stress.

This response is recognised as the first stage of the general adaptation syndrome that regulates stress responses among vertebrates and other organisms.

Physiology

Autonomic nervous system

The autonomic nervous system is a control system that acts largely unconsciously and regulates heart rate, digestion, respiratory rate, pupillary response, urination, and sexual arousal. This system is the primary mechanism in control of the fight-or-flight response and its role is mediated by two different components: the sympathetic nervous system and the parasympathetic nervous system.

Sympathetic nervous system

The sympathetic nervous system originates in the spinal cord and its main function is to activate the physiological changes that occur during the fight-or-flight response. This component of the autonomic nervous system utilises and activates the release of norepinephrine in the reaction.

Parasympathetic nervous system

The parasympathetic nervous system originates in the sacral spinal cord and medulla, physically surrounding the sympathetic origin, and works in concert with the sympathetic nervous system. Its main function is to activate the "rest and digest" response and return the body to homeostasis after the fight or flight response. This system utilises and activates the release of the neurotransmitter acetylcholine.

Reaction

The fight-or-flight response
The reaction begins in the amygdala, which triggers a neural response in the hypothalamus. The initial reaction is followed by activation of the pituitary gland and secretion of the hormone ACTH. The adrenal gland is activated almost simultaneously, via the sympathetic nervous system, and releases the hormone epinephrine. The release of chemical messengers results in the production of the hormone cortisol, which increases blood pressure, blood sugar, and suppresses the immune system. The initial response and subsequent reactions are triggered in an effort to create a boost of energy. This boost of energy is activated by epinephrine binding to liver cells and the subsequent production of glucose. Additionally, the circulation of cortisol functions to turn fatty acids into available energy, which prepares muscles throughout the body for response. Catecholamine hormones, such as adrenaline (epinephrine) or noradrenaline (norepinephrine), facilitate immediate physical reactions associated with a preparation for violent muscular action and:

Function of physiological changes

The physiological changes that occur during the fight or flight response are activated in order to give the body increased strength and speed in anticipation of fighting or running. Some of the specific physiological changes and their functions include:
  • Increased blood flow to the muscles activated by diverting blood flow from other parts of the body.
  • Increased blood pressure, heart rate, blood sugars, and fats in order to supply the body with extra energy.
  • The blood clotting function of the body speeds up in order to prevent excessive blood loss in the event of an injury sustained during the response.
  • Increased muscle tension in order to provide the body with extra speed and strength.

Emotional components

Emotion regulation

In the context of the fight or flight response, emotional regulation is used proactively to avoid threats of stress or to control the level of emotional arousal.

Emotional reactivity

During the reaction, the intensity of emotion that is brought on by the stimulus will also determine the nature and intensity of the behavioral response. Individuals with higher levels of emotional reactivity may be prone to anxiety and aggression, which illustrates the implications of appropriate emotional reaction in the fight or flight response.

Cognitive components

Content specificity

The specific components of cognitions in the fight or flight response seem to be largely negative. These negative cognitions may be characterised by: attention to negative stimuli, the perception of ambiguous situations as negative, and the recurrence of recalling negative words. There also may be specific negative thoughts associated with emotions commonly seen in the reaction.

Perception of control

Perceived control relates to an individual's thoughts about control over situations and events. Perceived control should be differentiated from actual control because an individual's beliefs about their abilities may not reflect their actual abilities. Therefore, overestimation or underestimation of perceived control can lead to anxiety and aggression.

Social information processing

The social information processing model proposes a variety of factors that determine behavior in the context of social situations and preexisting thoughts. The attribution of hostility, especially in ambiguous situations, seems to be one of the most important cognitive factors associated with the fight or flight response because of its implications towards aggression.

Other animals

Evolutionary perspective

An evolutionary psychology explanation is that early animals had to react to threatening stimuli quickly and did not have time to psychologically and physically prepare themselves. The fight or flight response provided them with the mechanisms to rapidly respond to threats against survival.

Examples

A typical example of the stress response is a grazing zebra. If the zebra sees a lion closing in for the kill, the stress response is activated as a means to escape its predator. The escape requires intense muscular effort, supported by all of the body’s systems. The sympathetic nervous system’s activation provides for these needs. A similar example involving fight is of a cat about to be attacked by a dog. The cat shows accelerated heartbeat, piloerection (hair standing on end), and pupil dilation, all signs of sympathetic arousal. Note that the zebra and cat still maintain homeostasis in all states.

Varieties of responses

Bison hunted by dogs
Animals respond to threats in many complex ways. Rats, for instance, try to escape when threatened, but will fight when cornered. Some animals stand perfectly still so that predators will not see them. Many animals freeze or play dead when touched in the hope that the predator will lose interest.
Other animals have alternative self-protection methods. Some species of cold-blooded animals change color swiftly, to camouflage themselves. These responses are triggered by the sympathetic nervous system, but, in order to fit the model of fight or flight, the idea of flight must be broadened to include escaping capture either in a physical or sensory way. Thus, flight can be disappearing to another location or just disappearing in place. And often both fight and flight are combined in a given situation.
The fight or flight actions also have polarity – the individual can either fight or flee against something that is threatening, such as a hungry lion, or fight for or fly towards something that is needed, such as the safety of the shore from a raging river.
A threat from another animal does not always result in immediate fight or flight. There may be a period of heightened awareness, during which each animal interprets behavioral signals from the other. Signs such as paling, piloerection, immobility, sounds, and body language communicate the status and intentions of each animal. There may be a sort of negotiation, after which fight or flight may ensue, but which might also result in playing, mating, or nothing at all. An example of this is kittens playing: each kitten shows the signs of sympathetic arousal, but they never inflict real damage.

Muscarinic acetylcholine receptor

From Wikipedia, the free encyclopedia

Acetylcholine - the natural agonist of muscarinic and nicotinic receptors.
 
Muscarine - an agonist used to distinguish between these two classes of receptors. Not normally found in the body.
 
Atropine - an antagonist.
 
Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers in the parasympathetic nervous system

Muscarinic receptors are so named because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpine and scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists.

Function

Acetylcholine (ACh) is a neurotransmitter found in the brain, neuromuscular junctions and the autonomic ganglia. Muscarinic receptors are used in the following roles:

Recovery receptors

The structure of Muscarinic acetylcholine receptor M2.
 
ACh is always used as the transmitter within the autonomic ganglion. Nicotinic receptors on the postganglionic neuron are responsible for the initial fast depolarization (Fast EPSP) of that neuron. As a consequence of this, nicotinic receptors are often cited as the receptor on the postganglionic neurons at the ganglion. However, the subsequent hyperpolarization (IPSP) and slow depolarization (Slow EPSP) that represent the recovery of the postganglionic neuron from stimulation are actually mediated by muscarinic receptors, types M2 and M1 respectively (discussed below).

Peripheral autonomic fibers (sympathetic and parasympathetic fibers) are categorized anatomically as either preganglionic or postganglionic fibers, then further generalized as either adrenergic fibers, releasing noradrenaline, or cholinergic fibers, both releasing acetylcholine and expressing acetylcholine receptors. Both preganglionic sympathetic fibers and preganglionic parasympathetic fibers are cholinergic. Most postganglionic sympathetic fibers are adrenergic: their neurotransmitter is norepinephrine; postganglionic sympathetic fibers to the sweat glands, piloerectile muscles of the body hairs, and the skeletal muscle arterioles do not use adrenaline/noradrenaline.

The adrenal medulla is considered a sympathetic ganglion and, like other sympathetic ganglia, is supplied by cholinergic preganglionic sympathetic fibers: acetylcholine is the neurotransmitter utilized at this synapse. The chromaffin cells of the adrenal medulla act as "modified neurons", releasing adrenaline and noradrenaline into the bloodstream as hormones instead of as neurotransmitters. The other postganglionic fibers of the peripheral autonomic system belong to the parasympathetic division; all are cholinergic fibers, and use acetylcholine as the neurotransmitter.

Postganglionic neurons

Another role for these receptors is at the junction of the innervated tissues and the postganglionic neurons in the parasympathetic division of the autonomic nervous system. Here acetylcholine is again used as a neurotransmitter, and muscarinic receptors form the principal receptors on the innervated tissue.

Innervated tissue

Very few parts of the sympathetic system use cholinergic receptors. In sweat glands the receptors are of the muscarinic type. The sympathetic nervous system also has some preganglionic nerves terminating at the chromaffin cells in the adrenal medulla, which secrete epinephrine and norepinephrine into the bloodstream. Some believe that chromaffin cells are modified postganglionic CNS fibers. In the adrenal medulla, acetylcholine is used as a neurotransmitter, and the receptor is of the nicotinic type. 

The somatic nervous system uses a nicotinic receptor to acetylcholine at the neuromuscular junction.

Higher central nervous system

Muscarinic acetylcholine receptors are also present and distributed throughout the local nervous system, in post-synaptic and pre-synaptic positions. There is also some evidence for postsynaptic receptors on sympathetic neurons allowing the parasympathetic nervous system to inhibit sympathetic effects.

Presynaptic membrane of the neuromuscular junction

It is known that muscarinic acetylcholine receptors also appear on the pre-synaptic membrane of somatic neurons in the neuro-muscular junction, where they are involved in the regulation of acetylcholine release.

Form of muscarinic receptors

Muscarinic acetylcholine receptors belong to a class of metabotropic receptors that use G proteins as their signaling mechanism. In such receptors, the signaling molecule (the ligand) binds to a receptor that has seven transmembrane regions; in this case, the ligand is ACh. This receptor is bound to intracellular proteins, known as G proteins, which begin the information cascade within the cell.

By contrast, nicotinic receptors use a ligand-gated ion channel mechanism for signaling. In this case, binding of the ligands with the receptor causes an ion channel to open, permitting either one or more specific type(s) of ion (e.g., K+, Na+, Ca2+) to diffuse into or out of the cell.

Receptor isoforms

Classification

By the use of selective radioactively labeled agonist and antagonist substances, five subtypes of muscarinic receptors have been determined, named M1-M5 (using an upper case M and subscript number). M1,M3,M5 receptors are coupled with Gq proteins, while M2 and M4 receptors are coupled with Gi/o proteins. There are other classification systems. For example, the drug pirenzepine is a muscarinic antagonist (decreases the effect of ACh), which is much more potent at M1 receptors than it is at other subtypes. The acceptance of the various subtypes has proceeded in numerical order: therefore, sources that recognize only the M1/M2 distinction exist. More recent studies tend to recognize M3 and the most recent M4.

Genetic differences

Meanwhile, geneticists and molecular biologists have characterised five genes that appear to encode muscarinic receptors, named m1-m5 (lowercase m; no subscript number). The first four code for pharmacologic types M1-M4. The fifth, M5, corresponds to a subtype of receptor that had until recently not been detected pharmacologically. The receptors m1 and m2 were determined based upon partial sequencing of M1 and M2 receptor proteins. The others were found by searching for homology, using bioinformatic techniques.

Difference in G proteins

G proteins contain an alpha-subunit that is critical to the functioning of receptors. These subunits can take a number of forms. There are four broad classes of form of G-protein: Gs, Gi, Gq, and G12/13. Muscarinic receptors vary in the G protein to which they are bound, with some correlation according to receptor type. G proteins are also classified according to their susceptibility to cholera toxin (CTX) and pertussis toxin (PTX, whooping cough). Gs and some subtypes of Gi (Gαt and Gαg) are susceptible to CTX. Only Gi is susceptible to PTX, with the exception of one subtype of Gi (Gαz) which is immune. Also, only when bound with an agonist, those G proteins normally sensitive to PTX also become susceptible to CTX.

The various G-protein subunits act differently upon secondary messengers, upregulating Phospholipases, downregulating cAMP, etc. 

Because of the strong correlations to muscarinic receptor type, CTX and PTX are useful experimental tools in investigating these receptors.

M1 receptor

This receptor is found mediating slow EPSP at the ganglion in the postganglionic nerve[citation needed], is common in exocrine glands and in the CNS.

It is predominantly found bound to G proteins of class Gq, which use upregulation of phospholipase C and, therefore, inositol trisphosphate and intracellular calcium as a signaling pathway. A receptor so bound would not be susceptible to CTX or PTX. However, Gi (causing a downstream decrease in cAMP) and Gs (causing an increase in cAMP) have also been shown to be involved in interactions in certain tissues, and so would be susceptible to PTX and CTX, respectively.

M2 receptor

The M2 muscarinic receptors are located in the heart, where they act to slow the heart rate down to normal sinus rhythm, by slowing the speed of depolarization. In humans under resting conditions vagal activity dominates over sympathetic activity. Hence inhibition of m2 receptors (e.g. by atropine) will cause a raise in heart rate. They also moderately reduce contractile forces of the atrial cardiac muscle, and reduce conduction velocity of the atrioventricular node (AV node). It also serves to slightly decrease the contractile forces of the ventricular muscle. 

M2 muscarinic receptors act via a Gi type receptor, which causes a decrease in cAMP in the cell, inhibition of voltage-gated Ca2+ channels, and increasing efflux of K+, in general, leading to inhibitory-type effects.

M3 receptor

The M3 muscarinic receptors are located at many places in the body. They are located in the smooth muscles of the blood vessels, as well as in the lungs. Because the M3 receptor is Gq-coupled and mediates an increase in intracellular calcium, it typically causes contraction of smooth muscle, such as that observed during bronchoconstriction and bladder voiding. However, with respect to vasculature, activation of M3 on vascular endothelial cells causes increased synthesis of nitric oxide, which diffuses to adjacent vascular smooth muscle cells and causes their relaxation, thereby explaining the paradoxical effect of parasympathomimetics on vascular tone and bronchiolar tone. Indeed, direct stimulation of vascular smooth muscle, M3 mediates vasconstriction in pathologies wherein the vascular endothelium is disrupted. The M3 receptors are also located in many glands, which help to stimulate secretion in, for example, the salivary glands, as well as other glands of the body. 

Like the M1 muscarinic receptor, M3 receptors are G proteins of class Gq that upregulate phospholipase C and, therefore, inositol trisphosphate and intracellular calcium as a signaling pathway.

M4 receptor

M4 receptors are found in the CNS. 

Receptors work via Gi receptors to decrease cAMP in the cell and, thus, produce generally inhibitory effects. Possible bronchospasm may result if stimulated by muscarinic agonists

M5 receptor

Location of M5 receptors is not well known. 

Like the M1 and M3 muscarinic receptor, M5 receptors are coupled with G proteins of class Gq that upregulate phospholipase C and, therefore, inositol trisphosphate and intracellular calcium as a signaling pathway.

Pharmacological application

Ligands targeting the mAChR that are currently approved for clinical use include non-selective antagonists for the treatment of Parkinson's disease, atropine (to dilate the pupil), scopolamine (used to prevent motion sickness), and ipratropium (used in the treatment of COPD).

Stagflation

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Stagflatio n ...