Search This Blog

Sunday, June 9, 2019

Biomass

From Wikipedia, the free encyclopedia

Biomass is plant or animal material used for energy production, heat production, or in various industrial processes as raw material for a range of products. It can be purposely grown energy crops (e.g. miscanthus, switchgrass), wood or forest residues, waste from food crops (wheat straw, bagasse), horticulture (yard waste), food processing (corn cobs), animal farming (manure, rich in nitrogen and phosphorus), or human waste from sewage plants.

Burning plant-derived biomass releases CO2, but it has still been classified as a renewable energy source in the EU and UN legal frameworks because photosynthesis cycles the CO2 back into new crops. In some cases, this recycling of CO2 from plants to atmosphere and back into plants can even be CO2 negative, as a relatively large portion of the CO2 is moved to the soil during each cycle.

Cofiring with biomass has increased in coal power plants, because it makes it possible to release less CO2 without the cost associated with building new infrastructure. Co-firing is not without issues however, often an upgrade of the biomass is beneficiary. Upgrading to higher grade fuels can be achieved by different methods, broadly classified as thermal, chemical, or biochemical (see below).
IUPAC definition.
 
Biomass: Material produced by the growth of microorganisms, plants or animals.

Biomass feedstocks

Biomass plant in Scotland.
 
Wood waste outside biomass power plant.
 
Bagasse is the remaining waste after sugar canes have been crushed to extract their juice.
 
Miscanthus x giganteus energy crop, Germany.
 
Historically, humans have harnessed biomass-derived energy since the time when people began burning wood fuel. Even in 2019, biomass is the only source of fuel for domestic use in many developing countries. All biomass is biologically-produced matter based in carbon, hydrogen and oxygen. The estimated biomass production in the world is approximately 100 billion metric tons of carbon per year, about half in the ocean and half on land.

Wood and residues from wood, for instance spruce, birch, eucalyptus, willow, oil palm, remains the largest biomass energy source today. It is used directly as a fuel or processed into pellet fuel or other forms of fuels. Biomass also includes plant or animal matter that can be converted into fuel, fibers or industrial chemicals. There are numerous types of plants, including corn, switchgrass, miscanthus, hemp, sorghum, sugarcane, and bamboo. The main waste energy feedstocks are wood waste, agricultural waste, municipal solid waste, manufacturing waste, and landfill gas. Sewage sludge is another source of biomass. There is ongoing research involving algae or algae-derived biomass. Other biomass feedstocks are enzymes or bacteria from various sources, grown in cell cultures or hydroponics.

Based on the source of biomass, biofuels are classified broadly into two major categories: 

First-generation biofuels are derived from food sources, such as sugarcane and corn starch. Sugars present in this biomass are fermented to produce bioethanol, an alcohol fuel which serve as an additive to gasoline, or in a fuel cell to produce electricity.

Second-generation biofuels utilize non-food-based biomass sources such as perennial energy crops (low input crops), and agricultural/municipal waste. There is huge potential for second generation biofuels but the resources are currently under-utilized.

Biomass conversion

Thermal conversions

Straw bales
 
Thermal conversion processes use heat as the dominant mechanism to upgrade biomass into a better and more practical fuel. The basic alternatives are torrefaction, pyrolysis, and gasification, these are separated principally by the extent to which the chemical reactions involved are allowed to proceed (mainly controlled by the availability of oxygen and conversion temperature).

There are other less common, more experimental or proprietary thermal processes that may offer benefits, such as hydrothermal upgrading. Some have been developed for use on high moisture content biomass, including aqueous slurries, and allow them to be converted into more convenient forms.

Chemical conversion

A range of chemical processes may be used to convert biomass into other forms, such as to produce a fuel that is more practical to store, transport and use, or to exploit some property of the process itself. Many of these processes are based in large part on similar coal-based processes, such as the Fischer-Tropsch synthesis. Biomass can be converted into multiple commodity chemicals.

Biochemical conversion

As biomass is a natural material, many highly efficient biochemical processes have developed in nature to break down the molecules of which biomass is composed, and many of these biochemical conversion processes can be harnessed. In most cases, microorganisms are used to perform the conversion process: anaerobic digestion, fermentation, and composting.

Glycoside hydrolases are the enzymes involved in the degradation of the major fraction of biomass, such as polysaccharides present in starch and lignocellulose. Thermostable variants are gaining increasing roles as catalysts in biorefining applications, since recalcitrant biomass often needs thermal treatment for more efficient degradation.

Electrochemical conversion

Biomass can be directly converted to electrical energy via electrochemical (electrocatalytic) oxidation of the material. This can be performed directly in a direct carbon fuel cell, direct liquid fuel cells such as direct ethanol fuel cell, a direct methanol fuel cell, a direct formic acid fuel cell, a L-ascorbic Acid Fuel Cell (vitamin C fuel cell), and a microbial fuel cell. The fuel can also be consumed indirectly via a fuel cell system containing a reformer which converts the biomass into a mixture of CO and H2 before it is consumed in the fuel cell.

Environmental impact

On combustion, the carbon from biomass is released into the atmosphere as carbon dioxide (CO2). After a period of time ranging from a few months to decades, the CO2 produced from combustion is absorbed from the atmosphere by plants or trees. However, the carbon storage capacity of forests may be reduced overall if destructive forestry techniques are employed.

All biomass crops sequester carbon. For example, soil organic carbon has been observed to be greater below switchgrass crops than under cultivated cropland, especially at depths below 30 cm (12 in). For Miscanthus x giganteus, McCalmont et al. found accumulation rates ranging from 0.42 to 3.8 tonnes per hectare per year,  with a mean accumulation rate of 1.84 tonne (0.74 tonnes per acre per year), or 20% of total harvested carbon per year.  The grass sequesters carbon in its continually increasing root biomass, toghether with carbon input from fallen leaves. Typically, perennial crops sequester more carbon than annual crops because the root buildup is allowed to continue undisturbed over many years. Also, perennial crops avoid the yearly tillage procedures (plowing, digging) associated with growing annual crops. Tilling induces soil aeration, which accelerates the soil carbon decomposition rate, by stimulating soil microbe populations. Also, tilling makes it easier for the oxygen (O) atoms in the atmosphere to attach to carbon (C) atoms in the soil, producing CO2).

GHG / CO2 / carbon negativity for Miscanthus x giganteus production pathways.
 
Relationship between above-ground yield (diagonal lines), soil organic carbon (X axis), and soil's potential for successful/unsuccessful carbon sequestration (Y axis). Basically, the higher the yield, the more land is usable as a GHG mitigation tool (including relatively carbon rich land.)
 
The simple proposal that biomass is carbon-neutral put forward in the early 1990s has been superseded by the more nuanced proposal that for a particular bioenergy project to be carbon neutral, the total carbon sequestered by a bioenergy crop's root system must compensate for all the emissions from the related, aboveground bioenergy project. This includes any emissions caused by direct or indirect land use change. Many first generation bioenergy projects are not carbon neutral given these demands. Some have even higher total GHG emissions than some fossil based alternatives. Transport fuels might be worse than solid fuels in this regard. 

Some are carbon neutral or even negative, though, especially perennial crops. The amount of carbon sequestrated and the amount of GHG (greenhouse gases) emitted will determine if the total GHG life cycle cost of a bio-energy project is positive, neutral or negative. Whitaker et al. estimates that for Miscanthus x giganteus, GHG neutrality and even negativity is within reach. A carbon negative life cycle is possible if the total below-ground carbon accumulation more than compensates for the above-ground total life-cycle GHG emissions. 

The graphic on the right displays two CO2 negative Miscanthus x giganteus production pathways, represented in gram CO2-equivalents per megajoule. The yellow diamonds represent mean values.  Successful sequestration is dependent on planting sites, as the best soils for sequestration are those that are currently low in carbon. The varied results displayed in the graph highlights this fact.  For the UK, successful sequestration is expected for arable land over most of England and Wales, with unsuccessful sequestration expected in parts of Scotland, due to already carbon rich soils (existing woodland) plus lower yields. Soils already rich in carbon includes peatland and mature forest. Grassland can also be carbon rich, however Milner et al. argues that the most successful carbon sequestration in the UK takes place below improved grasslands.  The bottom graphic displays the estimated yield necessary to compensate for the disturbance caused by planting plus lifecycle GHG-emissions for the related above-ground operation.

Forest-based biomass projects has received criticism for ineffective GHG mitigation from a number of environmental organizations, including Greenpeace and the Natural Resources Defense Council. Environmental groups also argue that it might take decades for the carbon released by burning biomass to be recaptured by new trees. Biomass burning produces air pollution in the form of carbon monoxide, volatile organic compounds, particulates and other pollutants. In 2009 a Swedish study of the giant brown haze that periodically covers large areas in South Asia determined that two thirds of it had been principally produced by residential cooking and agricultural burning, and one third by fossil-fuel burning. The use of wood biomass as an industrial fuel has been shown to produce fewer particulates and other pollutants than the burning seen in wildfires or open field fires.

Renewable energy in Africa

From Wikipedia, the free encyclopedia

Global Horizontal Irradiation in Sub-Saharan Africa.
 
The developing nations of Africa are popular locations for the application of renewable energy technology. Currently, many nations already have small-scale solar, wind, and geothermal devices in operation providing energy to urban and rural populations. These types of energy production are especially useful in remote locations because of the excessive cost of transporting electricity from large-scale power plants. The applications of renewable energy technology has the potential to alleviate many of the problems that face Africans every day, especially if done in a sustainable manner that prioritizes human rights. 

Access to energy is essential for the reduction of poverty and promotion of economic growth. Communication technologies, education, industrialization, agricultural improvement and expansion of municipal water systems all require abundant, reliable, and cost-effective energy access.

Avoiding fossil fuels

By investing in the long-term energy solutions that alternative energy sources afford, most African nations would benefit significantly in the longer term by avoiding the pending economic problems developed countries are currently facing. 

Although in many ways fossil fuels provide a simple, easy to use energy source that powered the industrialization of most modern nations, the issues associated with the widespread use of fossil fuels are now numerous, consisting of some of the world's most difficult and large-scale global political, economic, health and environmental problems. The looming energy crisis results from consuming these fossil fuels at a rate which is unsustainable, with the global demand for fossil fuels expected to increase every year for the next several decades, compounding existing problems.

While a great number of projects are currently underway to expand and connect the existing grid networks, too many problems exist to make this a realistic option for the vast majority of people in Africa, especially those who live in rural locations. Distributed generation using renewable energy systems is the only practical solution to meet rural electrification needs. There is a move towards energy decentralization in African nations, with many looking towards variants of energy decentralization frameworks, such as District Energy Officers, for example as described in a recommendations paper for District Energy Officers for the country of Malawi.

Renewable energy resources

Hydro-electric, wind and solar power all derive their energy from the Sun. The Sun emits more energy in one second (3.827 × 1026 J) than is available in all of the fossil fuels present on earth (3.9 × 1022 J), and therefore has the potential to provide all of our current and future global energy requirements. Since the solar source for renewable energy is clean and free, African nations can protect their people, their environment, and their future economic development by using renewable energy sources To this end they have a number of possible options.

Solar resources

World map of global solar horizontal irradiation 
 
Africa is the sunniest continent on Earth, especially as there are many perpetually sunny areas like the huge Sahara Desert. It has much greater solar resources than any other continent. Desert regions stand up as the most sunshiny while rain forests are considerably cloudier but still get a good global solar irradiation because of the proximity with the equator. 

The distribution of solar resources across Africa is fairly uniform, with more than 85% of the continent's landscape receiving at least 2,000 kWh/(m² year). A recent study indicates that a solar generating facility covering just 0.3% of the area comprising North Africa could supply all of the energy required by the European Union. This is the same land area as the state of Maine.

Wave and wind resources

World map of wind power density. 
 
Africa has a large coastline, where wind power and wave power resources are abundant and underutilized in the north and south. Geothermal power has potential to provide considerable amounts of energy in many eastern African nations.

Wind is far less uniformly distributed than solar resources, with optimal locations positioned near special topographical funneling features close to coastal locations, mountain ranges, and other natural channels in the north and south. The availability of wind on the western coast of Africa is substantial, exceeding 3,750 kW·h, and will accommodate the future prospect for energy demands Central Africa has lower than average wind resources to work with.

Geothermal resources

The Rift Valley near Eldoret, Kenya
 
Geothermal power is mostly concentrated in eastern Africa, but there are many fragmented spots of high intensity geothermal potential spread across the continent. There is enormous potential for geothermal energy in the East African Rift which is roughly 5,900 kilometers in length and spans several countries in East Africa including Eritrea, Ethiopia, Djibouti, Kenya, Uganda, and Zambia.

Biomass

The use of biomass fuels endangers biodiversity and risks further damaged or destruction to the landscape. 86% of Africa’s biomass energy is used in the sub-Saharan region, excluding South Africa. Even where other forms of energy are available, it is not harnessed and utilized efficiently, underscoring the need to promote energy efficiency where energy access is available.

There is, however, an urgent need to address the current levels of respiratory illness from burning biomass in the home. Taking into respect the cost differential between the biomass and fossil fuels, it is far more cost-effective to improve the technology used to burn the biomass than to use fossil fuels.

Horizontal integration potential

Solar and wind power are extremely scalable, as there are systems available from less than 1 watt to several megawatts. This makes it possible to initialize the electrification of a home or village with minimal initial capital. It also allows for dynamic and incremental scaling as load demands increases. The component configuration of a wind or solar installation also provides a level of functional redundancy, improving the reliability of the system. If a single panel in a multi-panel solar array is damaged, the rest of the system continues functioning unimpeded. In a similar way, the failure of a single wind tower in a multi-tower configuration does not cause a system-level failure. 

Because solar and wind projects produce power where it is used, they provide a safe, reliable and cost-effective solution. Because transmission equipment is avoided, these systems are more secure, and less vulnerable to attack. This can be an important feature in regions prone to conflict. Wind and solar power systems are simple to set up, easy to operate, easy to repair, and durable. Wind resources and solar resource are abundant enough to provide all of the electrical energy requirements of rural populations, and this can be done in remote and otherwise fragmented low-density areas that are impractical to address using conventional grid-based systems.

Finance

Photo-voltaic panels, wind turbines deep cycle batteries, meters, sockets cables, and connectors are all expensive. Even when the relative difference in buying power, materials cost, opportunity cost, labor cost and overhead is factored in, renewable energy will remain expensive for people who are living on less than US$1 per day. Many rural electrification projects in the past use government subsidies to finance the implementation of rural development programs. It is difficult for rural electrification projects to be accomplished by for-profit companies; in economically impoverished areas these programs must be run at a loss for reasons of practicality. There are several theorized ways in which specific African nations can rally the resources for such projects.

Potential funding sources

European countries that consume oil refined from African countries have the opportunity to subsidize the costs of individual level, village level, or community level alternative energy systems through emissions trading credits. It has been proposed that for every unit of African origin carbon consumed by the European market, a predetermined amount green credits or carbon credits would be yielded. The European partners could then either supply parts, components, or systems directly, an equivalent amount of investment capital, or lend credits to finance the distribution of renewable energy services, knowledge or equipment.

International relief targeted at poverty reduction could also be redirected towards subsidizing renewable energy projects. Because of the integral role that electrification plays in supporting economic and social development, funding of rural electrification can be seen as the core method for addressing poverty. Radios, televisions, telephones, computer networks, and computers all rely on an access to electricity. Because information services allow for the proliferation of education resources, funding the electric backbone to such systems has a derivative effect on their development. In this way, access to communications and education plays a major role in reducing poverty. Additionally, international efforts that supply equipment and services rather than money, are more resistant to resource misappropriation issue that pose problems in less stable governments.

UNEP has developed a loan program to stimulate renewable energy market forces with attractive return rates, buffer initial deployment costs and entice consumers to consider and purchase renewable technology. After a successful solar loan program sponsored by UNEP that helped 100,000 people finance solar power systems in developing countries like India, UNEP started similar schemes in other parts of the developing world like Africa - Tunisia, Morocco, and Kenya projects are already functional and many projects in other African nations are in the pipeline. In Africa, UNEP assistance to Ghana, Kenya, and Namibia has resulted in the adoption of draft National Climate Awareness Plans, publications in local languages, radio programs and seminars. The Rural Energy Enterprise Development (REED) initiative is another flagship UNEP effort focused on enterprise development and seed financing for clean energy entrepreneurs in developing countries of West and Southern Africa.

The Government of South Africa has set up the South African Renewables Initiative (SARi) to develop a financing arrangement that would enable a critical mass of renewables to be developed in South Africa, through a combination of international loans and grants, as well as domestic funding. This has been a highly successful program now known as the REIPPP (Renewable Energy Independent Power Producer Program) with four rounds of allocations already completed. In Round 1, 19 projects were allocated, in Round 2, 28 projects were allocated, in Round 3, 17 projects were allocated and in Round 4, 26 projects were allocated. Over 6100MW has been allocated with a total of R194 billion (US$16 billion) being invested in this program. It is important to note that this investment figure represents full funding from private entities and banks - there are no government subsidies for this program.

Energy sector regulators as facilitators

The funding of renewable energy (RE) projects is dependent on the credibility of the institutions developing and implementing RE policy. This places a particular burden on the energy regulators in Africa, whose professional staff may be few in number and who have track records of only a decade or so. Rules (micro policies) made by regulators are subsidiary to overall government RE policy and depend on some delegation of authority from the state. Nevertheless, there are instances when the sector regulator can pro-active on behalf of customer and utility concerns—providing facts, reports, and public statements that build a case for care in the design of public policy towards RE. Clean and renewable energy is likely to be of concern to a number of organizations. Interaction between multiple authorities requires coordination to align policies, incentives, and administrative processes (including licensing and permitting). Of course, the making of policy by regulators is incidental to and inherent in their duty to decide specific cases or disputes. This micro policy-making role is derived from the fact that macro RE policy cannot reasonably be expected to anticipate all aspects of policy that will have to evolve for the regulatory process to be fully functional. This point is particularly important in the area of renewable energy, with its rapidly changing technologies and ever-changing public (and political) attitudes. Gaps will have to be filled and it is the regulators, with their functional responsibilities, technical expertise, and hands-on experience that are best positioned to accomplish that task in developing countries. Thus, for designing auctions for purchasing power, for establishing feed-in tariffs, or other instruments promoting RE, the energy sector regulator has a significant impact on the penetration of RE in Africa and other regions.

Renewable energy use

Solar power

Global Horizontal Irradiation in Sub-Saharan Africa. 

Several large-scale solar power facilities are under development in Africa including projects in South Africa and Algeria. Although solar power technology has the potential to supply energy to large numbers of people, and has been used to generate power on a large scale in developed nations, its greatest potential in Africa may be to provide power on a smaller scale and to use this energy to help with day-to-day needs such as small-scale electrification, desalination, water pumping, and water purification

The first utility-scale solar farm in Sub-Saharan Africa is the 8.5MW plant at Agahozo-Shalom Youth Village, in the Rwamagana District, Eastern Province of Rwanda. It leased 20 hectares (49 acres) of land from the village which is a charity to house and educate Rwandan genocide victims. The plant uses 28,360 photovoltaic panels and produces 6% of total electrical supply of the country. The project was built with U.S., Israeli, Dutch, Norwegian, Finnish and UK funding and expertise.

There are several examples of small grid-linked solar power stations in Africa, including the photovoltaic 250 kW Kigali Solaire station in Rwanda. Under the South Africa Renewable Energy Independent Power Producer Procurement Program, several projects have been developed, including the 96MW(DC) Jasper Solar Energy Project, the 75MW(DC) Lesedi PV project, and the 75MW(DC) Letsatsi PV Project, all developed by the American company SolarReserve and completed in 2014. 

Power Up Gambia, a non-profit operating in The Gambia, uses solar power technology to provide power to Gambian health care facilities, providing a reliable source of electricity for lighting, diagnostic testing, treatments, and water pumping. Energy For Opportunity (EFO), a non-profit working in West Africa, uses solar power for Schools, Health Clinics and Community Charging Stations, as well as teaches Photovoltaic installation classes at local technical institutes. So far its work has been mainly in Sierra Leone. In particular its solar powered Community Charging Stations have been recognized as an innovative model to provide electricity to rural communities in the region.

Some plans exist to build solar farms in the deserts of North Africa to supply power for Europe. The Desertec project, backed by several European energy companies and banks, planned to generate renewable electricity in the Sahara desert and distribute it through a high-voltage grid for export to Europe and local consumption in North-Africa. Ambitions seek to provide continental Europe with up to 15% of its electricity. The TuNur project would supply 2GW of solar generated electricity from Tunisia to the UK.

Solar water pumping

One of the most immediate and lethal problems facing many third world countries is the availability of clean drinking water. Solar powered technologies can help alleviate this problem with minimal cost using a combination of solar powered well pumping, a water tower or other holding tank, and a solar powered water purifier. These technologies require minimal maintenance, have low operational costs, and once set up, will help provide clean water for drinking and agriculture. With large enough reservoirs for the water that has been pumped and purified with solar powered technology, a community will be better able to withstand drought or famine. This reservoir water could be consumed by humans, livestock, or used to irrigate community gardens and fields, thus improving crop yields and community health. A solar powered water purification system can be used to clean many pathogens and germs from groundwater and runoff. A group of these devices, filtering the water from wells or runoff could help with poor sanitation and controlling the spread of waterborne illnesses

Kenya may be a good candidate for testing out these systems because of its progressive and relatively well-funded department of agriculture, including the Kenya Agricultural Research Center, which provides funding and oversight to many projects investigating experimental methods and technologies.

Even though this solar technology may have a higher starting cost than that of conventional fossil fuel, the low maintenance and operation cost and the ability to operate without fuel makes the solar powered systems cheaper to keep running. A small rural community could use a system like this indefinitely, and it would provide clean drinking water at a negligible cost after the initial equipment purchase and setup. In a larger community, it could at least contribute to the water supply and reduce pressures of daily survival. This technology is capable of pumping hundreds of gallons of water per day, and is limited only by the amount of water available in the water table.

With a minimum of training in operation and maintenance, solar powered water pumping and purification systems have the potential to help rural Africans fulfill one of their most basic needs for survival. Further field test are in progress by organizations like KARI and the many corporations that manufacture the products needed, and these small-scale applications of solar technology are promising. Combined with sustainable agricultural practices and conservation of natural resources, solar power is a prime candidate to bring the benefits of technology to the parched lands of Africa. 

Supplementing the well water would be collection of runoff rainwater during the rainy season for later use in drought. Southern Africa has its own network of information sharing called SEARNET, which informs farmers of techniques to catch and store rainwater, with some seeing increased yields and additional harvests. This new network of farmers sharing their ideas with each other has led to a spread of both new and old ideas, and this has led to greater sustainability of water resources in the countries of Botswana, Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda, Zambia and Zimbabwe. This water could be used for agriculture or livestock, or could be fed through a purifier to yield water suitable for human consumption.

Examples

A solar powered water pump and holding system was installed in Kayrati, Chad, in 2004 as compensation for land lost to oil development. This system utilizes a standard well pump powered by a photovoltaic panel array. The pumped water is stored in a water tower, providing the pressure needed to deliver water to homes in the area. This use of oil revenue to build infrastructure is an example of using profits to advance the standard of living in rural areas. 

Hundreds of solar water pumping stations in Sudan fulfill a similar role, involving various applications of different systems for pumping and storage. Over the past 10 years approximately. 250 photovoltaic water pumps have been installed in Sudan. Considerable progress has been made and the present generation of systems appear to be reliable and cost–effective under certain conditions. A photovoltaic pumping system to pump 25 cubic metres per day requires a solar array of approx. 800 Wp. Such a pump would cost US$6000, since the total system comprises the cost of modules, pump, motor, pipework, wiring, control system and array support structure. PV water pumping has been promoted successfully in Kordofan state in Sudan. It shows favorable economics as compared to diesel pumps, and is free from the need to maintain a regular supply of fuel. The only maintenance problems with PV pumping [are] due to the breakdown of pumps and not the failure of the PV devices.

The Solar Water Purifier, developed and manufactured by an Australian company, is a low-maintenance, low operational cost solution that is able to purify large amounts of water, even seawater, to levels better than human consumption standards set by the World Health Organization. This device works through the processes of evaporation and UV radiation. Light passes through the top layer of glass to the black plastic layer underneath. Heat from the solar radiation is trapped by the water and by the black plastic. This plastic layer is a series of connected troughs that separate the water as it evaporates and trickles down through the levels. The water is also subjected to UV radiation for an extended period of time as it moves through the device, which kills many bacteria, viruses, and other pathogens. In a sunny, equatorial area like much of Africa, this device is capable of purifying up to 45 liters per day from a single array. Additional arrays may be chained together for more capacity. 

The Water School uses SODIS solar disinfection currently in target areas of Kenya and Uganda to help people drink water free of pathogens and disease causing bacteria. SODIS is a UV process that kills microorganisms in the water to prevent water borne disease. The science of the SODIS system is proven with over 20 years of research.

Wind power

Darling Wind Farm in South Africa
 
Wind Speed in Sub-Saharan Africa. 
 
The Koudia Al Baida Farm in Morocco, is the largest wind farm in the continent. Two other large wind farms are under construction in Tangier and Tarfaya

Kenya is building a wind farm, the Lake Turkana Wind Power (LTWP), in Marsabit County. As Africa’s largest wind farm, the project will increase the national electricity supply while creating jobs and reducing greenhouse gas emissions. LTWP is planned to produce 310 MW of wind power at full capacity.

In January 2009, the first wind turbine in West Africa was erected in Batokunku, a village in The Gambia. The 150 kilowatt turbine provides electrical power for the 2,000-person village.

The South African REIPPP has resulted in several wind farms already in commercial operation in the country. These wind farms are currently in operation in the provinces of the Eastern, Northern and Western Cape. It is estimated that 10 farms are already under construction or in operation, with 12 more being approved with the 4th Round of the REIPPP.

Geothermal power

So far, only Kenya has exploited the geothermal potential of the Great Rift Valley. Kenya has been estimated to contain 10,000 MWe of potential geothermal energy, and has twenty potential drilling sites marked for survey in addition to three operational geothermal plants. Kenya was the first country in Africa to adopt geothermal energy, in 1956, and houses the largest geothermal power plant on the continent, Olkaria II, operated by Kengen, who also operate Olkaria I. A further plant, Olkaria III, is privately owned and operated.

Ethiopia is home to a single binary-cycle plant but does not utilize its full potential energy output for lack of experience in its operation. Zambia has several sites planned for construction but their projects have stalled due to lack of funds. Eritrea, Djibouti and Uganda have undertaken preliminary exploration for potential geothermal sources but have not constructed any type of power plant.

Geothermal power has been used in agricultural projects in Africa. The Oserian flower farm in Kenya utilizes several steam wells abandoned by Kengen to power its greenhouse. In addition, the heat involved in the geothermal process is used to maintain stable greenhouse temperatures. The heat can also be utilized in cooking, which would help eliminate the dependence on wood burning.

Finance

Exploration and construction of future geothermal plants present a high cost for poor countries. Drilling potential sites alone costs millions of dollars and can result in zero energy return if the consistency of the heat and steam is unreliable. Return on investments into geothermal power are not as quick as those into fossil fuels and may take years to pay off; however, low-maintenance cost and the renewable nature of geothermal energy mean more benefits in the long term.

As an early and successful adopter of geothermal power, Kenya now has significant financial backing from the World Bank. The country hosts development conferences between representatives of the UN Environment Program and various African governments.

Renewable energy in Asia

From Wikipedia, the free encyclopedia

For solar power, South Asia has the ideal combination of both high solar insolation  and a high density of potential customers.

Cheap solar can bring electricity to a major chunk of subcontinent's people who still live off-grid, bypassing the need of installation of expensive grid lines. Also since the costs of energy consumed for temperature control squarely influences a regions energy intensity, and with cooling load requirements roughly in phase with the sun's intensity, cooling from intense solar radiation could make perfect energy-economic sense in the subcontinent.

Renewable energy by country

Bangladesh

In Bangladesh, biomass, hydro and solar are the main sources of renewable energy and altogether these sources contribute about 60% of the nation's primary energy supply. A number of domestic solar energy systems are in use in houses around the country. The use of solar energy on this scale is highly potential and advantageous as more than 60% of areas in the country do not have access to main grid electricity. The World Bank is backing a program of making solar energy available to wider population in Bangladesh, as part of the Rural Electrification and Renewable Energy Development Project (REREDP), which subsidizes solar energy systems. 

A typical 'solar home system' can power two to eight 'low energy' lights, plus a socket for TV, radio or battery recharging, and a mobile telephone charging unit, too. Each system consists of a solar photovoltaic panel, mounted on the house roof. Depending on its size, this provides between 40W and 135W of electricity in full sunlight (the most common being 50W).

Grameen Shakti is the largest organization installing rural based solar home system (SHS) in Bangladesh. Other companies working on similar solar energy based SHS are Rural Services Foundation (RSF), Brac, Hilfulfujal and so on. The model of micro finance based SHS is now being copied in other parts of the world as a successful business model.

Rahimafrooz is a major supplier of high quality solar batteries and other solar components for the program. Rahimafrooz Renewable Energy Ltd (RRE) has been the pioneer in installing solar powered centralized systems, water pumps for irrigation and pure drinking water, water heaters, street lights, and solar-powered telecom solutions to various organizations. They are working closely with pertinent government organizations in installing solar powered medical refrigerator that provides emergency live saving medicines in the off-grid rural areas.

A company named Digital Technology is doing research and development of solar PV products like solar billboard lighting, mini grid system for irrigation etc.

China

Rooftop solar water heaters are ubiquitous in modern China
 
Wind farm in Xinjiang, China
 
In China there now are six factories producing at least 2 GW/year each of monocrystalline, poly-crystalline and non-crystalline Photovoltaic cells. These factories include the LDK Solar Co, Wuxi Suntech Solar Energy Co., Ltd., which produces approximately 50 MW/year of solar cells and photovoltaic modules; the Yunnan Semi-conductor Parts Plant, which manufactures approximately 2 MW/year of mono-crystalline cells; the Baoding Yingli Solar Energy Modules Plant, which manufactures approximately 6 MW/year of polycrystalline cells and modules; the Shanghai Jiaoda Guofei Solar Energy Battery Factory, which produces approximately 1 MW/year of modules; and the Shanghai PV Science and Technology Co., Ltd., which produces approximately 5 MW/year of modules.

China has become a world leader in the manufacture of solar photovoltaic technology, with its six biggest solar companies having a combined value of over $15 billion. Around 820 megawatts of solar PV were produced in China in 2007, second only to Japan. Suntech Power Holdings Co based in Jiangsu, is the world's third- biggest supplier of solar cells.

There are some obstacles to the further development of the Chinese solar energy sector that China faces. These obstacles include the lack of a nationwide comprehensive photovoltaic (PV) plan, the lack of updated facilities and sufficient financial resources to support PV research at research institutes, the lack of sufficient facilities and resources at companies manufacturing PV products, the failure of companies to be able to produce high quality, reliable and low cost PV products and the relatively weak educational and training opportunities in China for PV science and technology.

About 50 MW of installed solar capacity was added in 2008, more than double the 20 MW in 2007, but still a relatively small amount. According to some studies, the demand in China for new solar modules could be as high as 232 MW each year from now on until 2012. The government has announced plans to expand the installed capacity to 1,800 MW by 2020. If Chinese companies manage to develop low cost, reliable solar modules, then the sky is the limit for a country that is desperate to reduce its dependence on coal and oil imports as well as the pressure on its environment by using renewable energy.

In 2009 centre to the PRC Government’s plans is the recently announced "Golden Sun" stimulus program. Under this program the Ministry of Finance will subsidize half of the total construction costs of an on-grid solar power plant, including transmission expenses. The Ministry of Finance will also pay subsidies of up to 70% to develop independent photovoltaic power generating systems in remote regions. The strong handed move by the Government is meant to encourage more solar projects to increase the current solar power capacity, which at 2008 stood at a paltry 40MW. As the Government targets to increase China’s solar power capacity up to 20GW by 2020, this will provide significant opportunities for solar cell and module manufacturers. Many of the solar industry players therefore will expect for chances to be benefited from the government programs especially the solar cell manufacturers. With the hope of increase in local demand, some of the new developments have been going on with this region, like Anwell Technologies Limited, a Singapore listed company having its solar cell manufacturing plant in China, has produced its first thin film solar panel with its own developed production lines in September 2009.

According to the speech given by the Chinese President Hu Jintao's at the UN climate summit held on September 22, 2009 in New York, China will intensify effort and adopt ambitious plans to plant enough forest to cover an area the size of Norway and use 15 percent of its energy from renewable sources within a decade.

India

Global Horizontal Irradiation in India.
 
India is both densely populated and has high solar insolation, providing an ideal combination for solar power in India. Much of the country does not have an electrical grid, so one of the first applications of solar power has been for water pumping, to begin replacing India's four to five million diesel powered water pumps, each consuming about 3.5 kilowatts, and off-grid lighting. Some large projects have been proposed, and a 35,000 km² area of the Thar Desert has been set aside for solar power projects, sufficient to generate 700 to 2,100 gigawatts.

The Indian Solar Loan Programme, supported by the United Nations Environment Programme has won the prestigious Energy Globe World award for Sustainability for helping to establish a consumer financing program for solar home power systems. Over the span of three years more than 16,000 solar home systems have been financed through 2,000 bank branches, particularly in rural areas of South India where the electricity grid does not yet extend.

Launched in 2003, the Indian Solar Loan Programme was a four-year partnership between UNEP, the UNEP Risoe Centre, and two of India's largest banks, the Canara Bank and Syndicate Bank.

According to Development Counsellors International (DCI), a United States marketing company, India is the second best country, after China, for business investment. United Nations Environment Programme (UNEP) has reported that India has seen a 12% increase in investment in the renewable energy sector with an investment of $3.7 billion in 2008. The largest share was asset finance at $3.2 billion which grew by 25%. The clean renewable energy includes wind, solar, biomass and small-hydro projects. The major portion of investment has been made in wind energy sector. The investment in wind energy sector grew at 17% from $2.2 billion to $2.6 billion.

Japan

Japan currently produces about 10% of its electricity from renewable sources. The renewable share goal is 20% by 2020.

Pakistan

Solar power in Pakistan discusses the generation and development of electricity via solar thermal or photovoltaic technology in that country. The country has solar plants in Pakistani Kashmir, Punjab, Sindh and Balochistan. Initiatives are under development by the International Renewable Energy Agency, the Japan International Cooperation Agency, Chinese companies, and Pakistani private sector energy companies. The country aims to build the world's largest solar power park, the Quaid-e-Azam Solar Power Park (QASP) in the Cholistan Desert, Punjab, by 2017 with a 1 GW capacity. A plant of this size would be enough to power around 320,000 homes.

Projects

Introduction of Clean Energy by Solar Electricity Generation System

On May 29, 2012, Pakistan inaugurated its first solar power on-grid power plant in Islamabad. Introduction of Clean Energy by Solar Electricity Generation System is a special grant aid project by the Japan International Cooperation Agency (JICA) under the Coolio Earth Partnership. This project includes the installation of two 178 kW photovoltaic (PV) systems at the premises of the Planning Commission and Pakistan Engineering Council. 

This is the first on-grid solar PV project that employs net-metering, thereby allowing the beneficiaries to sell surplus electricity to the Islamabad Electric Supply Company (IESCO), the electricity distribution company of the Islamabad Division. The project was executed with grant assistance, worth 480 million Yen (approx. 553.63 million Pakistani Rupees) over three years commencing in 2010.

Other projects

Aviation Enclave Karachi installed the first high quality integrated solar energy system with a 15 kW power generation capacity capable of grid tie-in at, Aviation Enclave Karachi in Sep 2016. It was a pilot project for Central Facilitation Agency & Central Builders & Developers.

Beaconhouse installed the second high quality integrated solar energy system with a 10 kW power generation capacity capable of grid tie-in at Beaconhouse Canal Side Campus, Lahore. It was a pilot project for BSS designed by U.S. consultants, based upon feasibility by the U.S. Trade and Development Agency (USTDA). 

50 to 100 MW of photovoltaics is expected to be installed in 2013, and at least 300 MW in 2014. In May 2015, 100 MW of a planned 1,000 MW were installed in the Quaid-e-Azam Solar Park.

Annual solar irradiation

Solar irradiance in Pakistan is 5.3 kWh/m²/day. Pakistan set a target to add approximately 10 GW of renewable capacity by 2030 in addition to replacing 5% diesel with biodiesel by 2015 and 10% by 2025.

Photovoltaic installations

Year Installations in MWp Notes Cumulative Capacity Added Capacity 2014 400 Calculated back from 2015 added capacity data. 2015 1,000 600 Preliminary data.

Government policy

Raja Pervaiz Ashraf, former Federal Minister of Water & Power announced on July 2, 2009 that 7,000 villages would be electrified using solar energy by 2014. Senior adviser Sardar Zulfiqar Khosa stated that the Punjab government would begin new projects aimed at power production through coal, solar energy and wind power; this would generate additional resources. 

The Government of Pakistan allowed the provincial government of Sindh to conduct feasibility research. The government planned to install a desalination plant powered by solar energy.

Philippines

The Philippine government sees the growth of the renewable energy sector essential for national energy security. The Philippines' fossil fuel sector is unsustainable, being dependent on the import of nonrenewable fuel, including petroleum, but has significant potential in the renewable energy sector. Based on a report of an Australian consulting firm, International Energy Consultants, the Philippines has the highest electricity rate in Asia, followed by Japan. Transmitting power and transporting fuel throughout the Philippine archipelago is problematic due to very high cost.

The Philippines could be considered a world leader in renewable energy, with 30 percent of its power generation being powered by the renewable energy sector. The Philippines is the world's second largest generator of geothermal energy and was the first Southeast Asian nation to invest in large-scale solar and wind technologies.

South Korea

In 2008, South Korea came 4th in the list of installed PV capacity according to EPIA statistics as a result of the favorable feed-in tariff system with a cap of 500MW in 2008. According to Displaybank, the new “PV Market Creation Plan” announced in 2009 is expected to boost the Korean PV installment market to increase to 200MW by 2012. The government further announced plans to increase more than double its financing for renewable R&D projects to 3.5 trillion won ($2.9/£1.9bn) by 2013. The government also plans to expand its system of tax breaks to cover new technologies in solar such as wind and thermal power, low-emission vehicles and rechargeable batteries etc.

Taiwan

Solar power

In recent years, Taiwan is also catching up on promoting renewable energy throughout the country. According to SciTech Reports, 20% of the solar panels in the world are exported from Taiwan, making the country the second largest solar panel provider globally. Moreover, the current government has been planning on employing solar energy to public amenities and incorporate the green energy to people’s daily lives. For instance, the Taipei city government has constructed 3216 solar panels to turn a former wasteland into a power house. In the southern city Tainan where there is sufficient sunshine, 5288 buildings are equipped with solar panels that can generate 7 MW each year, which is roughly 3.2 times the amount of the hydropower produced by the local dam annually. Besides mainland Taiwan, there are solar panels even on the Penghu islands that can generate 83,000 kWh/year with the newly purchased inverter.

Wind power

In addition, Taiwan’s island geographic provides ideal wind power locations. Since 2000, there have been 347 wind power systems constructed, yielding a total of 684.4 MW of storage nationwide. The offshore wind power development has also been lately invested by world-renown companies such as Ørsted, Northland Power Inc., and Copenhagen Infrastructure Partners etc. and it is anticipated that the offshore wind power would be generating 5.5 GW by 2025. 

Thermal energy

Besides wind power, the volcanic formation of Taiwan also provides the country with geothermal resources. In 2015, the Bureau of Energy and the Industrial Technology Research Institute signed a MOU contract with the New Taipei City Government in order to promote 金山四磺子坪 (Kim San Xi Huang Zi Ping)’s 10 MW thermal energy. Researchers at Taitung University are also working on utilizing the hot spring in the area to produce geothermal energy. What’s more, the Taiwan Power Company has initiated 綠島地熱發電機組試驗性計畫 (Geothermal Generator Experimental Plan in Green Island) by digging two experimental geothermal wells at 朝日溫泉 (Jhaorih Hot Springs) and establishing a 200 kWe generator. The goal is to achieve 2000 kWe by 2020, and by 2025, 11 thermal wells will be finished in 宜蘭利澤 (Yilan Lizuh), providing 8 billion kWh per year.

Hydropower

Hydropower is another crucial renewable energy in Taiwan and it is estimated that the current hydropower can provide 4500 MW per year. The system running is a combination of predominantly cascade, diversion and large accumulation types in order to handle the unpredictable typhoons and droughts. The mountainous landscape of Taiwan has gifted the country a better foundation for hydropower development.

Other power sources

Beyond natural resources, some tech companies invented alternative energies such as transforming pig dung into biogas power and excess wax apple wood sticks to biomass energy. The former can produce around 25 kW of energy and the technology was introduced in the Discovery Channel. Furthermore, an applied physics research team at Ching Hua University also came up with extracting DNA from fish roe to obtain certain material for DNA biopolymer photonics, which can be used to as a kind of sustainable energy.

Cryogenics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cryogenics...